Under review as a conference paper at ICLR 2025

PROMPT OPTIMIZATION WITH LOGGED BANDIT DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

We study how to use naturally available user feedback, such as clicks, to optimize
large language model (LLM) pipelines for generating personalized sentences using
prompts. Naive approaches, which estimate the policy gradient in the prompt
space, suffer either from variance caused by the large action space of prompts
or bias caused by inaccurate reward predictions. To circumvent these challenges,
we propose Direct Sentence Off-policy gradient (DSO), which estimates the pol-
icy gradient by leveraging similarity among generated sentences, substantially
reducing variance while suppressing the bias. Empirical results on our newly
established suite of benchmarks, called OfflinePrompts, demonstrate the effective-
ness of the proposed approach in generating personalized descriptions for movie
recommendations, particularly when the number of candidate prompts is large.

1 INTRODUCTION

As more systems with large language model (LLM)-generated text are starting to become operational,
we are naturally collecting increasing amounts of logged user feedback from their system interactions.
These feedback signals provide valuable information on whether the prompt or generated sentence
was effective for the user. Unlike conventional datasets used for LLM training (Stiennon et al., 2020),
this feedback is available for all users at little cost, providing opportunities for personalizing sentence
generation in applications like search, recommendations, and educational chatbots. Thus, it is worth
developing a method to use such naturally logged user feedback to enhance the quality and outcome
(i.e., reward) of language generation.

To optimize sentence generation, we focus on learning a prompt policy (i.e., which prompt to use for
a particular user or situation). As detailed in the following, learning a prompt policy is attractive for
reasons of (1) safety, (2) cost, and (3) accessibility. First, for most applications it is a key requirement
to not produce harmful outputs (Bai et al.| 2022). By only adapting the prompts without fine-tuning
the LLM itself, we do not run the risk of removing the safety properties of the underlying LLM.
Second, compared to the LLM itself, a prompt policy can be a small model, which reduces the
required computational resources and the amount of data needed for training (Deng et al.| [2022).
Additionally, compared to using a hand-engineered prompt, a prompt policy enables automated
prompt optimization and promises greater personalization. Third, a prompt policy can be trained
even in situations where the LLM is closed-weights and available only through an inference API,
which makes prompt-policy learning feasible even for small companies or individuals.

While learning a prompt policy is attractive as argued above, using logged user feedback and
performing off-policy learning (OPL) of a new prompt policy entails several challenges due to the
partial nature of the feedback. Specifically, the logged data is bandit feedback, containing the reward
for only the action (prompt) chosen by the logging policy (i.e., the one used in past operations) and
not for the other actions that a new policy may choose. This data-generating process is outlined in
Figure[I} for each coming user, the logging policy chooses which prompt to use for generating the
sentence; then, each user observes only the sentence generated by the chosen prompt and thus reveals
the reward (e.g., click) for only this sentence. A naive way to deal with such counterfactuals is to
regress the reward and use imputed rewards instead (Stiennon et al.,|2020; Jaques et al.,[2017; [Snell
et al., [2022b). However, imputation is often not accurate enough under covariate shift (Swaminathan
& Joachims) 2015)) and complex relations between prompts and rewards. An alternative is importance
sampling, which re-weighs reward observations w.r.t. the ratio of prompt distribution between the
logging and target policies. Nonetheless, this approach suffers from severe variance when the action
space is large (Saito et al., 2024) and bias when the logging policy does not fully explore the action

Under review as a conference paper at ICLR 2025

Query Policy Frozen LLM User responses

Generate a short description of the movie “{query: movie title}”

within 10 words. aspect: “{prompt}” sentence:

romance — In a post-apocalyptic world, Wall-E finds love amid environmental ruin. —— click ?
/ adventure Wall-E embarks on an interstellar journey to restore Earth's future. ? ?
Wall-E
"= environment ---» Ina polluted Earth, Wall-E discovers hope for environmental restoration. ==----=-===--- - no click
(no prompt) A curious robot seeks love and adventure in a desolate world. ? ?
(User A) (User B)

Figure 1: Overview of the prompt-based sentence personalization with logged bandit feedback.
For each coming user, a policy chooses which prompt to use to generate sentences with a frozen
LLM. Each user observes only the sentence generated by the chosen prompt and provides the reward
for the corresponding sentence. Logged bandit feedback is partial in that we cannot observe rewards
for the sentences generated by prompts not chosen by the logging policy. Examples are generated by
ChatGPT-3.5 (Brown et al., [2020).

space (Sachdeva et al., 2020). These challenges can be particularly problematic in our language
generation setting, where we need to deal with a rich and diverse set of candidate prompts as actions.

The key shortcoming of the standard approaches lies in treating each prompt independently, not
taking the information about the generated sentence into account. In response, this paper explores
and presents a method to leverage the similarity among generated sentences to make large-scale
OPL for prompt-guided language generation efficient and tractable. Specifically, our Direct
Sentence Off-policy gradient (DSO) estimates the policy gradient in the sentence space (i.e., not in the
action space of prompts) to take the generated sentence into account. We enable this by applying the
importance weight in the (marginalized) sentence space and by re-sampling the action conditioned on
the sentence when calculating the score function. Because the former effort contributes to reducing
the scale of the importance weight and the latter works as an implicit data augmentation about the
prompt, we can expect variance reduction of DSO compared to typical OPL methods. Moreover, by
aggregating similar prompts and sentences using kernels, DSO also keeps the bias small.

Finally, we develop and conduct experiments on a newly-developed OPL benchmark suite, called
OfflinePrompts, in both synthetic and full-LLM settings. The results demonstrate the effectiveness
of our approach, particularly when the number of prompts is large. We provide our benchmark suite,
including the full-LLM environment for generating personalized movie descriptions for recommenda-
tions based on the MovieLens (Harper & Konstan, [2015)) dataset, as an open-source resource. Its
easy-to-use API will accelerate both future research and practical applications of OPL of prompt-
guided language generation with logged bandit feedback.

Our contributions are summarized as follows.
* Problem formulation: We present a view of prompt-policy learning from naturally available
feedback as OPL of contextual bandits, providing a pathway for advancing OPL for prompts.

* Tailoring OPL methods for language generation: We identify how to effectively leverage
similarity in generated sentences by taking the gradient directly in the sentence space.

* Benchmarks and open-source: We conduct extensive experiments and provide a new
benchmark suite as open-source software for future research and applications.

2 RELATED WORK
This section summarizes notable related work. Extended discussion can be found in Appendix

Prompt Tuning. Prompt tuning is a cost-efficient approach for optimizing language generation for
some specific downstream applications, including translation, summarization, and sentiment analysis.
Unlike fine-tuning, which requires the updates of the millions of parameters of the LLM itself, prompt

Under review as a conference paper at ICLR 2025

tuning reuses a “frozen” pre-trained LLM and optimizes only the choice of the special tokens added
to the original input sentence called prompts (Brown et al., 2020). Deng et al.| (2022)) presented a
reinforcement learning (RL) formulation of prompt tuning, which optimizes the prompts via policy
gradient by treating a frozen LLM as a black-box reward generator. While this formulation is relevant
to ours, the critical limitation of Deng et al.[(2022)) and similar online exploration papers (Dwaracherla
et al.| [2024) is to assume that feedback (i.e., reward) is easily accessible. Unfortunately, such an
assumption is unrealistic in many real-world applications where online interactions with users can be
costly, harmful, or sometimes even unethical (Matsushima et al.} 2021} Gilotte et al.,|2018). Instead,
we present a way to leverage logged user feedback naturally collected through past operations.

Reinforcement Learning for Language Generation. RL from Human Feedback (RLHF) is a
widely-studied approach to align the output of LLMs using human annotation (Christiano et al.| 2017}
Stiennon et al.}[2020; |Ouyang et al.L|2022; |Lin et al.||2024). Specifically, RLHF asks human annotators
to compare two sentences and provide labels to indicate which sentence is more appropriate for a
downstream task (e.g., translation). Then, using the pairwise feedback, RLHF trains a model to predict
the task-specific score of each sentence to preserve the preference. The key challenges of RLHF are
in two folds: (1) RLHF incurs substantial cost and ethical concerns for human annotation (Bai et al.,
2022; Lee et al.|[2023)) and (2) monitoring if annotators provide sufficiently reliable labels for RLHF,
as done in Stiennon et al.|(2020); Ouyang et al.| (2022), can be difficult when preferred sentences
change among annotators in tasks related to personalization. Our approach of learning a contextual
prompt policy using logged bandit feedback naturally resolves the above difficulties of RLHF.

Off-Policy Evaluation and Learning. Off-Policy Evaluation and Learning (OPE/OPL) studies
how to use naturally collected user feedback to evaluate and learn new contextual bandit or RL
policies (Saito et al., 2021} [Fu et al., [2020). Regression-based and importance sampling (IS)-based
approaches are prevalent in OPL. First, the regression-based approach trains a reward predictor and
then optimizes a new policy using imputed rewards. While this approach performs well when the
reward predictor is accurate for the entire action (i.e., prompt) space, such an accurate regression
is often demanding due to the issues such as counterfactuals and covariate shift (Swaminathan &
Joachims|, 2015)). In contrast, the IS-based approach aims to estimate the policy gradient unbiasedly
from actually observed rewards by correcting the distribution shift (Precup et al., [2000). However,
IS often suffers from high variance and deficient support, particularly when the action space is
large (Saito & Joachims| 2022; |Saito et al.,|2023} Sachdeva et al.} 2024). To overcome the limitations
of naive approaches, Saito et al.|(2024) has recently proposed a two-stage OPL framework called
POTEC, which first chooses which cluster among pre-defined action-clusters to use by applying
cluster-wise IS and then chooses which action within the chosen cluster to use. However, good
clusterings are often hard to identify, and this approach discards information about the generated
sentences. In response, we present a way to leverage similarity among sentences by estimating the
policy gradient directly in the sentence space. Another related literature is |[Kallus & Zhou| (2018]),
which discuss OPE of deterministic policies in a continuous action space. While we share the ideas
of using kernels with [Kallus & Zhou|(2018)), our idea comes from a different notion of deriving the
gradient directly in the (marginalized) sentence space. Moreover, the theoretical analysis is entirely
different, as we apply kernels to the logging policy, while Kallus & Zhou|(2018) do not. Finally, our
new benchmark, which simulates the personalized generation of sentences, is a unique contribution
of ours to the OPE/OPL community.

3 PROBLEM FORMULATION

We start by formulating prompt optimization as a new type of OPL problem, which we call contextual
bandits with auxiliary outputs.

Let v € U C R be a d,-dimensional user feature vector (e.g., demographic profile or user id),
sampled from an unknown distribution p(u). Let ¢ € Q C R% be a query (e.g., query to a frozen
LLM), sampled from a conditional distribution p(g|u). Let a € A be a (discrete) prompt, where
each prompt is associated with some vectorial embedding, e, € R%, where d, is the dimension of
the embeddings. The prompt is used to generate a sentence via a frozen LLM. This process can be
formulated as a procedure of sampling sentence s € S as an auxiliary output from the stochastic
output distribution of the LLM: pr1m($|q, a). A user will respond to the output sentence and provide

Under review as a conference paper at ICLR 2025

some reward r € R (e.g., click or purchase), where r follows p(r|u, g, s). Let 7 € Il be a prompt
policy where 7(a|u, q) is the probability of choosing prompt a for context x := (u,q) € X. Our goal
is to optimize the prompt policy to maximize the expected reward, defined as

V(7)) = Epwp(qlu) w(alu,a) pus(sla, ap(rle. a,5) [T] = Bp@)r(ale)p(r,slz,a) [T]-
N—— —

—p(u,q) =p(r.slu.q.a)

When running a prompt policy 7 (#) as part of an operational system, it works as a logging policy
and generates logged feedback of the following form:
n
D = {wj,ai, 8i,Ti}ieg ~ Hp(x)ﬂo(a|$)PLLM(S\$, a)p(r|z, s)
i=1

where n is the data size and 1 is its index. The logged data informs us whether the prompt (a;) results
in a high reward or not (r;) for a particular context (z;). However, a difficult aspect of using the
logged data is that the reward observation is partial, i.e., it is observed only for the prompt chosen by
the logging policy (7g) but not for all the other actions. This can be particularly challenging when
training a new policy 7 on the logged data, as m may choose actions that are not chosen by 7. Thus,
we need to address such counterfactuals and distribution shift between the logging and learning
policies when using logged data for a reliable policy optimization (Swaminathan & Joachims, [2015).

In the rest of the paper, we parameterize the policy as 7y using some parameters § € © (e.g., a neural
network). We also define ¢(z, a) := E[r|z, a] and q(z, s) := E[r|z, s]. Finally, z ~ p(z) indicates
that we sample a single random variable z from the probability distribution p(-), for any random
variable z and its corresponding probability distribution.

3.1 CONVENTIONAL APPROACHES

We first review direct applications of typical OPL methods and discuss their limitations.

Regression (Konda & Tsitsiklis,(1999). A typical way of using logged data is to train a reward
predictor ¢ (Stiennon et al., 2020; Jaques et al., 2017} |Snell et al.,[2022b), and then use the predicted
reward to estimate the policy gradient (PG

1o .
VoV (mo) & — ; Eomrmg(al:) [Volog ma(alz;)d(zi, a)] .
Oftentimes, an accurate regression for OPL is difficult to obtain when the relation between prompts
and reward is complex. This is because the reward observation is partial and covariate shift arises
between the logging policy (my) and the target policy (mp). If the learned regression model § is
inaccurate, the estimated PG can be heavily biased (Swaminathan & Joachims) 2015)).

Importance sampling (IS) (Swaminathan & Joachims}|2015). Instead of using potentially inaccu-
rate regression, IS corrects the distribution shift between my and 7y by reweighing the observations:
1 & mo(ag|zs)
oV (m9) " ; o[z o log T (as|@i)r

IS is unbiased under the action support condition, i.e., V(z,a) € X x A, mp(alz) > 0 =
mo(alx) > 0. However, IS produces considerable bias due to the violation of the condition (deficient
support) (Sachdeva et al.| 2020) and extremely high variance due to large importance weight (Saito
et al.,|[2023; 2024} [Sachdeva et al., |2024), which are likely when the action space is large. The key
shortcoming here is that the typical methods treat each prompt independently and discard the rich
information about the generated sentence when estimating the policy gradient.

4 PROPOSAL: DIRECT SENTENCE OFF-POLICY GRADIENT (DSO)

The key idea is to make the most of the information about the generated sentence by taking the
policy gradient directly in the sentence space as follows.

VHV(WH) = Ep(:l:)ﬂg(:s‘\.’l:) [VO 108 7[—0(5

2)a(a, 5)]

'The estimation target is the true PG defined as VoV () = Ep(2)mp (al2)p(r|z,a) [V log T (alz)r].

Under review as a conference paper at ICLR 2025

Gaussian kernel Uniform kernel (distance between sentences)
1.2 +0.05 +0.0 51 83
3
)/ S)8/
+0.40 2
kernel weights within neighbors d(s*, sl) < d(s*7 52) < d(s*7 83)

Figure 2: Examples of the kernel weights and (soft) rejection sampling in the marginalized
sentence space. DSO implicitly augments the data to take the observations for the neighboring
sentences into account. (Left) uses a smooth kernel like a Gaussian kernel, and (Right) uses a
piecewise constant kernel like a uniform kernel.

Even when we parameterize the policy in the prompt space, this is conceptually possible because we
can write the sentence distribution and the score function as my(s|z) = >, . 4 pLom(s|z, a)me(alz)
and Vg log mg(s|z) = Er,(a|a,s) [V log mg(alx)], respectively (See Appendixfor the derivation).
However, one potential concern of this approach is that we may suffer from data sparsity when
estimating the gradient for each sentence s, as sentences are high-dimensional. Thus, we further
consider taking the gradient in the marginalized sentence space to enable data-efficient OPE as

VoV (m9) = Ep(ayrg (6(s)|2) [V log o (d(s)|2)q™ (z, ¢(s))],

where ¢(s) € ®(S) is the kernel-based neighbors of sentence s. Its probability density, policy
distribution, and expected reward are defined as follows.

* P(¢(s)]-) := [, cq K(5', 55 2, 7)P(s'|-)ds’, VP. (marginal density)
o (d(s)|z) == > caPm(@(s)|z,a)m(alx), Vo, (policy marginal distribution)

© " (x,0(5)) = [ies Wg(m,s’)ds’, V. (expected reward)

K (-) is a kernel function, which must satisfy [, ¢ K(s’,s;x,7) = 1, and 7 is a bandwidth hyperpa-
rameter that controls the magnitude of marginalization. The intuition behind DSO is to implicitly
augment the data by taking the observations for the neighboring sentences into account, as illustrated
in Figure[2] Specifically, when using a smooth kernel like a Gaussian kernel, neighboring sentences
are weighted proportional to K (s, s; z,7) o< exp(—d(s, s’)), where d(s, s’) is the distance between
two sentences (e.g., sentence embedding distance). In contrast, when using a piecewise constant
kernel like a uniform kernel, all the sentences within a certain threshold is equally weighted, while all
the others are rejected with the weight of 0.

To estimate the policy gradient in the marginalized sentence space induced by kernels, Direct
Sentence Off-policy Gradient (DSO) applies IS as follows.

n

VoV (mg) ~ % Z m Vo logmo(p(si)|zi) 7.
z:l%/_/

=0 (6(s:).20)

By applying IS on the marginalized sentence space (®(S)), DSO avoids large importance weights,
making large-scale OPL more scalable regarding the number of candidate prompts, while keeping the
bias small by leveraging the similarity among sentences. Moreover, even though we observe only a
single prompt in the original logged data, DSO can further distribute the reward observation among
multiple prompts that generate similar sentences. This implicit data augmentation among multiple
counterfactual prompts also contributes to reducing variance. While the precise computation of the
marginal importance weight (w(¢(s), z)) and the score function (Vgmg(¢(s)|z)) seems non-trivial,
below we present how to train a model to estimate these distributions in a tractable way.

Under review as a conference paper at ICLR 2025

4.1 ESTIMATION OF THE WEIGHTED SCORE FUNCTION

The key trick of DSO is to use the following expression of the weighted score function:

K(s,s'; x,7)Vglogmg(alz
w(@(s),2) Vo log mo((5)|2) = E(a,s)mmy (ale)prim(s’l,0) (WO(;(8)|$) o

We provide the derivation in Appendix This expression indicates that DSO can be seen as
performing soft rejection sampling on the data (a, s’) augmented by 7y, while correcting the bias
in the logged data by applying the inverse propensity of 7 in the marginalized sentence space.
The above equation also suggests that our estimation problem of the weighted score function is
reduced to only the estimation of 7o (¢p(s)|x). This is useful, as o (¢p(s)|x) does not depend on
the parameterized policy (7p), and it thus suffices to fit a marginal density model only once before
running the policy gradient method. Because the marginal distribution is defined as 7y (¢(s)|x) =
B, (s/x) [(8, 8"; @, T)], we can estimate the marginal density via the monte-carlo sampling as

1 m
mo(@(si)|zs) = m ZESJ-WO(sj\z) [K (si, S5 L)l

j=1

where m is the number of the monte-carlo samples. Similarly, we can also estimate the marginal
density with function approximation (fy(x, s) = mo(¢(s)|x)) using the following loss:

1 n
é(fd)) ~ E ZE(s,s’)wﬂo(s\wi)ﬂo(s’\;L'i)[(fd’(xiv 5) - K(Sa S,; xiaT))z}'

i=1

Since the computation of this loss does not scale with the size of the action space |.A|, we can easily
apply DSO even when the action (i.e., prompt) space is large.

4.2 THEORETICAL ANALYSIS

Here, we analyze the bias and variance of the DSO estimator (the proofs are in Appendix [D). We first
introduce a new condition about support in the marginalized sentence space.

Definition 1. (Similar sentence support) Similar sentence support is satisfied when mo(¢(s)|x) >
0 = mo(@(s)|z) > 0 holds for all (x,¢(s)) € X x ®(S).

The similar sentence support condition relaxes the action support condition of IS. That is, because
we have 7(¢(s)|z) = > ,c4PLim(P(s)|a, z)m(a|z) by definition, the similar sentence support
condition is always satisfied when the action support condition is satisfied. This means that deficient
support under the similar sentence support is more unlikely happening compared to the action support.
Under this condition, we have the following degree of bias.

Theorem 1. (Bias of DSO) When the similar sentence support is satisfied, the bias is

Bias((VoV)pso) = Eny(s(s)12) [V log mo(d(s)|z) Ag (e, mo; z, ¢(5))]
+ Erg (6(s) 2)m0(s'|2,6(5)) [D (wvo) ($(87), B(s) z)q(,s")]
+ Ew,g(qﬁ(s)\m)ﬂ'g(s |z, ¢(s))[A(Ve)(() S ,I)q(CC, Sl)]

where Ay (mg,mo; x, ¢(s)) is the difference of ¢"(x,¢(s)) between my and .
Awvy)(9(s), d(s); x) is the difference of weighted score function between ¢(s') and ¢(s).
A, (9(s),8';x) is the difference between the score function of ¢(s) and s', which is
equivalent to the difference of B, (a|2,4(s)) [V log mg(alx)] and Er, (a|e,sH[Ve log ma(alz)).

Theorem [T]suggests that the bias of DSO comes from three factors. The first term is the dominant term,
which arises from the within-neighbor reward shift (i.e., the difference between ¢™ (z, ¢(s)) and
q™ (x, $(s))), as illustrated in Figure[3| This term becomes small in two cases: (i) when reward does
not change too much within ¢(s), and (ii) when the within-cluster distribution shift of 7(s’|x, ¢(s))
is small. Either case is satisfied when the radius of neighbors (i.e., kernel bandwidth hyperparameter
7) is small. At the same time, smooth kernels like a Gaussian kernel are also useful, as they allocates

Under review as a conference paper at ICLR 2025

marginalized density and the bias variance tradeoff of DSO logging marginal density (r,) policy marginal density (1)
o(s) é(s)
DEERPENR small marginalization (t) e » large marginalization ()
§ > T E > €
Ez - small bias ER: » high bias
23 « high variance g3 + small variance
£ £
reward | reward
i difference to s | difference to s
s s
a7 (2, ¢(5)) = -1 g™ (2,6(s)) = +1 q7(x,4(s)) = -3 ¢"(z,6(s)) =

Figure 3: Bias-variance tradeoff of DSO and its relations to the bandwidth hyperparameter (7)
of a kernel function: When 7 is large, the overlap between the logging policy () and the current
policy (7g) within ¢(s) becomes large, thus the scale of the importance weight becomes small. This
contributes to reducing the variance compared to naive IS. In contrast, a small value of 7 helps keep
the bias small, as the within-neighbor reward shift (i.e., the difference between ¢™ (x, ¢(s)) and
q™ (z, ¢(s))) becomes small. The gray regions are rejected when using a uniform kernel.

larger weights to similar sentences depending on the distance from the pivotal sentence. In contrast,
the second and third terms are caused by calculating the gradient in the marginalized sentence space
(®(S)) instead of the original sentence space (S). These terms also become small when the bandwidth
hyperparameter 7 is small. Thus, a small value of 7 is preferable in reducing the bias.

Next, we have the following degree of variance using DSO.

Theorem 2. (Variance of DSO) When the similar sentence support is satisfied, the conditional
variance is expressed as

—

nVpiz((VoV)pso) = Vi (slz) (w(d(s),)V log me(¢(s)|7)g(, 5))
+ Ep(a)mo (sl2) [(w(@(5),))? (Vg log mo (¢(s)|2)) >0 (, 5)).

Compared to the naive (action) IS, the importance weight and the gradient reduce the vari-
ance by By (4(s)[2) Vo (ala,s(s)) (0(a, 2))] and Eny(g(s) () [Vro(ala,o(s)) (Vo log mo(al))],
respectively, where w(x, a) is the action importance weight.

Theorem [2] suggests that DSO gains variance reduction from two sources: Vg log mg(¢(s)|x) and
w(¢p(s)|z). The first variance reduction of Vg log mg($(s)|z) comes from the fact that the sentence-
based score function is expressed as Er,(q|z,¢(s))[Vo log T (alz)], demonstrating the benefit of
applying the implicit data augmentation and soft rejection sampling (instead of applying hard rejection
sampling). The variance reduction becomes especially large when multiple different prompts result in
similar sentences; thus, 7y (a|x, ¢(s)) becomes adequately stochastic. Moreover, by using w(¢(s), z)
instead of w(a,), we can expect a significant variance reduction as we avoid the variance caused
by the within-neighbor importance weight, i.e., w(a, z; ¢(s)) := mg(alz, ¢(s))/mo(alx, ¢(s)). This
means that a larger value of 7 (i.e., the radius of neighbors) leads to a larger variance reduction.
Together with the analysis of bias, we can see that the value of 7 plays an important role in trading
off the bias and variance of DSO, as shown in Figure[3] Later in the experiment section, we study
how the performance changes with varying values of the bandwidth hyperparameter 7.

5 BENCHMARKS AND OPEN-SOURCE SOFTWARE

Due to the lack of existing benchmark suites for OPL of prompt policies, we implemented and will
release open-source software called OfflinePrompts. This benchmark suite come with two settings:
synthetic and full-LLM to enable extensive and reproducible experiments. In particular, the full-LLM
benchmark simulates movie recommendation tasks with personalized sentence descriptions based on
the (sentence-augmented) MovieLens dataset (Harper & Konstan, [2015) (See Appendix E] for the
details). Moreover, OfflinePrompts also enables prompt tuning on users’ own logged data, facilitating
the practical application of OPL. Appendix [A]summarizes related benchmarks and the distinctive
features of our software. Appendix [Falso demonstrates the easy-to-use APIs of OfflinePrompts.

Under review as a conference paper at ICLR 2025

6 SYNTHETIC EXPERIMENTS

We first evaluate the proposed DSO approach on synthetic benchmarks in OfflinePrompts, since they
allow us to explore a wide range of conditions

6.1 EXPERIMENT SETTING

To generate candidate actions, we first sample 5-dimensional embedding e, from a normal distribu-
tion. Each embedding e, is a deterministic embedding associated with an action a. Then, to generate
logged data, we sample 5-dimensional user and query vectors from a multivariate normal distribution.
Next, for each query-action pair (g, a), we sample 5-dimensional sentence embeddings s as

S NN(fs(qaea)aU§)7 fs(CI,@a) =cC- Sine(qTMq + eIMe)7

where M, and M, are coefficient matrices sampled from a uniform distribution. ¢ = 5.0 is a scaling
factor and o, = 1.0 is the noise level of the action-output mapping. By using the sine function,
we simulate a situation where two different prompts (e,) can result in a similar sentence (s), while
preserving the smoothness between the prompt and sentence embedding spaces. Then, a user responds
to the generated sentence (s) with the following reward function:

T~ N(fT(xas)ao-z)» fr(xas) = (uTMu + qTMq)MSST;

T

where M,,, My, and M, are the coefficient matrices and o is the reward noise.

We generate logged data with the following softmax logging policy: mo(alz) :=

exp(fBo Ro(x, a))/ (> qeaexp(Bo Ro(z,a))). Ry is the base reward model, trained on ng = 10000
of data points collected by the uniform random policy. Sy = 1.0 is the inverse temperature.

We compare DSO to four baselines: regression, IS, DR, and POTEC. DR (Dudik et al.| [2011)
combines IS and regression efficiently. POTEC (Saito et al., 2024) employs a two-stage policy
learning, which first chooses which cluster to use via DR and then chooses which action within
the cluster to use via regression. All the baselines estimate the gradient in the action space. For
the metrics to compare the OPL methods, we use the optimality of the learned policy, defined as
(V(m) = V(7)) /V (Topt — V (Tunir)), Where mop 18 the optimal policy and mypif i the uniform
random policy. The definitions of DR and POTEC, and the implementation details are in Appendix [C}

The experiment varies the following configurations (the bold font represents the default value):
(1) data size: n € {500,1000,2000,4000,8000}, (2) number of candidate actions: |A| €
{10, 50, 100, 500,1000}, and (3) reward noises: o, € {0.0,1.0,2.0,3.0}. For the ablation
of DSO, we additionally report the results with the varying bandwidth hyperparameters of
7 € {0.5,1.0,2.0,4.0}, {w/ and w/o} function approximation of the marginal density, and two
different kernels, { Gaussian and uniform}. When not using function approximation, we estimate
the marginal density via monte-carlo sampling with m = 100 samples. Finally, to evaluate the
robustness of DSO to the accuracy of the distance measure in the kernel, we add noise sampled from a
normal distribution with std A; = 1.0 to the sentence embeddings. We report the mean and standard
deviation of the performance based on the results with 20 random seeds.

6.2 RESULT

Figure [4] compares the policy learning results of the OPL methods with varying data sizes (n),
number of candidate actions (|.4]), and reward noises (o), respectively. The results demonstrate that
DSO works particularly well in challenging scenarios where the baselines fall short due to variance.
Specifically, while we observe a sharp drop of performance for the baselines when the action space is
large (|.A| > 500) and reward noise is large (o, > 1.0), DSO maintains a favorable performance even
under these configurations. Moreover, comparing the performance with |.4| = 1000 and o, = 1.0,
we observe that the performance of DSO at n = 500 outperforms that of the baselines at n = 8000.
This indicates that DSO is far more data-efficient than the baselines when the action space is large,
leveraging the similarity among sentences via kernels and performing implicit data augmentation.

Next, we study how the choice of kernels affects the performance of DSO, as shown in Figure 5] The
results tell us several interesting findings: using (1) a Gaussian kernel and (2) function approximation

20Our code will be available at a GitHub repository upon publication.

Under review as a conference paper at ICLR 2025

— S DR regression POTEC === DSO (ours) === online
data size # of actions reward noise
0.8 1.0- = 0.8
]] »] --m . L S L [| P T — -
0.6 Tl ————) 0.6
z 2 \ 1 "oy B
S 04 » el = 0.6 & =04 - l\.
£ /l——"‘ £ e —— . f S —r
g8,,. ™ ———§ & 202 = —
° a——=8 . H ° 02 I===—F LSS

500 1000 2000 4000 8000 10 50 100 500 1000 0.0 1.0 2.0 3.0
data size # of candidate actions noise in rewards

Figure 4: Comparing the performance of the policies learned by various OPL methods with (Left)
varying data sizes (n), (Middle) varying number of candidate actions (|.4|), and (Right) varying
reward noises (c,). DSO uses a Gaussian kernel and function approximation of 7y (¢(s)|x).

== DSO (gaussian) DSO (uniform) === |S === online
w/ function approx. w/o function approx. (monte-carlo)
0.8 - 0.8
| W-—-——-———- e] [] |]]
> 06 5. 06
B £ s B
€04 —— g 04 ./l —
50, m] — B 5o, m -— —— —n

1.0 2.0 4‘0 0‘5 1.0 7‘0 4‘0
kernel bandwidth kernel bandwidth

Figure 5: Ablation results of DSO with varying bandwidth hyperparameters (7), w/ and w/o
function approximation of 7 (¢(s)|z), and two kernels, Gaussian and uniform.

improve the robustness of DSO to the choice of bandwidth hyperparameter 7. The first observation is
evident from the fact that a Gaussian kernel allocates larger weights to closer sentences compared to
a uniform kernel. However, when using monte-carlo estimation, we observe that even a Gaussian
kernel needs careful tuning of 7, where a small value of 7 incurs high variance and a large value
of 7 produces non-negligible bias. In contrast, by using function approximation, we can avoid a
small value of 7y(¢(s)|z), which contributes to the variance reductimﬂ Therefore, using function
approximation helps improve the robustness to a small value of 7, and we do not need extensive
hyperparameter tuning of 7. This implies that DSO is applicable to practical situations, where a
pre-trained model of 7y (¢(s)|z) can provide substantial efficiency gains.

7 FULL-LLM EXPERIMENT WITH MOVIELENS

This section compares OPL methods in a personalized generation task of movie descriptions using
the MovieLens-10M (Harper & Konstan, 2015) dataset. The MovieLens dataset contains 10M ratings
between 71,567 users and 10,681 movies. To use this data in our personalized sentence generation
task, we first augment the data by generating a (general) movie description using Mistral-7B (Jiang
et al.l [2023). Then, we train a sentence-based reward simulator on the augmented dataset using
DistilBert (Sanh et al.,[2019). After obtaining a reward simulator, we collect the logged data in the
following procedure. First, we randomly sample a user (u) and a movie (query) (q) as a context (z).
Next, a logging policy (7g) chooses which prompt (a) to use in the sentence generation task. Then, a
frozen LLM generates sentence s, taking the prompt a and query q as the input. Finally, we generate
a reward (') using the reward simulator. Appendix [B.2]and Figure [T0]describe the workflow of OPL
and that of pre-training a reward simulator in detail.

In the full-LLM experiment, we define the logging policy by applying the softmax function on top of
the logits learned by the online policy, where we set the inverse temperature hyperparameter to be

3This is because, for example, when the true marginal density is le-5, estimating it as le-5 and le-4 does
not change the MSE loss too much. However, in terms of variance, le-4 and le-5 make a significant difference.
Using function approximation, we can avoid being too precise about small values of the marginal density.

Under review as a conference paper at ICLR 2025

‘ online

policy value
o
[

| no-prompt.

regréss'\on \5 DR POTEC DSO (ours)

Figure 6: Performance comparison of OPL methods in the full-LLM experiment. The policy
value indicates how much improvement of reward we have by using a (learned) prompt policy
compared to the sentence generation without prompts (called no-prompt baseline). From the top, the
horizontal lines refer to the value of the online policy, logging policy, and no-prompt baseline. The
results are based on 5 random seeds and are ordered by the performances.

Bo = 0.2. The candidate prompts (A) are retrieved from relatedwords.io with keywords {"movie",
"genre", "culture"}, where |.4| = 1000. The reward is defined as 10 x (g(z, s(a)) — ¢(z, s(0))),
where ¢(+) is the [0, 1]-score simulated by the aforementioned DistilBert sentence discriminator and
s(1) is the sentence generated without adding prompts. The data size is n = 50000. For DSO, we
use a Gaussian kernel with 7 = 1.0 to estimate the logging marginal density. The distance between
two sentences are measured by the sentence embeddings obtained from the frozen Mistral-7B model
(see Appendix [C|for the details). We report the results with 5 random seeds.

Result Figure [compares the performance of the OPL methods by the degree of improvement that
the learned policy observed over the sentences generated without prompts (which we call no-prompt
baseline)E] The results indicate that DSO often improves the effectiveness of the sentences more than
other IS-involved OPL methods, by effectively leveraging the information about similar sentences.
Specifically, DSO is more resilient to performance corruption than IS by substantially reducing the
variance. It should also be worth noting that this result is observed for the off-the-shelf embeddings
of sentences, which do not require extensive tuning of the embedding model. This minimizes the
difficulty in applying the proposed OPL method in practice. However, learning (application-specific)
embeddings that further improve the performance of DSO is an interesting direction for future work.

8 CONCLUSION AND FUTURE WORK

This paper studied how to use naturally logged user feedback to optimize a prompt policy for language
generation. We started by formulating the problem as OPL of contextual bandits with auxiliary outputs.
Then, we pointed out the limitations of the naive approaches — (1) existing OPL methods often suffer
from the large action space of prompts and (2) even though we observe generated sentences, existing
methods do not use the information about these sentences. To overcome these shortfalls, we proposed
Direct Setence Off-policy gradient (DSO), which applies importance sampling taking the similarity of
sentences into account. We also show the effectiveness of the proposed approach in both theoretical
and empirical ways. Furthermore, our benchmarks suite called OfflinePrompts, provided as open-
source software, accelerates future research and practical application of prompt-guided language
generation from logged bandit feedback.

As a remark, deriving a DR-style variant, which introduces a control variate for further variance
reduction (Dudik et al.| 2011), is non-trivial for DSO, as we discuss in detail in Appendix @
Studying a way to efficiently combine IS and regression in the DSO framework would be a promising
future direction. Additionally, a good representation or distance measure of sentences that further
improves the performance of DSO would also be worth exploring. Finally, applying a similar idea to
other generative Al applications, such as text-to-image diffusion models (Saharia et al.,[2022), and
extending the benchmark by publishing relevant real-world data can be an interesting future work.

*While we observe some instability in the policy value for all the compared methods, this simply implies that
the task of finding an effective prompt from the large candidate sets of prompts is challenging. This is because
most prompts do not make so much difference to the no-prompt baseline, while only a few prompts can be
effective, as shown in Figure@in the appendix. A similar instability issue is also observed for the online policy.

10

https://relatedwords.io/

Under review as a conference paper at ICLR 2025

REFERENCES

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In
Proceedings of the 30th International Conference on Machine Learning, pp. 127-135, 2013.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey
Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. Advances in Neural Information
Processing Systems, 33:1877-1901, 2020.

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In Proceedings of
the 34th International Conference on Machine Learning, pp. 844-853, 2017.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in Neural Information Processing
Systems, 30, 2017.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 3369-3391, 2022.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Haitao Zheng, and Maosong Sun.
Openprompt: An open-source framework for prompt-learning. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 105-113,
2022.

Miroslav Dudik, John Langford, and Lihong Li. Doubly robust policy evaluation and learning.
In Proceedings of the 28th International Conference on International Conference on Machine
Learning, pp. 1097-1104, 2011.

Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy. Efficient
exploration for llms. In Proceedings of the 41th International Conference on Machine Learning,
volume 235, pp. 12215-12227, 2024.

Justin Fu, Mohammad Norouzi, Ofir Nachum, George Tucker, Alexander Novikov, Mengjiao Yang,
Michael R Zhang, Yutian Chen, Aviral Kumar, Cosmin Paduraru, et al. Benchmarks for deep
off-policy evaluation. In International Conference on Learning Representations, 2020.

Yunfan Gao, Tao Sheng, Youlin Xiang, Yun Xiong, Haofen Wang, and Jiawei Zhang. Chat-
rec: Towards interactive and explainable llms-augmented recommender system. arXiv preprint
arXiv:2303.14524, 2023.

Alexandre Gilotte, Clément Calauzénes, Thomas Nedelec, Alexandre Abraham, and Simon Dollé.
Offline a/b testing for recommender systems. In Proceedings of the 11th ACM International
Conference on Web Search and Data Mining, pp. 198-206, 2018.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1-19, 2015.

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web,
pp. 173-182, 2017.

Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernandez-Lobato, Richard E Turner,
and Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation models with
kl-control. In International Conference on Machine Learning, pp. 1645-1654. PMLR, 2017.

11

Under review as a conference paper at ICLR 2025

Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Human-centric dialog training via offline reinforcement
learning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing, pp. 3985-4003, 2020.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, LavrilThibaut , Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. arXiv preprint arXiv:2310.06825,
2023.

Nathan Kallus and Angela Zhou. Policy evaluation and optimization with continuous treatments. In
International Conference on Artificial Intelligence and Statistics, pp. 1243-1251, 2018.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Haruka Kiyohara, Ren Kishimoto, Kosuke Kawakami, Ken Kobayashi, Kazuhide Nakata, and Yuta
Saito. Scope-rl: A python library for offline reinforcement learning and off-policy evaluation.
arXiv preprint arXiv:2311.18206, 2023a.

Haruka Kiyohara, Ren Kishimoto, Kosuke Kawakami, Ken Kobayashi, Kazuhide Nakata, and Yuta
Saito. Towards assessing and benchmarking risk-return tradeoff of off-policy evaluation. arXiv
preprint arXiv:2311.18207, 2023b.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in Neural Information Processing
Systems, 12, 1999.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop, Victor
Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement learning from human feedback with
ai feedback. arXiv preprint arXiv:2309.00267, 2023.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference on
World wide web, pp. 661-670, 2010.

Xiaogiang Lin, Zhongxiang Dai, Arun Verma, See-Kiong Ng, Patrick Jaillet, and Bryan Kian Hsiang
Low. Prompt optimization with human feedback. arXiv preprint arXiv:2405.17346, 2024.

Andrzej Mackiewicz and Waldemar Ratajczak. Principal components analysis (pca). Computers &
Geosciences, 19(3):303-342, 1993.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. In International Conference
on Learning Representations, 2021.

Allen Nie, Yi Su, Bo Chang, Jonathan N Lee, Ed H Chi, Quoc V Le, and Minmin Chen. Evolve:
Evaluating and optimizing llms for exploration. arXiv preprint arXiv:2410.06238, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730-27744, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

12

Under review as a conference paper at ICLR 2025

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay.
Scikit-learn: Machine learning in python. the Journal of Machine Learning Research, 12:2825—
2830, 2011.

Doina Precup, Richard S. Sutton, and Satinder P. Singh. Eligibility traces for off-policy policy
evaluation. In Proceedings of the 17th International Conference on Machine Learning, pp.
759-766, 2000.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and building blocks for natural language policy
optimization. In The I1th International Conference on Learning Representations, 2022.

Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized bandits. Mathematics of
Operations Research, 35(2):395-411, 2010.

Noveen Sachdeva, Yi Su, and Thorsten Joachims. Off-policy bandits with deficient support. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 965-975, 2020.

Noveen Sachdeva, Lequn Wang, Dawen Liang, Nathan Kallus, and Julian McAuley. Off-policy
evaluation for large action spaces via policy convolution. In Proceedings of the ACM on Web
Conference 2024, pp. 3576-3585, 2024.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479-36494, 2022.

Yuta Saito and Thorsten Joachims. Off-policy evaluation for large action spaces via embeddings.
In Proceedings of the 39th International; Conference of Machine Learning, volume 162, pp.
19089-19122, 2022.

Yuta Saito, Shunsuke Aihara, Megumi Matsutani, and Yusuke Narita. Open bandit dataset and
pipeline: Towards realistic and reproducible off-policy evaluation. In 35th Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2021.

Yuta Saito, Qingyang Ren, and Thorsten Joachims. Off-policy evaluation for large action spaces
via conjunct effect modeling. In Proceedings of the 40th International; Conference of Machine
Learning, volume 202, pp. 29734-29759, 2023.

Yuta Saito, Jihan Yao, and Thorsten Joachims. Potec: Off-policy learning for large action spaces via
two-stage policy decomposition. arXiv preprint arXiv:2402.06151, 2024.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Charlie Snell, Sherry Yang, Justin Fu, Yi Su, and Sergey Levine. Context-aware language modeling
for goal-oriented dialogue systems. In Findings of the Association for Computational Linguistics,
pp- 23512366, 2022a.

Charlie Victor Snell, Ilya Kostrikov, Yi Su, Sherry Yang, and Sergey Levine. Offline 1l for natural
language generation with implicit language q learning. In The 11th International Conference on
Learning Representations, 2022b.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008-3021, 2020.

Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback through
counterfactual risk minimization. The Journal of Machine Learning Research, 16(1):1731-1755,
2015.

13

Under review as a conference paper at ICLR 2025

Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas, and Nello Cristianini. Finite-time
analysis of kernelised contextual bandits. In Proceedings of the Twenty-Ninth29th Conference on
Uncertainty in Artificial Intelligence, pp. 654—663, 2013.

Siddharth Verma, Justin Fu, Sherry Yang, and Sergey Levine. Chai: A chatbot ai for task-oriented
dialogue with offline reinforcement learning. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 4471-4491, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824-24837, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Zhenyu Wu, YaoXiang Wang, Jiacheng Ye, Jiangtao Feng, Jingjing Xu, Yu Qiao, and Zhiyong Wu.
Openicl: An open-source framework for in-context learning. arXiv preprint arXiv:2303.02913,
2023.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Junning
Zhao, Qian Liu, Che Liu, et al. Openagents: An open platform for language agents in the wild.
arXiv preprint arXiv:2310.10634, 2023.

Fan Yang, Zheng Chen, Ziyan Jiang, Eunah Cho, Xiaojiang Huang, and Yanbin Lu. Palr: Personal-
ization aware llms for recommendation. arXiv preprint arXiv:2305.07622, 2023.

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based exploration.
In Proceedings of the 37th International Conference on Machine Learning, pp. 11492-11502,
2020.

14

Under review as a conference paper at ICLR 2025

OPL workflow -[data collection]—[off policy learning]—[deployment]

OfflinePrompts o dataset module o OPL module o real world / simulation
implementation o logging policy (1) o policy module o new policy (my)

Figure 7: Off-policy learning (OPL) workflow and OfflinePrompts modules.

A EXTENDED RELATED WORK

(Online) linear and kernelized contextual bandits. Linear bandits (Li et al Agrawal &
Goyall 2013} Rusmevichientong & Tsitsiklis| 2010) and kernelized contextual bandits (Chowdhury &
Gopalan| 2017, [Valko et al.} 2013} [Zhou et al}[2020)) is relevant to ours in using the similarity among
actions and rewards for improving data efficiency. Specifically, linear bandits assume that the reward
function is expressed as an inner-product between (non-linear representations of) context features and
action-specific coefficients and aims to learn the linear action features [2010). By assuming
the linear structure in the reward function, the corresponding bandit algorithm makes the exploration
more efficient than treating each action independently. Similarly, kernelized bandits
generalize the idea of leveraging similarity among action representations under less restrictive
assumptions on the rewards. Specifically, it assumes that similar features can result in similar
rewards without assuming a linear structure and implicitly augments the reward observation using the
Reproducing kernel Hilbert space (RKHS). Our paper demonstrates that leveraging the similarity
among auxiliary outputs (i.e., sentences) of action can improve the data efficiency in the offline
learning setting, not only limited to the online exploration discussed in the existing literature.

Offline reinforcement learning (Offline RL) for dialog generation. Offline RL (Levine et al.|
2020) has emerged as a new paradigm for fine-tuning language models in dialog systems (Jaques
et al.,[2020; [Snell et al.| 2022alb; [Verma et al, 2022). Among them, Snell et al.| (2022a) and [Verma

et al.|(2022)) focus on goal-oriented dialog system, which aims to solve some specific tasks by
combining RL-based planning and dialog generation. Jaques et al] (2020) and [Snell et al.| (20224) aim
to improve the quality of conversations by maximizing the users’ sentiment signals observed in text or
interface (e.g., thumb up). While these works are relevant to ours in using offline data, our work has
several distinctions over existing works. First, while existing work focuses on RL-based fine-tuning,
which requires expensive computation and is affordable only for the companies releasing pre-trained
models, our work considers prompt tuning. Since prompt tuning is available for some third-party
companies (e.g., advertising agencies) or even individual users that access models through APIs
(e.g., ChatGPT), a more diverse population can customize language generation with our framework.
Moreover, while existing work formulates the problem as an RL problem and considers only the
regression-based approach for policy learning, ours formulates the problem as contextual bandits
and considers applying IS in the marginalized sentence space. This makes the bias-variance tradeoff
of policy learning more controllable than existing works. Thus, we can expect an improved policy
performance, as we have shown in the experiments.

Relevant open-source softwares and benchmarks. There are several open-source libraries for
language generation relevant to ours. First, RLALMs (Ramamurthy et al.,[2022)) provides a framework
for RL-based fine-tuning of LLMs for optimizing language generation for reward maximization. In
prompt tuning, OpenPrompt works as a testbed for comparing (online) gradient-
based prompting strategies with various frozen LLMs. OpenICL [2023) also benchmarks
(more sophisticated) prompt conditioning strategies called in-context learning (ICL), such as chain-
of-thoughts reasoning for solving complex mathematical problems 2022). Similarly,
OpenAgents 2023) provides an interface for generating text for various real-world web
applications using frozen LLMs, especially for the purpose of providing a platform for online RL-
based prompt tuning. However, these platforms are not capable of handling logged bandit feedback,
and ours are the first to streamline OPL procedures for prompt tuning with naturally collected user
feedback data.

15

Under review as a conference paper at ICLR 2025

Task Configurable modules for Dataset

CandidateActionsGenerator

.

‘ ContextQueryGenerator

synthetic

RewardSimulator ‘

T

AuxiliaryOutputGenerator —

‘ ContextQueryLoader CandidateActionsLoader ‘
Compatibility with

‘ = HuggingFace Models

full LLM/semi-synthetic
(e.g., movie description) ‘

FrozenLLM RewardSimulator

TN

Figure 8: Two benchmarks (synthetic and full-LLM) of OfflinePrompts with four
configurable submodules. Compared to the existing OPE/OPL frameworks (Saitol
et _all 2021 [Kiyohara et all [2023ajb), our benchmark is distinctive in providing
AuxiliaryOutputGenerator/FrozenLLM to simulate language generation tasks as contex-
tual bandits with auxiliary outputs.

In an independent field of benchmark study, OpenBanditPipeline [2021)) and SCOPE-
RL (Kiyohara et al.l [2023aib) are representative open-source libraries to handle OPE and OPL
procedures in contextual bandits and RL. Although these libraries streamline the workflow of using
logged data in organized ways, they are not applicable to language generation. Thus, we release a new
benchmark suite for OPL of prompt tuning for language generation, putting emphasis on connecting
OPL modules and language generation modules, while following the basic design principles of

OpenBanditPipeline [202T) and SCOPE-RL (Kiyohara et al., 2023afb).

Finally, there is also a benchmark called BanditBench (Nie et al.L [2024)) , which simulates the LLM-
based item recommendations based on the MovieLens (Harper & Konstan| [2015)) dataset. While this
benchmark uses the same MovieLens dataset for semi-synthetic simulation, the tasks are different
from each other. Specifically, BanditBench (Nie et al.| aims to use LLMs as recommender
policies that choose items (Yang et al} 2023} (Gao et al.} [2023)), while our work focuses on steering
the generation of sentence description with prompts given (already chosen) items as a query.

B OFFLINEPROMPTS: OPEN-SOURCE SOFTWARE OF OPL FOR LANGUAGE
GENERATION

B.1 OVERVIEW AND WORKFLOW

The primal goals of OfflinePrompts are to (1) provide a standardized benchmark to compare OPL
methods and (2) facilitate the smooth implementation of the OPL workflow. For these purposes,
OfflinePrompts (1) provides two standardized benchmarks and (2) streamlines the implementation
with three modules: dataset, OPL, and policy, as shown in Figure[7} All implementations are based
on PyTorch (Paszke et al.}[2019). We elaborate on the details of each feature below.

Dataset module and benchmarks OfflinePrompts provides two benchmarks including synthetic
and movie description. First, the synthetic benchmark simulates (general) contextual bandits with
auxiliary outputs with feature vectors, without involving language generation tasks. In contrast, the
movie description task is a full-LLM, semi-synthetic benchmark, which simulates personalized gener-
ation of movie description (i.e., actual language generation) based on the MovieLens datasets
2015). These benchmarks can be used for separate purposes. The synthetic benchmark
is lighter and more suitable for extensive studies of how the performance of OPL methods changes
with various configurations than the actual full-LLM benchmark. In contrast, the movie description
benchmark is preferable to see the performance of OPL methods in more realistic settings than the
synthetic benchmark. The key remark is that the movie description benchmark is the first benchmark
for prompt-guided language generation from logged user feedback.

16

Under review as a conference paper at ICLR 2025

Both benchmarks provide a standardized setting and configurable submodules to con-
trol the data generation process. Specifically, as illustrated in Figure [8] each bench-
mark consists of four submodules: ContextQueryModule, CandidateActionsModule,
AuxiliaryOutputGenerator/FrozenLLM, and RewardSimulator. Compared to the ex-
isting OPE/OPL benchmarks (Saito et al.,|202 1} |Kiyohara et al.,|2023aZb)), our benchmark is distinctive
inmodeling AuxiliaryOutputGenerator/FrozenLLM, which enable us to simulate language
generation tasks as contextual bandits with auxiliary outputs. Moreover, since our FrozenLLM
and RewardSimulator modules are compatible with HuggingFace (Wolf et al.|,[2019), users can
easily employ various language models in the full-LLM experiments. The semi-synthetic/full-LLM
dataset module can also load custom dataset in a manner similar to the movie description benchmark.
We believe this feature of OfflinePrompts also facilitates practical applications of prompt tuning from
naturally logged feedback.

OPL and policy modules Figure [0 summarizes the implementation choices of OPL modules:

Regression models Policies Policy gradient types
o naive reward predictor o model-based policy o policy gradient methods o regression-based
o conservative counterpart * softmax policy * online PG o IS-based

« epsilon greedy policy * naive PG o hybrid

* uniform random policy * two-stage PG

¢ DSO (kernel-based, proposal)

Figure 9: Implementation choices of OPL modules of OfflinePrompts.

As shown above, we implement two regression models (naive and conservative), three model-based
policies (softmax, epsilon-greedy, and uniform random), and four policy gradient methods (online,
naive, two-stage, DSO), and three gradient types (regression-based, IS-based, and hybrid). Each
component is independently configurable. Thus, we can easily try any combination of the above
policies and OPL methods. Moreover, by following the abstract base implementation provided in
OfflinePrompts, researchers can test their own policies and policy gradient methods.

Example codes for streamlining OPL workflow and customizing each module are available in
Appendix[F] The documentation of OfflinePrompts, which describes further details of the software, is
also available at: (double blind review).

B.2 TASK DESCRIPTION AND REWARD SIMULATION FOR THE MOVIE DESCRIPTION TASK

We build a semi-synthetic simulator using the MovieLens dataset (Harper & Konstan| 2015)) for the
personalized generation task of movie descriptions. The movies consist of (partially observed) 5-star
ratings between users and items and have movie title information as the metadata. To learn a reward
simulator, which generates reward depending on the generated movie description, we first augmented
the movielens dataset with item description using a frozen LLM as follows.

1. For each movie, retrieve its title.

2. Then, using zero-shot inference of a frozen LLM, we generate the movie description by
providing instruction: "Broadly describe in a sentence the genres of
the movie without including the name or any specifics of the
movie. Title: {title of the movie}, Movie description: ".

In our standardized benchmark, we use Mistral ("mistralai/Mistral-7B-Instruct-v0.2") (Jiang et al.,
2023) as the frozen LLM. Once augmenting the dataset with item description, we train a sentence
encoder-based collaborative filtering model (as shown in Figure[I0](Top)) in the following procedures.

1. Using movielens dataset without item description, we first train a naive neural collaborative
filtering (CF) model (He et al.,|2017), which uses user and item id embeddings.

2. Initialize the encoder-based CF model, which uses user id embeddings and encoded item
description features, with the user id embeddings learned by naive CF model.

3. Finetune the encoder-based CF model with the (augmented) movielens dataset with item
description.

17

Under review as a conference paper at ICLR 2025

fine-tuning with augmented movielens data

(

~
/
it Instruction- sentence e
tem tuned LLM description encoder

(zero-shot) (augmentation) (fine-tuning)

rating

training with

USel logged bandit data

\

. Instruction- sentence .
—_— —— (reward simulator
item tuned LLM description ¢)

(zero-shot)

Figure 10: Procedures of reward simulation (Top) and personalized sentence generation (Bot-
tom). The reward simulator uses a sentence encoder to get item embeddings. In the personalized
sentence generation task, a policy aims to identify a suitable prompt (e.g., genres of the movie) for
each user so the generated sentence aligns with the user-dependent preference.

reward simulation result Star Trek VI (1991) Titanic (1997)
500 -
400 -

positive
negative

count
count

200 -

N . | '

0- 7 g g g g J 0-) ! ; 9 -l . - . . - e el
0.0 0.2 0.4 0.6 0.8 1.0 -20 -15 -10 -05 00 05 10 -25 -20 -15 -10 -05 0.0
simulated reward reward simulated with varying prompts reward simulated with varying prompts

Figure 11: The reward simulation results on the MovieLens dataset (Harper & Konstan, 2015).
(Left) Showing the original reward simulated by the fine-tuned DistilBert model (Sanh et al. Pﬁp
for 2000 samples of the validation data. "positive" indicates the data that originally received the
rating of 5 by users, and "negative" indicates the data that received 0-3 ratings. (Right) Showing
the normalized reward generated for a single user and two movies with varying prompts. This
demonstrates how much reward difference each prompt can make compared to without prompts
(which we call prompt effect), suggesting that effective prompts are sparse among the candidate set,
and we have skewed distribution on the prompt effect.

The default reward simulator in our benchmark uses the fine-tuned DistilBert model
[2019) as the item description encoder, and the user and item embeddings are set to be 20 dimensional.
Note that, before training the models, we preprocess the MovieLens-10M to have binary labels — the
rating of 5 is positive, and the ratings of 0-3 are negative. Then, we prune the dataset so that the
dataset has balanced positive and negative labels, and each user and item has at least 10 positive and
negative labels. After processing the data, 36,395 users, 4,796 items, and 2,316,912 ratings remained.
When using the fine-tuned model as the reward simulator in our benchmark, we use the following
normalized reward: 10 x (q(z, s(a)) — q(z, s(9))), where g(-) is the original [0, 1]-score simulated
by the model. s(a) is the sentence generated by the prompt a, and s(f) is the sentence generated
without any prompt. We report the reward simulation results in Figure [T T}

Finally, we simulate the data generation of the movie description task as follows.
1. Randomly sample user and item id and let the user embedding learned by the naive CF

as the user context u. We also let the title of the movie be query ¢. This is handled by
ContextQueryLoader. (x)

2. (A policy chooses which prompt to use, taking the user and query embeddings as inputs.)

(a)

18

Under review as a conference paper at ICLR 2025

Instruction

Broadly describe in a sentence the genres of the movie without including the name or any specifics of the movie.
Title: {movie}, Keyword: {prompt} (movie =)

prompt =

'A science fiction adventure film that explores the complexities of diplomacy and peace between two long-standing enemies
through the lens of space exploration and’, -> 0.0

prompt =

'A science fiction adventure film that explores the complex political dynamics between two long-standing enemies as they
attempt to prevent a potential war and find a' -> +0.04

prompt =

'A group of space explorers encounter a new and potentially dangerous alien race while on a diplomatic mission to prevent a
war between their own world' -> -0.82

prompt =
'A group of space explorers encounter a new and dangerous adversary, leading to a tense and emotional journey filled with
action, adventure, and' -> +0.41

Figure 12: Example of sentences generated with varying prompts and their reward simulated
in the full-LLM benchmark. We use the frozen Mistral-7B (Jiang et al., [2023) model to generate
descriptions of the movie Star Trek VI (1991) with three different prompts, { movie, scifi, tragedy
} and highlight sentences that differ from the baseline generated without prompts. The red font
indicates the reward simulated by the DistilBert model fine-tuned on the MovieLens dataset. While
abstract keywords like "movie" do not make much difference, more specific keywords like "scifi" or
"tragedy" can be impactful in the reward simulation.

3. FrozenLLM takes query and prompt as input in the following instruction: "Broadly
describe in a sentence the genres of the movie without
including the name or any specifics of the movie. Title:
{title of the movie}, Keyword: {prompt} Movie description:

" and generate movie description. (s).

4. RewardSimulator simulates reward by taking user id, item id, and the generated sen-
tence as inputs. User and item ids are used to retrieve user-and item-specific bias terms.

(r)

Note that by pre-training the reward simulator with item descriptions, we expect the model to learn
matchings between user preferences and movie genres (e.g., user A prefers sci-fi movies). We expect
this differentiates the reward among varying prompts in the movie description task — e.g., for sci-fi
lovers, we should focus on the sci-fi aspects rather than the romance aspects of a movie. The goal
of OPL task is to identify specific features or keywords that generate suitable sentence for each
user from the logged data. For reference, Figure [T2] shows the example of sentences generated with
varying prompts and their rewards simulated in our benchmark.

B.3 DATA GENERATION PROCESS FOR THE SYNTHETIC BENCHMARK

The synthetic benchmark simulates the contextual bandits with auxiliary output using feature vectors
without involving actual language generation. Specifically, the synthetic benchmark generates the
logged data in the following process:

1. Sample size n of context and query from ContextQueryGenerator. ()

2. Sample embeddings (e,) for size |.A| of actions to define a candidate set of actions. Then,
for each context, sample action from the candidates with some logging policy. (a)

3. Input both query and the chosen action to AuxiliaryOutputGenerator to generate a
feature vector as an auxiliary output. The auxiliary output corresponds to output sentence in
language generation tasks. (s)

19

Under review as a conference paper at ICLR 2025

4. Finally, simulate base reward R(z,s) by inputting context and auxiliary output into
RewardSimulator. Then, sample reward from a normal distribution N'(R(z, s), o,.) for
the auxiliary output observed by the logging policy. (1)

By running a synthetic experiment, we can easily control and study the effect of various relationship
between prompt and sentence (action a, e and auxiliary output s) and that between sentence and
reward (auxiliary output s and reward r) through varying AuxiliaryOutputGenerator and
RewardSimulator, respectively. Therefore, we expect our synthetic benchmark to be a easy-to-
use testbed for checking the behaviors of OPL methods before working on a more complex, actual
language generation task.

C IMPLEMENTATION DETAILS OF EXPERIMENTS
Basically, we follow the default implementation of OfflinePrompts.

C.1 SYNTHETIC EXPERIMENTS

The policy is parameterized by a two-layer neural network, where the hidden dimension is 100, the
activation function is ReLU, and the optimizer is Adam 2014). All single-stage policies
(which are used in regression-based, IS-based, and DSO) take (z, e,) as inputs and generate logit
values. The probability of each prompt chosen by the policy is calculated by taking the softmax of
the logit values. Similarly, the first stage policy of POTEC takes (z, e.) as inputs, where e, is the
cluster centers of prompts in the action embedding space. For all IS and DR-type methods, we apply
the weight clipping with a maximum of 200. To avoid the extensive tuning of learning rates, we
use the one that worked well for the online policy gradient in all the compared methods, which is
Se-4. The regression model (§(x, e,,)), used for regression-based, DR, and POTEC, and the logging
marginal density model used for DSO are parameterized by a two-layer neural network with a 100
dimensional hidden state. The regression model is trained on the logged data with the following
MSE loss: 7", (r; — ¢(;, a;))?, while the marginal density model is trained by the loss function
described in Section[d.1] The learning rates of the regression and the marginal density models are
both based on the validation loss, and are set to le-4. Note that because ¢(s) ranges within [—37, 37]
with probability more than 99% under the Gaussian kernel, we let ¢(s) of the uniform kernel to range
[—37, 37] to the corresponding value of 7. Finally, the action clustering used by POTEC is based on
k-means clustering with & = 10, implemented in scikit-learn (Pedregosa et al, 2011).

C.2 FULL-LLM EXPERIMENT

The implementation of the full-LLM experiment is almost the same as the synthetic experiment. The
only difference is that, because (g, a, s) are words or sentences, we applied some encoding to get
vectorial embeddings of these variables. We learn the embeddings by the following steps. We first
randomly sample 1000 movies and sentences from the (augmented) MovieLens dataset and sample
1000 prompts from the action set. Then, we get the last hidden states of Mistral-7B
[2023) by providing the following instructions:

e "Broadly describe in a sentence the genres of the movie
without including the name or any specifics of the movie.
Title: { title of the movie }" for each movie (¢),

e "Associate the word - { prompt } - in the context of movie
genres" for each prompt (a),

e " { sentence } " foreach sentence s.

After obtaining (high-dimensional) embeddings from Mistral-7B, we fit PCA (Mackiewicz & Rata]
to reduce the dimension of embeddings to 20. In contrast, for the user context x, we use
20-dimensional embeddings of user ids learned by (naive) collaborative filtering, which is different
from that used in the reward simulator. We use the learning rate of Se-4 with Adam for policy
gradients. The learning rate of the regression and the marginal density models are 1e-4 with Adam.

It is worth mentioning that because the full-LLM benchmark is challenging due to the sparsity of
effective prompts as demonstrated in Figure [T} a similar learning instability to the OPL results is

20

Under review as a conference paper at ICLR 2025

also observed for the online policy (e.g., even the online policy sometimes fall short with a near-zero
policy value like 0.01, regardless the choice of the learning rates). Therefore, in the experiment,
we picked an online policy that performed well when defining a logging policy, so that meaningful
reward signals should be included in the logged data.

C.3 DoUBLY ROBUST (DR) ESTIMATORS

Here, we provide the details of the DR estimators used in the experiments.

Doubly Robust (DR) (Dudik et al.,|2011). DR is a hybrid approach, which effectively combines the
regression and IS to exploit the benefits of the two.
n

1 T g(ai|:1:i) N
VoVimg) ~ — — Vol s R o
0 (9) ; - 0(ai|1'i) 6 108 3‘0<a1‘x1)(rz Q(xual))

1 & .
+ - Z Eqrry(ale:) [Vo log mo(as]z:)q(xs, a)].
i=1

By using the regressed reward as a control variate, DR often reduces the variance of IS, while
remaining unbiased under the same condition as IS. However, when the regression is inaccurate,
the variance reduction is limited and DR often suffers from high variance when the action space is
large (Saito & Joachims) [2022).

POTEC (Saito et al.,2024). To deal with the variance issue of DR, POTEC considers the clustering
in the action space and decomposes the policy into two stages as follows.

1st

mo(alw) = mp* (clar)m*(

alz, c),

where c indicates the cluster of the action a, which can be learned by applying an off-the-shelf
clustering method to action embeddings. Using this decomposition, POTEC chooses clusters via a
DR-style approach as follows, and chooses actions within a cluster via regression.

~ 7TISI cla;)|x; Ist n
VoV (mp) =~ 1 Z MV@ log mp* (c(a;)|zi) (ri — ¢(xs, a;))

n 2= i (c(ar)|e:)

1 < .
+ n Z Eqnrg(alzi)[Vo log WéSt(C(ai)‘xi)Q(fﬂiy a)l,
i=1
where 7" (c(a)|z) = 3¢ Ac(a’)=c(a) To(a|z). The second-stage policy greedily chooses action
as m"(a|z,) = I{§(z,a) = argmax,c 4 o(a')=c(a) 4(z,a’)}. By applying IS on the clustered
action space, POTEC reduces the variance of naive IS. POTEC is also able to convert regression
to a pair-wise regression within a cluster. However, especially when the relation between actions
and rewards is complex, a good clustering is often hard to identify, and POTEC cannot take the rich

information about generated sentences into account.

D OMITTED PROOFS AND DERIVATIONS

This section provide proofs and derivations ommited in the main text.

D.1 DERIVATION OF THE PG IN THE SENTENCE SPACE

We first derive Vg log mg(s|x) = Eqny(afa,s)[Vo log mo(alz)].
Vomo(s|z)

7o(sla)
~ 2aea Voro(alz)piv(s|z, a)
- mo(slz)

Vo log mo(s]) =

_ Z V(ﬂrg(a|$)

To(al) mo(alz, s)

acA
= Eﬂ"g (alz,s) [VQ IOg o (a|x)]

21

Under review as a conference paper at ICLR 2025

Similarly, we also have Vjlogmg(é(s)lz) = Er,(s|ees)[Velogma(s'|z)] thus
Vo log mg(d(s)|x) = Ery(sr|2,0(s)) [Erg (ala,s) [Vo log mo(al2)]] = Ery(ale,s(s)) [Vo log mo(alz)].

D.2 DERIVATION OF THE WEIGHTED SCORE FUNCTION

We first show w(¢(s), 7) = Erj (a)a,e(s)) [w(a, T)].

mg(alz)

Eﬂo(a\x,¢(s))[w(a7 1’)} = Z 7r0(a|(E, (;5(8))

P molal)
mo(alz,4(s))me(d(s)|7)

. pLm(é(s)|z,a)
= Z mo(alz, ¢(5)) F et mot@(s)a)
acA pm(P(s)|z,a)

_ Zﬁo(a|$,¢(8))mg ‘.’E ()) 9(¢(8)|$)

= mo(alz, #(s)) mo(d(s)|x)
Ery(ale,p(s))[w(z, d(5))]
= w(¢(s), x)

Next, using the above expression and that derived in Appendix [D.I] we have
w((s)|z)Velogme(e(s)|x)

= ZEEZEg:gE“"(S’w"f’(S))[(alz,s) [V log mo(alz)]]

= W / s Wa(S’Iw,¢(s))£ﬂa(a|x,s’)v9 log o (alz)ds

-0 L T S f];;“a'@wmwmds
_ WO((;S / K(s,s'; 2,7 ;pLLM o |z, a)mo(alz) Vs log 7o (alz)ds

= ¥ mle) [s, KD G g s

K(s,s'; z,7)
= Ery(alz)puv(s’|e,a) {ﬂ'o(qﬁ(sﬂx)ve log wg(ax)]

where pi (¢(s)|x,s') = K(s,s'; x, 7).

D.3 DERIVATION OF THE BIAS OF DSO (PROOFS OF THEOREM [I))

Proof. To derive the bias of DSO, we first decompose the expectation of DSO as follows.

Eplw(¢(s"), 2) Ve log me(¢(s)|x)7]

= By (o) [w(@(s"), 2) Vg log ma (4(s")|x)q(z, 5")
= B (p()]a)mo (7 |,6(s)) [W(P(8"), 2) Vg log mo (¢(
= By (6(s)) mo (5" |2 (s)) [W((8"), #) Vg log o (¢(s

]
s')
)
= By ((s)|x)mo (s [z.6(s)) (W ((8),) Vo log T ((s))]
+ Ero (6(5)|2)mo (' a,0(s)) [(D (),) Vig log g)]
= Eorg(6(s)2)mo (s |, (s)) [(W(B(5"),) Vg log T ((s") |2) — w((s), 2) Vg log mo(d(s)|z))a(z, s")]
+ Erg (6(s)2)m0(s'[a,6(5)) [W(B(5),) Vo log mo (6 (s)|x)g(x, s7)]
= Ery (6(5)2)mo(s' |2.6(s)) [D () (9(5)), 9(5); 2)q(, 8")
+ By (o)) [w(@(8),) Vg log ma (¢(s)|2) g™ (0, (

V)
~— —

)

22

Under review as a conference paper at ICLR 2025

Then, for the second term, we have
Ero(g(s)|2) [w(@(5), 2) Vo log T (6(s)[2)g™ (z, ¢(s))]

By (60 x>[E¢§ ;: iv log m5(6(s) 2)q™ (2, B(5))

= Y m(és)l) EE;: §velogm<¢<s>|w>qm<x,¢<s>>
P(s)ED(S)

=Y m(ols)) Vi log mo(o(s) £)g™ (. 6(s))
P(s)ED(S)

= Ery(g(s))2) [Vo log ma(d(s)|7)q™ (x, ¢(s))].
Next, we also transform the true gradient in the sentence space as follows:
By 512y [Vo log mo(s'|z)q(x, s)]

= Ery (4(5)|2)mo (s [2.0(s)) [V o log mo (s'|7) g (, 8”)
= By (6() x)mo (|, 0(s)) [V o log o (' @) (, 5”)
= By (g(s)la)mo (s la0(s)) [Vo log mo(@(s)w)a(x, s')]
+ By ((s)) (s'],6(s)) [Vo log Ta (d(s) [2) g (, 87)]

9

(,

]
]

= By (p(s)[2)mo (s 2,0(s)) (Vo log mo (s'[x) — Vg log mo(d(s)|2))gq(z, s")]
+ By ((s)a)mo (s7].6(s)) [Vo log Ta (6(s) [2) g (, 87)]
= Ery (4(5)|x)mo (s [2.0(5)) [(v0) (87, 0(8))a (2, 8)]

+ Eny(g(s)1e) [Va log ma(9(s)|2)q™ (, $(s))]-
Therefore, the bias is

Bias((VoV)pso)

= Ep[w(¢(s'), 2)Velog ma(¢(s")|2)r] — Eny (1) [V log mo(s'|x)g(z, s")]

= Er,(4(s)]2)[Vo log T (p(s)|2) g™ (z, B(s))]
+ B (o(s) 2)mo (7 |2,6(5)) [D (v 6) (B(5), B(3):) q(, 87)]

Ery((s)) [Vo log mo(d(s)|2) g™ (2, ¢(s))]

*Ewe(¢(s)\wm<sww,¢<s))[Awe)(o(s))a(z, s)]

= Ery (o)) [Vo log ma (6(s)]2) (q™ (z, ¢(s)) — ¢ (2, §(s)))]
+Em<¢(s)|x)m(s () [D wve) ((57), d(s); 2)g(, 87)]
+ Ery (4(5) 2)mo (7 |2,6(9)) [D () (D(5), 8)a(z,)]

= Ery(g(s)2) [Vo log ma(d(5)|x) Ag (g, mo5 , B(5))]
+ Erg (6(s)2)m0(s'[2,6(5) [D (wv) (B(57), &(s); 2)a (2, s7)]

).

+ By ((s)) mo(s'],6(s)) [D () (8(5), 8)a(, &
where we define

Ay(mo, m05 T, 4(5)) := q" (2, ¢(s)) — ¢"° (z, P(s)),
Av) (B(s'), d(s);) = w(p(s"), x) Vg log mg(d(s)|z) — w(e(s), z) Vg log mg(o(s)|x),
Av,)(¢(s),s") == Velogmy(s'|z) — Vo log mg(o(s)|x).

D.4 DERIVATION OF THE VARIANCE OF DSO (PROOFS OF THEOREM 2))

Proof. From the total law of variance, we have
nV((VoV)pso) = Vi) (En[(VeV)psolz])
+ Ep(a) [Vo (s]2) (0(9(8)[2) Vg log o (¢(5) |[2)g (2, 5))]
+ Ep(aymo(sla) [(w(6(8)]2))* (Vo log mo(¢(s) | x)) >0 (2, 5)].

23

Under review as a conference paper at ICLR 2025

Because we have w(é(s)lz) = Erj(aeges)w(z,a)] and Vylogmg(d(s)|z) =
o (alz0(s)) [Vo log mg(alx)], the following holds.
Vﬂ’o(a,SIHC) (w(a,r)) — V71'o(a,5|9c) (w(e(s)|z)) = IEWo(SIﬂc) [Vﬂo(a|¢(5)\z)(w(av m))]
Vﬂ'o(a,s|I) (V19 IOg 7T9(S|£ZJ)) - Vﬂ'o(a,skv) (VQ log o (a|$)) =]Eﬂ'o(s|w) [Vﬂg(a|¢(s)\w)(v9 IOg o (CL‘I))]
O

E FUTURE WORK: DISCUSSION ABOUT DR VARIANTS OF DSO

From the above theoretical analysis, the regression-based baseline required for a DR-style estimator
like Dudik et al.|(2011); [Saito et al.| (2023)) should be

Ery((s)12) [Vo log mo(p(s)|2)3™ (z, H(s))]

in expectation to achieve the same degree of bias as IS. However, a way of computing such baselines
is not trivial because estimating log 7y (¢(s)|z) from data without applying importance sampling is
challenging. Specifically, while it is possible to estimate the score function as follows, as we did in
estimating the weighted score function,

Valog ma((s)e) = "SIV log m(0(5))
_E K(s,s'; 2, 7)Vylogmg(a|x)
= L(a,s")~mo(alz)pum(s’|z,a) WO(QZ)(S)‘-T))

we need additional importance sampling in the regression-based baseline term, not only in the original
IS term. Therefore, even though DR approaches often aim for a further variance reduction, this naive
definition of DSO-hybrid does not reduce the variance of DSO-IS. Figuring out an efficient way of
combining IS and regression would be a promising future work.

F EXAMPLE USAGES OF OFFLINEPROMPTS

F.1 SEMI-SYNTHETIC BENCHMARK WITH LANGUAGE GENERATION

Here, we provide example codes to streamline the OPL procedure using OfflinePrompts. While we
focus on the movie description (semi-synthetic) benchmark in this section, a similar workflow is also
applicable to the synthetic benchmark. Please also refer to additional example codes including those
with the synthetic benchmark at: (double blind review).

F.1.1 SETTING UP A SEMI-SYNTHETIC SIMULATION

To set up the default movie description benchmark, users can follow the codes in Code
snippet 1. The default datasets, candidate prompts, and finetuned parameters are stored in
src/dataset/assets/ in the OfflinePrompts repository.

To customize the benchmark setting, it is also possible to use configurable sub-
modules: ContextQueryLoader, CandidateActionsLoader, FrozenLLM, and
RewardSimulator. Specifically, users can first create customized instances of these submodules
and then pass them to SemiSyntheticDataset as exemplified in Code snippet 2-5.

F.1.2 LOGGING POLICY

After setting up the simulator, the next step is to define a logging policy to collect logged feedback.
We describe the procedure in Code snippets 6 and 7. Specifically, in Code snippet 6, we first fit the
dimension reduction model to obtain low dimensional embeddings of query, prompt, and sentence.
These encoders are used across various models, e.g., to define the logging policy and to define a
reward preditor, etc. Then, Code snippet 7 describes how to define a softmax logging policy. In the
example code, we first train a regression model used in the logging policy and then pass it to the
softmax policy class.

24

Under review as a conference paper at ICLR 2025

F.1.3 DATA COLLECTION AND REGRESSIONS

Once defining a logging policy, we collect logged data as shown in Code snippets 8. The outputs,
including 1ogged_feedback and meta_data, contain the following keys.

* logged_feedback:
{ user_id, item_id, context, query, action,
action_choice_probability®*, sentence, expected_reward®*, reward }

e meta_data™*:
{ size, reward_type, reward_std, action_list }

Note that the keys with an asterisk (*) are optional outputs, and action is returned by index.
reward_type indicates whether the reward is binary or continuous, and action_list con-
tains the list of candidate prompts, corresponding to each action index.

After obtaining the logged data, we regress the reward and train a logging marginal density model
as described in Code snippets 8 and 9. prompt_reward_predictor is used by naive PG and
two-stage PG, while sentence_reward_predictor andmarginal_density_model are
used by DSO.

F.1.4 (ONLINE POLICY GRADIENT)

In OPL experiments, we often use the performance of online policy gradient as a baseline. To learn a
policy online, we can run online policy gradient as shown in Code snippet 10.

F.1.5 SINGLE STAGE POLICY GRADIENTS

Code snippet 11 shows the example codes to run naive PGs, including regression-based, IS-based,
and hybrid ones. The procedure consists of only 3 steps: (1) define a policy, (2) then setup a learner
class (PolicyLearner), and (3) call one of the policy gradient methods. As seen in the example
code, all policy gradient methods can be called in similar formats. Researchers can also implement
their own policy gradient methods in a similar way.

F.1.6 DIRECT SENTENCE OFF-POLICY GRADIENT (DSO)

DSO can also be run in a very similar way as the naive policy gradient. As exempli-
fied in Code snippet 12, the key difference is that DSO uses KernelPolicyLearner,
logging_marginal_density_model, and sentence_reward_predictor. Only the
IS-based policy gradient is implemented for DSO.

F.2 (ONLINE) PERFORMANCE EVALUATION

Finally, after learning a policy, we test its performance through online interaction. This can be done
in a single line of code, as shown in Code snippet 13.

We also provide additional quickstart examples at: (double blind review)

from src.dataset import SemiSyntheticDataset

dataset = SemiSyntheticDataset(
path_to_user_embeddings="assets/movielens_naive_cf_user_embeddings",
path_to_queries="assets/movielens_query.csv",
path_to_candidate_prompts="assets/movielens_benchmark_prompts.csv",
path_to_finetuned_params= "assets/movielens_distilbert_reward_simulator.pt",
random_state=12345,

Code Snippet 1: Setting up the default benchmark environment

25

Under review as a conference paper at ICLR 2025

from src.dataset import (
ContextQueryLoader,
CandidateActionsLoader,

)

load contexts and queries

context_query_loader = DefaultContextQueryLoader(
path_to_user_embeddings="assets/movielens_naive_cf_user_embeddings",
path_to_queries="assets/movielens_query.csv",
device=self.device,
random_state=self.random_state,

)

load candidate prompts

candidate_actions_loader = CandidateActionsLoader (
n_actions=1000,
path_to_candidate_prompts="assets/movielens_benchmark_prompts.csv",
random_state=self.random_state,

Code Snippet 2: Customizing the context, query, candidate actions loader

from src.dataset import AutoFrozenLLM
from transformers import AutoModelForCausalLM, AutoTokenizer

load frozen 1llm
frozen_llm_tokenizer = AutoTokenizer.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.2",
truncation=True,
do_lower_case=True,
use_fast=True,
)
frozen_llm_model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.2",
)
frozen_llm_tokenizer_kwargs = {
"add_special_tokens": True,
"padding": True,
"truncation": True,
"max_length": 20,
"return_tensors": "pt",
}
self.frozen_llm_prompt_formatter = MovielensPromptFormatter (
tokenizer=frozen_llm_tokenizer,
tokenizer_kwargs=frozen_llm_tokenizer_kwargs,
device="cuda",
)
pattern = r"Broadly describe in a sentence the genres of the movie without
including the name or any specifics of.*7\n\n"

frozen_llm_tokenizer.add_special_tokens({"pad_token": "[PAD]"})
frozen_llm_model.resize_token_embeddings(len(frozen_llm_tokenizer))
frozen_llm_model.to("cuda")

frozen_11lm = AutoFrozenLLM(
prompt_formatter=frozen_llm_prompt_formatter,
model=frozen_llm_model,
tokenizer=frozen_llm_tokenizer,
tokenizer_kwargs=frozen_llm_tokenizer_kwargs,
pattern=pattern,
device="cuda",
random_state=12345,

Code Snippet 3: Customizing the frozen LLM

26

Under review as a conference paper at ICLR 2025

)

)

)

)

}

from src.dataset import TransformerRewardSimulator
from transformers import AutoModelForCausallLM, AutoTokenizer

load reward simulator
reward_simulator_tokenizer = AutoTokenizer.from_pretrained(
"distilbert-base-uncased",
truncation=True,
do_lower_case=True,
use_fast=True,

reward_simulator_base_model = AutoModel.from_pretrained(
"distilbert-base-uncased",

reward_simulator_tokenizer_kwargs = {
"add_special_tokens": True,
"padding": True,
"truncation": True,
"max_length": 20,
"return_tensors": "pt",

reward_simulator_tokenizer.add_special_tokens({"pad_token": "[PAD]"})
reward_simulator_base_model.resize_token_embeddings (
len(reward_simulator_tokenizer)

reward_simulator_base_model.to("cuda")

reward_simulator = TransformerRewardSimulator (
n_users=context_query_loader.n_users,
n_items=context_query_loader.n_queries,
base_model=reward_simulator_base_model,
tokenizer=reward_simulator_tokenizer,
tokenizer_kwargs=reward_simulator_tokenizer_kwargs,
device="cuda",
random_state=12345,

reward_simulator.load_state_dict(
torch.load("assets/movielens_distilbert_reward_simulator.pt")

Code Snippet 4: Customizing the reward simulator

create a custom environment with customized modules
dataset
context_query_loader=context_query_loader,
candidate_actions_loader=candidate_actions_loader,
frozen_llm=frozen_llm,
reward_simulator=reward_simulator,
frozen_llm_prompt_formatter=frozen_llm_prompt_formatter,
reward_type="binary",
device="cuda",
random_state=12345,

= SemiSyntheticDataset(

Code Snippet 5: Combining the customized modules to define the custom dataset

27

Under review as a conference paper at ICLR 2025

from src.policy import TransformerEncoder
from src.policy import UniformRandomPolicy

collect logged data to fit the encoder
uniform_policy = UniformRandomPolicy(
action_list=dataset.action_list,
device="cuda",
random_state=12345,
)
logged_feedback_for_pretraining = dataset.sample_dataset(
policy=uniform_policy, n_samples=10000,

query = logged_feedback_for_pretraining["query"]
sentence = logged_feedback_for_pretraining["sentence"]
prompt = dataset.action_list

define and fit encoders
query_encoder = TransformerEncoder(
dim_emb=10,
device="cuda",
random_state=12345,

)

prompt_encoder = TransformerEncoder(
dim_emb=10,
device="cuda",
random_state=12345,

)

sentence_encoder = TransformerEncoder (
dim_emb=10,
device="cuda",
random_state=12345,

)

applying dimension reduction
query_encoder.fit_pca(query)
prompt_encoder.fit_pca(prompt)
sentence_encoder.fit_pca(sentence)

Code Snippet 6: Fitting encoder

28

Under review as a conference paper at ICLR 2025

from src.opl import PromptRewardLearner
from src.policy import PromptRewardPredictor
from src.policy import SoftmaxPolicy, UniformRandomPolicy

collect data for regressing the logging reward predictor
uniform_policy = UniformRandomPolicy(
action_list=dataset.action_list,
device="cuda",
random_state=12345,
)
logged_feedback_for_pretraining = dataset.sample_dataset(
policy=uniform_policy, n_samples=10000,

train a reward predictor to define the logging policy
prompt_reward_predictor = PromptRewardPredictor(
dim_context=dataset.dim_context,
action_list=dataset.action_list,
query_encoder=query_encoder,
prompt_encoder=prompt_encoder,
device="cuda",
random_state=12345,
)
prompt_reward_learner = PromptRewardLearner (
model=prompt_reward_predictor,
action_list=dataset.action_list,
frozen_llm=dataset.frozen_llm,
optimizer_kwargs={"1lr": le-4, "weight_decay": 0.0},
env=dataset,
random_state=12345,
)
logging_prompt_reward_predictor = prompt_reward_learner.offline_training(
logged_feedback=logged_feedback_for_pretraining,
random_state=12345,
)

define logging policy

logging_policy = SoftmaxPolicy(
action_list=dataset.action_list,
base_model=logging_prompt_reward_predictor,
beta=1.0, # inversed temperature
device="cuda",
random_state=12345,

Code Snippet 7: Training the logging reward predictor and defining the logging policy

29

Under review as a conference paper at ICLR 2025

from src.opl import SentenceRewardLearner, PromptRewardLearner
from src.policy import SentenceRewardPredictor, PromptRewardPredictor

collect logged dataset

logged_feedback = dataset.sample_dataset(
policy=logging_policy,
n_samples=10000,

)

train regression models

sentence_reward_predictor = SentenceRewardPredictor(
dim_context=dataset.dim_context,
frozen_llm=dataset.frozen_11lm,
query_encoder=query_encoder,
sentence_encoder=sentence_encoder,
device="cuda",
random_state=12345,

)

sentence_reward_learner = SentenceRewardLearner (
action_list=dataset.action_list,
model=sentence_reward_predictor,
frozen_llm=dataset.frozen_1llm,
optimizer_kwargs={"lr": le-4, "weight_decay": 0.0},
random_state=12345,

)

sentence_reward_predictor = sentence_reward_learner.offline_training(
logged_feedback=logged_feedback,

prompt_reward_predictor = PromptRewardPredictor (
dim_context=dataset.dim_context,
action_list=dataset.action_list,
query_encoder=query_encoder,
prompt_encoder=prompt_encoder,
device="cuda",
random_state=12345,

)

prompt_reward_learner = PromptRewardLearner (
model=prompt_reward_predictor,
action_list=dataset.action_list,
frozen_llm=dataset.frozen_llm,
query_encoder=query_encoder,
prompt_encoder=prompt_encoder,
optimizer_kwargs={"lr": le-4, "weight_decay": 0.0},
env=dataset,
random_state=12345,

)

prompt_reward_predictor = prompt_reward_learner.offline_training(
logged_feedback=logged_feedback,

Code Snippet 8: Collecting logged data and regressing rewards

30

Under review as a conference paper at ICLR 2025

from src.opl import MarginalDensityLearner
from src.policy import KernelMarginalDensityEstimator
from src.utils import gaussian_kernel

learning a marginal density model
kernel_marginal_estimator = KernelMarginalDensityEstimator (
action_list=dataset.action_list,
dim_context=dataset.dim_context,
frozen_llm=dataset.frozen_llm,
query_encoder=query_encoder,
sentence_encoder=sentence_encoder,
kernel_function=gaussian_kernel,
kernel_kwargs={"tau": 1.0}, # bandwidth
device="cuda",
random_state=12345,
)
marginal_density_learner = MarginalDensityLearner(
model=kernel_marginal_estimator,
action_list=dataset.action_list,
frozen_llm=dataset.frozen_llm,
optimizer_kwargs={"lr": le-4, "weight_decay": 0.0},
)
kernel_marginal_estimator = marginal_density_learner.simulation_training(
logged_feedback=logged_feedback,

Code Snippet 9: Training a logging marginal density model (used by DSO)

from src.opl import PolicyLearner
from src.policy import PromptPolicy

policy = PromptPolicy(
n_actions=dataset.n_actions,
dim_context=dataset.dim_context,
query_encoder=query_encoder,
device="cuda",
random_state=12345,

)

policy_learner = PolicyLearner(
model=policy,
action_list=dataset.action_list,
prompt_reward_predictor=prompt_reward_predictor,
query_encoder=query_encoder,
sentence_encoder=sentence_encoder,
optimizer_kwargs={"lr": 5e-4, "weight_decay": 0.0},
env=dataset,
random_state=12345,

)

policy = policy_learner.online_policy_gradient (
n_epochs=10000,

)

Code Snippet 10: Online policy gradient

31

Under review as a conference paper at ICLR 2025

from src.opl import PolicyLearner
from src.policy import PromptPolicy

policy = PromptPolicy(
n_actions=dataset.n_actions,
dim_context=dataset.dim_context,
query_encoder=query_encoder,
device="cuda",
random_state=12345,

)

policy_learner = PolicyLearner(
model=policy,
action_list=dataset.action_list,
prompt_reward_predictor=prompt_reward_predictor,
query_encoder=query_encoder,
sentence_encoder=sentence_encoder,
optimizer_kwargs={"lr": 5e-4, "weight_decay": 0.0},
env=dataset,
random_state=12345,

)

regression-based

policy = policy_learner.model_based_policy_gradient(
logged_feedback=logged_feedback,
n_epochs=10000,

)

IS-based

policy = policy_learner.importance_sampling_based_policy_gradient (
logged_feedback=logged_feedback,
n_epochs=10000,

)

hybrid

policy = policy_learner.hybrid_policy_gradient(
logged_feedback=logged_feedback,
n_epochs=10000,

Code Snippet 11: OPL with naive policy gradients

from src.opl import PolicyLearner
from src.policy import PromptPolicy

policy = PromptPolicy(
n_actions=dataset.n_actions,
dim_context=dataset.dim_context,
query_encoder=query_encoder,
device="cuda",
random_state=12345,

)

kernel_policy_learner = KernelPolicyLearner(
model=policy,
action_list=dataset.action_list,
kernel_marginal_estimator=kernel_marginal_estimator,
sentence_reward_predictor=sentence_reward_predictor,
frozen_llm=dataset.frozen_llm,
query_encoder=query_encoder,
sentence_encoder=sentence_encoder,
optimizer_kwargs={"lr": 5e-4, "weight_decay": 0.0},
env=dataset,
random_state=12345,

)

DSO

policy = kernel_policy_learner.importance_sampling_based_policy_gradient(
logged_feedback=logged_feedback,
n_epochs=10000,

Code Snippet 12: OPL with DSO (the proposed method)

policy_value = dataset.calc_expected_policy_value(
policy=policy,
n_samples_to_approximate=10000,

Code Snippet 13: Evaluating the policy performance online

32

	Introduction
	Related Work
	Problem Formulation
	Conventional approaches

	Proposal: Direct Sentence Off-Policy Gradient (DSO)
	Estimation of the weighted score function
	Theoretical Analysis

	Benchmarks and open-source software
	Synthetic Experiments
	Experiment setting
	Result

	Full-LLM Experiment with MovieLens
	Conclusion and Future Work
	Extended Related Work
	OfflinePrompts: Open-source software of OPL for language generation
	Overview and workflow
	Task description and reward simulation for the movie description task
	Data generation process for the synthetic benchmark

	Implementation details of experiments
	Synthetic experiments
	Full-LLM experiment
	Doubly Robust (DR) estimators

	Omitted proofs and derivations
	Derivation of the PG in the sentence space
	Derivation of the weighted score function
	Derivation of the bias of DSO (Proofs of Theorem 1)
	Derivation of the variance of DSO (Proofs of Theorem 2)

	Future work: Discussion about DR variants of DSO
	Example usages of OfflinePrompts
	Semi-synthetic benchmark with language generation
	Setting up a semi-synthetic simulation
	Logging policy
	Data collection and regressions
	(Online policy gradient)
	Single stage policy gradients
	Direct Sentence Off-Policy Gradient (DSO)

	(Online) performance evaluation

