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Abstract
Linear Autoencoders (LAEs) have shown strong
performance in state-of-the-art recommender sys-
tems. However, these impressive results are
mainly based on experiments, with little theoreti-
cal support. This paper investigates the general-
izability – a theoretical measure of model perfor-
mance in statistical machine learning – of multi-
variate linear regression and LAEs. We first pro-
pose a PAC-Bayes bound for multivariate linear
regression, which is generalized from an earlier
PAC-Bayes bound for multiple linear regression
by (Shalaeva et al., 2020), and outline sufficient
conditions that ensure its theoretical convergence.
We then apply this bound to LAEs by showing
that LAEs can be viewed as constrained multivari-
ate linear regression on bounded data, and develop
practical methods for minimizing the bound, ad-
dressing the calculation challenges posed by the
constraints. Experimental results demonstrates
the non-vacuousness of our bound for LAEs.

1. Introduction
In recent years, simple (linear) recommendation models
have consistently demonstrated impressive performance,
often rivaling deep learning models (Dacrema et al., 2019;
Jin et al., 2021; Mao et al., 2021), especially for the implicit
setting, where interactions are inferred from user behavior
(e.g., clicks or purchases). In particular, linear autoencoders
(LAEs) such as EASE (Steck, 2019) and EDLAE (Steck,
2020) have shown a surprising edge over widely used matrix
factorization (MF) methods such as ALS (Hu et al., 2008).

Despite their power and widespread use, linear autoen-
coders, particularly in the context of recommendation sys-
tems, remain theoretically underexplored. Recommendation
research has understandably focused on performance evalu-
ation to compare models, but issues such as weak baselines
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and unreliable sampled metrics often make these evaluations
difficult to reproduce (Dacrema et al., 2019; Cremonesi &
Jannach, 2021). A recent study attempted to provide a theo-
retical comparison between linear recommendation models,
such as matrix factorization and LAE, using spectral anal-
ysis, showing that both approaches “reduce” the singular
values of the original user-item data matrix R, albeit in
different ways (Jin et al., 2021). Another related study
investigates the loss landscape of low-rank LAEs, character-
izing their critical points through the smooth submanifold
theory (Kunin et al., 2019).

In this work, we aim to advance the theoretical understand-
ing of linear autoencoder (LAE) models’ generalizability
using statistical learning theory. While generalization theory
has been extensively studied for various machine learning
and deep learning models (Vapnik, 1991; Dziugaite & Roy,
2017), its application to LAE recommendation models re-
mains largely unexplored. To address this gap, we leverage
PAC-Bayes theory (McAllester, 1998), which integrates the
Probably Approximately Correct (PAC) framework with
Bayesian inference. Our analysis produces a nonvacuous
bound, offering practical insights into LAE performance on
unseen data.

Our study to establish PAC-Bayes bounds for LAE mod-
els builds on the theoretical framework introduced by Sha-
laeva (Shalaeva et al., 2020), which provides a PAC-Bayes
bound for multiple linear regression (a single dependent vari-
able with multiple independent variables) under the assump-
tion of Gaussian data. However, applying this framework to
LAE models introduces several challenges:

1. Multivariate Linear Regression: The PAC-Bayes
bound must be extended from the multiple linear regres-
sion setting to the multivariate linear regression scenario,
which involves multiple dependent variables. Notably,
PAC-Bayes bounds for multivariate linear regression –
an important method and topic in statistical learning and
inference – remain unexplored in the existing literature.

2. Additional Convergence Requirements: Our analysis
reveals the need for additional convergence conditions
beyond those presented in (Shalaeva et al., 2020). These
conditions are essential for ensuring theoretical conver-
gence in the more complex multivariate setting.
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3. Constraints on the Weight Matrix and Data: LAE
models impose a structural zero-diagonal constraint on
the weight matrix and a data dependency constraint be-
tween the input and target. These constraints present
unique challenges in theoretical analysis and practical
calculation when adapting PAC-Bayes bounds from mul-
tivariate linear regression to LAE models.

This paper addresses the aforementioned challenges and
makes the following key contributions:

• (Section 3) We develop a general theoretical PAC-Bayes
bound for multivariate linear regression (Theorem 3.2), of
which Shalaeva’s bound (Shalaeva et al., 2020) for mul-
tiple linear regression is a special case. Additionally, we
propose sufficient conditions (Theorem 3.3) that guaran-
tee convergence for both the new bound (Theorem 3.2)
and Shalaeva’s original bound (Shalaeva et al., 2020).

• (Section 4) We adapt Theorem 3.2 to bounded data as-
sumption (Assumption 4.1) and propose the PAC-Bayes
bound for multivariate linear regression on bounded data
(Section 4.1). We then show the bound for LAEs is a spe-
cial case of this, achieved by applying the zero diagonal
constraint and the data dependent constraint (Section 4.2).

• (Section 5) We propose practical methods for calculating
and minimizing the PAC-Bayes Bound for LAEs, includ-
ing solving for the optimal posterior distribution (Theo-
rem 5.2) under Gaussian assumption (Assumption 5.1),
and addressing the high computational complexity intro-
duced by the zero diagonal constraint with a practical
upper bound (Theorem 5.4).

• (Section 6) We evaluate the bound for LAEs on a specific
data distribution (which is typically considered unknown
in practice but assumed to be known in this experiment)
to address the incomputability issue of the oracle bound,
and the results show that our bound is non-vacuous.

All proofs of the theorems, lemmas and propositions pre-
sented in this paper are provided in Appendix A, Related
Works are discussed in Appendix C, and Discussions are
presented in Appendix E.

2. Preliminaries
Alquier’s Bound (Alquier et al., 2016): Let S =
{(xi, yi)}mi=1 be the dataset where xi ∈ Rn is the feature
vector and yi ∈ R is the label. Suppose each (xi, yi) is
i.i.d. sampled from an unknown data distribution D. Let
fθ : Rn → R be the machine learning model where θ
is the vector of parameters. Let l be the loss function,
Remp(θ) = 1

m

∑m
i=1 l(fθ(xi), yi) be the empirical risk and

Rtrue(θ) = E(x,y)∼D[l(fθ(x), y)] be the true risk. Let π be
a prior distribution of θ and ρ be the posterior distribution

of θ, then for any λ > 0, δ > 0,

P
(
Eθ∼ρ[R

true(θ)] < Eθ∼ρ[R
emp(θ)]+

1

λ

[
D( ρ ||π ) + ln

1

δ
+Ψπ,D,l(λ,m)

])
≥ 1− δ

where Ψπ,D,l(λ,m) = lnEθ∼πES∼Dm [eλ(R
true(θ)−Remp(θ))].

Note that the Alquier’s bound involves Rtrue(W ) on both
the left and right hand sides, meaning the bound cannot be
computed without the knowledge of the data distribution
D. Such bound is refered to as the oracle bound (Alquier,
2021).

Shalaeva’s Bound (Shalaeva et al., 2020): In Alquier’s
bound, suppose fθ(x) = θTx where θ ∈ Rn. Assume D
satisfies xi ∼ N (0, σ2

xI), and there exist θ∗ ∈ Rn such that
yi = (θ∗)Txi + ei where ei ∼ N (0, σ2

e). Here σ2
x, σ

2
e are

constants. Let the loss function be l(fθ(xi), yi) = (θTxi −
yi)

2, then

Ψπ,D,l(λ,m) = lnEθ∼π
exp(λvθ)

(1 + λvθ
m/2 )

m/2
≤ lnEθ∼π exp

(
2λ2v2θ
m

)
(1)

where vθ = σ2
x∥θ − θ∗∥22 + σ2

e .

Convergence of Shalaeva’s Bound: The convergence anal-
ysis in (Shalaeva et al., 2020) is presented informally. Here
we formally state their results as follows:

(1) Since limm→∞(1 + λvθ

m/2 )
m/2 = exp (λvθ), for any

λ > 0, the term Ψπ,D,l(λ,m) converges,

lim
m→∞

Ψπ,D,l(λ,m) = lim
m→∞

lnEθ∼π
exp(λvθ)

(1 + λvθ
m/2

)m/2

= lnEθ∼π lim
m→∞

exp(λvθ)

(1 + λvθ
m/2

)m/2
= 0

(2) Let d be a constant and λ = m1/d, then
lnEθ∼π exp

(
2λ2v2

θ

m

)
= lnEθ∼π exp

(
2m2/d−1v2θ

)
.

When d > 2, limm→∞ m−1/d lnEθ∼π exp
(
2m2/d−1v2θ

)
=

0, thus the entire bound converges as m → ∞.

lim
m→∞

1

λ

[
D( ρ ||π ) + ln

1

δ
+Ψπ,D,l(λ,m)

]
≤

lim
m→∞

m−1/d

[
D( ρ ||π ) + ln

1

δ

]
+

lim
m→∞

m−1/d lnEθ∼π exp
(
2m2/d−1v2θ

)
= 0

Upon careful examination of their analysis, we found that
additional conditions are needed to ensure the above con-
vergency results, which were not discussed in their original
paper. In (1), swapping lim and E is valid only under some
specific conditions. For example, by dominated conver-
gence theorem (Resnick, 1998; Rudin, 1976), the condition

2
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can be Eθ∼π[exp(λvθ)] < ∞. π needs to be a distribution
satisfying this condition. In (2), some choices of π can cause
divergence. For example, when π is Gaussian distribution,
we have lnEθ∼π exp

(
2m2/d−1v2θ

)
= ∞ for any m > 0,

thus limm→∞ m−1/d lnEθ∼π exp
(
2m2/d−1v2θ

)
= ∞ and

the bound diverges. We will discuss these issues in Section
3.2.

Multivariate Linear Regression (Johnson & Wichern,
2007): Let S = {(xi, yi)}mi=1 be the dataset where xi ∈ Rn

and yi ∈ Rp. Let X = [x1, x2, ..., xm] ∈ Rn×m be the
input matrix, Y = [y1, y2, ..., ym] ∈ Rp×m be the target,
W ∈ Rp×n be the weight matrix of the linear model and
E = [e1, e2, ..., em] ∈ Rp×m be the error matrix. The
linear regression is defined as

Y = WX + E

Usually we let the first dimension of every xi be 1, i.e.,
X1∗ is a vector of all 1s. We say the linear regression is
multivariate if p > 1, and is multiple if n > 2.

We can apply a statistical assumption to the multivariate lin-
ear regression, where it is typically assumed that the errors
ei and ej are independent for i ̸= j, but the dimensions of
each ei can be dependent. A common statistical assumption
is shown in Assumption 3.1.

LAE Model and Recommender System: In a recom-
mender system, let x ∈ {0, 1}n be a user vector that xi = 1
indicates the user has interacted with item i, and xi = 0
indicates the user has not yet interacted with item i, but may
potentially be interested in it. An LAE model is represented
by a matrix W ∈ Rn×n, which takes x as input and gen-
erates a prediction by ŷ = Wx. The prediction ŷ fills in
the 0s in x. If xi = 0 and ŷi is closer to 1, it suggests that
the user is likely to be interested in item i, and the item
will be recommended. Items with ŷi closer to 0 will not be
recommended. If xi = 1, ŷi is should ideally be close to
0, as the system should avoid recommending items that the
user already knows.

Let y ∈ {0, 1}n be the target vector used in evaluation.
We consider the item i with xi = 1 and yi = 1 wrongly
labeled, as it indicates that the recommender system would
suggest a redundant item the user already knows. Wrongly
labeled items should be excluded from the evaluation, as
they misrepresent the model’s performance.

EASE (Steck, 2019): EASE is one of the most popular
method for training LAE models (Jin et al., 2021). Let
Rn×m be the data matrix and W ∈ Rn×n be the weight
matrix, then EASE obtains the LAE model W by solving
the following problem

min
W

∥R−WR∥2F + γ∥W∥2F s.t. diag(W ) = 0 (2)

where γ is the regularization parameter. Let W0 be the

solution of Eq (2), then W0 has closed from: Let P =(
RRT + γI

)−1
, then (W0)ij = 0 if i = j and (W0)ji =

−Pij/Pjj if i ̸= j.

3. PAC-Bayes Bound for Multivariate Linear
Regression

3.1. The Statistical Assumption and the Bound

Assumption 3.1. Suppose each (xi, yi) in S is i.i.d. sam-
pled from a distribution D. D is defined as: (1) xi ∼
N (µx,Σx); (2) there exist W ∗ ∈ Rp×n and e ∼ N (0,Σe)
such that for any given xi, yi = W ∗xi + e, in other words,
yi|xi ∼ N (W ∗xi,Σe). Here µx ∈ Rn, Σx ∈ Rn×n is
positive semi-definite, and Σe ∈ Rp×p is positive-definite.

The positive semi-definite assumption of Σx allows Σx to
be singular, implying that the Gaussian distribution is de-
generate, i.e., its support is on a lower dimensional manifold
embedded in Rn. This includes the case that xi has its first
dimension to be constant 1 and the other n− 1 dimensions
to be Gaussian random variables. In this case, the first row
and first column of Σx are 0.

Let W ∈ Rp×n be the weight matrix of the linear model,
then the prediction of the model on xi is given by ŷi = Wxi.
The error is yi − ŷi = (W ∗ −W )xi + e ∼ N (µ

W
,Σ

W
),

where

µ
W

= E[(W ∗ −W )xi + e] = (W ∗ −W )E[xi] + E[e] = (W ∗ −W )µx

Σ
W

= E[(W ∗ −W )(xi − µx) + e)][(W ∗ −W )(xi − µx) + e]T

= (W ∗ −W )Σx(W
∗ −W )T +Σe

It is easy to verify that Σ
W

is positive-definite. Thus, Σ
W

has an eigenvalue decomposition Σ
W

= STΛS where S
is orthogonal, Λ = diag(η1, η2, ..., ηp) and ηi > 0 for all i.
Note that S and Λ depend on W .

Define the loss of the sample (xi, yi) as ∥yi −Wxi∥2F , the
empirical risk as Remp(W ) = 1

m

∑m
i=1 ∥yi −Wxi∥2F and

the true risk as Rtrue(W ) = E(x,y)∼D[∥y −Wx∥2F ]. Then
we have the following bound:
Theorem 3.2. Let π be the prior distribution of W , ρ be
the posterior distribution of W . Denote b = SΣ−1/2

W
µ

W
.

Then for any λ > 0 and δ > 0,

P
(
EW∼ρ[R

true(W )] < EW∼ρ[R
emp(W )]+

1

λ

[
D( ρ ||π ) + ln

1

δ
+Ψπ,D(λ,m)

])
≥ 1− δ (3)

where
Ψπ,D(λ,m)

= lnEW∼π

exp(λ(tr(ΣW ) + µT
W
µW

)) exp
(∑p

i=1

−λmb2i ηi
m+2ληi

)
∏p

i=1 (1 + 2ληi/m)m/2


≤ lnEW∼π exp

(
2λ2∥ΣW ∥2F

m

)
3
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The bound of Theorem 3.2 is a general case of Shalaeva’s
bound. It can be reduced to Shalaeva’s bound by taking
p = 1, µx = 0, Σx = σ2

xI and Σe = σ2
e for some σx, σe.

3.2. Convergence Analysis

This section presents the convergence analysis of Theorem
3.2. We outline sufficient conditions that ensure conver-
gence, thereby completing and rigorously formalizing the
convergence analysis of Shalaeva’s bound (Shalaeva et al.,
2020)

We first discuss the convergence of Ψπ,D(λ,m) term, then
the entire bound. Theorem 3.3 gives a sufficient condition
for the convergence of Ψπ,D(λ,m) based on the dominated
convergence theorem.

Theorem 3.3. If λ and π satisfies
EW∼π

[
exp

(
λ∥(Σx + µxµ

T
x )

1/2(W ∗ −W )∥2F
)]

< ∞,
then limm→∞ Ψπ,D(λ,m) = 0.

By Theorem 3.3, we can derive some special cases that
make Ψπ,D(λ,m) converge:

(1) If π is a bounded distribution such that ∥W∥F < G
where G is a constant, then for any λ > 0,

EW∼π

[
exp

(
λ∥(Σx + µxµ

T
x )

1/2(W ∗ −W )∥2F
)]

≤ EW∼π

[
exp

(
λ∥(Σx + µxµ

T
x )

1/2∥2F ∥W ∗ −W∥2F
)]

≤ exp
(
λ∥(Σx + µxµ

T
x )

1/2∥2F (∥W ∗∥F + ∥W∥F )2
)

< exp
(
λ∥(Σx + µxµ

T
x )

1/2∥2F (∥W ∗∥F +G)
2
)
< ∞

(2) If π is a distribution that for W ∼ π, each Wij is inde-
pendently sampled from N ((U0)ij , σ

2) where σ > 0 is a
constant and U0 ∈ Rn×n. Then for any λ ∈ (0, 1

2η1σ2 ),
EW∼π

[
exp

(
λ∥(Σx + µxµ

T
x )

1/2(W ∗ −W )∥2F
)]

< ∞
holds. This is because, let Σx+µxµ

T
x = STΛS be the eigen-

value decomposition and suppose Λ = diag(η1, η2, ..., ηn)
where η1 is the largest eigenvalue, then

EW∼π

[
exp

(
λ∥(Σx + µxµ

T
x )

1/2(W ∗ −W )∥2F
)]

=

p∏
i=1

p∏
j=1

exp

(
ληj(Sj∗(W

∗−U0)∗i)
2

1−2λσ2ηj

)
(1− 2λσ2ηj)

1/2

And λ ∈ (0, 1
2η1σ2 ) ensures denominator

(
1− 2λσ2ηj

)1/2
is not zero or undefined for any j.

Now we discuss the convergence of the entire bound when
λ = m1/d. Since 1

λ

[
D( ρ ||π ) + ln 1

δ

]
surely converges as

m → ∞, we only discuss the convergence of 1
λΨπ,D(λ,m).

By Theorem 3.2, 1
λΨπ,D(λ,m) converges if the upper

bound 1
λ lnEW∼π exp

(
2λ2∥Σ

W
∥2
F

m

)
converges.

(3) If π is a bounded distribution satisfying ∥W∥F < G,

then

∥ΣW ∥2F = ∥(W ∗ −W )Σx(W
∗ −W )T +Σe∥2F

≤
(
∥(W ∗ −W )Σx(W

∗ −W )T ∥F + ∥Σe∥F
)2

≤
(
∥Σx∥F ∥W ∗ −W∥2F + ∥Σe∥F

)2
≤
(
∥Σx∥F (∥W ∗∥F + ∥W∥F )2 + ∥Σe∥F

)2
<
(
∥Σx∥F (∥W ∗∥F +G)

2
+ ∥Σe∥F

)2
< ∞

Denote G′ =
(
∥Σx∥F (∥W ∗∥F +G)

2
+ ∥Σe∥F

)2
. The

upper bound converges when d > 2:

lim
m→∞

m−1/d lnEW∼π exp
(
2m2/d−1∥ΣW ∥2F

)
< lim

m→∞
m−1/d lnEW∼π exp

(
2m2/d−1G′

)
= 0

(4) If π is a distribution that for W ∼ π, each Wij is a
Gaussian random variable, then the upper bound diverges
when d > 2, thus we cannot show the convergence of
1
λΨπ,D(λ,m). We prove the divergence of the upper bound
as follows. First, for any r, q ∈ {1, 2, ..., p},

∥ΣW ∥2F =

p∑
i=1

p∑
j=1

(
(W ∗ −W )T∗iΣ(W

∗ −W )∗j + (Σe)ij
)2

≥
(
(W ∗ −W )T∗qΣx(W

∗ −W )∗q + (Σe)qq
)2

=
(
∥(Σx)

1/2(W ∗ −W )∗q∥22 + (Σe)qq
)2

≥
(
∥(Σx)

1/2(W ∗ −W )∗q∥22
)2

≥
(
(Σx)

1/2
r∗ (W ∗ −W )∗q

)4
In the above inequality we use the fact that (Σx)qq ≥ 0
since it is a diagonal element of Σx. Since (W ∗−W )∗q is a
random Gaussian vector, (Σ)1/2r∗ (W ∗ −W )∗q is a Gaussian
random variable. Denote w = (Σ)

1/2
r∗ (W ∗ −W )∗q , then

m−1/d lnEW∼π exp
(
2m2/d−1∥ΣW ∥2F

)
≥ m−1/d lnEw exp

(
2m2/d−1w4

)
Lemma 3.4. Let {ak}ki=0 be a sequence of real num-
bers. Let X be a Gaussian random variable and Yk =∑k

i=0 aiX
i where ak > 0. If k ≥ 3, then Yk has no MGF,

i.e., MYk
(t) = EYk

[exp(tYk)] = EX [exp(tYk)] = ∞ for
any t > 0.

Lemma 3.4 states that any polynomial of Gaussian ran-
dom variables of degree ≥ 3 has no MGF. The term w4

satisfies the conditions of Lemma 3.4 as a polynomial of
degree 4. Thus we have Ew exp

(
2m2/d−1w4

)
= ∞ for

any m > 0, and lnEw exp
(
2m2/d−1w4

)
= ∞. Note

that when m → ∞, m−1/d and m2/d−1 are positive num-
bers being arbitrary close to 0 but never equivalent to
0. Thus limm→∞ m−1/d lnEw exp

(
2m2/d−1w4

)
= ∞.

This shows the upper bound diverges.

Recall that Shalaeva’s bound in Section 2 has vθ = σ2
x∥θ −

θ∗∥22 + σ2
e . When θ is a Gaussian vector, v2θ becomes

4
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a polynomial of Gaussian random variables of degree 4,
which satisfies the condition of Lemma 3.4. Thus the diver-
gence limm→∞ lnEθ∼π exp

(
2m2/d−1v2θ

)
= ∞ cannot be

resolved by taking any d > 2.

4. PAC-Bayes Bound for LAEs
This section demonstrates that, in the testing stage, the LAE
model with squared loss can be viewed as a special case
of multivariate linear regression on bounded data. We first
propose a PAC-Bayes bound for multivariate linear regres-
sion on bounded data, which is derived by adjusting the data
distribution assumption in Theorem 3.2 from Gaussian to
one with bounded support (Section 4.1). We then apply the
bound to LAEs (Section 4.2).

4.1. Adjusting the PAC-Bayes Bound to Bounded Data
Assumption

Most real-world recommendation datasets are not Gaussian
but bounded. For example, the dataset can be a binary
matrix R ∈ {0, 1}n×m where Rij = 1 means that user j
has interacted with item i, and Rij = 0 means user j has
not interacted with item i. To apply the PAC-Bayes bound
of Theorem 3.2 to recommendation datasets, we need to
change the Gaussian data assumption (Assumption 3.1) to
bounded data assumption.

We first consider the general definitions of empirical and
true risk. Let X ∈ Rn×m be the input, Y ∈ Rn×m be the
target, and W ∈ Rn×n be the weight matrix. The empirical
risk is

Remp(W ) =
1

m
||Y −WX||2F (4)

Assume each pair (X∗j , Y∗j) is i.i.d. sampled from a 2n
dimensional distribution D, then we can define the true risk
as

Rtrue(W ) = E(x,y)∼D
[
||y −Wx||2F

]
(5)

Now, we introduce the bounded data assumption, which
assumes D is a distribution with bounded support:

Assumption 4.1. Suppose D is characterized by three finite
cross-correlation matrices Σxx = E(x,y)∼D[xx

T ],Σxy =
E(x,y)∼D[xy

T ] and Σyy = E(x,y)∼D[yy
T ], and Σxx is pos-

itive definite.

Lemma 4.2. Under Assumption 4.1, given any W , the true
risk in Eq (5) can be expressed as

Rtrue(W ) = ||WΣ1/2
xx − ΣT

xyΣ
−1/2
xx ||2F − ||ΣT

xyΣ
−1/2
xx ||2F

+ tr(Σyy) (6)

Then the PAC-Bayes bound for multivariate linear regres-
sion on bounded data is as follows (the same form as Eq (2)
but with different settings):

P

(
EW∼ρ[R

true(W )] < EW∼ρ[R
emp(W )] +

1

λ
D( ρ ||π )

+
1

λ
ln

1

δ
+

1

λ
Ψπ,D(λ,m)

)
≥ 1− δ (7)

with Remp(W ) given by Eq (4), Rtrue(W ) given by Eq (6),
Ψπ,D(λ,m) = lnEW∼πER∼Dm

[
eλ(R

true(W )−Remp(W ))
]
.

4.2. Applying the PAC-Bayes Bound to LAEs

Generally, an LAE model is represented by a weight matrix
W ∈ Rn×n, with the zero diagonal constraint diag(W ) = 0
being optionally applied, depending on the method used to
obtain W . For example, if W is obtained through train-
ing with EASE or EDLAE, the zero diagonal constraint is
applied.

We consider training and evaluation as independent stages
and focus only on evaluation. Suppose we have obtained
an LAE model W through any method, whether trained via
EASE or EDLAE, or random initialized but untrained. Let
R ∈ {0, 1}n×m be the matrix used for testing. To avoid
the wrongly labeled items as mentioned in Section 2, we
split the 1s in R into two matrices X ∈ {0, 1}n×m and Y ∈
{0, 1}n×m in the following way: For any i ∈ {1, 2, ..., n}
and j ∈ {1, 2, ...,m}, if Rij = 0, we set Xij = Yij = 0;
if Rij = 1, we set Xij = 1, Yij = 0 with probability p
and Xij = 0, Yij = 1 with probability 1 − p. In this case,
Xij and Yij cannot both be 1. For each pair (X∗j , Y∗j), the
prediction of LAE model is WX∗j and the error vector is
Y∗j −WX∗j .

Therefore, when using the squared loss (squared Frobenius
norm) as the evaluation metric, the LAE model can be con-
sidered a special case of multivariate linear regression on
bounded data with two constraints:

(1) Zero diagonal constraint on W : diag(W ) = 0 (Op-
tional).

(2) Data dependent constraint on X and Y : For any i, j, Xij

and Yij are either 0 or 1, but cannot both be 1.

Now we apply the data dependent constraint of LAE to
Assumption 4.1. Since X and Y are generated from R,
we make the following statistical assumptions on R: Let
M be an n dimensional multivariate Bernoulli distribution.
Suppose each R∗j is i.i.d. sampled from M. Let r ∼ M
be a random vector. Given p ∈ (0, 1), let ∆ ∈ {0, 1}n
be a random Bernoulli vector conditioned on r such that
P (∆i = 1|ri = 1) = p, P (∆i = 0|ri = 1) = 1 − p
and P (∆i = 0|ri = 0) = 1 for any i ∈ {1, 2, ..., n}. Let
x = ∆⊙ r and y = (1 −∆)⊙ r where 1 is a vector of all
1. In this case, the random variables (x, y) are represented
by (∆, r), and the true risk of Eq (5) is rewritten as

Rtrue(W ) = E∆,r

[
||(1 −∆)⊙ r −W (∆⊙ r)||2F

]
(8)
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And Lemma 4.2 is applied to this case as follows:

Lemma 4.3. Denote Σrr = Er∼M[rrT ]. Eq (8) can be
written in the same form as Eq (6) by plugging in

Σxx = p2Σrr + p(1− p)(I ⊙ Σrr)

Σyy = (1− p)2Σrr + p(1− p)(I ⊙ Σrr)

Σxy = p(1− p)(Σrr − I ⊙ Σrr)

Here ⊙ means element-wise product. Also, Σxx is positive
definite if Σrr is positive definite.

5. A Practical Method for Calculating the LAE
Bound

The right hand side of Eq (7) is as follows, where we high-
light part 1 and part 2.

EW∼ρ[R
emp(W )]+

1

λ
D( ρ ||π )+

1

λ
ln

1

δ
+

1

λ
Ψπ,D(λ,m) (9)︸ ︷︷ ︸

part 1
︸ ︷︷ ︸

part 2

For any given δ, Eq (9) is a function of λ, π, ρ. Since Eq (7)
holds for any λ, π, ρ, we aim to find a practical method for
minimizing Eq (9) with respect to these parameters, and use
the minimized bound to verify the non-vacuousness of Eq
(7).

It is generally considered difficult to solve for λ, π, ρ simul-
taneously (Alquier, 2021), so we typically solve for ρ with
λ and π fixed. We show how to minimize part 1 in Section
5.1 and how to find a practical upper bound for part 2 in
Section 5.2.

5.1. Closed-form Solution for the Optimal ρ

Given π and λ, we search for the optimal ρ by

min
ρ

EW∼ρ[R
emp(W )] +

1

λ
D( ρ ||π ) (10)

Usually we restrict π and ρ to be specific distributions that
make Eq (10) easy to calculate. (Dziugaite & Roy, 2017)
proposed a practical way to calculate the PAC-Bayes bound
for deep neural networks, where they assumes π and ρ to
be independent multivariate Gaussian. This enables the
D( ρ ||π ) term to be easily calculated. We mainly follow
the assumptions in (Dziugaite & Roy, 2017):

Assumption 5.1. Denote N̄ (A,B) for some A ∈ Rn×n

and non-negative B ∈ Rn×n as the multivariate Gaus-
sian distribution that W ∼ N̄ (A,B) means W ∈ Rn×n

and each Wij is independently from N (Aij ,Bij). As-
sume ρ is the distribution N̄ (U ,S) and π is the distribution
N̄ (U0, σ

2J), where U ∈ Rn×n, U0 ∈ Rn×n, S ∈ Rn×n,
J = {1}n×n and σ > 0. S is a positive matrix if no con-
straint is applied.

Applying the constraint diag(W ) = 0 to ρ and π is equiv-
alent to set diag(U) = 0, diag(S) = 0, diag(U0) = 0 and
diag(σ2J) = 0.

(Dziugaite & Roy, 2017) solved the optimal ρ using stochas-
tic gradient descent, where in each iteration the gradient is
calculated by Monte Carlo method. It should be noticed
that Dziugaite and Roy used the iterative method because
they worked on the neural network model, for which the
optimal ρ may not have a closed-form solution. Due to
the simplicity of LAE, we find that the optimal ρ for Eq
(10) has closed-form solution, as shown in Theorem 5.2 (1).
This allows us to solve ρ directly and avoid time-consuming
iterative methods.

Theorem 5.2. (1) Under Assumption 5.1, the closed-form
solution of the optimal ρ of Eq (10) is given by

U =

(
1

m
YXT +

1

2λσ2
U0

)(
1

m
XXT +

1

2λσ2
I

)−1

,

Sij =
1

2λ
m
Xj∗XT

j∗ + 1
σ2

for i, j ∈ {1, 2, ..., n}

(2) If we add the constraint diag(W ) = 0 to ρ and π, then
the optimal ρ becomes

Sij =
1

2λ
m
Xj∗XT

j∗ + 1
σ2

, Sii = 0 for i, j ∈ {1, 2, ..., n} and i ̸= j

U =

(
1

m
YXT +

1

2λσ2
U0 −

1

2
Diag(x)

)(
1

m
XXT +

1

2λσ2
I

)−1

where

x = 2 · diag

[(
1

m
YXT +

1

2λσ2
U0

)(
1

m
XXT +

1

2λσ2
I

)−1
]
⊘

diag

[(
1

m
XXT +

1

2λσ2
I

)−1
]

Here ⊘ means element-wise division and Diag(x) means
expanding x ∈ Rn to an n× n diagonal matrix.

5.2. Calculating Ψπ,D(λ,m) under the Zero Diagonal
Constraint

Since Ψπ,D(λ,m) = lnEπED[e
λ(Rtrue(W )−Remp(W ))] and

Remp(W ) ≥ 0, based on the idea of (Germain et al., 2016),
we can get an upper bound of Ψ by removing −Remp(W ):
Let Ψ′

π,D(λ) = lnEπ[e
λRtrue(W )], then Ψπ,D(λ,m) ≤

Ψ′
π,D(λ). Ψ′ does not converge as m → ∞ since it is

independent of m, but it is easier to calculate than Ψ.

By Lemma 4.2, we have

Eπ

[
eλR

true(W )
]

= Eπ

[
eλ(∥WΣ1/2

xx −ΣT
xyΣ

−1/2
xx ∥2

F−∥ΣT
xyΣ

−1/2
xx ∥2

F+tr(Σyy))
]

= Eπ

[
eλ∥WΣ1/2

xx −ΣT
xyΣ

−1/2
xx ∥2

F

]
eλ(tr(Σyy)−∥ΣT

xyΣ
−1/2
xx ∥2

F )
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Let B = −ΣT
xyΣ

−1/2
xx and C = eλ(tr(Σyy)−∥ΣT

xyΣ
−1/2
xx ∥2

F ),
then

Eπ

[
eλR

true(W )
]
= C Eπ

[
eλ∥WΣ1/2

xx +B∥2
F

]
= C Eπ

[
eλ

∑n
i=1 ∥Wi∗Σ

1/2
xx +Bi∗∥2

F

]
(11)

We first consider the case without the constraint diag(W ) =
0. Since we assume π = N̄ (U0, σ

2J) in Assumption
5.1, WT

i∗ ∼ N ((U0)
T
i∗, σ

2I), thus (Wi∗Σ
1/2
xx + Bi∗)

T =

Σ
1/2
xx WT

i∗ +BT
i∗ ∼ N (Σ

1/2
xx (U0)

T
i∗ +BT

i∗, σ
2Σxx).

Proposition 5.3. Let A = σ2Σxx, and A = STΛS be
the eigenvalue decomposition where S is orthogonal and
Λ = diag(η1, η2, ..., ηn). Denote µi = Σ

1/2
xx (U0)

T
i∗ + BT

i∗.
Then we can rewrite Eq (11) as

Eπ

[
eλR

true(W )
]
= C

n∏
i=1

n∏
j=1

exp
(

λ(b̄ij)
2ηj

1−2ληj

)
(1− 2ληj)

1/2

where b̄i = SA−1/2µi (12)

Now we discuss the case that diag(W ) = 0 is applied. De-
note π′ as the distribution π with the constraint diag(W ) =
0, that is, for W ∼ π′, Wii = 0 for all i. Then
π′ = N̄ (U0, σ

2(J − I)) where diag(U0) = 0, and WT
i∗ ∼

N
(
(U0)

T
i∗, σ

2(I − Ii)
)

where Ii is a matrix with Iiii = 1

and other entries being 0. Therefore, (Wi∗Σ
1/2
xx +Bi∗)

T ∼
N
(
Σ

1/2
xx (U0)

T
i∗ +BT

i∗, σ
2(Σxx − (Σ

1/2
xx )∗i(Σ

1/2
xx )T∗i)

)
.

Denote A(i) = σ2(Σxx − (Σ
1/2
xx )∗i(Σ

1/2
xx )T∗i), then A(i)

is singular and positive semi-definite. Let A(i) =
S(i)TΛ(i)S(i) be the eigenvalue decomposition where S(i)

is orthogonal and Λ(i) = diag(η(i)1 , η
(i)
2 , ..., η

(i)
n ). Then

Eπ′

[
eλR

true(W )
]
= C

n∏
i=1

n∏
j=1

exp

(
λ(b

(i)
j )2η

(i)
j

1−2ληj

)
(
1− 2λη

(i)
j

)1/2
where b(i) = S(i)(A(i))−1/2µi (13)

The issue with Eq (13) is its high computational complexity:
We need to calculate the eigenvalue decomposition for each
A(i) in order to obtain S(i) and Λ(i). Since each eigenvalue
decomposition costs O(n3), the computation of Eq (13)
costs O(n4), which is impractical.

Since Eπ′

[
eλR

true(W )
]

is computationally difficult, we can
instead compute an upper bound with lower complexity.
The following theorem establishes the upper bound:

Theorem 5.4. Suppose π′ = N̄ (U0, σ
2(J − I)) and π =

N̄ (U0, σ
2J), then Eπ′

[
eλR

true(W )
]
≤ Eπ

[
eλR

true(W )
]

for

any λ ∈
(
0, 1

2η1

)
.

Theorem 5.4 holds for any U0, including the special case
where diag(U0) = 0 for both π′ and π. Note that
Eπ

[
eλR

true(W )
]

is much easier to compute: We only need
to calculate the eigenvalue decomposition of A, so Eq (12)
costs O(n3).

To compute Eq (12), we need to know Σxx,Σxy and Σyy.
Under the LAE constraints, these three matrices are gen-
erated by Σrr according to Lemma 4.3, so we only need
to know Σrr. However, in practice, we cannot determine
the exact value of Σrr since Σrr = Er∼M[rrT ], and the
distribution M is usually unknown.

Not all PAC-Bayes bounds face this issue. PAC-Bayes
bounds are classified into two types: empirical bounds and
oracle bounds (Alquier, 2021). Empirical bounds, such as
Seeger’s bound (Langford & Seeger, 2001) used in (Dzi-
ugaite & Roy, 2017), can be computed without requiring
knowledge of the data distribution. Our bound is based on
Alquier’s oracle bound (Alquier et al., 2016), which requires
knowledge of the data distribution M to compute – an im-
possible task unless one is an oracle. Oracle bounds are
primarily used for theoretical analysis, and in practice, we
can only compute empirical approximations of them.

5.3. The Final Bound

The last step in completing the bound is to determine how
to choose λ. According to (Alquier, 2021), we can search
λ over a finite grid Λ = {λ1, λ2, ..., λL}, as detailed in Ap-
pendix B. Let L be the number of elements in Λ. Applying
the grid search for λ to Eq (7), we obtain the final bound:
with probability 1− δ,

EW∼ρ[R
true(W )] ≤

EW∼ρ[R
emp(W )] +

1

λ

[
D( ρ ||π ) + ln

L

δ
+ lnEπ

[
eλR

true(W )
]]

(14)

Now we summarize the methods for calculating Eq (14)
under LAE constraints. We will apply the zero diagonal
constraint diag(W ) = 0 by default, while the non-constraint
case can be derived similarly.

Given λ and π = N̄ (U0, σ
2I), the optimal ρ = N̄(U ,S)

that minimizes the right hand side of Eq (14) is obtained
by Theorem 5.2. Once ρ is obtained, we can calculate
EW∼ρ[R

emp(W )] by Eq (25), which can be simplified as

EW∼ρ[R
emp(W )]

=
1

m
∥Y − UX∥2F +

n− 1

m
∥Diag(S1∗)

1/2X∥2F (15)

Similarly, by Eq (6), EW∼ρ[R
true(W )] can be expressed as

EW∼ρ[R
true(W )] = ∥ΣT

xyΣ
−1/2
xx − UΣ1/2

xx ∥2F
+ (n− 1)∥Diag(S1∗)

1/2Σ1/2
xx ∥2F + tr(Σyy)− ||ΣT

xyΣ
−1/2
xx ||2F

(16)
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By Theorem 5.4, the term Eπ

[
eλR

true(W )
]

in Eq (14) holds
when the constraint diag(W ) = 0 is applied to π.

The calculation process for the bound Eq (14) is summarized
in Algorithm 1.

Algorithm 1 Calculation of the PAC-Bayes bound for LAEs
Input: Σrr, p, δ, σ, Λ = {λ1, λ2, ..., λL}, X , Y , and the
LAE model W (with diag(W ) = 0).
Calculate Σxx,Σxy,Σyy with Σrr, p by Lemma 4.3.
Set π = N̄ (W,σ2I) (i.e., U0 = W ).
Let H = {} be a set to store the results.
for each λi in Λ:

Calculate ρ = N̄ (U ,S) with π, λi by Theorem 5.2
(2).
Calculate D( ρ ||π ) with ρ, π by Eq (33).
Calculate EW∼ρ[R

emp(W )] with ρ,X, Y by Eq (15).
Calculate EW∼ρ[R

true(W )] with ρ,Σxx,Σxy,Σyy by
Eq (16).
Calculate Eπ

[
eλR

true(W )
]

with π,Σxx,Σxy,Σyy, λi

by Eq (12).
Calculate the right hand side of Eq (14) and let the
result be RHi. Let LHi = EW∼ρ[R

true(W )].
Append (LHi,RHi) to H .

Output: the pair (LH∗,RH∗) in H that RH∗ is minimal.

6. Experiments
It is difficult to determine whether the bound Eq (14) is
non-vacuous theoretically, especially since the value of
D( ρ ||π ) unknown. So we conduct experiments on real
world datasets to calculate its exact value.

The main idea of our experiment is as follows: Since Eq
(14) is an oracle bound, it is impossible to calculate without
knowing the data distribution M. Let M∗ be a special case
of M such that Σrr = Er∼M∗

[
rrT

]
= 1

mRRT , where
R ∈ {0, 1}n×m is our dataset. We show that this bound is
non-vacuous on M∗.

We split the entire dataset Rn×m into a training set Rn×m1

train

and a test set Rn×(m−m1)
test where we set m1 = 0.7m. The

test set Rtest is further split into X and Y by assigning each 1
in R to X with probability p = 1

2 and to Y with probability
1− p = 1

2 . The LAE model W is obtained by solving the
EASE target function Eq (2) using the data Rtrain (The LAE
model can also be obtained using other methods. We use
EASE here as an example). We set γ in Eq (2) to be 50, 100
and 200 to obtain three different LAE models and test them
accordingly.

Our experiments run on a machine with 500 GB RAM and a
Nvidia A100 GPU. The GPU has 80 GB RAM. We use three
datasets: MovieLens 20M (ML 20M), Netflix and MSD,

with their details shown in Table 1. The computation of PAC-
Bayes bound for LAE mainly follows Algorithm 1. The
other parameters are set as follows: δ = 0.01, σ = 0.001,
Λ = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}.

Table 1. Dataset information
Dataset ML 20M Netflix MSD
#rows 138493 480189 1017982

#columns 26744 17770 40000
#ratings 2000263 100480507 33687193

The results are presented in Table 2, where each pair
(LH,RH) is the output of Algorithm 1. LH is the left hand
side of Eq (14) while RH is the right hand side.

We evaluate the non-vacuousness by comparing the gap be-
tween LH and RH. To the best of our knowledge, there is no
universally accepted definition for how small the gap must
be to consider a theoretical bound non-vacuous. (Dziugaite
& Roy, 2017) showed in their experiments that a bound with
RH within 10 times LH (or some empirical estimation of
LH) can be considered non-vacuous. We adopt this criterion
in our work. Table 2 shows that RH is within 3 times LH
in all cases, so our bound is non-vacuous. Additionally,
the values of the terms in RH are presented in Table 3 in
Appendix D, which shows that the value of D( ρ ||π ) is
typically trivial.

Table 2. Experiment results of the PAC-Bayes bound for LAE

Models ML 20M Netflix MSD

γ = 50
LH 61.66 87.22 15.96
RH 128.66 178.11 32.60

γ = 100
LH 60.75 86.54 15.85
RH 125.90 176.25 32.26

γ = 200
LH 60.06 85.96 15.76
RH 123.67 174.55 31.94

7. Conclusions
This paper studies the generalizability of multivariate lin-
ear regression and LAEs. We propose a new PAC-Bayes
bound for multivariate linear regression, which generalizes
Shalaeva’s bound for multiple linear regression (Shalaeva
et al., 2020). We also present a convergence analysis and
demonstrate the sufficient conditions that ensure the bound’s
convergence.

We extend the PAC-Bayes bound from multivariate linear
regression to LAEs by demonstrating that an LAE with
squared loss is a special case of multivariate linear regres-
sion on bounded data. We also propose practical methods
for calculating the bound under the constraints introduced
by LAEs, and the non-vacuousness of the bound is validated
through experiments.
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Impact Statements
This work advances the theoretical foundations of machine
learning by introducing the first PAC-Bayes bound for mul-
tivariate linear regression, extending beyond single-output
regression to handle multiple dependent variables simul-
taneously. This establishes new generalization guarantees
for structured prediction, multi-task learning, and recom-
mendation systems. Additionally, we identify and correct a
limitation in an existing PAC-Bayes proof for single-output
linear regression, further strengthening the theoretical foun-
dation of regression analysis.

Building on this, we apply our bound to linear autoencoders
(LAEs) in recommendation systems, delivering their first
rigorous generalization analysis. Our approach accounts for
key structural constraints, such as the zero-diagonal weight
requirement, ensuring applicability to models like EASE
and EDLAE.

Beyond theory, our work has direct practical implications
for model evaluation and selection. Our bound provides a
post-training diagnostic tool for assessing the generaliza-
tion of any LAE model—regardless of its training process
(EASE, EDLAE, or random initialization). While not di-
rectly guiding training or hyperparameter tuning, a smaller
PAC-Bayes bound suggests better generalization on unseen
data. Empirical results confirm that our bound remains
within a reasonable multiple of the test error, offering re-
liable probabilistic estimates of true risk independent of
training error.

Our work focuses on theoretical generalization analysis and
poses no immediate ethical risks. However, recommenda-
tion systems shape content exposure and user behavior in
domains like e-commerce and social media. Strengthening
generalization theory alongside other recommendation cri-
teria may help mitigate bias, enhance fairness, and improve
trust in AI-driven systems.
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A. Proofs of the Theorems
Proof of Theorem 3.2:

Given W , let (x, y) ∼ D, and denote v = y − Wx, then v ∼ N (µ
W
,Σ

W
). Suppose there exists Q ∈ Rp×p such that

Σ
W

= QQT . Such Q exists since we can take Q = Σ1/2
W

= STΛ1/2S, but we do not assume it to be unique. Let
ϵ ∼ N (0, I), then we can write v = Qϵ+ µ

W
. Thus,

Rtrue(W ) = E(x,y)∼D
[
∥y −Wx∥2F

]
= Eϵ

[
∥Qϵ+ µ

W
∥2F
]
= Eϵ

[
(Qϵ+ µ

W
)T (Qϵ+ µ

W
)
]

= Eϵ[ϵ
TQTQϵ+ µT

W
Qϵ+ ϵTQTµ

W
+ µT

W
µ

W
] = tr(QTQ) + µT

W
µ

W

= tr(QQT ) + µT
W
µ

W
= tr(Σ

W
) + µT

W
µ

W
(17)

Also, we can express the random variable ∥v∥2F in quadratic form (Representation 3.1a.1, (Mathai & Provost, 1992)):

∥v∥2F = vT v = (Qϵ+ µ
W
)T (Qϵ+ µ

W
)

= (Qϵ+ µ
W
)TΣ−1/2

W
Σ

W
Σ−1/2

W
(Qϵ+ µ

W
)

= (Σ−1/2
W

Qϵ+Σ−1/2
W

µ
W
)TΣ

W
(Σ−1/2

W
Qϵ+Σ−1/2

W
µ

W
)

= (Σ−1/2
W

Qϵ+Σ−1/2
W

µ
W
)TSTΛS(Σ−1/2

W
Qϵ+Σ−1/2

W
µ

W
)

= (SΣ−1/2
W

Qϵ+ SΣ−1/2
W

µ
W
)TΛ(SΣ−1/2

W
Qϵ+ SΣ−1/2

W
µ

W
)

Denote ϵ′ = SΣ−1/2
W

Qϵ, then ϵ′ ∼ N (0, I). This is because E[ϵ′] = SΣ−1/2
W

QE[ϵ] = 0 and

Cov[ϵ′] = E[ϵ′ϵ′T ] = SΣ−1/2
W

QE[ϵϵT ]QTΣ−1/2
W

ST = I

As b = SΣ−1/2
W

µ
W

, we can write

∥v∥2F = (ϵ′ + b)TΛ(ϵ′ + b) =

p∑
i=1

ηi(ϵ
′
i + bi)

2

Hence each ϵ′i + bi is independently from N (bi, 1), and (ϵ′i + bi)
2 is independently from the non-central chi-squared

distribution of noncentrality parameter b2i and with degree 1 of freedom. Thus the MGF of (ϵ′i + bi)
2 is

M(ϵ′i+bi)2(t) = E(ϵ′i+bi)2 [e
t(ϵ′i+bi)

2

] =
exp

(
b2i t
1−2t

)
(1− 2t)1/2

(18)

Let vj = yj −Wxj such that v1, v2, ..., vm are i.i.d. from N (µ
W
,Σ

W
), then

Remp(W ) =
1

m

m∑
j=1

∥yj −Wxj∥2F =
1

m

m∑
j=1

∥vj∥2F

Hence the MGF of Remp(W ) is

MRemp(W )(t) = ES∼Dm

[
etR

emp(W )
]
= ES∼Dm

exp
 t

m

m∑
j=1

∥vj∥2F


=

(
ES∼Dm

[
exp

(
t

m
∥v∥2F

)])m

=

(
ES∼Dm

[
exp

(
t

m

p∑
i=1

ηi(ϵ
′
i + bi)

2

)])m

=

(
p∏

i=1

E(ϵ′i+bi)2

[
exp

(
tηi
m

(ϵ′i + bi)
2

)])m

=

 p∏
i=1

exp
(

tb2iηi

m−2tηi

)
(1− 2tηi/m)

1/2

m

=
exp

(∑p
i=1

tmb2iηi

m−2tηi

)
∏p

i=1 (1− 2tηi/m)
m/2

(19)

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

PAC-Bayes Bounds for Multivariate Linear Regression and Linear Autoencoders

By Eq (17) and Eq (19), we can expand Ψπ,D(λ,m) as

Ψπ,D(λ,m) = lnEW∼πES∼Dm [eλ(R
true(W )−Remp(W )]

= lnEW∼π

[
eλR

true(W )ES∼Dm [e−λRemp(W )]
]

= lnEW∼π

exp (λ (tr(Σ
W
) + µT

W
µ

W

)) exp
(∑p

i=1
−λmb2iηi

m+2ληi

)
∏p

i=1 (1 + 2ληi/m)
m/2

 (20)

Use the inequality that for any x > 0 and k > 0, e
xk

x+k < (xk + 1)k 1, and the fact tr(Σ
W
) =

∑p
i=1 ηi, we have

lnEW∼π

exp (λ (tr(Σ
W
) + µT

W
µ

W

)) exp
(∑p

i=1
−λmb2iηi

m+2ληi

)
∏p

i=1 (1 + 2ληi/m)
m/2


≤ lnEW∼π

exp (λ (tr(Σ
W
) + µT

W
µ

W

)) exp(∑p
i=1

−λmb2iηi

m+2ληi

)
∏p

i=1 exp
(

mληi

m+2ληi

)


= lnEW∼π exp

(
λµT

W
µ

W
+

p∑
i=1

λ(ηi −
mb2i ηi

m+ 2ληi
)−

p∑
i=1

mληi
m+ 2ληi

)

= lnEW∼π exp

(
λµT

W
µ

W
+

p∑
i=1

2λ2η2i − λmb2i ηi
m+ 2ληi

)

≤ lnEW∼π exp

(
λ(µT

W
µ

W
−

p∑
i=1

b2i ηi) +
2λ2(

∑p
i=1 η

2
i )

m

)
= lnEW∼π exp

(
2λ2(

∑p
i=1 η

2
i )

m

)
The last equality above is because

p∑
i=1

b2i ηi = bTΛb = µT
W
Σ−1/2

W
STΛSΣ−1/2

W
µ

W
= µT

W
µ

W

Since
p∑

i=1

η2i = tr(STΛ2S) = tr(Σ2
W
) = tr(Σ

W
ΣT

W
) = ∥Σ

W
∥2F

we have

lnEW∼π exp

(
2λ2(

∑p
i=1 η

2
i )

m

)
= lnEW∼π exp

(
2λ2∥Σ

W
∥2F

m

)

Proof of Theorem 3.3:

By Eq (20), we let {fm}m∈N be a sequence of functions where

fm(W ) = exp
(
λ
(
tr(Σ

W
) + µT

W
µ

W

)) exp
(∑p

i=1
−λmb2iηi

m+2ληi

)
∏p

i=1 (1 + 2ληi/m)
m/2

for m > 0, and
f0(W ) = exp

(
λ
(
tr(Σ

W
) + µT

W
µ

W

))
Note that each fi is a non-negative function.

1Since x
x+1

< ln(x+ 1) for any x > −1, replacing x with x
k

, and taking exponential on both sides, we get e
xk

x+k < (x
k
+ 1)k.
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Now we prove the following three conditions:

(1) fm(W ) ≤ f0(W ) for any m and W .

Since λ > 0 and ηi > 0 for all i, we have f0(W ) ≥ f1(W ) ≥ f2(W )... for any W . This is because, when W is fixed, the
numerator exp

(∑p
i=1

−λmb2iηi

m+2ληi

)
is monotonically decreasing with m for m ≥ 0, the denominator

∏p
i=1 (1 + 2ληi/m)

m/2

is monotonically increasing with m for m > 0, and (1 + 2ληi/m)
m/2 ≥ 1 for any m > 0.

(2) fm → 1 pointwisely as m → ∞.

For any W ,

lim
m→∞

fm(W ) = exp
(
λ
(
tr(Σ

W
) + µT

W
µ

W

))
lim

m→∞

exp
(∑p

i=1
−λmb2iηi

m+2ληi

)
∏p

i=1 (1 + 2ληi/m)
m/2

= exp
(
λ
(
tr(Σ

W
) + µT

W
µ

W

)) exp
(∑p

i=1 lim
m→∞

−λmb2iηi

m+2ληi

)
∏p

i=1 lim
m→∞

(1 + 2ληi/m)
m/2

= exp
(
λ
(
tr(Σ

W
) + µT

W
µ

W

)) exp (∑p
i=1 −λb2i ηi

)∏p
i=1 exp (ληi)

= 1

The last inequality uses the facts that
∑p

i=1 b
2
i ηi = µT

W
µ

W
and

∑p
i=1 ηi = tr(Σ

W
).

(3) E[f0] < ∞.

E[f0] = E exp
(
λ
(
tr(Σ

W
) + µT

W
µ

W

))
= E exp

(
λ
[
tr((W ∗ −W )Σx(W

∗ −W )T +Σe) + ∥(W ∗ −W )µx∥2F
])

= E exp

(
λ

[
p∑

i=1

(W ∗ −W )i∗Σx(W
∗ −W )Ti∗ + tr(Σe) +

p∑
i=1

(W ∗ −W )i∗µxµ
T
x (W

∗ −W )Ti∗

])

= E exp

(
λ

[
p∑

i=1

(W ∗ −W )i∗
[
Σx + µxµ

T
x

]
(W ∗ −W )Ti∗ + tr(Σe)

])

= E exp

(
λ

[∥∥∥(Σx + µxµ
T
x

)1/2
(W ∗ −W )

∥∥∥2
F
+ tr(Σe)

])
= exp (λtr(Σe))E exp

(
λ

[∥∥∥(Σx + µxµ
T
x

)1/2
(W ∗ −W )

∥∥∥2
F

])
< ∞

The last inequality holds because E exp

(
λ

[∥∥∥(Σx + µxµ
T
x

)1/2
(W ∗ −W )

∥∥∥2
F

])
< ∞ is our assumption and

exp (λtr(Σe)) is a constant.

Denote E = Rp×p such that W ∈ E. Since W ∼ π, we consider π as a probability measure µ on E with µ(E) = 1. Then
we can express E [fm] as a Lebesgue integral:

E [fm] =

∫
E

fm dµ

Also, condition (3) can be written as
∫
E
f0dµ < ∞. Since the conditions (1), (2) and (3) hold, by the Dominated

Convergence Theorem (Theorem 11.32, (Rudin, 1976)), we have

lim
m→∞

∫
E

fm dµ =

∫
E

lim
m→∞

fm dµ =

∫
E

1 dµ = 1

Or equivalently,
lim

m→∞
E [fm] = E

[
lim

m→∞
fm

]
= E[1] = 1

13
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Since ln is continuous on (0,∞), we can interchange lim and ln. Therefore,

lim
m→∞

Ψπ,D(λ,m) ≤ lim
m→∞

lnE[fm] = ln lim
m→∞

E[fm] = ln 1 = 0

Proof of Lemma 3.4:

Let X ∼ N (µ, σ2), then for any t > 0,

EX [tYk] =

∫
exp

(
t

k∑
i=0

aix
i

)
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
dx

=
1√
2πσ

∫
exp

(
t

k∑
i=0

aix
i − (x− µ)2

2σ2

)
dx (21)

Since k ≥ 3 and ak > 0, t
∑k

i=0 aix
i− (x−µ)2

2σ2 is a polynomial of x with degree ≥ 3, with leading coefficient being positive,
thus

lim
x→∞

exp

(
t

k∑
i=0

aix
i − (x− µ)2

2σ2

)
= ∞

And the integral in Eq (21) is infinity.

Proof of Lemma 4.2:

Rtrue(W ) = E
[
||y −Wx||2F

]
=

n∑
i=1

E[||yi −Wi∗x||2F ] =
n∑

i=1

Wi∗E[xxT ]WT
i∗ − 2Wi∗E[yix] + E[y2i ]

=

n∑
i=1

Wi∗ΣxxW
T
i∗ − 2Wi∗(Σxy)∗i + (Σyy)ii

=

n∑
i=1

(Wi∗Σ
1/2
xx )(Wi∗Σ

1/2
xx )T − 2(Wi∗Σ

1/2
xx )Σ−1/2

xx (Σxy)∗i + (Σyy)ii

=

n∑
i=1

(Wi∗Σ
1/2
xx − (Σxy)

T
∗iΣ

−1/2
xx )(Wi∗Σ

1/2
xx − (Σxy)

T
∗iΣ

−1/2
xx )T − (Σxy)

T
∗iΣ

−1
xx (Σxy)∗i + (Σyy)ii

=

n∑
i=1

||Wi∗Σ
1/2
xx − (Σxy)

T
∗iΣ

−1/2
xx ||2F − ||Σ−1/2

xx (Σxy)∗i||2F + (Σyy)ii

= ||WΣ1/2
xx − ΣT

xyΣ
−1/2
xx ||2F − ||ΣT

xyΣ
−1/2
xx ||2F + tr(Σyy)

Since we assume Σxx is positive definite, Σ−1/2
xx exists.

Proof of Lemma 4.3:

Since x = ∆⊙ r and y = (1 −∆)⊙ r, we have

Σxx = E
[
xxT

]
= E

[
(∆⊙ r)(∆⊙ r)T

]
Σxy = E

[
xyT

]
= E

[
(∆⊙ r)((1 −∆)⊙ r)T

]
Σyy = E

[
yyT

]
= E

[
((1 −∆)⊙ r)((1 −∆)⊙ r)T

]
14
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We first prove Σxx. For i, j ∈ {1, 2, ..., n} and i ̸= j, (Σxx)ij = E[∆i∆jrirj ]. Since ∆i∆jrirj is a Bernoulli random
variable (its value can either be 0 or 1), ∆i depends on ri, ∆j depends on rj , we have

E[∆i∆jrirj ] = P (∆i∆jrirj = 1) = P (∆i = 1,∆j = 1, ri = 1, rj = 1)

= P (∆i = 1|∆j = 1, ri = 1, rj = 1)P (∆j = 1|ri = 1, rj = 1)P (ri = 1, rj = 1)

= P (∆i = 1|ri = 1)P (∆j = 1|rj = 1)P (ri = 1, rj = 1)

= p2E [rirj ] = p2(Σrr)ij (22)

For any i, (Σxx)ii = E[(∆iri)
2]. Using the property that a Bernoulli random variable X has E[X2] = E[X],

E[(∆iri)
2] = P (∆iri = 1) = P (∆i = 1, ri = 1) = P (∆i = 1|ri = 1)P (ri = 1) = pE[ri]

= pE[r2i ] = p(Σrr)ii (23)

Combining Eq (22) and Eq (23), we get

Σxx = p2Σrr + p(1− p)(I ⊙ Σrr) (24)

Since (Σyy)ij = E[(1 − ∆i)(1 − ∆j)rirj ] and (Σyy)ii = E[((1 − ∆i)ri)
2], replacing p with 1 − p in Eq (24), we get

Σyy = (1− p)2Σrr + p(1− p)(I ⊙ Σrr).

Since (Σxy)ij = E[∆i(1−∆j)rirj ] = p(1− p)Σrr and (Σxy)ii = E[∆i(1−∆i)r
2
i ] = 0 (Note that ∆i(1−∆i)r

2
i = 0

regardless of whether ∆i is 0 or 1.), we have Σxy = p(1− p)(Σrr − I ⊙ Σrr).

Note that in Eq (24), I ⊙ Σrr is positive semi-definite and p2, p(1− p) are positive, thus Σxx is positive definite if Σrr is
positive definite.

Proof of Theorem 5.2:

(1) It is easy to verify that EW∼ρ[W ] = U and EW∼ρ[W
TW ] = UTU + Diag (

∑n
k=1 Sk1,

∑n
k=1 Sk2, ...,

∑n
k=1 Skn).

Thus

EW∼ρ[R
emp(W )] =

1

m
EW∼ρ[∥Y −WX∥2F ] =

1

m

m∑
l=1

EW∼ρ[∥Y∗l −WX∗l∥2F ]

=
1

m

m∑
l=1

EW∼ρ[(Y
T
∗l −XT

∗lW
T )(Y∗l −WX∗l)] =

1

m

m∑
l=1

Y T
∗l Y∗l − 2Y T

∗l EW∼ρ[W ]X∗l +XT
∗l EW∼ρ[W

TW ]X∗l

=
1

m

m∑
l=1

Y T
∗l Y∗l − 2Y T

∗l U X∗l +XT
∗l UTU X∗l +XT

∗l Diag

(
n∑

k=1

Sk1,

n∑
k=1

Sk2, ...,

n∑
k=1

Skn

)
X∗l (25)

D( ρ ||π ) can also be written as a function of U and S by

D( ρ ||π ) =
1

2

[
n2(2 lnσ − 1)−

n∑
k=1

n∑
l=1

(lnSkl −
Skl

σ2
) +

∥U − U0∥2F
σ2

]
(26)

Denote f(U ,S|U0, σ, λ) = EW∼ρ[R
emp(W )] + 1

λD( ρ ||π ), our optimization problem becomes

min
U,S

f(U ,S|U0, σ, λ) (27)

The optimal U and S has closed-form solution, which can be obtained by solving ∂
∂U f(U ,S|U0, σ, λ) = 0 and

∂
∂S f(U ,S|U0, σ, λ) = 0.

First we show the partial derivatives of the 1
λD( ρ ||π ) term:

∂

∂Uij

1

λ
D( ρ ||π ) =

(Uij − (U0)ij)

λσ2
,

∂

∂Sij

1

λ
D( ρ ||π ) = − 1

2λ
(
1

Sij
− 1

σ2
)
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Then we discuss the partial derivatives of the EW∼ρ[R
emp(W )] term. By Eq (25), for any i, j,

∂

∂Sij
EW∼ρ[R

emp(W )] =
∂

∂Sij

1

m

m∑
l=1

XT
∗l Diag

(
n∑

k=1

Sk1,

n∑
k=1

Sk2, ...,

n∑
k=1

Skn

)
X∗l

=
∂

∂Sij

1

m

m∑
l=1

XjlSijXjl =
1

m

m∑
l=1

X2
jl =

1

m
Xj∗X

T
j∗

∂

∂Uij
EW∼ρ[R

emp(W )] =
∂

∂Uij

1

m

m∑
l=1

−2Y T
∗l U X∗l +XT

∗l UTU X∗l =
1

m

m∑
l=1

(
−2YilXjl +

∂

∂Uij

n∑
k=1

(Uk∗X∗l)
2

)

=
1

m

m∑
l=1

(
−2YilXjl +

∂

∂Uij
(Ui∗X∗l)

2

)
=

1

m

m∑
l=1

(−2YilXjl + 2(Ui∗X∗l)Xjl)

=
2

m

(
−Yi∗X

T
j∗ + Ui∗XXT

j∗
)

Wrap up the above results, we get

∂

∂Sij
f(U ,S|U0, σ, λ) =

1

m
Xj∗X

T
j∗ −

1

2λ
(
1

Sij
− 1

σ2
) (28)

∂

∂Uij
f(U ,S|U0, σ, λ) =

2

m

(
−Yi∗X

T
j∗ + Ui∗XXT

j∗
)
+

(Uij − (U0)ij)

λσ2
(29)

Therefore, the solution of ∂
∂S f(U ,S|U0, σ, λ) = 0 is that, for any i = 1, 2, ..., n,

Sij =
1

2λ
mXj∗XT

j∗ +
1
σ2

for j = 1, 2, ..., n (30)

By Eq (29) we have
∂

∂U
f(U ,S|U0, σ, λ) =

[
2

m
(−Y XT + UXXT ) +

1

λσ2
(U − U0)

]T
(31)

Thus the solution of ∂
∂U f(U ,S|U0, σ, λ) = 0 is

U =

(
1

m
YXT +

1

2λσ2
U0

)(
1

m
XXT +

1

2λσ2
I

)−1

(32)

Now we show that f(U ,S|U0, σ, λ) is a convex function, such that the solutions of S in Eq (30) and U in Eq (32) are the
global minimizer of Eq (27). By Eq (28) and Eq (29) we have

∂2f

∂Sij∂Skl
=

{
1

2λ(Sij)2
if i = k, j = l

0 otherwise
,

∂2f

∂Uij∂Ukl
=


2
mXj∗X

T
l∗ +

1
λσ2 if i = k, j = l

2
mXj∗X

T
l∗ if i = k, j ̸= l

0 otherwise

Denote ν ∈ R2n2

where for i = 1, 2, ..., n and j = 1, 2, ..., n, ν(i−1)n+j = Uij and νn2+(i−1)n+j = Sij . Let Hf ∈

R2n2×2n2

be the Hessian matrix where (Hf )ij =
∂2f

∂νi∂νj
. Then we can write Hf =

[
A 0
0 B

]
where A = 2

m (XXT )⊗ In +

1
λσ2 In2 and B is a n2 × n2 diagonal matrix with B(i−1)n+j,(i−1)n+j =

1
2λ(Sij)2

. Here ⊗ means Kronecker product.

The Kronecker product has a property that, let {λi|i = 1, ...,m} be the eigenvalues of A ∈ Rm×m and {µj |j = 1, ..., n} be
the eigenvalues of B ∈ Rn×n, then {λiµj |i = 1, ...,m, j = 1, ..., n } are the eigenvalues of A⊗B (Theorem 4.2.12, (Horn
& Johnson, 1991)). Since XXT is positive semi-definite and In is positive definite, (XXT )⊗ In is positive semi-definite.
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Thus A is positive definite. Since all elements of S is positive, B is positive definite. Therefore, Hf is a positive definite
matrix for any U and S , which means f(U ,S|U0, σ, λ) is a convex function. Thus, the solutions of S in Eq (30) and U in Eq
(32) give the global minimum.

(2) Applying the constraint diag(W ) = 0 to ρ and π is equivalent to set diag(U) = 0, diag(S) = 0, diag(U0) = 0, and
diag(σ2J) = 0. Under these constraints, the expression of D( ρ ||π ) in Eq (26) is changed to

D( ρ ||π ) =
1

2

(n2 − n)(2 lnσ − 1)−
n∑

k=1

n∑
l=1,l ̸=k

(lnSkl −
Skl

σ2
) +

∥U − U0∥2F
σ2

 (33)

In this case, Eq (28) holds only for i ̸= j.

We let S11,S22, ...,Snn be zero constants in f(U ,S|U0, σ, λ), and consider only the off-diagonal elements of S to be
variables. Then we construct the Lagrangian function as

L(U ,S, x|U0, σ, λ) = f(U ,S|U0, σ, λ) + xT diag(U)

for some x ∈ Rn, and solve

∂L

∂x
= [diag(U)]T = 0 (34)

∂L

∂U
=

∂

∂U
f(U ,S|U0, σ, λ) + Diag(x) = 0 (35)

∂L

∂Sij
=

∂

∂Sij
f(U ,S|U0, σ, λ) = 0 for i, j ∈ {1, 2, ..., n}, i ̸= j (36)

The optimal S is obtained by solving Eq (36) and set Sii = 0 for all i. The solution of Eq (36) is Eq (30) with i ̸= j. The
optimal U is obtained by solving Eq (35) and Eq (34). By Eq (35),

2

m
(−Y XT + UXXT ) +

1

λσ2
(U − U0) + Diag(x) = 0

⇐⇒U =

(
1

m
YXT +

1

2λσ2
U0 −

1

2
Diag(x)

)(
1

m
XXT +

1

2λσ2
I

)−1

(37)

Then we solve x to satisfy Eq (34),

diag(U) = diag

[(
1

m
YXT +

1

2λσ2
U0

)(
1

m
XXT +

1

2λσ2
I

)−1
]
− diag

[
1

2
Diag(x)

(
1

m
XXT +

1

2λσ2
I

)−1
]

= diag

[(
1

m
YXT +

1

2λσ2
U0

)(
1

m
XXT +

1

2λσ2
I

)−1
]
− 1

2
x⊙ diag

[(
1

m
XXT +

1

2λσ2
I

)−1
]
= 0

we get

x = 2 · diag

[(
1

m
YXT +

1

2λσ2
U0

)(
1

m
XXT +

1

2λσ2
I

)−1
]
⊘ diag

[(
1

m
XXT +

1

2λσ2
I

)−1
]

Now we show that the solution of Eq (34), Eq (35) and Eq (36) gives the global minimum of the problem Eq (27) under
the constraint diag(W ) = 0. Let HL be the Hessian matrix of L. It is easy to verify that if we remove the dimensions
corresponding to S11,S22, ...Snn of Hf and get H ′

f ∈ R(2n2−n)×(2n2−n), then HL will be equivalent to H ′
f . Thus HL is

positive definite for any U ,S.

We use the second order sufficiency conditions (Section 11.5, (Luenberger & Ye, 2008)): Let (U∗,S∗, x∗) be a
solution of ∂L

∂U = 0, ∂L
∂S = 0, ∂L

∂x = 0, then (U∗,S∗) is a local minimizer of f if HL|U=U∗,S=S∗,x=x∗ is posi-
tive semi-definite on the subspace M = {y ∈ R2n2−n | y(i−1)n+i = 0 for i = 1, 2, ..., n} (The subspace requires
[(∂U11

∂v )T , (∂U22

∂v )T , ..., (∂Unn

∂v )T ]T y = 0, i.e., ∂Uii

∂v y = y(i−1)n+i = 0 for all i). We have shown that the solution of Eq (34),
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Eq (35) and Eq (36) is unique, and the HL with respect to this solution is positive definite on the entire space R2n2−n. Since
M is a subspace of R2n2−n, the positive definiteness of HL holds on M , thus the second order sufficiency condition is
satisfied. Therefore, this solution gives the global minimum.

Proof of Proposition 5.3:

Denote vi = (Wi∗Σ
1/2
xx +Bi∗)

T , then vi = A1/2ϵ+ µi where ϵ ∈ N (0, I). Using the quadratic form shown in Theorem
3.2, we have

∥vi∥2F = (A1/2ϵ+ µi)T (A1/2ϵ+ µi) = (A1/2ϵ+ µi)TA−1/2STΛSA−1/2(A1/2ϵ+ µi)

= (Sϵ+ SA−1/2µi)TΛ(Sϵ+ SA−1/2µi) = (Sϵ+ b̄i)TΛ(Sϵ+ b̄i) =

n∑
j=1

ηj(Sj∗ϵ+ b̄ij)
2

It is easy to show that each Sj∗ϵ are i.i.d. from N (0, 1) for all j, thus each Sj∗ϵ+ b̄ij is independently from N (b̄ij , 1). Since
each vi is independent, Eq (11) can be rewritten as

Eπ

[
eλR

true(W )
]
= C Eπ

[
eλ

∑n
i=1 ∥Wi∗Σ

1/2
xx +Bi∗∥2

F

]
= C

n∏
i=1

Eπ

[
eλ∥vi∥2

F

]
= C

n∏
i=1

n∏
j=1

Eπ

[
eληj(Sj∗ϵ+b̄ij)

2
]

= C

n∏
i=1

n∏
j=1

exp
(

λ(b̄ij)
2ηj

1−2ληj

)
(1− 2ληj)

1/2

The last equality above follows from Eq (18).

Proof of Theorem 5.4:

Let P,Q ∈ Rn×n be two symmetric matrices, we write P ⪰ Q if P −Q is positive semi-definite and P ≻ Q if P −Q is
positive definite.

Let ηj be the jth largest eigenvalue of A and η
(i)
j be the jth largest eigenvalue of A(i). By Corollary 7.7.4 (c) of (Horn &

Johnson, 2012), P ⪰ Q implies ηj(P ) ≥ ηj(Q) for any j. Since A−A(i) = σ2(Σ
1/2
xx )∗i(Σ

1/2
xx )T∗i ⪰ 0 for any i, we have

ηj ≥ η
(i)
j for any i, j.

Since b(i) = S(i)(A(i))−1/2µi, we have

(b
(i)
j )2η

(i)
j = η

(i)
j (µi)T (A(i))−1/2(S

(i)
j∗ )

TS
(i)
j∗ (A

(i))−1/2µi

= η
(i)
j (µi)T (S(i))T (Λ(i))−1/2[S(i)(S

(i)
j∗ )

T ][S
(i)
j∗ (S

(i))T ](Λ(i))−1/2(S(i))µi

= (µi)T (S
(i)
j∗ )

T (S
(i)
j∗ )µ

i

Therefore, Eq (13) can be expressed as

1

C
Eπ′

[
eλR

true(W )
]
=

n∏
i=1

n∏
j=1

exp

(
λ(b

(i)
j )2η

(i)
j

1−2ληj

)
(
1− 2λη

(i)
j

)1/2 =

n∏
i=1

n∏
j=1

exp

(
λ(µi)T (S

(i)
j∗ )T (S

(i)
j∗ )µi

1−2ληj

)
(
1− 2λη

(i)
j

)1/2

=

n∏
i=1

exp

(
λ(µi)T

(∑n
j=1

(S
(i)
j∗ )T (S

(i)
j∗ )

1−2ληj

)
µi

)
∏n

j=1

(
1− 2λη

(i)
j

)1/2 =

n∏
i=1

exp
(
λ(µi)T (S(i))T Λ̄(i)S(i)µi

)
∏n

j=1

(
1− 2λη

(i)
j

)1/2
where Λ̄(i) = diag

(
1

1−2λη
(i)
1

, 1

1−2λη
(i)
2

, ..., 1

1−2λη
(i)
n

)
.
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Similarly, Eq (12) can be expressed as

1

C
Eπ

[
eλR

true(W )
]
=

n∏
i=1

exp
(
λ(µi)TST Λ̄Sµi

)∏n
j=1 (1− 2ληj)

1/2

where Λ̄ = diag
(

1
1−2λη1

, 1
1−2λη2

, ..., 1
1−2ληn

)
.

Now we show that ST Λ̄S ⪰ (S(i))T Λ̄(i)S(i) for any i. By Corollary 7.7.4 (a) of (Horn & Johnson, 2012), if P ≻ 0 and
Q ≻ 0, then P ⪰ Q if and only if Q−1 ⪰ P−1. Since we assume 0 < λ < 1

2η1
, we have 1− 2λη

(i)
j > 0 and 1− 2ληj > 0

for any i, j, thus all diagonal elements of Λ̄(i) and Λ̄ are positive, implying that (S(i))T Λ̄(i)S(i) ≻ 0 and ST Λ̄S ≻ 0.

Since
(
(S(i))T Λ̄(i)S(i)

)−1
= (S(i))T

(
I − 2λΛ(i)

)
S(i) = I − 2λA(i) and

(
ST Λ̄S

)−1
= I − 2λA, we have(

(S(i))T Λ̄(i)S(i)
)−1

⪰
(
ST Λ̄S

)−1 ⇐⇒ I − 2λA(i) ⪰ I − 2λA ⇐⇒ A ⪰ A(i)

Thus ST Λ̄S ⪰ (S(i))T Λ̄(i)S(i), implying that (µi)TST Λ̄Sµi ≥ (µi)T (S(i))T Λ̄(i)S(i)µi holds for any µi. Therefore,

1

C
Eπ′

[
eλR

true(W )
]
=

n∏
i=1

exp
(
λ(µi)T (S(i))T Λ̄(i)S(i)µi

)
∏n

j=1

(
1− 2λη

(i)
j

)1/2 ≤
n∏

i=1

exp
(
λ(µi)TST Λ̄Sµi

)∏n
j=1 (1− 2ληj)

1/2
=

1

C
Eπ

[
eλR

true(W )
]

B. Allowing Multiple Trails on λ

Since we do not know the optimal value of λ, by Section 2.1.4 of (Alquier, 2021), we can choose a finite grid in (0,+∞)
and search λ in the grid. Let Λ = {λ1, λ2, ..., λL} be the grid where each λi > 0 and L is the cardinality of Λ.

P

(
∀λ ∈ Λ, EW∼ρ[R

true(W )] < EW∼ρ[R
emp(W )] +

1

λ

[
D( ρ ||π ) + ln

L

δ
+Ψπ,D(λ,m)

])
≥ 1− δ

This is because

P

(
∀λ ∈ Λ, EW∼ρ[R

true(W )] < EW∼ρ[R
emp(W )] +

1

λ

[
D( ρ ||π ) + ln

L

δ
+Ψπ,D(λ,m)

])
= 1− P

(
∃λ ∈ Λ, EW∼ρ[R

true(W )] > EW∼ρ[R
emp(W )] +

1

λ

[
D( ρ ||π ) + ln

L

δ
+Ψπ,D(λ,m)

])
= 1− P

(
L⋃

i=1

EW∼ρ[R
true(W )] > EW∼ρ[R

emp(W )] +
1

λi

[
D( ρ ||π ) + ln

L

δ
+Ψπ,D(λi,m)

])

≥ 1−
L∑

i=1

P

(
EW∼ρ[R

true(W )] > EW∼ρ[R
emp(W )] +

1

λi

[
D( ρ ||π ) + ln

L

δ
+Ψπ,D(λi,m)

])

≥ 1−
L∑

i=1

δ

L
= 1− δ

C. Related Works
The earliest PAC-Bayes bound is proposed by (McAllester, 1998). (Alquier et al., 2016) proposed an oracle PAC-Bayes
bound based under Hoeffding assumption. (Germain et al., 2016) applied Alquier’s bound to linear regression problem
under Gaussian data and parameter distribution assumptions, but the bound does not converge for being independent of
the number of samples. (Shalaeva et al., 2020) improved Germain’s bound by proposing a bound related to the number of
samples, and showed the bound converges as the number of samples increases. Most PAC-Bayes bounds are theoretical and
difficult to calculate in practice, and some research is focused on making the bound more practical to compute. (Dziugaite
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& Roy, 2017) proposed a practical way to calculate Seeger’s bound (Langford & Seeger, 2001) for neural networks, and
showed the bound is nonvacuous on MNIST dataset, where the bound is around 10× of the test error.

Recent years LAEs gains popularity in recommendation systems (particularly on implicit settings) due to their simplicity
and effectiveness. (Steck, 2019) proposed the EASE model and showed it surpasses the performance of deep neural
network models on recommendation datasets under Recall and NDCG metrics. Later (Steck, 2020) proposed EDLAE which
introduces a mask to the target function to avoid the parameter matrix overfitting towards identity. (Vančura et al., 2022)
proposed ELSA which constructs the LAE with an item-item similarity matrix AAT − I with zero diagonal. An earlier
LAE model SLIM (Ning & Karypis, 2011) obtains the weight matrix by solving an L1 norm and L2 norm optimization
problem and under zero diagonal constraint.

Most LAE based recommender models constraints the diagonal of the weight matrix to zero. The zero diagonal constraint is
closely related to the trace norm, which is considered an effective tool for matrix completion. (Srebro & Salakhutdinov,
2010) applied the weighted traced norm in collaborative filtering. (Shamir & Shalev-Shwartz, 2014) proposed a sample
complexity bound for the trace norm in matrix completion.

Another type of linear recommendation model is based on matrix factorization, which can be viewed as a form of low-
rank matrix completion (Candes & Tao, 2009; Recht, 2011; Chen et al., 2014; Srebro & Shraibman, 2005; Foygel et al.,
2011; Shamir & Shalev-Shwartz, 2011). Matrix factorization methods have been shown to be highly effective in explicit
settings (Koren et al., 2009), where user preferences are explicitly expressed (e.g., ratings). However, they have been found
to be less effective than LAE models in implicit settings (Cremonesi & Jannach, 2021; Jin et al., 2021), where interactions
are inferred from user behavior (e.g., clicks or purchases).

Some studies have investigated the generalizability of the matrix factorization models. (Srebro et al., 2004) proposed a PAC
bound based on covering number for collaborative filtering. Other generalization bounds include (Ledent et al., 2021) for
inductive matrix completion and (Ledent & Alves, 2024) for deep non-linear matrix completion.

D. Supplemental Experiment Results

Table 3. Details of the terms of each RH in Table 2
Models ML 20M Netflix MSD

γ = 50

λ 512 512 512
EW∼ρ[R

emp(W )] 66.99 90.87 16.58
D( ρ ||π ) 0.28 0.18 0.0019

lnEπ

[
eλR

true(W )
]

31571.14 44659.37 8196.30

γ = 100

λ 512 512 512
EW∼ρ[R

emp(W )] 65.14 89.68 16.34
D( ρ ||π ) 0.27 0.17 0.0018

lnEπ

[
eλR

true(W )
]

31102.53 44313.39 8141.72

γ = 200

λ 512 512 512
EW∼ρ[R

emp(W )] 63.59 88.57 16.12
D( ρ ||π ) 0.26 0.17 0.0018

lnEπ

[
eλR

true(W )
]

30753.19 44014.86 8092.62

E. Discussions
Our PAC-Bayes bound can be generalized to any LAE model W , including those with the zero diagonal constraint. However,
one limitation of our bound is that some LAE models may impose specific constraints on W , making the bound difficult to
compute. For example, some LAE models require W to be of low rank. While the bound can still be formed for a low rank
W , its calculation can be difficult (We may end up with a theoretical bound that cannot be computed). This is because, the
calculation of the bound relies Assumption 5.1 in our paper, where we assume W to be a random Gaussian matrix (W does
not have to be Gaussian, but assuming it to be Gaussian makes the bound easy to calculate, while other distributions may
not). A random Gaussian matrix W is of full rank (Feng & Zhang, 2007) and cannot be reduced to the low rank case.
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PAC-Bayes Bounds for Multivariate Linear Regression and Linear Autoencoders

Another limitation is that our bound uses squared loss (squared Frobenius norm) as the metric for the error between target
and prediction. The square loss is easy for statistical analysis. However, real-world recommender systems typically use other
metrics like NDCG@K, Recall@K for evaluation, and our bound cannot be directly applied to these metrics. Moreover,
these metrics are challenging to analyze from a statistical perspective.
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