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Abstract

Predicting human mobility is inherently challenging due to complex long-range de-
pendencies and multi-scale periodic behaviors. To address this, we introduce
RHYTHM (Reasoning with Hierarchical Temporal Tokenization for Human
Mobility), a unified framework that leverages large language models (LLMs)
as general-purpose spatio-temporal predictors and trajectory reasoners. Method-
ologically, RHYTHM employs temporal tokenization to partition each trajectory
into daily segments and encode them as discrete tokens with hierarchical atten-
tion that captures both daily and weekly dependencies, thereby quadratically re-
ducing the sequence length while preserving cyclical information. Additionally,
we enrich token representations by adding pre-computed prompt embeddings
for trajectory segments and prediction targets via a frozen LLM, and feeding
these combined embeddings back into the LLM backbone to capture complex
interdependencies. Computationally, RHYTHM keeps the pretrained LLM back-
bone frozen, yielding faster training and lower memory usage. We evaluate our
model against state-of-the-art methods using three real-world datasets. Notably,
RHYTHM achieves a 2.4% improvement in overall accuracy, a 5.0% increase on
weekends, and a 24.6 % reduction in training time. Code is publicly available at
https://github.com/he-h/rhythm.

1 Introduction

Human mobility shapes transportation systems [6, 62], informs epidemic control strategies [63,
8], and guides sustainable city planning [4], making accurate movement prediction essential for
optimizing infrastructure, managing disease spread, and building resilient communities [42]. Yet
human trajectories exhibit long-range dependencies, spatial heterogeneity [78, 19], and dynamic
influences such as weather anomalies or special events [7, 36], producing non-stationary, multi-scale
spatio-temporal patterns.

To address this challenge, we introduce RHYTHM (Reasoning with Hierarchical Temporal
Tokenization for Human Mobility), a human mobility foundation model that rethinks mobility
modeling via structured temporal abstraction. We posit that human mobility, like language, follows
compositional structures: daily routines form tokens, and weekly rhythms form higher-order syntax.
RHYTHM operationalizes this analogy by tokenizing time into segments and reasoning over them
with a frozen large language model (LLM). This framework unites multi-scale temporal tokenization
with the reasoning capabilities of pretrained LLMs, delivering a scalable and general approach for
mobility prediction with reduced computational cost.

The design of RHYTHM is inspired by inherent patterns of human mobility. People’s movements are
not random; they follow an underlying order marked by recurring daily and weekly rhythms [12, 24,
18]. Notably, Song et al. [58] quantify this regularity by showing that 93% of daily trajectories are
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predictable, underscoring the critical role of cyclical temporal context in mobility modeling. Capturing
this cyclical regularity requires models that can jointly represent local behaviors (e.g., morning
commutes) and global temporal dependencies (e.g., weekly routines). Yet existing approaches fall
short: Markov and RNN-based methods either disregard long-term periodicity or suffer vanishing
gradients over long sequences [76, 19, 22], while transformer-based methods treat time as static,
failing to disentangle multi-scale temporal patterns [27, 72]. To bridge this gap, we decompose each
trajectory into meaningful segments, tokenizing each into discrete representations that capture local
patterns through intra-segment attention. These segment tokens are then pooled into higher-level
representations, enabling inter-segment attention to model long-range dependencies across days,
as illustrated in Figure 1, thereby reducing sequence length and quadratically lowering attention
cost. Each segment token is augmented with pre-computed semantic embeddings derived from a
frozen LLM, enriching temporal tokens with contextual meaning before being processed by the LLM
backbone for reasoning.

Recent advances demonstrates LLMs’
remarkable capabilities not only as se-
quential representation extractors to 1 1 1 1

capture the spatio-temporal attention Model [ T J
patterns but also as reasoning models

[13, 9]. Prior works [25, 59, 17, 21] { I 1 c=—tar--l5 ¢f--o
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shot prompting [9], chain-of-thought
reasoning [50, 49, 66], and in-context
learning [16]. However, mobility-
specific models like PMT [71] and ST- Figure 1: Motivation for RHYTHM. Instead of processing
MOoE-BERT [26] lack the capability to ~ entire trajectories as a continuous sequence, RHYTHM seg-
leverage LLMs for modeling complex ments them into tokens to better capture periodic patterns.
correlations in human flows, limiting

their predictive performance. By integrating an LLM-based reasoning module, RHYTHM more
effectively models these complex interdependencies. To maintain scalability, RHYTHM adopts a
parameter-efficient adaptation strategy by freezing the pretrained LLM and avoid extensive fine-
tuning. This design captures fine-grained spatio-temporal dynamics, deep semantic context, and
leverages LLM reasoning—all while minimizing computational and memory overhead—making
RHYTHM ideally suited for deployment in resource-constrained, real-world environments.
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Contributions. We propose RHYTHM, a unified, computationally efficient framework that cap-
tures both temporal dynamics and cyclical patterns, as illustrated in Figure 2. Our contributions are
as follows:

* We introduce temporal tokenization that encodes daily mobility patterns as discrete tokens, reducing
the processed sequence length while capturing cyclical and multi-scale mobility dependencies
through hierarchical attention mechanism.

* We design an efficient prompt-guided approach that integrates semantic trajectory information and
task description with segment embeddings, enhancing RHYTHM’s ability to interpret complex
mobility patterns.

* We propose a parameter-efficient adaptation strategy using frozen pretrained LLMs, reducing train-
able parameters to 12.37 % of the full model size and achieving a 24.6 % reduction in computational
cost compared to other baselines.

» Empirically, we evaluate RHYTHM on three real-world mobility datasets, demonstrating superior
performance compared to state-of-the-art models. RHYTHM achieves a 2.4% improvement in
prediction accuracy, with a 5.0% increase on weekends.

2 Related Work

In this section, we provide a brief overview of related work, with a detailed review in Appendix B.
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Figure 2: The proposed architecture of RHYTHM. Our framework processes historical trajectories
through spatio-temporal embedding and temporal tokenization (b), capturing local and global depen-
dencies via hierarchical attention. Segment representations are enriched with semantic embeddings
from trajectory information, while future timestamps incorporate task description context (a). This
combined sequence passes through a frozen LLM backbone with output projection to generate
location predictions.

Mobility Prediction. Human mobility prediction progresses from probabilistic approaches [75, 22]
to deep learning architectures, as demonstrated in recent studies. Sequence models like LSTM [37]
and attention mechanisms [19] improve temporal modeling, while graph-based methods [55, 14]
integrate spatial relationships. Transformer architectures [65, 77, 45] further enhance long-range
dependency modeling but struggle with the hierarchical structure of mobility patterns. Recent work
with LLMs [20, 64] shows promise but typically treats mobility as generic sequences, ignoring the
inherent periodicity of human movement.

Cross-domain Adaptation of LLMs. LLMs emerge as powerful natural language processing
systems and quickly evolve into general-purpose foundation models capable of reasoning and
generation tasks [9, 1]. Their remarkable adaptability has enabled successful applications in computer
vision [5, 53], speech [69, 46], biomedicine [82, 44, 57], time series forecasting [11, 81], and finance
[31, 70]. While many adaptations rely on parameter-efficient fine-tuning methods like LoRA [29],
recent approaches maintain frozen LLMs by utilizing them as sequential representation extractors,
preserving their semantic capabilities while reducing computational costs [40, 32, 2]. To the best
of our knowledge, RHYTHM is the first approach that adapts frozen LLMs to mobility prediction
without compromising the model’s reasoning capabilities or requiring extensive fine-tuning.

3 Method

In this section, we introduce RHYTHM, an LLM-based deep architecture tailored for prompt-guided
representation learning of spatio-temporal patterns with its periodicity, as shown in Figure 2. In the
following, we first define the problem and then introduce the model structure of RHYTHM, including
its computational efficiency and theoretical guarantees.

3.1 Problem definition

Let X = {z1, o, ...,z } denote a user’s historical trajectory, where each x; = (;, ;) consists of

a timestamp ¢; and a location [; € £ from a finite set of locations £. Given a sequence of future

timestamps 7 = {¢r41,t742,...,tr+m} with prediction horizon H, the goal is to predict the

corresponding future locations Y = {lr11,lr42,...,Ilr4+m}. Formally, we seek a function
fXT)= Y,

which maps historical trajectories and future timestamps to the user’s future locations.



3.2 Model structure

Spatio-Temporal Feature Encoding. For each observation x;, we construct temporal embeddings
to capture cyclical patterns in human movements:
Et@mporal _ ETOD(ti) ||EDOW (ti)
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where -||- indicates concatenation, E™P represents the time-of-day embedding (capturing 24-hour
cycles), and EP°V represents the day-of-week embedding (capturing weekly patterns). These
are learnable embeddings that map discrete temporal indices to continuous representations, with

E¥"™™ ¢ RD with D matching the backbone LLM’s input dimension.

Spatial embeddings E™ € RP for location /; is defined as:

E = EY(1;)]| (Weoorallati, Ton:)” + beoora)

7

where EM¢ denotes the categorical location embedding, and the second term projects the geographic
coordinates (lat;, lon;) into the embedding space. Here, Weoorq € R%*2 is the projection matrix
and do0rq denotes the projected dimension.

The spatio-temporal embedding E; € R” is obtained by element-wise addition:
temporal spatial
E, = E/™ + EP™.

For future timestamps without known locations or missing historical records, the spatial component is
set to zero, allowing the model to operate on temporal information alone while preserving dimensional
consistency.

Temporal Tokenization. Human mobility patterns exhibit inherent multi-scale temporal structures
that span both short-term routines (e.g., daily activities) and long-term periodicities (e.g., weekly
rhythms) [58, 24]. To effectively model these dynamics, RHYTHM employs a temporal tokenization
mechanism that effectively disentangles local patterns from global dependencies, inspired by Liu
et al. [40]. Formally, we partition the embedded sequence X’ into N non-overlapping segments
{s1,82,...,8n}, each capturing meaningful temporal intervals (e.g., daily patterns):

S; = {E(ifl)lrl»h E(i*l)L+2a s 7EiL} fori = L2,..., N7

where each segment s; has length L (number of time steps). Within each segment, we employ
intra-segment attention to model local temporal dependencies:

E(®) = Attention(s;).

Our attention mechanism follows a pre-norm transformer architecture with a gated feed-forward
network as introduced by Dubey et al. [17], which enhances gradient flow during training and
increases model expressivity. The implementation details are provided in Appendix C. To enable
efficient modeling of cross-segment dependencies, we apply a learnable pooling operation that
condenses each segment into a discrete token representation:

SE; = Pool(f}(i)).

The resulting segment tokens {éﬁl, éﬁg, ceey SE ~ } undergo inter-segment attention to capture
broader temporal context and long-range dependencies:

SE,.y = Attention(SE;.y),

yielding refined segment-level embedding SE; € R that integrates contextual information across
multiple temporal scales. By reducing the effective sequence length from 7" to N while preserving
both fine-grained temporal dynamics and long-term dependencies, our approach addresses the
computational challenges of modeling extended mobility trajectories.

Semantic Context Integration. Prior work such as FPT [81] employs LLMs as general-purpose
sequential representation extractors. However, models like those in Wu et al. [67], Nie et al. [48]
typically discard semantic embeddings and other critical information. For instance, timestamp
attributes (e.g., day of the week, hour of the day) are essential for capturing chronological patterns in



human mobility, while spatial details—such as coordinates—provide additional context for accurate
prediction.

While recent works [40, 68, 80] begin to incorporate semantic information in sequential data, they
typically employ traditional embedding approaches that fail to holistically capture the rich contextual
information inherent in mobility patterns. Our work addresses this limitation by developing a mobility-
based semantic embedding method that leverages detailed trajectory information. A key challenge
in utilizing LL.Ms for mobility prediction is balancing information richness with computational
efficiency. Unlike approaches such as LLM-Mob [64] that rely on extensive prompting—which
can lead to excessive context lengths and computational overhead, our approach breaks trajectory
information into smaller, segment-specific pieces that retain essential mobility patterns while ensuring
shorter prompts for each component. This decomposition significantly improves computational
efficiency without sacrificing semantic richness. For each segment token, we provide informative
trajectory descriptions, and for each future timestamp, we provide task descriptions and timestamp
information, clarifying the expected output as shown in Appendix D. These prompts are then
processed by pretrained LLMs to generate semantic embeddings. We adopt a strategy that uses
the special end-of-sequence (<E0S>) token for positional embedding, thereby integrating semantic
information without extending the overall context length.

Technically, we define the semantic embedding TE; € R for each token as follows:
TE; = SelectLast(LLM(Prompt(z(;—1)r+1:1)))-

Similarly semantic embedding of task description for future timestamp is defined as TE; =
SelectLast(LLM(Prompt(7))). Notably, TE is pre-computed using the LLM, so a runtime forward
pass through the language model is not required during training.

Semantic-Temporal Alignment for Mobility Prediction. Since the latent space of the LLM
encompasses both temporal tokens and semantic tokens, the semantic embedding can be aligned
with the corresponding time span without extending the context length. Consequently, the combined

embedding CE; for segment i is obtained by elementwise adding the segment embedding SE; and
semantic embedding SE;:

CE; = SE; + TE,.
Here, TE,; serves a role similar to positional embeddings [61], while avoiding the sequence length
overhead incurred by prompt concatenation [32]. Similarly, the combined embedding for future
timestep 1" + j is computed as CEy; = Ex1; + TE7, following the combined embedding for N
segments.

After obtaining the enriched embeddings CE;, we feed them into the backbone of RHYTHM-a
pretrained LLM. The LLM processes these embeddings through its deep layers, performing in-context
reasoning over the aligned temporal and semantic information, and yields contextualized hidden
representations h; from its last hidden layer.

h; = LLM(CE;).

Then we apply an output projection layer to map the LLM’s final representations to a set of logits
corresponding to candidate locations.

P(lp4;|X,T) = softmax(Wohn+; + by),

where W, € RI#*P_ These logits are then used to determine the most likely location predictions,
thereby generating human mobility forecasting as defined in our problem statement. See Appendix E
for implementation details.

3.3 Computational Efficiency

RHYTHM achieves computational and parameter efficiency through several complementary design
choices. Semantic embeddings are computed once—offline—using the frozen LLM prior to model
training, thereby eliminating any need for language-model inference at runtime. Simultaneously,
our temporal tokenization mechanism significantly reduces sequence length from 7"+ H to N + H,
thereby decreasing the quadratic attention complexity from O((T + H)?) to O((N + H)?), which
is particularly valuable when processing extended mobility histories. Furthermore, we keep the LLM



backbone parameters frozen during training, resulting in faster convergence and reduced memory
requirements. The combination of these approaches enables RHYTHM to efficiently process long
mobility trajectories while maintaining strong predictive performance (as shown in Figure 3), making
it suitable for large-scale mobility prediction tasks where computational resources may be constrained.

3.4 Theoretical Guarantee

We emphasize that our design choices provide strong theoretical guarantees. Employing an LLM
as a universal sequential representation extractor provides two key advantages: (1) it ensures the
convergence of output values, as demonstrated in Zhou et al. [§1, Theorem E.2], and (2) it guarantees
a uniform distribution of the feature space in the last hidden layer of the LLM, as outlined in Zhou et al.
[81, Theorem E.3]. Together, these properties enable LLMs to enhance the learning capability of the
final multi-layer perceptron layer. Additionally, since our model is transformer-based, Ramsauer et al.
[54] demonstrates that the transformer architecture is a special case of modern Hopfield networks.
Our approach has a guaranteed upper bound on memory retrieval error in LLMs [30, Lemma 3.2].
These theoretical benefits reinforce our method, and our results provide validation.

4 Experiment

In this section, we conduct experiments to demonstrate the performance and efficiency of RHYTHM.
We evaluate the performance of RHYTHM on three real-world mobility datasets and compare it
with several state-of-the-art baselines. We also conduct a series of ablation studies to investigate the
effectiveness of the proposed strategies.

Models. To evaluate the model’s performance on mobility prediction, we use multiple pretrained
LLMs as the backbone of RHYTHM. These models are obtained from Hugging Face along with their
pretrained weights. The specific LLM variants used are detailed in Appendix G.4.

Evaluation Metrics. For mobility prediction, we employ Accuracy @k, where candidate locations
are ranked based on model-predicted probabilities, and a prediction is considered correct if the true
location is among the top k—and Mean Reciprocal Rank (MRR) to evaluate ranking performance.
These metrics have been shown to correlate well with human mobility prediction tasks [23, 19]. We
also utilize Dynamic Time Warping (DTW) [47] and BLEU [51] as real-world metrics to evaluate the
performance. DTW quantifies their spatial alignment, while BLEU measures the n-gram similarity
between predicted and ground-truth trajectories. Detailed descriptions about the evaluation metrics
can be found in Appendix G.1.

Datasets. We evaluate our approach on three real-world datasets collected from the cities of
Kumamoto, Sapporo, and Hiroshima sourced from YJMob100K [74]. Each day is divided into 48
time slots (each representing 30 minutes), though not every slot contains an observation. Each dataset
is divided into training, validation, and test sets based on days, with 70%, 20%, and 10% of the data
allocated to each set, respectively. More details about the dataset can be found in Appendix F.

Settings. The temporal resolution is 30 minutes. In our experiment, we use a 7-day lookback
window with 336 time slots and set the prediction horizon to 48 time slots (1 day). Also, we set the
segment length as 48 time slots for our experiments. The model is trained using cross-entropy loss to
maximize prediction accuracy across the target locations.

4.1 Overall Performance

To assess the efficiency of RHYTHM on human mobility prediction, we compare RHYTHM with
several state-of-the-art baselines. In this experiment, we evaluate the models on the test datasets using
FP16 precision. We conduct each evaluation three times with different random seeds and present the
average for each metric.

Baselines. To evaluate the performance of RHYTHM, we compare to LSTM-based models,
transformer-based models, and LLM-based models. For the transformer-based models, we conduct
experiments with PatchTST [48], PMT [71], ST-MoE-BERT [26], CMHSA [27], iTransformer [39]



and COLA [65]. Among these models, ST-MoE-BERT, PMT and COLA are the state-of-the-art
models for human mobility prediction. PatchTST and iTransformer are two powerful transformer-
based models for time series forecasting. We add the spatiotemporal embedding to the input of
those transformer-based time-series models for fair comparison. For the LLM-based models, we
conduct experiments with Time-LLM [32] and Mobility-LLM [23]. Time-LLM is a state-of-the-art
model for time series forecasting using LLMs. We also add the spatiotemporal embedding to the
input of Time-LLM for fair comparison. Additionally, in order to make a fair comparison, we use
the Llama-3.2 1B' as the pretrained LLM model for fine-tuning Time-LLM. Mobility-LLM is a
versatile LLM-based framework designed for multiple mobility tasks. For the LSTM-based models,
we conduct experiments with LSTM [34] and DeepMove [19].

Results. Table 1 show that RHYTHM outperforms the baselines across three datasets in most
metrics. On the Sapporo and Hiroshima dataset, RHYTHM achieves the best performance in all
evaluation metric. These findings underscore the effectiveness of RHYTHM in mobility prediction
tasks. CMHSA and PMT may perform better in Accuracy @3 on Kumamoto due to their specialized
attention mechanisms that effectively capture mid-range candidate locations in this region. Despite
sharing an LLM-based architecture, Mobility-LLM underperforms compared to RHYTHM, likely
because it was primarily designed for visiting intention tasks requiring rich semantic context. In
contrast, RHYTHM leverages temporal tokenization and LLM to model multi-scale spatio-temporal
dependencies, prioritizing precise location likelihood maximization. This design focus enables
RHYTHM to excel in top-rank precision metrics. Overall, RHYTHM achieves a 2.4% improvement
in Accuracy@1 and a 1.0% Accuracy @5 respectively compared to the best baseline model.

Table 1: Performance of RHYTHM and baselines on the Kumamoto, Sapporo, and Hiroshima
datasets. The evaluation metrics include Accuracy @k for different values of k. The reported results
are averaged over three runs; variance values are omitted as all are < 2%. The best results are
highlighted in bold, and the second-best results are underlined. RHYTHM demonstrates superior
performance compared to baselines across most configurations.

| Kumamoto | Sapporo | Hiroshima
Model | Acc@l Acc@3 Acc@5 | Acc@]  Acc@3  Acc@5 | Acc@1  Acc@3  Acc@5
LST™M 0.2652 04799 0.5472 | 0.2310 03940 0.4526 | 0.2129 0.3775 0.4415
DeepMove 0.2779 0.4986 0.5683 | 0.2825 0.4672 0.5264 | 0.2804 0.4810 0.5477
PatchTST 0.2751  0.5018 0.5716 | 0.2703 0.4582 0.5168 | 0.2752 0.4839 0.5522
iTransformer 0.2609 0.4724 0.5412 | 0.2696 0.4500 0.5070 | 0.2804 0.4857 0.5523
Time-LLM 0.2712  0.4848 0.5535 | 0.2792 0.4746 0.5352 | 0.2698 0.4753 0.5426
CMHSA 0.2862 0.5182 0.5887 | 0.2890 0.4901 0.5525 | 0.2874 0.5001 0.5684
PMT 0.2697 0.4475 0.5187 | 0.2878 0.4896 0.5522 | 0.2850 0.4982 0.5668
COLA 0.2864 0.5186 0.5896 | 0.2847 0.4865 0.5497 | 0.2874 0.5013  0.5708
ST-MoE-BERT 0.2862 0.5155 0.5871 | 0.2869 0.4856  0.5480 | 0.2839 0.4925 0.5601
Mobility-LLM 0.2666 0.4793  0.5448 | 0.2838 0.4703 0.5288 | 0.2826 0.4856  0.5525
RHYTHM-Llama-1B 0.2929  0.5200 0.5835 | 0.2931 0.4876 0.5502 | 0.2913 0.5027 0.5753
RHYTHM-Gemma-2B | 0.2923  0.5191 0.5932 | 0.2943 0.4896 0.5545 | 0.2953 0.5074 0.5798
RHYTHM-Llama-3B 0.2941  0.5205 0.5947 | 0.2938 0.4875 0.5523 | 0.2929 0.5032 0.5756

Geographical Evaluation. We evaluate RHYTHM against baseline models using BLEU and DTW,
which respectively measure n-gram similarity and spatial alignment error between predicted and
ground-truth trajectories. As shown in Table 2, RHYTHM scores the best DTW performance on
Sapporo, demonstrating superior spatial alignment. While COLA leads in BLEU scores for all cities,
RHYTHM ranks second in Kumamoto. This highlights a key trade-off between exact sequence
matching and minimizing spatial deviations. One potential explanation is that COLA employs a
post-hoc adjustment technique that recalibrates predictions to better align with the long-tail frequency
distribution of locations, which may enhance mid-tier accuracy by mitigating overconfidence in dom-
inant locations. Notably, RHYTHM significantly outperforms LSTM-based methods and transformer
baselines by leveraging temporal tokenization and prompt-guided reasoning to enhance sequential
coherence and spatial precision. This results in an optimal balance for real-world mobility tasks.
For MRR, RHYTHM consistently outperforms all baselines, achieving a 1.44% improvement over
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the best baseline and demonstrates its superior ranking capability across diverse mobility patterns.
Additional experimental results and extended evaluations are reported in Appendix H.

Table 2: Performance comparison of RHYTHM with baselines using geographical metrics. The
evaluation metrics include DTW ({), BLEU (1), and MRR (7). The best results are highlighted in
bold, and the second-best results are underlined.

| Kumamoto | Sapporo | Hiroshima
Model ‘ DTW BLEU MRR ‘ DTW BLEU MRR ‘ DTW BLEU MRR
LSTM 5014  0.1564 0.3860 | 4507 0.1716 0.3270 | 5908 0.1544 0.3113
DeepMove 4630 0.1746  0.4021 | 3818 0.1959 0.3887 | 4981 0.1933 0.3959
PatchTST 5251 0.1315 0.4021 | 4099 0.1784 0.3773 | 5021 0.1884 0.3945
iTransformer 6178 0.1275 0.3796 | 4074 0.1780 0.3730 | 5094 0.1789 0.3977
Time-LLM 5984 0.1285 03912 | 3915 0.2145 0.3902 | 5126 0.1988 0.3872
CMHSA 4490 0.1810 0.4158 | 3786 0.2299 0.4034 | 4841 0.2289 0.4086
PMT 4536  0.1524 0.3720 | 3799 0.2017 0.4026 | 4851 0.2009 0.4065
COLA 4446  0.2064 0.4164 | 3793 0.2496 0.3996 | 4840 0.2445 0.4095
ST-MoE-BERT 4691 0.1557 0.4151 | 3796 0.2102 0.4001 | 4889 0.2117 0.4031
Mobility-LLM 5603 0.1649 0.3858 | 3911 0.1917 0.3902 | 4985 0.2056 0.3990
RHYTHM-Llama-1B 4478  0.1793 04216 | 3745 0.2496 0.4045 | 5059 0.2083 0.4069
RHYTHM-Gemma-2B | 4416 0.1928 0.4205 | 3995 0.2019 0.4065 | 4857 0.2109 0.4173
RHYTHM-Llama-3B 4470 0.1814 0.4220 | 4035 0.1917 0.4048 | 4935 0.2093 0.4140

Transferability. To demonstrate that RHYTHM transfers well across pretrained LLMs, we vary
the size of the pretrained backbone and train it on the mobility prediction datasets (see Table 1 for
detailed results). In our experiments, we change the size of the pretrained model in RHYTHM and
test them on the mobility prediction datasets. We use the Llama-3.2-1B, Llama-3.2-3B, and Gemma-
2-2B model as the pretrained backbone of RHYTHM. The results indicate that the performance of
RHYTHM improves as the model size increases. Notably, Llama-3.2-3B and Gemma-2-2B model
outperforms the Llama-3.2-1B model in most metrics. This result demonstrates the performance
of RHYTHM scales with LLM size and suggests that larger models may achieve even greater
performance improvements on larger datasets. Note that our models are pretrained with 30 epochs.
It’s plausible that Llama-3.2-3B model requires more epochs to fully converge and realize its full
performance potential compared with Llama-3.2-1B model. However, Llama-3.2-3B model still
achieves competitive performance compared to Llama-3.2-1B model. Overall, Llama-3.2-3B model
demonstrated a 0.40% improvement in Acc@ 1 compared to Llama-3.2-1B model, highlighting the
scalability of RHYTHM.
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Figure 3: Training Speed vs. performance of  Figure 4: Efficiency comparison of alternative
RHYTHM and baseline models on the Sap- LLMSs, evaluated by the same configuration
poro Dataset. of Table 4.

Training Speed. To evaluate the training speed of RHYTHM, we conduct experiments on Sapporo
using the same training configuration. We run these experiments on a single NVIDIA A100 GPU
with 40GB of memory. The results are shown in Figure 3. RHYTHM reduces the number of
trainable parameters to only 12.37% of the full model size, reflecting its parameter-efficient design.
In terms of runtime, it achieves a 24.6% reduction in training time compared with the best-performing
baseline, while remaining faster than most other models, being 80.6% faster than LLM-based methods



on average. Although RHYTHM is slower than lightweight models such as LSTM, DeepMove,
PatchTST, and iTransformer, it substantially outperforms them in accuracy. Moreover, RHYTHM
maintains computational efficiency comparable to PMT, COLA and ST-MoE-BERT, despite having
significantly higher parameter counts, demonstrating its parameter-efficient design and scalable
architecture. Furthermore, RHYTHM’s training speed scales predictably with parameter count:
Llama-3B is 2.2 times slower than Llama-1B model, while Gemma-2-2B shows a 1.9 times slowdown.
A detailed breakdown of preprocessing time, storage cost, and training time across datasets is provided
in Appendix I.

Daily and Weekly Trend Analysis. We analyze the periodic accuracy trends of RHYTHM and
baselines on Sapporo, measuring performance fluctuations across daily and weekly intervals in
Figure 5. RHYTHM demonstrates distinct performance characteristics: achieving 5.0% and 3.4%
improvements during weekends and evening peak hours respectively, while showing comparable
performance during highly regular periods like nighttime and standard weekday working hours.
This pattern reveals a fundamental insight—RHYTHM excels precisely when mobility prediction
becomes a complex decision-making task rather than simple pattern matching. During regular hours,
mobility is largely deterministic with fixed routines where traditional models’ pattern memorization
suffices; however, weekends and transitional periods involve nuanced choices influenced by multiple
contextual factors, aligning with findings from Barbosa et al. [3] on weekend variability. In these
complex scenarios, RHYTHM’s hierarchical attention captures both local daily context and global
weekly patterns, while the LLM backbone provides reasoning capabilities to model non-routine
decision points. This makes RHYTHM particularly valuable for real-world applications where
handling irregular, unpredictable periods is crucial for system reliability, even if simpler models
suffice for deterministic segments.
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Figure 5: Weekly (left) and daily (right) accuracy trends of RHYTHM and baselines on Sapporo.
These results illustrate that prediction performance fluctuates over both daily and weekly intervals.

4.2 Method Analysis

In this section, we perform ablation studies to assess the effectiveness of the proposed strategies and
test the scaling behavior of RHY THM.

Ablation study. All experiments utilize Llama-3.2-1B as the backbone model. To evaluate our
key components, we conduct ablation studies across three datasets, as shown in Table 3. Removing
temporal tokenization significantly degrades performance by 5.39%, while eliminating hierarchical
attention (HA) results in a 0.90% decrease, demonstrating that structured temporal encoding is the
most critical element of our framework. Regarding semantic enhancement, our findings indicate
that both trajectory information and task description prompts contribute substantially to RHYTHM’s
effectiveness, with their removal causing a combined performance drop of 1.82%. Task descriptions
yield marginally higher impact than trajectory information, with their removal causing an additional
0.10% performance decrease compared to omitting trajectory information. Further ablation studies
examining the contribution of different design choices are included in Appendix J.

Scaling Behavior. Scalability is a critical factor in the success of large-scale models. We assess
RHYTHM’s scalability by analyzing its performance in different model sizes. We conduct experi-
ments using pretrained LLMs of varying sizes, including OPT, Llama-3.2, DeepSeek-R1, Gemma-2,
Phi-2, and Qwen 2.5 detailed in Table 6. As shown in Table 4, the predictor’s prediction performance
generally improves as the number of LLM parameters increases. This observation is consistent with



Table 3: Ablation study on each module in RHYTHM. We evaluate each module’s contribution to
overall performance. The best results are highlighted in bold. Each module significantly influences
RHYTHM’s performance across all datasets.

| Kumamoto | Sapporo | Hiroshima
Model ‘ Acc@1 Acc@3 Acc@5 ‘ Acc@1 Acc@3 Acc@5 ‘ Acc@1 Acc@3 Acc@5
RHYTHM 0.2929 0.5200 0.5835 | 0.2938 0.4866 0.5502 | 0.2913 0.5027 0.5753
w/o HA 0.2917  0.5163 0.5881 | 0.2901 0.4856 0.5481 | 0.2895 0.4946 0.5657
w/o token 0.2801 0.5049 0.5764 | 0.2768 04775 0.5409 | 0.2749 0.4812 0.5535

w/o Traj info. 0.2914 0.5176  0.5891 | 0.2879 0.4842  0.5472 | 0.2858 0.4916 0.5633
w/o Task desc. | 0.2895 0.5166  0.5889 | 0.2883  0.4839 0.5463 | 0.2882 0.4934  0.5648

scaling law dynamics in large models [33]. This scaling behavior highlights the trade-off between
predictive performance and adaptation cost. To capture this balance, we assess RHYTHM’s scalability
across three dimensions: model performance, parameter size, and training and inference speed (time
per epoch), as shown in Figure 4. Our results indicate that the largest model, Llama-3.2-3B, achieves
the best performance for human mobility prediction, while Llama-3.2-1B remains the most suitable
choice in RHYTHM, providing an optimal balance between performance and computational cost.

Table 4: Scalability Performance on RHYTHM. We conduct experiments to evaluate the scalability
of RHYTHM on Sapporo using pretrained models of varying parameter sizes. The evaluation metrics
include Accuracy @k, MRR, training time per epoch (in seconds), and inference time per epoch (in
seconds). The best results are highlighted in bold, while the second-best results are underlined. In
most configurations, the performance of RHYTHM improves as the model size increases.

Backbone Training Time (s) Inference Time (s) Acc@1 Acc@3 Acc@5 MRR
OPT-125M 787 107 0.2798 0.4726 0.5231 0.3819
OPT-350M 986 224 0.2837 0.4789 0.5343 0.3923
Llama-3.2-1B 5235 359 0.2929  0.5200 0.5835 0.4216
Qwen-2.5-1.5B 9241 336 0.2897 0.4873 0.5521 0.4049
DeepSeek-R1-1.5B 7308 335 0.2921 0.5164 0.5896 0.4188
Gemma-2-2B 9928 559 0.2923  0.5191 0.5932 0.4205
Phi-2 10047 693 0.2915 0.5166 0.5892 0.4183
Llama-3.2-3B 11566 762 0.2941  0.5205 0.5948 0.4220

5 Conclusion

This paper proposes RHYTHM, an efficient and scalable framework for mobility prediction.
RHYTHM leverages temporal tokenization with hierarchical attention mechanisms to model spatio-
temporal dependencies while incorporating semantic embeddings to capture cyclical patterns. The
integration of frozen pretrained LLMs as reasoning engines enables RHYTHM to interpret nuanced
decision-making processes that influence mobility choices, particularly in scenarios with irregular
or non-routine movement patterns, at reduced computational costs. Empirical results demonstrate
that RHYTHM significantly outperforms state-of-the-art methods in accuracy. Moreover, its high
scalability allows for the seamless integration of different pretrained LLMs in a plug-and-play manner,
offering a flexible and efficient prediction framework.

Limitations. It is worth noting that RHYTHM has certain limitations. Its performance depends
heavily on the quality of pretrained LLMs, which were designed for language tasks rather than
mobility prediction. If these models are resource-constrained, they may fail to capture user mobility
patterns accurately. RHYTHM does not adopt an autoregressive prediction strategy; although
widely studied in time-series modeling [40], we instead emphasize holistic sequence prediction to
capture broader contextual dependencies. Future extensions may integrate autoregressive decoding to
more closely mimic step-by-step human mobility decisions. In addition, while freezing pretrained
LLMs improves efficiency, RHYTHM’s training time remains high, limiting its practicality in some
applications. Despite these challenges, RHYTHM provides a novel framework for mobility prediction,
advancing efficiency and accuracy. Future work will focus on refining fine-tuning and quantization
methods [43, 15, 73] to improve scalability and reduce resource demands.

10



Acknowledgments and Disclosure of Funding

The authors would like to thank Mingzhen for insightful discussions and the anonymous reviewers
for their constructive comments. H.H. and Q.R.W.’s work is supported by the National Science
Foundation (NSF) under Grant Nos. 2125326, 2114197, 2228533, and 2402438, as well as by
the Northeastern University iSUPER Impact Engine. H.L. is partially supported by the OpenAl
Researcher Access Program. This research was supported in part through the computational resources
and staff contributions provided by the Quest High Performance Computing facility at Northwestern
University, which is jointly supported by the Office of the Provost, the Office for Research, and
Northwestern University Information Technology. Any opinions, findings, conclusions, or recom-
mendations expressed in the paper are those of the authors and do not necessarily reflect the views of
the funding agencies.

References

[1] Ibrahim M Alabdulmohsin, Behnam Neyshabur, and Xiaohua Zhai. Revisiting neural scaling
laws in language and vision. Advances in Neural Information Processing Systems, 35:22300—
22312, 2022.

[2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Tain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. Advances in neural information processing systems, 35:
23716-23736, 2022.

[3] Hugo Barbosa, Marc Barthelemy, Gourab Ghoshal, Charlotte R James, Maxime Lenormand,
Thomas Louail, Ronaldo Menezes, José J Ramasco, Filippo Simini, and Marcello Tomasini.
Human mobility: Models and applications. Physics Reports, 734:1-74, 2018.

[4] Michael Batty. The new science of cities. MIT press, 2013.

[5] William Berrios, Gautam Mittal, Tristan Thrush, Douwe Kiela, and Amanpreet Singh. Towards
language models that can see: Computer vision through the lens of natural language. arXiv
preprint arXiv:2306.16410, 2023.

[6] Luis MA Bettencourt, José Lobo, Dirk Helbing, Christian Kiihnert, and Geoffrey B West.
Growth, innovation, scaling, and the pace of life in cities. Proceedings of the national academy
of sciences, 104(17):7301-7306, 2007.

[7] Sebastiano Bontorin, Simone Centellegher, Riccardo Gallotti, Luca Pappalardo, Bruno Lepri,
and Massimiliano Luca. Mixing individual and collective behaviors to predict out-of-routine
mobility. Proceedings of the National Academy of Sciences, 122(17):e2414848122, 2025.

[8] Dirk Brockmann, Lars Hufnagel, and Theo Geisel. The scaling laws of human travel. Nature,
439(7075):462-465, 2006.

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

[10] Oriol Cabanas-Tirapu, Lluis Danus, Esteban Moro, Marta Sales-Pardo, and Roger Guimera.
Human mobility is well described by closed-form gravity-like models learned automatically
from data. Nature Communications, 16(1):1336, 2025.

[11] Ching Chang, Wei-Yao Wang, Wen-Chih Peng, and Tien-Fu Chen. LIm4ts: Aligning pre-trained
Ilms as data-efficient time-series forecasters. ACM Transactions on Intelligent Systems and
Technology, 16(3):1-20, 2025.

[12] Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility: user movement

in location-based social networks. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1082-1090, 2011.

11



[13] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1-113, 2023.

[14] Weizhen Dang, Haibo Wang, Shirui Pan, Pei Zhang, Chuan Zhou, Xin Chen, and Jilong Wang.
Predicting human mobility via graph convolutional dual-attentive networks. In Proceedings of
the Fifteenth ACM International Conference on Web Search and Data Mining, pages 192-200,
2022.

[15] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

[16] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context learning.
In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pages 1107-1128, Miami,
Florida, USA, November 2024. Association for Computational Linguistics.

[17] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The 1lama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[18] Nathan Eagle and Alex Pentland. Reality mining: sensing complex social systems. Personal
and ubiquitous computing, 10:255-268, 2006.

[19] Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng Jin.
Deepmove: Predicting human mobility with attentional recurrent networks. In Proceedings of
the 2018 world wide web conference, pages 14591468, 2018.

[20] Jie Feng, Yuwei Du, Jie Zhao, and Yong Li. AgentMove: A large language model based
agentic framework for zero-shot next location prediction. In Luis Chiruzzo, Alan Ritter, and
Lu Wang, editors, Proceedings of the 2025 Conference of the Nations of the Americas Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume
1: Long Papers), pages 13221338, Albuquerque, New Mexico, April 2025. Association for
Computational Linguistics. ISBN 979-8-89176-189-6.

[21] Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and consequences.
Minds and Machines, 30:681-694, 2020.

[22] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Nufiez del Prado Cortez. Next place
prediction using mobility markov chains. In Proceedings of the first workshop on measurement,
privacy, and mobility, pages 1-6, 2012.

[23] Letian Gong, Yan Lin, Xinyue Zhang, Yiwen Lu, Xuedi Han, Yichen Liu, Shengnan Guo,
Youfang Lin, and Huaiyu Wan. Mobility-LLM: Learning visiting intentions and travel preference
from human mobility data with large language models. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024,

[24] Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. Understanding individual
human mobility patterns. nature, 453(7196):779-782, 2008.

[25] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
IIms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[26] Haoyu He, Haozheng Luo, and Qi R Wang. St-moe-bert: A spatial-temporal mixture-of-experts
framework for long-term cross-city mobility prediction. In Proceedings of the 2nd ACM
SIGSPATIAL International Workshop on Human Mobility Prediction Challenge, pages 1015,
2024.

[27] Ye Hong, Yatao Zhang, Konrad Schindler, and Martin Raubal. Context-aware multi-head
self-attentional neural network model for next location prediction. Transportation Research
Part C: Emerging Technologies, 156:104315, 2023.

12



[28] Shang-Ling Hsu, Emmanuel Tung, John Krumm, Cyrus Shahabi, and Khurram Shafique.
Trajgpt: Controlled synthetic trajectory generation using a multitask transformer-based spa-
tiotemporal model. In Proceedings of the 32nd ACM International Conference on Advances in
Geographic Information Systems, pages 362-371, 2024.

[29] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

[30] Jerry Yao-Chieh Hu, Maojiang Su, En jui kuo, Zhao Song, and Han Liu. Computational limits of
low-rank adaptation (IoRA) fine-tuning for transformer models. In The Thirteenth International
Conference on Learning Representations, 2025.

[31] Allen H Huang, Hui Wang, and Yi Yang. Finbert: A large language model for extracting
information from financial text. Contemporary Accounting Research, 40(2):806-841, 2023.

[32] Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu
Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series
forecasting by reprogramming large language models. In The Twelfth International Conference
on Learning Representations, 2024.

[33] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[34] Dejiang Kong and Fei Wu. Hst-Istm: A hierarchical spatial-temporal long-short term memory
network for location prediction. In Ijcai, volume 18, pages 2341-2347, 2018.

[35] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. Biobert: a pre-trained biomedical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234-1240, 2020.

[36] Weiyu Li, Qi Wang, Yuanyuan Liu, Mario L Small, and Jianxi Gao. A spatiotemporal decay
model of human mobility when facing large-scale crises. Proceedings of the National Academy
of Sciences, 119(33):€2203042119, 2022.

[37] Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. Predicting the next location: A recurrent
model with spatial and temporal contexts. In Proceedings of the AAAI conference on artificial
intelligence, volume 30, 2016.

[38] Yifan Liu, Xishun Liao, Haoxuan Ma, Brian Yueshuai He, Chris Stanford, and Jiaqi Ma.
Human mobility modeling with limited information via large language models. arXiv preprint
arXiv:2409.17495, 2024.

[39] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng
Long. itransformer: Inverted transformers are effective for time series forecasting. In The
Twelfth International Conference on Learning Representations, 2024.

[40] Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Autotimes:
Autoregressive time series forecasters via large language models. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

[41] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

[42] Massimiliano Luca, Gianni Barlacchi, Bruno Lepri, and Luca Pappalardo. A survey on deep
learning for human mobility. ACM Computing Surveys (CSUR), 55(1):1-44, 2021.

[43] Haozheng Luo, Chenghao Qiu, Maojiang Su, Zhihan Zhou, Zoe Mehta, Guo Ye, Jerry Yao-
Chieh Hu, and Han Liu. Fast and low-cost genomic foundation models via outlier removal. In
Forty-second International Conference on Machine Learning, 2025.

[44] Rengian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and Tie-Yan Liu.
Biogpt: generative pre-trained transformer for biomedical text generation and mining. Briefings
in bioinformatics, 23(6):bbac409, 2022.

13



[45] Yingtao Luo, Qiang Liu, and Zhaocheng Liu. Stan: Spatio-temporal attention network for next
location recommendation. In Proceedings of the web conference 2021, pages 2177-2185, 2021.

[46] Soumi Maiti, Yifan Peng, Shukjae Choi, Jee-weon Jung, Xuankai Chang, and Shinji Watanabe.
Voxtlm: Unified decoder-only models for consolidating speech recognition, synthesis and
speech, text continuation tasks. In ICASSP 2024-2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 13326-13330. IEEE, 2024.

[47] Meinard Miiller. Dynamic time warping. Information retrieval for music and motion, pages
69-84, 2007.

[48] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In The Eleventh International Conference
on Learning Representations, 2023.

[49] Zhenyu Pan, Haozheng Luo, Manling Li, and Han Liu. Conv-coa: Improving open-domain
question answering in large language models via conversational chain-of-action. arXiv preprint
arXiv:2405.17822, 2024.

[50] Zhenyu Pan, Haozheng Luo, Manling Li, and Han Liu. Chain-of-action: Faithful and multimodal
question answering through large language models. In The Thirteenth International Conference
on Learning Representations, 2025.

[51] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pages 311-318, 2002.

[52] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[53] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748-8763. PMLR, 2021.

[54] Hubert Ramsauer, Bernhard Schifl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas
Gruber, Markus Holzleitner, Thomas Adler, David Kreil, Michael K Kopp, Giinter Klambauer,
Johannes Brandstetter, and Sepp Hochreiter. Hopfield networks is all you need. In International
Conference on Learning Representations, 2021.

[55] Xuan Rao, Lisi Chen, Yong Liu, Shuo Shang, Bin Yao, and Peng Han. Graph-flashback network
for next location recommendation. In Proceedings of the 28th ACM SIGKDD conference on
knowledge discovery and data mining, pages 1463-1471, 2022.

[56] Filippo Simini, Marta C Gonzdlez, Amos Maritan, and Albert-Lasz16 Barabdsi. A universal
model for mobility and migration patterns. Nature, 484(7392):96-100, 2012.

[57] Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung,
Nathan Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models
encode clinical knowledge. Nature, 620(7972):172-180, 2023.

[58] Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-Laszl6 Barabasi. Limits of predictabil-
ity in human mobility. Science, 327(5968):1018-1021, 2010.

[59] Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025.

[60] Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill.
Multimodal few-shot learning with frozen language models. Advances in Neural Information
Processing Systems, 34:200-212, 2021.

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

14



[62] Geoff Vigar. The politics of mobility: transport, the environment, and public policy. Taylor &
Francis, 2002.

[63] Qi Wang, Nolan Edward Phillips, Mario L Small, and Robert J Sampson. Urban mobility and
neighborhood isolation in america’s 50 largest cities. Proceedings of the National Academy of
Sciences, 115(30):7735-7740, 2018.

[64] Xinglei Wang, Meng Fang, Zichao Zeng, and Tao Cheng. Where would i go next? large
language models as human mobility predictors. arXiv preprint arXiv:2308.15197, 2023.

[65] Yu Wang, Tongya Zheng, Yuxuan Liang, Shunyu Liu, and Mingli Song. Cola: Cross-city
mobility transformer for human trajectory simulation. In Proceedings of the ACM on Web
Conference 2024, pages 3509-3520, 2024.

[66] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

[67] Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STanhop: Sparse tan-
dem hopfield model for memory-enhanced time series prediction. In The Twelfth International
Conference on Learning Representations, 2024.

[68] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting, 2022.

[69] Shang Wu, Yen-Ju Lu, Haozheng Luo, Maojiang Su, Jerry Yao-Chieh Hu, Jiayi Wang, Jing Liu,
Najim Dehak, Jesus Villalba, and Han Liu. SPARQ: Outlier-free speechLM with fast adaptation
and robust quantization, 2025.

[70] Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann,
Prabhanjan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language
model for finance. arXiv preprint arXiv:2303.17564, 2023.

[71] Xinhua Wu, Haoyu He, Yanchao Wang, and Qi Wang. Pretrained mobility transformer: A
foundation model for human mobility. arXiv preprint arXiv:2406.02578, 2024.

[72] Yongji Wu, Defu Lian, Shuowei Jin, and Enhong Chen. Graph convolutional networks on user
mobility heterogeneous graphs for social relationship inference. In IJCAI, pages 3898-3904,
2019.

[73] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
In International Conference on Machine Learning, pages 38087-38099. PMLR, 2023.

[74] Takahiro Yabe, Kota Tsubouchi, Toru Shimizu, Yoshihide Sekimoto, Kaoru Sezaki, Esteban
Moro, and Alex Pentland. Yjmob100k: City-scale and longitudinal dataset of anonymized
human mobility trajectories. Scientific Data, 11(1):397, 2024.

[75] Dingqi Yang, Daqing Zhang, Vincent W Zheng, and Zhiyong Yu. Modeling user activity
preference by leveraging user spatial temporal characteristics in lbsns. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 45(1):129-142, 2014.

[76] Dingqi Yang, Benjamin Fankhauser, Paolo Rosso, and Philippe Cudre-Mauroux. Location
prediction over sparse user mobility traces using rnns. In Proceedings of the twenty-ninth
international joint conference on artificial intelligence, pages 2184-2190, 2020.

[77] Song Yang, Jiamou Liu, and Kaiqi Zhao. Getnext: trajectory flow map enhanced transformer
for next poi recommendation. In Proceedings of the 45th International ACM SIGIR Conference
on research and development in information retrieval, pages 1144—1153, 2022.

[78] Wei Zhai, Xueyin Bai, Yu Shi, Yu Han, Zhong-Ren Peng, and Chaolin Gu. Beyond word2vec:
An approach for urban functional region extraction and identification by combining place2vec
and pois. Computers, environment and urban systems, 74:1-12, 2019.

15



[79] Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The eleventh international conference on learning
representations, 2023.

[80] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting, 2021.

[81] Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. One fits all: Power general
time series analysis by pretrained LM. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[82] Zhihan Zhou, Weimin Wu, Jieke Wu, Lizhen Shi, Zhong Wang, and Han Liu. Genomeocean:
Efficient foundation model for genome generation, 2025.

16



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly state the main claims made in the paper.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide theory guarantees of RHYTHM in Section 3.4.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the details necessary to reproduce the main experimental results
in the paper. The details of the experiments are included in both the main paper and the
supplemental material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and data, including detailed instructions to reproduce the main
experimental results, are publicly available at https://github.com/he-h/rhythm.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We introduce the experimental setting in main paper and provide additional
details in the supplemental material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the values in all tables and observed stable results with less than 2%
variance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We introduce the compute resources in Appendix G.2.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed and followed the NeurIPS Code of Ethics through-
out our research process.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts in Appendix A.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our model does not have such a risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited all assets used in our research and respected their
licenses and terms of use.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release a new assets in our work.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not include crowdsourcing experiments or research involving human
subjects in this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not include crowdsourcing experiments or research involving human
subjects in this paper.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use LLMs to assist with writing and formatting the paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Broader Impact

This paper introduces a new foundation model for human mobility, aiming to improve the reliability
and generalization of foundation model applications in spatio-temporal domains. While the work
does not have immediate societal implications, it lays the groundwork for future applications in urban
planning, public health, disaster response, and transportation. However, the model may inadvertently
encode or amplify biases present in the training data, potentially leading to inequitable outcomes in
mobility predictions.

B Extended Related Work

Mobility Prediction. Human mobility prediction has evolved from foundational statistical models
to advanced deep learning frameworks. Physics-inspired models such as the gravity model [10] and
the radiation model [56] predict aggregate population flows using distance and opportunity metrics
but lack individual-level detail. To address this, probabilistic approaches like Markov chains [22] and
tensor factorization [75] emerge, modeling location transitions at the user level. While these methods
improve personalization, they struggle with sparse trajectories and higher-order dependencies inherent
in real-world mobility data.

Deep learning introduces sequence-aware architectures like LSTM [37], which capture local temporal
contexts, and attention-enhanced variants [19] that address vanishing gradients. However, these
models often overlook cyclical patterns. Hybrid approaches like Graph-Flashback [55] and GC-
DAN [14] integrate graph structures to model spatial relationships, but their reliance on fixed-length
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sequences limits scalability for long-term forecasting. Transformers [61] revolutionize the field with
self-attention mechanisms for long-term dependency modeling. Innovations like STAN [45] combine
spatial-temporal attention for next-POI recommendation, while COLA [65] extends this to cross-city
dynamics. GETNext [77] further refines predictions by disentangling individual preferences from
population flows. Despite these advances, Transformer-based methods remain timestamp-centric,
incurring quadratic complexity for multi-day sequences and failing to explicitly model hierarchical
periodicities (e.g., daily vs. weekly rhythms).

While Transformer-based approaches improve long-term dependency modeling, they still rely on
timestamp-centric encoding and struggle with hierarchical periodicities. Recent work explores
large language models (LLMs) as an alternative, leveraging their strong generalization capabilities
for mobility tasks [23, 38]. Studies like LLM-Mob [64] and AgentMove [20] leverage prompt
engineering for next-location prediction and trajectory user linking, while TrajGPT [28] generates
synthetic visits via autoregressive decoding. However, these approaches treat mobility sequences
as generic token streams, neglecting structured periodic patterns and the modality gap between
natural language and spatio-temporal data. Unlike existing LLM-based methods that treat mobility
sequences as generic tokens, our approach uses temporal tokenization to explicitly model structured
periodicity (daily/weekly cycles), thereby mitigating modality mismatches and capturing multi-scale
dependencies for improved long-term mobility prediction.

Time Series Foundation Models. Existing time series foundation models can be divided into two
categories: transformer-based models and language-based models. For transformer-based time series
models [67, 39, 48], prior studies focus on transformer architecture and self-attention mechanisms to
capture temporal dependency in time series data. For instance, PatchTST [48] introduces a patch-
based self-attention mechanism to capture long-range dependencies in time series data. STanHop
[67] and Crossformer [79] employ hierarchical self-attention to capture temporal dependencies and
hierarchical structures in time series data. For language-based time series models [40, 32], prior
studies adapt the LLLMs to time series data and achieve state-of-the-art performance in time series
forecasting tasks. For instance, AutoTime [40] introduces a novel autoregressive structure to capture
the temporal dependency in time series data. Time-LLM [32] employs a large language model to
capture the complex transitions of time series data. However, these models struggle to capture the
inherent complexity of human mobility—with its abrupt location shifts and temporal dynamics-
whereas RHYTHM leverages a novel spatio-temporal embedding paired with an autoregressive
framework to effectively model these intricate transitions.

Cross-domain Adaptation of LLLMs. LLMs have evolved from specialized natural language
processing systems into versatile foundation models capable of sophisticated reasoning across diverse
tasks [1, 9]. Their transformer-based architecture and extensive pretraining have enabled remarkable
transfer capabilities to domains beyond text. In computer vision, models like CLIP [53] align visual
and textual representations for zero-shot recognition, while in time series analysis, approaches such
as One-Fits-All [81] and LLMA4TS [11] demonstrate competitive forecasting through tokenized
numerical sequences. In biomedicine, BioBERT [35] and BioGPT [44] demonstrate significant
gains on clinical NLP benchmarks, while instruction-tuned models like Med-PaLM approach expert-
level medical QA performance [57]. In finance, domain-specific LLMs such as FinBERT [31] and
BloombergGPT [70] substantially outperform general-purpose models on sentiment analysis and
information extraction.

Rather than computationally expensive full fine-tuning, parameter-efficient adaptation strategies have
gained prominence. Low-Rank Adaptation (LoRA) [29] introduces trainable low-rank matrices into
attention layers, while more recent approaches keep LLMs entirely frozen by using lightweight
adapters that project non-linguistic inputs into the model’s embedding space. In vision, prefix-tuning
methods [2, 60] train small encoders to produce "prompts" for frozen LLMs, while time series
approaches [40, 32] employ projection layers to convert numeric sequences into token embeddings.

Applications of LLMs to human mobility modeling remain limited, with existing approaches relying
primarily on parameter-intensive adaptation. Mobility-LLM [23] employs partial fine-tuning, while
LLM-Mob [64] leverages in-context learning but lacks structured temporal modeling. In contrast,
RHYTHM maintains a fully frozen LLM backbone, preserving the model’s pre-trained knowledge
while introducing a specialized spatio-temporal framework that efficiently adapts to mobility data
characteristics.
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C Attention Implementation Details

Our attention mechanism implements a pre-norm transformer block to enhance training stability,
with a gated feed-forward network for improved expressivity. The mathematical formulation of our
attention block is as follows:

Z = LayerNorm(X ) + Multi-Head Attention(LayerNorm(X)),
Z = Z + GatedFFN(LayerNorm(Z)),

where X is the input sequence. The multi-head attention operation computes:

Multi-Head(X') = [head; ||heads|| . .. |heads|Wou,

XW, (X )T
Wqﬂ( Wkﬂ) > XWU;L"
Vg
with h attention heads, where W ;, Wy, ;, W, ; € R%*4x are the query, key, and value projection

matrices for the i-th head, and W, € R?*? is the output projection matrix. The gated feed-forward
network incorporates an adaptive gating mechanism:

head; = Softmax (

GatedFFN(Z) = FFN(Z) © o(Wgue Z),
FFN(Z) = W, GELU(W, Z),

where o denotes the sigmoid function, ® represents element-wise multiplication, and Wy € R4*4
is the learnable gating matrix. The feed-forward network expands the hidden dimension by a factor of
4, with W, € R44*4 and W, € R?*44, Dropout is applied after both the attention and feed-forward
operations to prevent overfitting.

D Prompt Design Examples

Trajectory Information

This is the trajectory of user <User_ID> of day <Day_ID> which is a
<Day_of_Week>. The trajectory consists of <N> records, each record of
coordinate is as follows:

08:30: (X=136, Y=42);

09:00: (X=136, Y=42);

09:30: (X=137, Y=41);

10:00: (X=146, Y=37);

10:30: (X=145, Y=38);

11:00: (X=144, Y=38);

11:30: (X=135, Y=41);

12:00: (X=135, Y=42);

12:30: (X=135, Y=42);

13:00: (X=135, Y=42).

Key transitions: At 10:00: (X=137, Y=41)— (X=146, Y=37); At 11:30: (X=144,
Y=38) — (X=135, Y=41).

Main stay locations: (X=136, Y=42) from 08:30 to 09:30 (0.5 hours); (X=145,
Y=38) from 10:00 to 11:00 (0.5 hours); (X=135, Y=42) from 11:30 to 13:00 (1.5
hours) .

Task Description

You are a mobility prediction assistant that forecasts human movement
patterns in urban environments. The city is represented as a 200 x 200
grid of cells, where each cell is identified by coordinates (X,Y). The X
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coordinate increases from left (0) to right (199), and the Y coordinate
increases from top (0) to bottom (199).

TASK: Based on User <User_ID>’s historical movement patterns, predict their
locations for Day <Day_ID> (<Day_of_Week>). The predictions should capture
expected locations at 30-minute intervals throughout the day (48 time slots).
The model should analyze patterns like frequent locations, typical daily
routines, and time-dependent behaviors to generate accurate predictions of
where this user is likely to be throughout the next day.

The previous days’ trajectory data contains information about the user’s
typical movement patterns, regular visited locations, transition times,
and duration of stays. Key patterns to consider include: home and work
locations, morning and evening routines, lunch-time behaviors, weekend vs.
weekday differences, and recurring visit patterns.

Implementation Details

Algorithm 1 RHYTHM - Overall Pipeline

Require: Trajectory X = {(¢;,!;)};_; (timestamps and location IDs); prediction horizon

9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

31

1
2
3
4:
5
6
7
8

T
{tr+1,...,t7+m}; segment length L; frozen LLM

: function PRECOMPUTESEMANTICS(X, L, {t741,...,t74+m }, LLM)
N« T/L
fori:=1to N do > trajectory information
TE; < SelectLast(LLM(Prompt ., ({ X1, ..., X7})))
end for
TET « SelectLast(LLM(Prompt,,y ({t741,- .., t7+u}))) > task description

: return {TE;}N, TET
: end function

. function PREDICT(X, {t711,...,trru}, {TE;}Y,, TET, L,LLM)

EF™™  TemporalEmbed(t;)

E;pmal <+ SpatialEmbed(l;)
E; E;emporal + E:palial

end for
Partition { £;}X_, into N = T'/L segments s; = {EGi—1)L+1:iL}
for:=1to N do > intra-segment attention, then pool to one token
E@ « IntraAttention(s;)
SE; < Pool(E®)
end for
{§E7}f\;1 + InterAttention({SE; }¥ ) > model long-range dependency
fori:=1to N do > additive alignment of semantics at segment level
end for
for j = 1to H do > future-time tokens + task semantics

En4; < TemporalEmbed (74 )

CEN+j — ENJrj + TET
end for

p1.g < Softmax(ProjToClasses(hn+1:N+H))
return {arg maxp; }'L,
: end function
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fori =1toT do > embed time + location into token space

hi.ntm < LLM({CE1.ny+H}) > frozen backbone forward



F Dataset

We provide the detail of datasets used in this paper as shown in Table 5.

Table 5: Dataset Statistics

City Users Duration Spatial Resolution Places
Kumamoto 3k 75 days 500m x 500m 40k
Sapporo 17k 75 days 500m x 500m 40k

Hiroshima 22k 75 days 500m x 500m 40k

G Experiment Settings
G.1 Evaluation Metrics

Accuracy @k measures proportion of correct predictions within top-% ranked locations:

H
1 R
Accuracy@k = T E 1(lr4; € top-k(Pr+i)),

i=1
where 1(-) is the indicator function and pr; is the predicted probability distribution.

Mean Reciprocal Rank (MRR) evaluates quality of ranked predictions:

1o 1
MRR = — —_—
H ; rank(I744)’

where rank(l7;) is the rank position of the true location.
Dynamic Time Warping (DTW) measures spatial similarity between trajectories:
DTW(Y, ) =min Y d(lr4s,lr+;),
(i,j)em
where 7 is a valid warping path and d(-, ) is the Euclidean distance.

BLEU quantifies n-gram overlap between predicted and ground-truth sequences:

N
BLEU = BP - exp (Z Wy, logpn> ,

n=1

where p,, is n-gram precision, w,, is the weight for each n-gram level, and B P is a brevity penalty.
G.2 Computational Resource

We perform all experiments using a single NVIDIA A100 GPU with 40GB of memory and a 24-core
Intel(R) Xeon(R) Gold 6338 CPU operating at 2.00GHz. Our code is developed in PyTorch [52] and
utilizes the Hugging Face Transformer Library® for experimental execution.

G.3 Hyperparameters

We present the hyperparameters used in the training stage for each model. Embeddings for time-
of-day and day-of-week, the categorical location embedding, and the coordinate projection all use
hidden dimensions of 128, 128, 256, and 128, respectively. We use AdamW [41] as the optimizer.
For model training, we conduct a systematic hyperparameter search, exploring learning rates from
the set {1 x 107%,3 x 1074,5 x 10~*} and weight decay values from {0,0.001,0.01}. Through
extensive validation experiments, we determine the optimal configuration for each dataset. All
models are trained with a consistent batch size of 64 across all datasets for fair comparison. The final
hyperparameter settings are selected based on performance on the validation set.

’https://huggingface.co/docs/transformers
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G.4 LLM variants

Our experiments deployed multiple foundation language models as text embedders and frozen back-
bones within RHYTHM to evaluate cross-scale performance. Table 6 presents the pre-trained models
accessed through the Hugging Face Transformers library, ranging from 125M to 3B parameters.

Table 6: Pre-trained language models employed as backbones in RHYTHM.

Model Parameters HuggingFace Repository

OPT-125M 125M facebook/opt-125m

OPT-350M 350M facebook/opt-350m

Llama-3.2-1B 1.24B meta-llama/Llama-3.2-1B

Qwen-2.5-1.5B 1.54B Qwen/Qwen2.5-1.5B

DeepSeek-R1-1.5B 1.78B deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
Gemma-2-2B 2.61B google/gemma-2-2b-it

Phi-2 2.78B microsoft/phi-2

Llama-3.2-3B 3.21B meta-llama/Llama-3.2-3B

H Additional Experimental Results
H.1 Autoregressive vs Non-autoregressive Strategy

Table 7 compares RHYTHM under autoregressive and non-autoregressive strategies. The non-
autoregressive approach delivers comparable accuracy while being over two orders of magnitude
faster.

Table 7: Comparison of RHYTHM with autoregressive and non-autoregressive prediction
strategies. Results are reported using Acc@1, Acc@3, Acc@5, and computational time per iteration
(s/iter). The best results are highlighted in bold.

Model \ Time (s/iter) Acc@1 Acc@3 Acc@5
Non-autoregressive 0.96 0.2929 0.5200  0.5835
Autoregressive 39.80 0.2884  0.5247 0.5801

H.2 Deployment efficiency compared to LL.M-based baselines

Table 8 reports deployment efficiency for RHYTHM compared with LLM-based baselines, evaluated
under both GPU and CPU inference. On GPU, RHYTHM requires substantially less memory
and achieves lower latency than TimeLLM, while remaining competitive with Mobility-LLM. On
CPU, RHYTHM also demonstrates favorable latency and moderate RAM usage, underscoring its
practicality for deployment in resource-constrained environments.

Table 8: Deployment efficiency of RHYTHM, TimeLLM, and Mobility-LLM. Deployment
efficiency of RHYTHM, TimeLLM, and Mobility-LLM. We report model size, GPU memory
footprint (GRAM), inference latency on GPU and CPU, and RAM usage.

| | GPU | CPU
Model | Size (MB) | GRAM (MB) Latency (ms) | RAM (MB) Latency (ms)
RHYTHM 5841.9 5741.4 261.6 £ 0.8 12497.9 39.5+0.9
TimeLLM 3762.7 11213.1 392.7+9.5 18677.8 642 +£25
Mobility-LLM 4880.7 9872.8 192.1 +£5.2 10552.2 323+1.9
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I Resource Requirements and Computational Cost

In this section, we detail RHYTHM'’s resource requirements to provide a practical perspective on the
computational cost of deploying RHYTHM.

I.1 Dataset Preprocessing

Time and storage costs of semantic embedding generation are detailed in Table 9.

Table 9: Preprocessing cost of RHYTHM across datasets.

Dataset \ Preprocessing Time (h) Storage Size (GB)

Kumamoto 3.1 1.6
Sapporo 15.9 9.1
Hiroshima 20.1 11.8

1.2 Training Resource Usage

Training requirements with varying sequence lengths are summarized in Table 10, including GPU
memory (GRAM) and runtime per epoch. The results show that memory consumption and training
time do not increase linearly with sequence length, demonstrating that RHYTHM can handle long
sequences at moderate additional cost due to its temporal tokenization design.

Table 10: Training cost with varying sequence lengths.
Sequence Length (7)) GRAM (MB) Time/Epoch (min)

48 7126.3 23.1
168 7469.5 24.6
336 8202.0 26.5
672 9826.4 30.9

J Additional Ablation Studies
J.1 Segment Length Sensitivity

We analyze the impact of varying temporal segment length L on prediction accuracy and efficiency
in Table 11. Smaller segments (e.g., L = 1, 30 minutes) capture fine-grained details but result in
excessive fragmentation and substantially higher computation time. In contrast, very large segments
(e.g., L = 96, 2 days) reduce runtime but blur meaningful daily mobility boundaries, leading to
degraded accuracy. Daily segmentation (L = 48) achieves the best balance, yielding the highest
predictive performance while keeping iteration time under 1 second. These findings validate our
choice of L = 48 as a balanced temporal unit for mobility modeling.

Table 11: Effect of varying segment length L on prediction accuracy and runtime. The best
results are highlighted in bold.

Segment Length (L) Segments (V) | Acc@1l Acc@3 Acc@5 | Time (s/iter)

1 (30 min) 336 0.2801  0.5049 0.5764 6.59
24 (12 hr) 14 0.2883  0.5124  0.5792 1.10
48 (1 day) 7 0.2929  0.5200 0.5835 0.96
96 (2 days) 3 0.2851  0.5087  0.5743 0.93
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J.2 Impact of Pretrained LLMs

RHYTHM benefits substantially from pretraining: the pretrained LLM variant achieves the strongest
accuracy, while randomly initialized and LLM-free variants lag behind as shown in Table 12.

Table 12: Comparison of RHYTHM with pretrained, randomly initialized, and no-LLM variants
on Kumamoto. Pretraining provides the best accuracy across all metrics.

RHYTHM Variant | Acc@1  Acc@3  Acc@5
w/ pretrained LLM (ours) 0.2929  0.5200 0.5835
w/ randomly initialized LLM (frozen) | 0.2556  0.4842  0.5313
w/o LLM (only attention) 0.2749 04921 0.5623

J.3 Computational Cost of RHYTHM Components

Table 13 shows how different architectural choices affect model size and training time. Temporal
tokenization and hierarchical attention both contribute to reducing runtime without significantly
increasing parameter count, highlighting their role in RHYTHM’s efficient design.

Table 13: Trainable parameters (absolute and relative) and training time per epoch for different
architectural configurations of RHYTHM on Kumamoto.

Configuration \ Trainable Params (MB) Share of Total (%) Time/Epoch (min)
Full RHYTHM (frozen LLM) 152 12.37 31
Unfrozen LLM w/ LoRA 200 16.27 102

w/o Temporal Tokenization 148 12.00 53

Only Attention Module (no LLM) 152 12.37 16

w/o HA 39 3.25 20

31



	Introduction
	Related Work
	Method
	Problem definition
	Model structure
	Computational Efficiency
	Theoretical Guarantee

	Experiment
	Overall Performance
	Method Analysis

	Conclusion
	Broader Impact
	Extended Related Work
	Attention Implementation Details
	Prompt Design Examples
	Implementation Details
	Dataset
	Experiment Settings
	Evaluation Metrics
	Computational Resource
	Hyperparameters
	LLM variants

	Additional Experimental Results
	Autoregressive vs Non-autoregressive Strategy
	Deployment efficiency compared to LLM-based baselines

	Resource Requirements and Computational Cost
	Dataset Preprocessing
	Training Resource Usage

	Additional Ablation Studies
	Segment Length Sensitivity
	Impact of Pretrained LLMs
	Computational Cost of RHYTHM Components


