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Abstract

Linear Autoencoders (LAEs) have shown strong
performance in state-of-the-art recommender sys-
tems. However, these impressive results are
mainly based on experiments, with little theoreti-
cal support. This paper investigates the general-
izability — a theoretical measure of model perfor-
mance in statistical machine learning — of multi-
variate linear regression and LAEs. We first pro-
pose a PAC-Bayes bound for multivariate linear
regression, which is generalized from an earlier
PAC-Bayes bound for multiple linear regression
by (Shalaeva et al., 2020), and outline sufficient
conditions that ensure its theoretical convergence.
We then apply this bound to LAEs by showing
that LAEs can be viewed as constrained multivari-
ate linear regression on bounded data, and develop
practical methods for minimizing the bound, ad-
dressing the calculation challenges posed by the
constraints. Experimental results demonstrates
the non-vacuousness of our bound for LAEs.

1. Introduction

In recent years, simple (linear) recommendation models
have consistently demonstrated impressive performance,
often rivaling deep learning models (Dacrema et al., 2019;
Jin et al., 2021; Mao et al., 2021), especially for the implicit
setting, where interactions are inferred from user behavior
(e.g., clicks or purchases). In particular, linear autoencoders
(LAESs) such as EASE (Steck, 2019) and EDLAE (Steck,
2020) have shown a surprising edge over widely used matrix
factorization (MF) methods such as ALS (Hu et al., 2008).

Despite their power and widespread use, linear autoen-
coders, particularly in the context of recommendation sys-
tems, remain theoretically underexplored. Recommendation
research has understandably focused on performance evalu-
ation to compare models, but issues such as weak baselines
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and unreliable sampled metrics often make these evaluations
difficult to reproduce (Dacrema et al., 2019; Cremonesi &
Jannach, 2021). A recent study attempted to provide a theo-
retical comparison between linear recommendation models,
such as matrix factorization and LAE, using spectral anal-
ysis, showing that both approaches “reduce” the singular
values of the original user-item data matrix R, albeit in
different ways (Jin et al., 2021). Another related study
investigates the loss landscape of low-rank LAEs, character-
izing their critical points through the smooth submanifold
theory (Kunin et al., 2019).

In this work, we aim to advance the theoretical understand-
ing of linear autoencoder (LAE) models’ generalizability
using statistical learning theory. While generalization theory
has been extensively studied for various machine learning
and deep learning models (Vapnik, 1991; Dziugaite & Roy,
2017), its application to LAE recommendation models re-
mains largely unexplored. To address this gap, we leverage
PAC-Bayes theory (McAllester, 1998), which integrates the
Probably Approximately Correct (PAC) framework with
Bayesian inference. Our analysis produces a nonvacuous
bound, offering practical insights into LAE performance on
unseen data.

Our study to establish PAC-Bayes bounds for LAE mod-
els builds on the theoretical framework introduced by Sha-
laeva (Shalaeva et al., 2020), which provides a PAC-Bayes
bound for multiple linear regression (a single dependent vari-
able with multiple independent variables) under the assump-
tion of Gaussian data. However, applying this framework to
LAE models introduces several challenges:

1. Multivariate Linear Regression: The PAC-Bayes
bound must be extended from the multiple linear regres-
sion setting to the multivariate linear regression scenario,
which involves multiple dependent variables. Notably,
PAC-Bayes bounds for multivariate linear regression —
an important method and topic in statistical learning and
inference — remain unexplored in the existing literature.

2. Additional Convergence Requirements: Our analysis
reveals the need for additional convergence conditions
beyond those presented in (Shalaeva et al., 2020). These
conditions are essential for ensuring theoretical conver-
gence in the more complex multivariate setting.
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3. Constraints on the Weight Matrix and Data: LAE
models impose a structural zero-diagonal constraint on
the weight matrix and a data dependency constraint be-
tween the input and target. These constraints present
unique challenges in theoretical analysis and practical
calculation when adapting PAC-Bayes bounds from mul-
tivariate linear regression to LAE models.

This paper addresses the aforementioned challenges and
makes the following key contributions:

* (Section 3) We develop a general theoretical PAC-Bayes
bound for multivariate linear regression (Theorem 3.2), of
which Shalaeva’s bound (Shalaeva et al., 2020) for mul-
tiple linear regression is a special case. Additionally, we
propose sufficient conditions (Theorem 3.3) that guaran-
tee convergence for both the new bound (Theorem 3.2)
and Shalaeva’s original bound (Shalaeva et al., 2020).

* (Section 4) We adapt Theorem 3.2 to bounded data as-
sumption (Assumption 4.1) and propose the PAC-Bayes
bound for multivariate linear regression on bounded data
(Section 4.1). We then show the bound for LAEs is a spe-
cial case of this, achieved by applying the zero diagonal
constraint and the data dependent constraint (Section 4.2).

* (Section 5) We propose practical methods for calculating
and minimizing the PAC-Bayes Bound for LAEs, includ-
ing solving for the optimal posterior distribution (Theo-
rem 5.2) under Gaussian assumption (Assumption 5.1),
and addressing the high computational complexity intro-
duced by the zero diagonal constraint with a practical
upper bound (Theorem 5.4).

* (Section 6) We evaluate the bound for LAEs on a specific
data distribution (which is typically considered unknown
in practice but assumed to be known in this experiment)
to address the incomputability issue of the oracle bound,
and the results show that our bound is non-vacuous.

All proofs of the theorems, lemmas and propositions pre-
sented in this paper are provided in Appendix A, Related
Works are discussed in Appendix C, and Discussions are
presented in Appendix E.

2. Preliminaries

Alquier’s Bound (Alquier et al., 2016): Let S =
{(zi, i)}, be the dataset where x; € R™ is the feature
vector and y; € R is the label. Suppose each (z;,y;) is
ii.d. sampled from an unknown data distribution D. Let
fo + R® — R be the machine learning model where 6
is the vector of parameters. Let [ be the loss function,
Remp(0) = LS 1(fo(2:i), y:) be the empirical risk and
R™¢(0) = E(4,4)~pll(fo(x),y)] be the true risk. Let 7 be
a prior distribution of # and p be the posterior distribution

of 0, then for any A > 0, > 0,
P (Egp[R™(0)] < Egnp[RT™(6)]+

1 1
§ [Pl g e weim]) 2120

where \Ijﬂ',D,l ()\7 m) = 1n ]EONTF]ESNDM’ [eA(R"“e(g)_Remp(G))].

Note that the Alquier’s bound involves R™¢(T/) on both
the left and right hand sides, meaning the bound cannot be
computed without the knowledge of the data distribution
D. Such bound is refered to as the oracle bound (Alquier,
2021).

Shalaeva’s Bound (Shalaeva et al., 2020): In Alquier’s
bound, suppose fp(r) = 6Tz where § € R™. Assume D
satisfies z; ~ N(0,021), and there exist 0* € R™ such that
yi = (0%)Tx; + e; where e; ~ N(0,02). Here 02, 02 are
constants. Let the loss function be I( fo(x;),y;) = (07 x; —
y;)?%, then

exp(Avg)

V,.piAm)=mEjr——"F—""=

< InEg,exp (
(D

where vy = 02[|0 — 0*|3 + o2.

Convergence of Shalaeva’s Bound: The convergence anal-
ysis in (Shalaeva et al., 2020) is presented informally. Here
we formally state their results as follows:

(1) Since lim,, oo (1 + %)m/Q = exp (\vg), for any

A > 0, the term ¥ p ; (A, m) converges,

lim W, p (A m)= lim InEy, PO
m—o0 m— oo (1 + m/92)m/2
— InEpe, lim —SPAW)
m— oo (]_ + m7/92)m/2
(2) Let d be a constant and A = m'/? then

InEg, exp (%) =InEgr exp (2m2/d’1vg).
Whend > 2, lim,, 0o m~ /¢ InEg.. exp (2m2/d’1v3) =
0, thus the entire bound converges as m — co.

lim [ D(p||7)+In =+ Uy pi(\m)| <
m—)OOA 5 T

lim m /4 {D(pHW)Jrlnl] +

m—0o0 (S

lim m~ Y nEgonr exp (2m2/d_1v§) =0

m—r 00
Upon careful examination of their analysis, we found that
additional conditions are needed to ensure the above con-
vergency results, which were not discussed in their original
paper. In (1), swapping lim and E is valid only under some
specific conditions. For example, by dominated conver-
gence theorem (Resnick, 1998; Rudin, 1976), the condition

2220}
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can be Eg.-[exp(Avg)] < co. 7 needs to be a distribution
satisfying this condition. In (2), some choices of 7 can cause
divergence. For example, when 7 is Gaussian distribution,
we have InEg.. exp (2m?/97103) = oo for any m > 0,
thus lim,,, 0o m~ /4 InEg..» exp (2m2/d’lv§) = oo and
the bound diverges. We will discuss these issues in Section
3.2.

Multivariate Linear Regression (Johnson & Wichern,
2007): Let S = {(zi,y;)} ™, be the dataset where z; € R”
and y; € RP. Let X = [z1,29,...,Tsm] € R™ ™ be the
input matrix, Y = [y1,y2, ..., ym] € RP*™ be the target,
W € RP*" be the weight matrix of the linear model and
E = [e1,e2,...,em] € RP*™ be the error matrix. The
linear regression is defined as

Y=WX+FE

Usually we let the first dimension of every z; be 1, i.e.,
X1« is a vector of all 1s. We say the linear regression is
multivariate if p > 1, and is multiple if n > 2.

We can apply a statistical assumption to the multivariate lin-
ear regression, where it is typically assumed that the errors
e; and e; are independent for ¢ # 7, but the dimensions of
each e; can be dependent. A common statistical assumption
is shown in Assumption 3.1.

LAE Model and Recommender System: In a recom-
mender system, let © € {0, 1}" be a user vector that z; = 1
indicates the user has interacted with item ¢, and x; = 0
indicates the user has not yet interacted with item ¢, but may
potentially be interested in it. An LAE model is represented
by a matrix W € R™*", which takes x as input and gen-
erates a prediction by § = Wx. The prediction § fills in
the Os in z. If z; = 0 and g; is closer to 1, it suggests that
the user is likely to be interested in item ¢, and the item
will be recommended. Items with g; closer to 0 will not be
recommended. If x; = 1, g; is should ideally be close to
0, as the system should avoid recommending items that the
user already knows.

Let y € {0,1}" be the target vector used in evaluation.
We consider the item ¢ with x; = 1 and y; = 1 wrongly
labeled, as it indicates that the recommender system would
suggest a redundant item the user already knows. Wrongly
labeled items should be excluded from the evaluation, as
they misrepresent the model’s performance.

EASE (Steck, 2019): EASE is one of the most popular
method for training LAE models (Jin et al., 2021). Let
R™™ be the data matrix and W € R"™*" be the weight
matrix, then EASE obtains the LAE model W by solving
the following problem

mV[i/nHR—WRH%+7HW||% s.t. diag(W) =0 (2)

where 7 is the regularization parameter. Let Wj be the

solution of Eq (2), then Wy has closed from: Let P =
(RRT +"}/I)71, then (WO)ij =0if: = ] and (Wg)ji =
—P;;/Pj; ifi # j.

3. PAC-Bayes Bound for Multivariate Linear
Regression

3.1. The Statistical Assumption and the Bound

Assumption 3.1. Suppose each (x;,y;) in S is i.i.d. sam-
pled from a distribution D. D is defined as: (1) x; ~
N (12, 32); (2) there exist W* € RP*™ and e ~ N(0, %)
such that for any given z;, y; = W*x; + e, in other words,
yilzi ~ N(W*z;,%,). Here p, € R", ¥, € R"™" is
positive semi-definite, and ¥, € RP*? is positive-definite.

The positive semi-definite assumption of 3, allows X, to
be singular, implying that the Gaussian distribution is de-
generate, i.e., its support is on a lower dimensional manifold
embedded in R™. This includes the case that x; has its first
dimension to be constant 1 and the other n — 1 dimensions
to be Gaussian random variables. In this case, the first row
and first column of >, are 0.

Let W € RP*™ be the weight matrix of the linear model,
then the prediction of the model on x; is given by 3; = Wa;.
The erroris y; — i = W* — W)z, + e ~ N (g, 2 ),
where

Iy
ZW

E[(W* = W)(z; —
=(W* =Wz, (W* —=w)T + %,

It is easy to verify that >, is positive-definite. Thus, X,
has an eigenvalue decomposition ¥, = STAS where S
is orthogonal, A = diag(n, 72, ..., 1) and n; > 0 for all 4.
Note that S and A depend on .

Define the loss of the sample (z;, ;) as ||y; — Wx;||%, the
empirical risk as R*™ (W) = L 3" |ly; — Wx;[|% and
the true risk as R™(W) = E(, ,~pl/ly — Wz|%]. Then
we have the following bound:

Theorem 3.2. Let 7 be the prior distribution of W, p be
the posterior distribution of W. Denote b = S Z;/l/ 2l
Then for any A > 0 and § > 0,

P (Bwp[R™(W)] < Enw [R™(W)]+

% {D(puﬂ) +ln% +\11,,,D(A,m)D >1-5 (3
where
\Ifﬂ,p()\,m)

P
exp (Zi:l mE2AT;

E(W" = W)z +e] = (W* = W)E[z] + Ele] = (W = W)pa
fha) + e)][(W* - W)(xz — jiz) + e]T

7>\mb?m

s o (3 (50 )

2 2
< InEw~r exp (M)

m

I, (1 -+ 2 /m)"
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The bound of Theorem 3.2 is a general case of Shalaeva’s
bound. It can be reduced to Shalaeva’s bound by taking
p=1,pu, =0,%, =02l and &, = o2 for some o, 0.

3.2. Convergence Analysis

This section presents the convergence analysis of Theorem
3.2. We outline sufficient conditions that ensure conver-
gence, thereby completing and rigorously formalizing the
convergence analysis of Shalaeva’s bound (Shalaeva et al.,
2020)

We first discuss the convergence of ¥ p(A, m) term, then
the entire bound. Theorem 3.3 gives a sufficient condition
for the convergence of ¥ (A, m) based on the dominated
convergence theorem.

Theorem 33. If A and s satisfies
Ewnr [exp (Al(Se + papld ) 2(W* =W)|F)] < oo,
then limy, oo U p(A, m) = 0.

By Theorem 3.3, we can derive some special cases that
make U p(\, m) converge:

(1) If 7 is a bounded distribution such that |W|r < G
where G is a constant, then for any A > 0,

Ewn [oxp (A(Ze + patid) (W = W)II3)]

< Bwnr [exp (MI(Ss + papid) 23 IW" - WE)]
< exp (AI(Sa + o) 15 (IW e + 1W]1£)?)
< exp (AI(Ss + o) 23 (W[l + G)*) < o

(2) If 7 is a distribution that for W ~ m, each W;; is inde-
pendently sampled from N'((Up);;,0%) where o > Ois a
constant and Uy € R™*™. Then for any A € (0, ﬁ),
Ew~r [exp (M(Zz + papd)V2(W* = W)|F)] < oo
holds. This is because, let ¥, +pu,uL = ST AS be the eigen-

value decomposition and suppose A = diag(ny, 12, ..., M)
where 7, is the largest eigenvalue, then

Ewnn [exp (A(Se + paid) (W = W)II3)]

2
An; (S (W™ —Uo) i)
172>\027]j

P P exp(
N e

And X € (0, ﬁ) ensures denominator (1 — 2)\02nj)

is not zero or undefined for any j.

1/2

Now we discuss the convergence of the entire bound when
A =m'4 Since + [D(p||7) + In %] surely converges as
m — oo, we only discuss the convergence of + ¥ p (X, m).
By Theorem 3.2, + W, p(\,m) converges if the upper

1 22?8 IE
bound § In Ey . exp | — W= ) converges.

(3) If 7 is a bounded distribution satisfying ||W||r < G,

then
IS 5 = W = W)Za (W™ = W)" + 3
* * T 2
< (I =w)m (v = w)" e + |Zllr)
* 2
< (ISl W = Wik + 1% r)
* 2 2
< (I=alle (W lle + IW12)° + 5l

* 2 2
< (ISalle (W e + G)? + Sellr) < o0

2
Denote G’ = (||2£||F (W)l + G)? + ||ze||F) . The
upper bound converges when d > 2:

lim Y By exp (205,17

m— 00

< lim m Y'ImEwr exp (Zmz/dflG') =0

m—r0o0

(4) If 7 is a distribution that for W ~ m, each W; is a
Gaussian random variable, then the upper bound diverges
when d > 2, thus we cannot show the convergence of

%WW,D (A, m). We prove the divergence of the upper bound
as follows. First, for any r,q € {1,2,...,p},

1S 3= 357 (W =~ WYL — W)y + (20

i=1 j=1
* T * 2
> (W = W)L S0 = W)y + (Se)ar)
2
= (I = W)} + (Se)aa )
2 4
> (1) 2 (W = W)al) = (EH2 W™ = W).)
In the above inequality we use the fact that (3;)4, > 0
since it is a diagonal element of ¥. Since (W* —W),,isa

random Gaussian vector, (Z)iig(W* — W).q is a Gaussian
random variable. Denote w = (E)iiQ(W* — W),y then

m Y InEw.rexp (2m2/d71||EW ||§:) >m Y InE, exp (Zm

Lemma 3.4. Let {a;}F_, be a sequence of real num-
bers. Let X be a Gaussian random variable and Y;, =
Zf:o a; X" where ay, > 0. Ifk > 3, then Y}, has no MGEF,
i.e., My, (t) = Ey, [exp(tYs)] = Ex[exp(tYy)] = oo for
anyt > 0.

Lemma 3.4 states that any polynomial of Gaussian ran-
dom variables of degree > 3 has no MGF. The term w?
satisfies the conditions of Lemma 3.4 as a polynomial of
degree 4. Thus we have E,, exp (2m?/?~1w?*) = oo for
2/d—1 w4)
2/d—1

any m > 0, and InE,, exp (2m = o00. Note

that when m — oo, m~/% and m are positive num-
bers being arbitrary close to 0 but never equivalent to
0. Thus lim,_,oc m~Y4InE,, exp (2m*/ 4~ 1w?) = oo.
This shows the upper bound diverges.

Recall that Shalaeva’s bound in Section 2 has vy = 02||0 —
0*||3 + o2. When 0 is a Gaussian vector, v7 becomes
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a polynomial of Gaussian random variables of degree 4,
which satisfies the condition of Lemma 3.4. Thus the diver-
gence limy, 00 InEgr exp (2m* ¢~1v}) = oo cannot be
resolved by taking any d > 2.

4. PAC-Bayes Bound for LAEs

This section demonstrates that, in the testing stage, the LAE
model with squared loss can be viewed as a special case
of multivariate linear regression on bounded data. We first
propose a PAC-Bayes bound for multivariate linear regres-
sion on bounded data, which is derived by adjusting the data
distribution assumption in Theorem 3.2 from Gaussian to
one with bounded support (Section 4.1). We then apply the
bound to LAEs (Section 4.2).

4.1. Adjusting the PAC-Bayes Bound to Bounded Data
Assumption

Most real-world recommendation datasets are not Gaussian
but bounded. For example, the dataset can be a binary
matrix R € {0,1}"*™ where R;; = 1 means that user j
has interacted with item ¢, and I2;; = 0 means user j has
not interacted with item %. To apply the PAC-Bayes bound
of Theorem 3.2 to recommendation datasets, we need to
change the Gaussian data assumption (Assumption 3.1) to
bounded data assumption.

We first consider the general definitions of empirical and
true risk. Let X € R™*"™ be the input, Y € R™*™ be the
target, and W € R™*" be the weight matrix. The empirical
risk is 1
R™(W) = —[|Y — WX][3 ©)
m
Assume each pair (X,;,Y,;) is i.i.d. sampled from a 2n
dimensional distribution D, then we can define the true risk
as
R™(W) = E )~ [Ily — Wellz] ©)
Now, we introduce the bounded data assumption, which
assumes D is a distribution with bounded support:

Assumption 4.1. Suppose D is characterized by three finite
cross-correlation matrices Yo, = E(, )plaa’], Xay =
E(z,y)~D [zyT] and &, = E(zy)~plyy" ], and Xy, is pos-
itive definite.

Lemma 4.2. Under Assumption 4.1, given any W, the true
risk in Eq (5) can be expressed as
[pxamamirilis

Rtrue(W) = ||WE;%¢2 - Ezyz 1/ZHF xy ;cm
+tr(Syy) (6)
Then the PAC-Bayes bound for multivariate linear regres-

sion on bounded data is as follows (the same form as Eq (2)
but with different settings):

P (B [R™(W)] < By )]+ 1 Do 7)

1

+31n (15+ \Ifw(Am)>21—5 7

with Remp (W) given by Eq (4), R"™¢(W) given by Eq (6),

\117"7D(>‘7 m) =In EWNW]ERN'DT" |:6 (lee(W)iRemp(W))] .

4.2. Applying the PAC-Bayes Bound to LAEs

Generally, an LAE model is represented by a weight matrix
W € R™*™ with the zero diagonal constraint diag(TW) = 0
being optionally applied, depending on the method used to
obtain W. For example, if W is obtained through train-
ing with EASE or EDLAE, the zero diagonal constraint is
applied.

We consider training and evaluation as independent stages
and focus only on evaluation. Suppose we have obtained
an LAE model W through any method, whether trained via
EASE or EDLAE, or random initialized but untrained. Let
R € {0,1}™*™ be the matrix used for testing. To avoid
the wrongly labeled items as mentioned in Section 2, we
split the 1s in R into two matrices X € {0,1}"*™ and Y €
{0, 1}™*™ in the following way: For any i € {1,2,...,n}
and j € {1,2, ...,m}, if Rij = 0, we set Xij = Y;'j = 0;
if R;; = 1, we set X;; = 1,Y;; = 0 with probability p
and X;; = 0,Y;; = 1 with probability 1 — p. In this case,
X; and Y;; cannot both be 1. For each pair (X, ;,Y,;), the
prediction of LAE model is W X, ; and the error vector is
Y.j —WX,;.

Therefore, when using the squared loss (squared Frobenius
norm) as the evaluation metric, the LAE model can be con-
sidered a special case of multivariate linear regression on
bounded data with two constraints:

(1) Zero diagonal constraint on W: diag(W)
tional).

(2) Data dependent constraint on X and Y: For any ¢, j, X;;
and Y;; are either O or 1, but cannot both be 1.

Now we apply the data dependent constraint of LAE to
Assumption 4.1. Since X and Y are generated from R,
we make the following statistical assumptions on R: Let
M be an n dimensional multivariate Bernoulli distribution.
Suppose each R,; is i.i.d. sampled from M. Let r ~ M
be a random vector. Given p € (0,1), let A € {0,1}"
be a random Bernoulli vector conditioned on r such that
P(Al = 1|Ti = 1) =D, f:)(AZ = O|ri = 1) =1 —p
and P(A; = 0|r; =0) = 1forany ¢ € {1,2,...,n}. Let
x=A0Grandy = (1—A)©®r where 1is a vector of all
1. In this case, the random variables (x, y) are represented
by (A, ), and the true risk of Eq (5) is rewritten as

R™(W) =Ea, [[[A-A)or—-WAor)|E] ®
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And Lemma 4.2 is applied to this case as follows:

Lemma 4.3. Denote ¥, = E.. n[rr?]. Eq (8) can be
written in the same form as Eq (6) by plugging in

Sop = pQZW +p1-p) (IO
Eyy = (1 - p)227“7° +p(1 7p)(I ®© Err)
Ziry = p(l - p)(zrr 10 Err)

Here ® means element-wise product. Also, ¥, is positive
definite if 33,.,- is positive definite.

5. A Practical Method for Calculating the LAE
Bound

The right hand side of Eq (7) is as follows, where we high-
light part 1 and part 2.

em 1 1.1 1
Ewnp R (W) + 1 D(pll7)+ 1 In <+ < Wrp(A,m) (9)
A Ad A
—_———
part 1 part 2

For any given d, Eq (9) is a function of A, 7, p. Since Eq (7)
holds for any A, 7, p, we aim to find a practical method for
minimizing Eq (9) with respect to these parameters, and use
the minimized bound to verify the non-vacuousness of Eq

().

It is generally considered difficult to solve for A, , p simul-
taneously (Alquier, 2021), so we typically solve for p with
A and 7 fixed. We show how to minimize part 1 in Section
5.1 and how to find a practical upper bound for part 2 in
Section 5.2.

5.1. Closed-form Solution for the Optimal p

Given 7 and A, we search for the optimal p by
1
min By, (R (W)] + 1 D(pll7)  (10)

Usually we restrict 7 and p to be specific distributions that
make Eq (10) easy to calculate. (Dziugaite & Roy, 2017)
proposed a practical way to calculate the PAC-Bayes bound
for deep neural networks, where they assumes 7 and p to
be independent multivariate Gaussian. This enables the
D(p||m) term to be easily calculated. We mainly follow
the assumptions in (Dziugaite & Roy, 2017):

Assumption 5.1. Denote N'(A, B) for some A € R"*"
and non-negative B € R"*" as the multivariate Gaus-
sian distribution that W ~ N'(A, B) means W € R™*"
and each W;; is independently from N (A;;,B;;). As-
sume p is the distribution N'(i/, S) and 7 is the distribution
N (Uy,02J), where U € R, Uy € R™*", S € R™*",
J ={1}"*"and o > 0. S is a positive matrix if no con-
straint is applied.

Applying the constraint diag(W) = 0 to p and 7 is equiv-
alent to set diag({/) = 0,diag(S) = 0, diag(Up) = 0 and
diag(c2J) = 0.

(Dziugaite & Roy, 2017) solved the optimal p using stochas-
tic gradient descent, where in each iteration the gradient is
calculated by Monte Carlo method. It should be noticed
that Dziugaite and Roy used the iterative method because
they worked on the neural network model, for which the
optimal p may not have a closed-form solution. Due to
the simplicity of LAE, we find that the optimal p for Eq
(10) has closed-form solution, as shown in Theorem 5.2 (1).
This allows us to solve p directly and avoid time-consuming
iterative methods.

Theorem 5.2. (1) Under Assumption 5.1, the closed-form
solution of the optimal p of Eq (10) is given by

U= iYXT+ Ly iXXT+ L -
“\m ho2 0 m 202 ’

1
Sij=

o2

for i,5€{1,2,....,n}

(2) If we add the constraint diag(W) = 0 to p and T, then
the optimal p becomes
1

L o~ toiag()) (Lxxt e L g}
222 07 3 J m 202

Sij =

U= (lYXT +
m

where

) 1. o 1 1 - 1 -t
=2 —YX — XX I
v diag (m + 2)\021/10) (m + 2Xo? )

1 1 \7!
. T
diag |:(mXX + 2)\021) }

Here @ means element-wise division and Diag(x) means
expanding x € R™ to an n X n diagonal matrix.

5.2. Calculating ¥ (), m) under the Zero Diagonal
Constraint

Since ¥, p(A,m) = ImE Ep [e)‘(R‘me(W)_Remp(W))} and
Re™P(TW') > 0, based on the idea of (Germain et al., 2016),
we can get an upper bound of ¥ by removing —R*™ (W):
Let U/ 5(\) = WE [ M), then ¥, p(A,m) <
W7 p(A). W' does not converge as m — oo since it is
independent of m, but it is easier to calculate than W.

By Lemma 4.2, we have
true
E,. {em (W)]
—E, [BA(”WEMQ—ZLEQQMHzp—Hzfyzﬁml\%-&-lr(gyy))}

=E, [exwlwzif_zfyz;;/zuﬂ A2~ I15T, 551213

, Sii=0 for i,j€{1,2,...,n}andi#j
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Let B = —X7 5/ and € = 0w =I5, 210

then
B, [0 = O, [

=CE, |:e)‘2in:1 HWi*EierBi»«H%} (11)

We first consider the case without the constraint diag(W) =
0. Since we assume © = N(Up,o%J) in Assumption
5.1, WE ~ N((Uo)E,021), thus (Wi, S22 + Bi)T =
LW 4 BE ~ NS W)Y + B 075,).
Proposition 5.3. Let A = 0%%,,, and A = STAS be
the eigenvalue decomposition where S is orthogonal and
A= diag(nlaTIQv"'vnn) Den()teu - 21/2(1/{0) +BT
Then we can rewrite Eq (11) as

(W) m)
]E [ )\Rum W):| CHH 1 2)\7]1]/2
1o (1—2)n
where b' = SA~1/2) (12)

Now we discuss the case that diag(W) = 0 is applied. De-
note 7’ as the distribution 7 with the constraint diag(W) =
0, that is, for W ~ w', Wiy = 0 for all <. Then

= N (Up,c*(J — I)) where diag(Up) = 0, and WL ~
N ((Uo)E,02(I — I')) where I' is a matrix with I, = 1
and other entries being 0. Therefore, (WMZU 24 Bt ~
N (S22 UV, + BE, 0(Sa — (555)(5365)5)).

Denote A = ¢%(%,, — (Ziég)*,(Z;é;Q)*Tl) then A®)
is singular and positive semi-definite. Let A®) =
ST A S() be the eigenvalue decomposition where S(*)

is orthogonal and A(") = diag(ng ), ng ) ff)). Then

1-2An;

( AGD) 2 (>)

n n €Xp

B {em (W)} =c1111 (1 o @) 2
“ol)

DT (13)

i=1j=1

where b9 = 5@ (A(
The issue with Eq (13) is its high computational complexity:
We need to calculate the eigenvalue decomposition for each
A in order to obtain SV and A(). Since each eigenvalue
decomposition costs O(n?), the computation of Eq (13)
costs O(n*), which is impractical.

Since E/ [e’\R""e(W)} is computationally difficult, we can

instead compute an upper bound with lower complexity.
The following theorem establishes the upper bound:

Theorem 5.4. Suppose ™' = N (Uy,0%*(J — 1)) and 7 =
N Uy, 0> 7), then Brs [XE™W)] < By [AR“D] for

any \ € (0, ﬁ)

Theorem 5.4 holds for any Uy, including the special case
where diag(Uy) = 0 for both 7’ and 7. Note that

E, eARtme(W)] is much easier to compute: We only need

to calculate the eigenvalue decomposition of A, so Eq (12)
costs O(n?).

To compute Eq (12), we need to know X, >, and X,,.
Under the LAE constraints, these three matrices are gen-
erated by X, according to Lemma 4.3, so we only need
to know ¥,,.. However, in practice, we cannot determine
the exact value of %, since . = E,..ap[rr?], and the
distribution M is usually unknown.

Not all PAC-Bayes bounds face this issue. PAC-Bayes
bounds are classified into two types: empirical bounds and
oracle bounds (Alquier, 2021). Empirical bounds, such as
Seeger’s bound (Langford & Seeger, 2001) used in (Dzi-
ugaite & Roy, 2017), can be computed without requiring
knowledge of the data distribution. Our bound is based on
Alquier’s oracle bound (Alquier et al., 2016), which requires
knowledge of the data distribution M to compute — an im-
possible task unless one is an oracle. Oracle bounds are
primarily used for theoretical analysis, and in practice, we
can only compute empirical approximations of them.

5.3. The Final Bound

The last step in completing the bound is to determine how
to choose \. According to (Alquier, 2021), we can search
A over a finite grid A = {\1, g, ..., A1}, as detailed in Ap-
pendix B. Let L be the number of elements in A. Applying
the grid search for A to Eq (7), we obtain the final bound:
with probability 1 — 4,

Ew~p[R™(W)] <

Ew s [R™(W)] + 5 [D(pl|7) +1n + InE [e*R"“*Wq]

(14)
Now we summarize the methods for calculating Eq (14)
under LAE constraints. We will apply the zero diagonal
constraint diag(WW') = 0 by default, while the non-constraint
case can be derived similarly.

Given X and m = N (Uy, 021), the optimal p = N(U,S)
that minimizes the right hand side of Eq (14) is obtained
by Theorem 5.2. Once p is obtained, we can calculate
Ey ~,[R*™ (W)] by Eq (25), which can be simplified as

Ew~p [RTP(W)]

1 -1, .
= Y —UX]|k + *=|Diag(S1.)*X [ (1)

m m

Similarly, by Eq (6), Eyy . ,[R"™¢(W)] can be expressed as

Ewnp[R™(W)] = |25, 50272 - Us?|%

+ (n — 1)||Diag(S1.) /221075 + tr(Syy) — 155,507
(16)
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By Theorem 5.4, the term E,; {e)‘R‘me(W)} in Eq (14) holds
when the constraint diag(WW) = 0 is applied to 7.

The calculation process for the bound Eq (14) is summarized
in Algorithm 1.

Algorithm 1 Calculation of the PAC-Bayes bound for LAEs
Imput: ¥, p, 6,0, A = {A1, A2, ..., A}, X, Y, and the
LAE model W (with diag(WW) = 0).

Calculate 5., ¥py, Xy with X;.., p by Lemma 4.3.

Set 7 = N (W,021) (i.e., Uy = W).

Let H = {} be a set to store the results.

for each )\; in A:
Calculate p = N'(U, S) with 7, \; by Theorem 5.2
Q).
Calculate D( p || m) with p, w by Eq (33).
Calculate Eyy ., [R™ (W)] with p, X, Y by Eq (15).
Calculate Eyy . ,[R™(W)] with p, ¥4, X0y, Xy by
Eq (16).
Calculate E [eARm(W)} with T, Epz, Yzy, Lyys Ai
by Eq (12).
Calculate the right hand side of Eq (14) and let the
result be RH;. Let LH; = Eyy,[R™(W)].
Append (LH;,RH;) to H.

Output: the pair (LH*,RH") in H that RH" is minimal.

6. Experiments

It is difficult to determine whether the bound Eq (14) is
non-vacuous theoretically, especially since the value of
D(p||m) unknown. So we conduct experiments on real
world datasets to calculate its exact value.

The main idea of our experiment is as follows: Since Eq
(14) is an oracle bound, it is impossible to calculate without
knowing the data distribution M. Let M* be a special case
of M such that %, = E, - [rr?] = LRRT, where
R € {0,1}™*™ is our dataset. We show that this bound is
non-vacuous on M*.

X MmMq
train

We split the entire dataset R™*" into a training set R
and a test set RZ;ST( where we set m; = 0.7m. The
test set Ry is further splitinto X and Y by assigning each 1
in R to X with probability p = % and to Y with probability
1—-p= % The LAE model W is obtained by solving the
EASE target function Eq (2) using the data Ry, (The LAE
model can also be obtained using other methods. We use
EASE here as an example). We set v in Eq (2) to be 50, 100
and 200 to obtain three different LAE models and test them

accordingly.

m—mzi)

Our experiments run on a machine with 500 GB RAM and a
Nvidia A100 GPU. The GPU has 80 GB RAM. We use three
datasets: MovieLens 20M (ML 20M), Netflix and MSD,

with their details shown in Table 1. The computation of PAC-
Bayes bound for LAE mainly follows Algorithm 1. The
other parameters are set as follows: § = 0.01, o = 0.001,
A =1{1,2,4,8,16,32,64,128,256,512}.

Table 1. Dataset information

Dataset | ML 20M Netflix MSD
#rows 138493 480189 1017982

#columns 26744 17770 40000
#ratings | 2000263 | 100480507 | 33687193

The results are presented in Table 2, where each pair
(LH, RH) is the output of Algorithm 1. LH is the left hand
side of Eq (14) while RH is the right hand side.

We evaluate the non-vacuousness by comparing the gap be-
tween LH and RH. To the best of our knowledge, there is no
universally accepted definition for how small the gap must
be to consider a theoretical bound non-vacuous. (Dziugaite
& Roy, 2017) showed in their experiments that a bound with
RH within 10 times LH (or some empirical estimation of
LH) can be considered non-vacuous. We adopt this criterion
in our work. Table 2 shows that RH is within 3 times LH
in all cases, so our bound is non-vacuous. Additionally,
the values of the terms in RH are presented in Table 3 in
Appendix D, which shows that the value of D(p||7) is
typically trivial.

Table 2. Experiment results of the PAC-Bayes bound for LAE

Models ML 20M | Netflix | MSD
_ .o |LH| 6166 | 8722 [ 159
7= RH | 128.66 | 178.11 | 32.60
— 00 |LH| 6075 [ 8634 [ 15385
7= RH | 12590 | 176.25 | 32.26
LH | 6006 | 8596 | 15.76

v =200
RH | 123.67 | 174.55 | 31.94

7. Conclusions

This paper studies the generalizability of multivariate lin-
ear regression and LAEs. We propose a new PAC-Bayes
bound for multivariate linear regression, which generalizes
Shalaeva’s bound for multiple linear regression (Shalaeva
et al., 2020). We also present a convergence analysis and
demonstrate the sufficient conditions that ensure the bound’s
convergence.

We extend the PAC-Bayes bound from multivariate linear
regression to LAEs by demonstrating that an LAE with
squared loss is a special case of multivariate linear regres-
sion on bounded data. We also propose practical methods
for calculating the bound under the constraints introduced
by LAEs, and the non-vacuousness of the bound is validated
through experiments.
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Impact Statements

This work advances the theoretical foundations of machine
learning by introducing the first PAC-Bayes bound for mul-
tivariate linear regression, extending beyond single-output
regression to handle multiple dependent variables simul-
taneously. This establishes new generalization guarantees
for structured prediction, multi-task learning, and recom-
mendation systems. Additionally, we identify and correct a
limitation in an existing PAC-Bayes proof for single-output
linear regression, further strengthening the theoretical foun-
dation of regression analysis.

Building on this, we apply our bound to linear autoencoders
(LAESs) in recommendation systems, delivering their first
rigorous generalization analysis. Our approach accounts for
key structural constraints, such as the zero-diagonal weight
requirement, ensuring applicability to models like EASE
and EDLAE.

Beyond theory, our work has direct practical implications
for model evaluation and selection. Our bound provides a
post-training diagnostic tool for assessing the generaliza-
tion of any LAE model—regardless of its training process
(EASE, EDLAE, or random initialization). While not di-
rectly guiding training or hyperparameter tuning, a smaller
PAC-Bayes bound suggests better generalization on unseen
data. Empirical results confirm that our bound remains
within a reasonable multiple of the test error, offering re-
liable probabilistic estimates of true risk independent of
training error.

Our work focuses on theoretical generalization analysis and
poses no immediate ethical risks. However, recommenda-
tion systems shape content exposure and user behavior in
domains like e-commerce and social media. Strengthening
generalization theory alongside other recommendation cri-
teria may help mitigate bias, enhance fairness, and improve
trust in Al-driven systems.
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A. Proofs of the Theorems

Proof of Theorem 3.2:
Given W, let (z,y) ~ D, and denote v = y — Wz, then v ~ N (1, , X, ). Suppose there exists @ € RP*? such that
¥, = QQT. Such Q exists since we can take Q = $1/2 = STA/2S, but we do not assume it to be unique. Let
e ~ N (0, ), then we can write v = Q€ + ;.. Thus,
R™ (W) =E(y~p [ly = WalF] = Ee [|Q€ + py [ 7] = Ee [(Qe + 11,)" (Q€ + p1yy.)]
E[e" QT Qe + 11y, Qe + € QT puyy + prgy oy ] = r(QTQ) + pagy oy
= w(QQY) + iy iy = (D) + iy hay (17
Also, we can express the random variable ||v|| in quadratic form (Representation 3.1a.1, (Mathai & Provost, 1992)):
H’U”% =o' = (Qe + UW)T(Qe + ,UW)
= (Qe+ 1y ) TS0, DUV Qe + )
= (5,12Qe + 2.2, ) T8, (212Qe + 01 21y, )
= (Z712Qe + 57120, )T STAS(S712Qe + 3520, )
= (53,1/2Qe + S8, )TAGSE, Qe + S8, 2,)
Denote € = S 1/2Qe, then € ~ N(0, I). This is because E[¢'] = SE1/2QE[e] = 0 and
Cov[e'| = E[¢¢'T] = SEV2QE[ee"]QTE V28T =1

Asb = SE;}”MW, we can write
P
[l % = (¢ +b) A +b) = mil€; + bi)?
i=1

Hence each €, + b; is independently from N (b;, 1), and (€} + b;)? is independently from the non-central chi-squared
distribution of noncentrality parameter b? and with degree 1 of freedom. Thus the MGF of (€ + b;)? is

b2t
, exp (1—@5)
tlef+b)%) . _ N7t 18

Mep4o:)2 (1) = Eiepi)2le

Let v; = y; — Wa; such that vy, v, ..., vy, are i.i.d. from N(p,, , 3, ), then

m

" 1 & 1
R™W) == llys = Waylg = — > llosl3
m m
i=1

J=1

Hence the MGF of R*™P (W) is

v |7

NE

|:ef,RemP(W):| = Egupm |exp

t
MRemP(W) (t) = Es~pm E

1

- (ESNDm [exp (;Ilvllfvﬂ)m = <E5~Dm [eXp <ntz izp;m(eé * bi)Q)Dm

tb?m
exp (m 2tn;

R S R

p  tmbim;
EXP( i=1 m—2@n;

P (1= 2t /m)™?

<.
Il

19)

11
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By Eq (17) and Eq (19), we can expand ¥ p(\, m) as

\IJW,D(/\, m) =InEwEswpm [6)\(R[me(w)7Remp(W)]

B [P E [ O]

p —Amb?m
exp( i=1 mi2An;

=InEwor [exp (A (r(2D,,) + pul p (20)
( ( w w W)) EJZI (1+2)\m/m)m/2
Use the inequality that for any x > 0 and k > 0, e < (£ 4+ 1)* !, and the fact tr(,, ) = >0, n;, we have
B —Amb3n;
exp ( f:l m+2)\17]v )
mEw . [exp (A (w(Z,,) + pF py)) —
I v W b (L+2Mn;/m) /2
B —Ambin;
exp( f:l 2T )
<InEw~r |exp (A (t(Z,) + pl 1)) . m/\n’_n
i i=1XP ('m—i—2)\bm)
T & mb2n; P mAn
=InEwr A Ay — —5—) — —
nEywr €Xp | Al +ZZ=; (n m+2)\77i) ;m+2/\m
P 52,2 2
2 °ne — dmbin;
=InEw-r AuT A T T AT
nEw exp( F‘w”W+; m+ 2An; )
p 2 P 2 2 P 2
2AZ(SP_ AP 3
<InEw.rexp ()\(uVTV;LW — beni) + W) =InEw..exp ((Xr:nln))
i=1
The last equality above is because
P
> bin = bTAb = g SUVESTASE U By = iy
i=1
Since
p
Do =u(STA%S) = w(Sh) = u(2, 20) = I, |17
i=1
we have
2N (30 7) 22?2y, 1%
InEyr exp (m> =InEwrexp (W>
m m
O
Proof of Theorem 3.3:

By Eq (20), we let { f,, } men be a sequence of functions where

D 7)\mb?m
€Xp <Zi:1 m—+2An;

— ex r ”
S (W) = exp (X (r(2y,) + gy, iy ) P+ 2)\77i/m)m/2

for m > 0, and
fo(W) = exp (A (&(2y,) + 1L p1yy))

Note that each f; is a non-negative function.

zk
'Since 11 <In(z + 1) forany > —1, replacing « with £, and taking exponential on both sides, we get e=+% < (T + 1F.

12
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Now we prove the following three conditions:
(1) fr(W) < fo(W) for any m and W.
Since A > 0 and »; > 0 for all ¢, we have fo(W) > f1(W) > fo(W)... for any W. This is because, when W is fixed, the

p  —Ambin;
i=1 mi2An;

numerator exp ( ) is monotonically decreasing with m for m > 0, the denominator [[%_, (1 + 2An;/ m)m/ 2
is monotonically increasing with m for m > 0, and (1 + 2)\ni/m)m/2 > 1 for any m > 0.
(2) fin — 1 pointwisely as m — oo.

For any W,

exp (1 i)

. . 1=1 m+2Xn;

lim £, (W) =exp (A (tr(Z,,) + pX p lim

G b)) 0 T 4 2
. =Ambin

exp (Sr i S )

(- im (1+ 2n;/m)™?

exp ( i1 —Ab; 171-)

= exp (A (0(Zy,) + piy, 1y )

= exp (A (r(2,,) + uauw)) [T, oxp i) =1
The last inequality uses the facts that Y7 b2n; = pl o, and >0 my = tr(5,,).
3) E[fo] < oo
E[fo] = Eexp ( )+ MWMW))
—]EeXp ( WS, (W = W) 4+ 50) + [[(W* = W)pe|l7])
=FEexp | A zpj S (W=D fu(s) + zp:(W* = W)isptap (W — W)ﬁD
Li=1 i=1

(A
(A
</\ zp: = W)is [Ba + papiy | (W= W)L, +tr(2e)D

(e ) 7 = )|+ 2] )

— exp (Mtr(5.)) Eexp (/\ [H (S + ponl) '/ (W — W)H;D <

)1/2

The last inequality holds because [Eexp <>\ [H(Zm—i—,uw,ux H }) < oo is our assumption and

exp (Atr(X.)) is a constant.

Denote £ = RP*P such that W € E. Since W ~ m, we consider 7 as a probability measure y on E with u(E) = 1. Then
we can express E [f,] as a Lebesgue integral:

Blfnl = [ fndn

Also, condition (3) can be written as f  fodp < oo. Since the conditions (1), (2) and (3) hold, by the Dominated
Convergence Theorem (Theorem 11.32, (Rudin, 1976)), we have

m— 00

lim fmdu / lim fmdu:/lduzl
Em—)oo E

Or equivalently,
lim E[fp] =E | lim fm] —E[1] =1

m—r 00 |:m—>oo

13
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Since In is continuous on (0, 00), we can interchange lim and In. Therefore,

lim ¥, p(A,m)< lim InE[f,]=1In lim E[f,]=In1=0
m—r00

m—r o0 m—r oo

Proof of Lemma 3.4
Let X ~ N (u,0?), then for any t > 0,

1 (z — p)?
Ex[tY:] = /exp (tZa T ) 5 exp (—M dz
1)?
\/70 /exp tZaZ T dx 21
Since k > 3and a > 0, ¢ Zf:o a;x’ — (I;(T ‘2)2 is a polynomial of x with degree > 3, with leading coefficient being positive,

thus
k PRV
Tlgx;oexp (tzz(:)ax (33205)) =00

And the integral in Eq (21) is infinity.

O
Proof of Lemma 4.2:
ROS(V) = E [y~ Wallk] = 3 Ellye - W) = 3 W Elea WY — 2W,, Elyea] + Bl
i=1 i
= Zn: Wi Spa Wik — 2Wis (S ) wi + (S )id
= Z Wi S (Wi ST — 2(Wi B S 2 (Say)ui + (Syy )i
= Z Wi 2" = (Say) 580 ) Wi B3 — (Zay)5iZ0a )T — (Say)5i S0 (Say)wi + (Syy )i
= Z IWir 32 — (Bay)5iZza 115 — 152272 (Say)willF + (Zyy )i
= IIVVZ”2 S5 S — 155,50 lE + u(Syy)
Since we assume Y., is positive definite, Em/ exists.
O

Proof of Lemma 4.3:
Sincex = A®randy = (1 — A) ®r, we have

2yy =E [ny] =E [((1 —A)or((1-4A)oe T)T]
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We first prove ¥,,. Fori,j € {1,2,...,n} and ¢ # j, (832)i; = E[A;Ajrr;]. Since A;Ajr,r; is a Bernoulli random
variable (its value can either be 0 or 1), A; depends on r;, A; depends on r;, we have

E[AiAjTiTj] = (A'A'T’iT‘j = 1) = P(A = 1 A = 17Ti = 1,T'j = 1)
PA,=1A=1Lr=1r=1)P(A;j=1rn=1r;=1)P(r,=1,1r;=1)
(Az = 1|7‘Z = 1)P(A] = 1|7"j = I)P(Tz = 177"3' = 1)
215 [rir] = p* (200)i (22)

For any i, (X;4)i = E[(Airi)Q]. Using the property that a Bernoulli random variable X has E[X?] = E[X],
= pE[r ] p(E, ) (23)

Combining Eq (22) and Eq (23), we get

Ygx = pzzrr +p(1 - P)(I O] er) (24)
Since (Xyy)i; = E[(1 — A)(1 — Aj)ryr;] and (2y,)i = E[((1 — A;)r;)?], replacing p with 1 — p in Eq (24), we get
Tyy = (1= p)*Lrr +p(1 = p)(I © Try).

Since (Zzy)z] = E[Al(l — Aj)ri'rj] = p(l —p)er and (Zmy)u = E[Az(l — Az)r?] =0 (NOtC that Al(l — AZ)TlQ =0
regardless of whether A; is 0 or 1.), we have X,,, = p(1 — p)(2,, — I © Xyp).

Note that in Eq (24), I ® X, is positive semi-definite and 2, p(1 — p) are positive, thus . is positive definite if .. is
positive definite.

O
Proof of Theorem 5.2:

(1) It is easy to verify that Ey.,[W] = U and Ew ,[WTW] = UTU + Diag (31—, Sk1s D peq Sk2y s Dopey Skn)-
Thus

Ew p[ BT (W)] = wa~p[IIY WX|7) = Zva [¥or = WX ][]
l 1
1
== D B (Y = XEWT) (Y — WX,)] Z TV — 2V By oy W] Xog + XL B ,[WIW] X
1 m n
= — > YiYu = 2Y U X + XJUTU X.q + X[ Diag (Z S, Z Sy ) slm> X (25)
=1 k=1 k=1 k=1

D(p||m) can also be written as a function of ¢/ and S by

1], LS Sk U~ Ul
D(pllm) =1 n(21110—1)—ZZ(WSM—?HT (26)
k=11=1
Denote f(U,S|Uy, 0, ) = Ew ., [R™ (W)] + +D(p|| 7 ), our optimization problem becomes
min fU, SUo, 0, ) (27

The optimal ¢ and S has closed-form solution, which can be obtained by solving 2 f(U, S|Up,0,A) = 0 and
2 f (U, Sy, 0,X) = 0.

First we show the partial derivatives of the +D( p|| 7 ) term:

0 1 . (Z/[ZJ — (uo)”) 0 1 B 1 1 1

15
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Then we discuss the partial derivatives of the Eyy . ,[R°™P (/)] term. By Eq (25), for any 1, j,

(i) n
@EWNP[RSIHP( 38” Z X ; Diag (kzl Sk1, Z Sk2y eees ; Skn) X

a 1
= ZXJZSZJXJZ = ZXJZ = Xj*XjT*
iIEW [Remp(W)]:ili YU X+ X! UTUXl—lzm: =2V X+ 0 i(uk X.)?
8“7] P 6Z/lzj m =1 m = J az/{lj k=1

m

0 1
Z( QY;I gl + = (9 (UZ*X*I ) EZ 2Yville +2(uz*X*l)le)

Wrap up the above results, we get

0 1 11 1
U,Slty, 0, = —X;.XJ, — —~(— - = 28
8S”f( ’ | 0,0, ) m IR 2>\(Sij 0,2) (28)
o 2 Uiy — Uo)ij)
au,, | U S0, ) = (=Y XL+ U XX ) + 2 (29)
Therefore, the solution of % (U,S|Uy,0,\) = 0is that, forany i = 1,2, ..., n,
S, L forj=1,2 (30)
T oOXN - w1 J=L4.,N
TR XL+ &
By Eq (29) we have
8 2 T ro 1 onl”
—Mf(U,SWO,a,)\): E(fYX +UXX )+W(Z/{7U ) 31
Thus the solution of % U,SUy,0,)) =01is
U= iYXT+ U, iXXT+ L - (32)
\m 2202 ) \'m 2M02

Now we show that f (U, S|Up, o, A) is a convex function, such that the solutions of S in Eq (30) and U/ in Eq (32) are the
global minimizer of Eq (27). By Eq (28) and Eq (29) we have

22X X045k ifi=kj=1
=9 22X, X1 ifi=k,j#l

otherwise

m 0 otherwise ’ m

Denote v € R2"* where for i = L2,..,nand j = 1,2,...n, Vi_1ypy; = Uiy and vpa i 1)y = Sij. Let Hy €

0 _ 2 T
0 B} where A = 2(XXT)® I, +

1oz 1,2 and B is a n? x n? diagonal matrix with B(;_1)nj (i—1)n+j = W Here ® means Kronecker product.

R2"°*2n” pe the Hessian matrix where (H Fij = af 97+ Then we can write Hy = [

The Kronecker product has a property that, let {\;|¢ = 1,...,m} be the eigenvalues of A € R™*™ and {p;|j =1,...,n} be
the eigenvalues of B € R™*™, then {\;p1;|i = 1,...,m,j = 1,...,n } are the eigenvalues of A ® B (Theorem 4.2.12, (Horn
& Johnson, 1991)). Since X X7 is positive semi-definite and I,, is positive definite, (X X*) ® I,, is positive semi-definite.

16
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Thus A is positive definite. Since all elements of S is positive, B is positive definite. Therefore, H is a positive definite
matrix for any I/ and S, which means f (U, S|Uy, o, A) is a convex function. Thus, the solutions of S in Eq (30) and U/ in Eq
(32) give the global minimum.

(2) Applying the constraint diag(W) = 0 to p and 7 is equivalent to set diag(/) = 0, diag(S) = 0, diag(Uy) = 0, and
diag(c2J) = 0. Under these constraints, the expression of D( p|| 7 ) in Eq (26) is changed to

S U — Upl|?
Z Z (In S — kl) 7” 020”F

k=11=1,1#k

(n? —n)(2lno — 1) (33)

N

D(pl|7) =

In this case, Eq (28) holds only for ¢ # j.

We let S11, Sa2, ..., Spn be zero constants in f (U, S|Up, o, A), and consider only the off-diagonal elements of S to be
variables. Then we construct the Lagrangian function as
LU, S, z[Uy,0,\) = fU,SUy, 0, \) + z” diag(U)

for some x € R™, and solve

L . T
e [diag(d)]” =0 (34)
BL 0
au U U, S‘Uo, o, \) + Diag(z) =0 (35)
oL = 4 fU,SlUp,o,\) =0 fori,je{1,2 n},i#j (36)
asij - 88” 5 0,0, - 5 J g Ly eeny s i

The optimal S is obtained by solving Eq (36) and set .S;; = 0 for all i. The solution of Eq (36) is Eq (30) with ¢ # j. The
optimal { is obtained by solving Eq (35) and Eq (34). By Eq (35),

2
Z(-YXT+UXX") +

m

1

1 1 1 1 -1
— —Di —xx7T I
U =3 lag(x)> (m v )

202

1
e (YXT + 37)
m

Then we solve x to satisfy Eq (34),
1 1 I I
—Xxx7 I — di I
* 2)0? U0> (m * 2)0? > ] 18 * 202 ) ]

+ L U iXXT+ 1 I - 1 © dia iXXT+ ! I - =0
2Ao2 0 m 202 2x g m 2)\02 -

1 1oop 1 N\ 1N\
—|—2)\02L{0) <mXX +2)\021) 2)\021) 1

Now we show that the solution of Eq (34), Eq (35) and Eq (36) gives the global minimum of the problem Eq (27) under
the constraint diag(WW) = 0. Let H}, be the Hessian matrix of L. It is easy to verify that if we remove the dimensions
corresponding to Si1, S22, ...Spy of Hy and get H} S R(2"2_")X(2"2_”), then Hj will be equivalent to H} Thus Hy, is
positive definite for any U/, S.

diag(U) = diag <1YXT
m

1 1
iDiag(x) <mXXT

1
= diag (YXT
m

we get

x = 2 - diag

<1YXT
m

1
© diag l(XXT +
m

We use the second order sufficiency conditions (Section 11.5, (Luenberger & Ye, 2008)): Let (U*,S*,
solution of BL = 0, gé = 0, ‘gﬁ = 0, then (U*,S*) is a local minimizer of f if Hp|y=y+ s=s-,
{y € R27* " Y—1yni = Ofori = 1,2,...,n} (The subspace requires

tive semi- deﬁnlte on the subspace M =
(BT (Ua2)T (e \TITyy = (), e, ity = y(;_1),,4; = O for all 7). We have shown that the solution of Eq (34),

x*) be a
r=z* 1S pOSi-

17
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Eq (35) and Eq (36) is unique, and the H;, with respect to this solution is positive definite on the entire space R27*~"_ Since
M is a subspace of RQ”Z*", the positive definiteness of Hj, holds on M, thus the second order sufficiency condition is
satisfied. Therefore, this solution gives the global minimum.

O

Proof of Proposition 5.3:

Denote v; = (WMZI/2

3.2, we have

+ By, then v; = AY2¢ 4 ¥ where € € N'(0, I). Using the quadratic form shown in Theorem

[vil% = (AY2e 4+ u)T(AY2e + ') = (A 2e + )T A=YV2STAS A2 (AY 26 + 1Y)

= (Se+ SATV2 T A(Se+ SATV210) = (Se+ b')TA(Se + b) an (Sjue + bi)?

It is easy to show that each S ¢ are i.i.d. from N(0, 1) for all j, thus each S;.e + 1_72- is independently from N(E;, 1). Since
each v; is independent, Eq (11) can be rewritten as

E, { AR™( W)} CE, [ AT, uw,»,*z;gzwi*u%] —C HEW {exnvin%} c HHE [ A0 (SjuetB)?

1=17=1

ey )

1o (=2

The last equality above follows from Eq (18).

Proof of Theorem 5.4:
Let P, € R™*™ be two symmetric matrices, we write P > @ if P — (@ is positive semi-definite and P > Q if P — Q is
positive definite.

Let 7; be the jth largest eigenvalue of A and 1750 be the jth largest eigenvalue of A). By Corollary 7.7.4 (c) of (Horn &
Johnson, 2012), P = @ implies 1;(P) > 1;(Q) for any j. Since A — AW = 02(2%2)*4291/2)

N > nj(.i) for any ¢, j.

> 0 for any 7, we have

*1 —

Since b)) = S (A®)=1/2i we have
(by))znj(_i) _ ](_i) (Mz‘)T(A(i))—I/Q(Sj(i))TSJ(_i)(A(i))—l/QMi
=7\ ()T (ST (AD) =12 (5D (SN T[S (SONT)(AD)~1/2(5(0)
= (1T (ST (D)l

Therefore, Eq (13) can be expressed as

AS) S AT (SENT (sEw!
n o n €Xp | g n n €Xp -2,

SB[ < TTT] o =111

Pl fate (1_2 0 ) i=1j=1 (1_2)‘77](-i))1/2
n exp ()\(Mi)T (2?4 W) '“z) mexp (A(p)T(SO)TAD SO )
L mLea?)” S (2
where A() = diag <12;n§”7 1,21\”;“ 1 1—21\17("“ )

18
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Similarly, Eq (12) can be expressed as

lﬂ«:w {ewm(w)} _ ﬁ exp (A(p') T STAS )
¢ i T (=20

ST 1 1 1
where A = diag (17”\”1, T2 172)\7777,)'

Now we show that STAS > (S)TA® SG) for any i. By Corollary 7.7.4 (a) of (Horn & Johnson, 2012), if P = 0 and
@ > 0,then P = Q if and only if Q' = P~'. Since we assume 0 < A < 5, we have 1 — 2/\77(1) >0and1—2X\n; >0
for any 4, 7, thus all diagonal elements of A(*) and A are positive, implying that (SNTADSE) 0 and STAS > 0.

—1

Since ((S(i))TJ_W)S(”)71 = (SNT (I —2XAD) SO =1 —2XA® and (STAS)™ =1 —2)\A, we have

-1

) . W\ 1 _ . .
((SOTAOSD) " = (STRS) ™ = 1 =200 = T =204 = A= AV

Thus STAS = (S)TAD SO implying that ()T STASE? > ()T (ST A S 14 holds for any y’. Therefore,

’L),LL ﬁ

L [prmom :ﬁexp (AT (8 )TA(ZS
C [e } 41 H}Ll( 2\ <z>

(uHTSTAS ! ) 1
(1- 2)‘77J)1/2 ¢

Eﬂ_ |:elerue(W)i|

B. Allowing Multiple Trails on A

Since we do not know the optimal value of A, by Section 2.1.4 of (Alquier, 2021), we can choose a finite grid in (0, +00)
and search )\ in the grid. Let A = {\1, 2, ..., A} be the grid where each \; > 0 and L is the cardinality of A.

1

p <V>\ €A, Bwo,[R™(W)] < Ew,[R™(W)] + + [D(p I7)+In 2 4w, o, m)D >1-5

0

This is because

P (VA €A, By, [R™(W)] < By, [R™(W)] + i { (pl|m)+mZ R AN m)D

—1-p (3)\ €A, Ew,[R™(W)] > B, [R™(W)] + % {D(p |7)+ 1n§ + \Ifﬂ,p(xm)D

P(U BuwslR™ 00> B 00+ 5 [Dpllm) 105+ wﬁ,ounm)])

1

<]EW~p Rtrue } > EWNp[RemP(W)} + Aﬁ

{D(pHW)—l—ln% +\I/ﬂ,7>(/\i7m)}>

M= HMh /\

<
Il
—

\Y
—
|

=1-9

e

C. Related Works

The earliest PAC-Bayes bound is proposed by (McAllester, 1998). (Alquier et al., 2016) proposed an oracle PAC-Bayes
bound based under Hoeffding assumption. (Germain et al., 2016) applied Alquier’s bound to linear regression problem
under Gaussian data and parameter distribution assumptions, but the bound does not converge for being independent of
the number of samples. (Shalaeva et al., 2020) improved Germain’s bound by proposing a bound related to the number of
samples, and showed the bound converges as the number of samples increases. Most PAC-Bayes bounds are theoretical and
difficult to calculate in practice, and some research is focused on making the bound more practical to compute. (Dziugaite
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& Roy, 2017) proposed a practical way to calculate Seeger’s bound (Langford & Seeger, 2001) for neural networks, and
showed the bound is nonvacuous on MNIST dataset, where the bound is around 10x of the test error.

Recent years LAEs gains popularity in recommendation systems (particularly on implicit settings) due to their simplicity
and effectiveness. (Steck, 2019) proposed the EASE model and showed it surpasses the performance of deep neural
network models on recommendation datasets under Recall and NDCG metrics. Later (Steck, 2020) proposed EDLAE which
introduces a mask to the target function to avoid the parameter matrix overfitting towards identity. (Vancura et al., 2022)
proposed ELSA which constructs the LAE with an item-item similarity matrix AA” — I with zero diagonal. An earlier
LAE model SLIM (Ning & Karypis, 2011) obtains the weight matrix by solving an L; norm and Ly norm optimization
problem and under zero diagonal constraint.

Most LAE based recommender models constraints the diagonal of the weight matrix to zero. The zero diagonal constraint is
closely related to the trace norm, which is considered an effective tool for matrix completion. (Srebro & Salakhutdinov,
2010) applied the weighted traced norm in collaborative filtering. (Shamir & Shalev-Shwartz, 2014) proposed a sample
complexity bound for the trace norm in matrix completion.

Another type of linear recommendation model is based on matrix factorization, which can be viewed as a form of low-
rank matrix completion (Candes & Tao, 2009; Recht, 2011; Chen et al., 2014; Srebro & Shraibman, 2005; Foygel et al.,
2011; Shamir & Shalev-Shwartz, 2011). Matrix factorization methods have been shown to be highly effective in explicit
settings (Koren et al., 2009), where user preferences are explicitly expressed (e.g., ratings). However, they have been found
to be less effective than LAE models in implicit settings (Cremonesi & Jannach, 2021; Jin et al., 2021), where interactions
are inferred from user behavior (e.g., clicks or purchases).

Some studies have investigated the generalizability of the matrix factorization models. (Srebro et al., 2004) proposed a PAC
bound based on covering number for collaborative filtering. Other generalization bounds include (Ledent et al., 2021) for
inductive matrix completion and (Ledent & Alves, 2024) for deep non-linear matrix completion.

D. Supplemental Experiment Results

Table 3. Details of the terms of each RH in Table 2

Models ML 20M Netflix MSD

) 512 512 512

5o | Bwep ROV | 6699 90.87 | 1658
D(p||7) 0.28 0.18 | 0.0019
InE, [eAR"“(Wﬂ 31571.14 | 4465937 | 8196.30

) 512 512 512

100 | EwnplBROV)] | 6514 80.68 | 16.34
D(p||7) 0.27 0.17 | 0.0018
InE, [eAR‘”“Wﬂ 31102.53 | 4431339 | 8141.72

) 512 512 512

a0y | Ewegl BV | 6359 8857 | 16.12
D(p||7) 0.26 0.17 | 0.0018
InE, [em‘“(Wﬂ 30753.19 | 44014.86 | 8092.62

E. Discussions

Our PAC-Bayes bound can be generalized to any LAE model W, including those with the zero diagonal constraint. However,
one limitation of our bound is that some LAE models may impose specific constraints on W, making the bound difficult to
compute. For example, some LAE models require W to be of low rank. While the bound can still be formed for a low rank
W, its calculation can be difficult (We may end up with a theoretical bound that cannot be computed). This is because, the
calculation of the bound relies Assumption 5.1 in our paper, where we assume IV to be a random Gaussian matrix (W does
not have to be Gaussian, but assuming it to be Gaussian makes the bound easy to calculate, while other distributions may
not). A random Gaussian matrix W is of full rank (Feng & Zhang, 2007) and cannot be reduced to the low rank case.
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Another limitation is that our bound uses squared loss (squared Frobenius norm) as the metric for the error between target
and prediction. The square loss is easy for statistical analysis. However, real-world recommender systems typically use other
metrics like NDCG @K, Recall@K for evaluation, and our bound cannot be directly applied to these metrics. Moreover,
these metrics are challenging to analyze from a statistical perspective.
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