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Abstract
In-context learning has become a standard ap-
proach for utilizing language models. However,
selecting and processing suitable demonstration
examples can be challenging and time-consuming,
especially when dealing with large numbers of
them. We propose Iterative Vectors (IVs), a tech-
nique that explores activation space to enhance
in-context performance by simulating gradient
updates during inference. IVs extract and itera-
tively refine activation-based meta-gradients, ap-
plying them during inference without requiring
backpropagation at any stage. We evaluate IVs
across various tasks using four popular models
and observe significant improvements. Our find-
ings suggest that in-context activation steering is
a promising direction, opening new avenues for
future research.

1. Introduction
Few-shot learning has long been a prominent research fo-
cus. Recently, language models (LMs) have demonstrated
the capability for few-shot learning via in-context learning
(ICL) (Brown et al., 2020). In this approach, learning a new
task involves conditioning on a few support examples and
predicting suitable tokens to complete a query input—all
without requiring any parameter updates. This method is
appealing because it relies solely on inference, allowing for
quick adaptation to various downstream tasks.

However, it has been noted that despite its potential, the
predictions of LMs can be highly volatile when conditioned
on prompts. The outcomes depend significantly on the tem-
plates, demonstrations, and their permutations, and may
even ignore or violate the prompt’s instructions (Webson &
Pavlick, 2022; Min et al., 2022b). Consequently, such vari-
ability introduces uncertainty, compromising the reliability
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Figure 1. A general illustration of how activation vectors compared
in this work improve ICL performance by extracting and editing
model activations.

and usability of ICL. Another issue with directly imple-
menting a many-shot ICL approach for LMs is the inherent
constraint of context length. This limitation restricts the
amount of information that can be provided to the model in
a single prompt, potentially hindering its ability to learn ef-
fectively from numerous examples. Furthermore, in theory,
the inference time increases quadratically as more examples
are appended to the query. If examples are lengthy, it may
be infeasible to process them within the desired timeframe
or model context length.

In this paper, we introduce Iterative Vectors (IVs), a new
method for enhancing ICL. As illustrated in Figure 1, rather
than staying in the discrete prompt space, IVs delve into the
extensive activation space of the model. This exploration
reveals a largely uncharted area for developing new methods,
with our pioneering efforts to demonstrate how ICL can be
enhanced through the model’s internal representations.

Iterative Vectors are computed by analyzing the difference
between the attention activations of query pairs generated
with and without preceding examples during inference. This
process aims to capture the insights the model acquires from
demonstration examples. These IVs are iteratively reinte-
grated into the model to produce increasingly stable and
effective vectors, progressively incorporating information
from additional examples. The refined IVs can subsequently
be applied to future inference tasks. This approach preserves
the inherent structure of the ICL framework and introduces
minimal computational and memory costs, ensuring both
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practical efficiency and methodological scalability.

Our key contributions are summarized as follows:

A systematic framework for activation vectors in ICL.
We formalize an evaluation framework tailored to activa-
tion vector methods in ICL paradigm. To the best of our
knowledge, we are the first to investigate the application
of activation vectors on diverse real-world in-context learn-
ing tasks. Within this framework, we adapt and rigorously
benchmark two foundational activation vector techniques,
revealing critical limitations in their direct applicability to
ICL.

Iterative Vectors: gradient simulation without backprop-
agation. We propose Iterative Vectors, a novel activation
vector method that uniquely simulates gradient-based opti-
mization without backpropagation. We offer a thoroughly
derived theoretical foundation for our method, including
both the formulas and the pseudocode, which are closely
aligned with the evaluation framework. By taking this ap-
proach, we effectively address a significant problem: en-
hancing language model performance without the need for
longer prompts.

Empirical Validation and Insights. By iteratively refining
task-specific perturbations through aggregation and aver-
aging, IVs achieve an average performance gain of 3.2%
over standard ICL baselines. Through further experiments
on more challenging tasks, we demonstrate that IVs con-
sistently excel in terms of accuracy, robustness, scalability
and speed. Our analysis further uncovers the role of the
interactive dynamics in the hyperparameters, demonstrating
that IVs conduct principled simulations for gradient-based
fine-tuning.

Our code is available on GitHub.

2. Related Work
Several studies have investigated the manipulation of lan-
guage models within the representation space by utilizing
lightweight vectors, which we refer to as activation steering
with activation vectors in this paper.

Activation steering methods contrast with existing prompt
tuning methods (Li & Liang, 2021; Lester et al., 2021),
which operate in a continuous parameter space as part of
the prompt and which, crucially, require training via back-
propagation.

Again, unlike Parameter-Efficient Fine-Tuning (PEFT)
methods, e.g. LoRA (Hu et al., 2021), they do not tune
model parameters but instead modify the activations during
inference.

2.1. Activation Vectors

The term activation vector serves as an umbrella concept
encompassing lightweight vectors that manipulate language
model within their representation space. Depending on im-
plementation specifics, these vectors may interact with FFN
layers, attention mechanisms, or both, and their positioning
can vary. Task Vectors (Hendel et al., 2023) are extracted
from one layer of the model during ICL inference and then
applied to a zero-shot query to determine whether they can
preserve task-relevant information. Function Vectors (Todd
et al., 2023), on the other hand, select activations from the
top attention heads based on their causal effect in generating
the correct response. These selected activations are then
averaged and introduced into a specific layer of the model.

Although these two methods are similar to our approach
and objectives, they have primarily been tested on synthetic
tasks (e.g., identifying antonyms, naming country capitals,
providing plural forms), rather than ICL tasks with demon-
strations. Consequently, the practical applicability of these
vectors in real-world environments remains uncertain.

In contrast, our objective is to conduct evaluations within a
more realistic context by utilizing real-world classification
datasets. This approach provides a more thorough frame-
work for assessing activation vectors. We have adapted and
included these two methods for comparison to facilitate the
practical application of activation vectors beyond theoretical
constructs.

2.2. Generative Steering

Another research direction focuses on modifying LMs’ acti-
vations for generation and transfer purposes. Latent Steering
Vectors (Subramani et al., 2022) aim at sentence recovery
and sentiment transfer. Inference-Time Intervention (Li
et al., 2023) involves probing each attention head and guid-
ing the model with the probe vector to enhance the truthful-
ness of the generated text. Studies by Turner et al. (2023)
and Liu et al. (2024) address style and sentiment transfer by
employing positive and negative sentence pairs to extract
contrastive guidance.

Despite the shared similarities in operating within the rep-
resentation space, these methods either necessitate training
with backpropagation or are restricted to transfer tasks in-
volving sentence pairs. Consequently, it is not immediately
clear how they should be integrated into the ICL setting,
which we leave for future research.

2.3. Cross-modal Vectors

The success of activation vectors has extended their appli-
cation to visual and multimodal fields. Hojel et al. (2024)
analyzed the activations of MAE-VQGAN, identifying acti-
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vations that encode task-specific information. Huang et al.
(2024) enabled language models to perform multimodal,
many-shot in-context learning by utilizing Multimodal Task
Vectors. Peng et al. (2024) proposed Learnable In-Context
Vector, which learns task information from demonstrations.

While the referenced research provides valuable interdisci-
plinary perspectives, this study concentrates on linguistic
phenomena. By introducing a novel type of activation vec-
tors, we aim to enhance their analytical potential and create
new opportunities for advancement across various fields.

3. Method
In this section, we begin by establishing the theoretical
foundation of our method. Following this, we outline the
evaluation protocols to clearly define the relevant notations.
Finally, we present our method in detail.

3.1. Theoretical Foundation

Given the significance of in-context learning, numerous
theories have been proposed to explain its underlying mech-
anisms, e.g., Xie et al. (2021); Chan et al. (2022); Ye et al.
(2023); Oswald et al. (2023). One particularly intriguing
hypothesis posits that a pretrained LM operates as a meta-
optimizer, generating meta-gradients which it then applies
to address ICL tasks. We now present an overview of this
concept.

First, we revisit the dual form of the perceptron and ap-
ply it in the modern context of deep neural networks (Irie
et al., 2022). Formally, assume a linear layer trained via gra-
dient descent on T training inputs (x1, . . . ,xT ) and their
corresponding (backpropagated) error signals (e1, . . . , eT ),
where xt ∈ Rdin and et ∈ Rdout . If standard gradient de-
scent is applied, a loss function L produces the error signal
et = −ηt(∇yL)t, where ηt ∈ R is the learning rate, and
yt = Wxt is the output of the linear layer. Its weight
matrix is given by

W = W0 +

T∑
t=1

et ⊗ xt, (1)

where W0 ∈ Rdout×din represents the initial value of the
weights. This linear layer transforms an input x ∈ Rdin into
an output S1(x) ∈ Rdout :

S1(x) = Wx. (2)

Next, consider a composite layer S2 that stores T key-value
pairs, (x1, e1), . . . , (xT , eT ), represented by a key matrix
X = (x1, . . . ,xT ) ∈ Rdin×T and a value matrix E =
(e1, . . . , eT ) ∈ Rdout×T , along with a weight matrix W0 ∈
Rdout×din . This layer transforms an input x ∈ Rdin into an

output S2(x) ∈ Rdout by

S2(x) = W0x+Attn(X,E,x), (3)

where the parameters of the unnormalized attention operator
Attn(·) are, in order, the key, value, and query.

It can be shown that S1 and S2 are equivalent by expanding
the attention operation as

Attn(X,E,x) = EX⊤x =

(
T∑

t=1

et ⊗ xt

)
x. (4)

This expression elucidates that the forward operation of any
linear layer in neural networks, trained via gradient descent,
can be interpreted as a key-value-query attention mechanism
(Vaswani et al., 2017). In this framework, the training data
points act as the keys, the corresponding gradients serve as
the values, and the test input generates the query.

Utilizing the dual form, ICL can be interpreted as a meta-
optimization process (Dai et al., 2023). This was achieved
by reversing the direction of the equivalence and breaking
down the attention key and value terms for the ICL query
token into its zero-shot and demonstration components, as
formally expressed:

F̃ICL(q) =WZSLq + LinearAttn (WV X
′,WKX ′, q)

(5)

=WZSLq +
∑
i

WV x
′
i

(
(WKx′

i)
T
q
)

(6)

=WZSLq +
∑
i

((WV x
′
i)⊗ (WKx′

i)) q (7)

≜WZSLq +∆WICLq (8)
=(WZSL +∆WICL) q. (9)

Here, WZSL = WV X (WKX)
T is the zero-shot activa-

tion from the static parameters of the model, in which X
denotes the input representations of query tokens before the
current one, q. X ′ denotes the input representations of the
demonstration tokens.

In summary, under the relaxed normalization setting, a pre-
trained LM acts as a meta-optimizer. Through forward
computation, the LM generates “meta-gradients” from the
demonstration examples, which are then applied to the orig-
inal parameters via attention, culminating in the formation
of the ICL inference capability.

This explanation provides an intuitive understanding of how
the LM uses in-context examples. However, it also high-
lights why ICL performance can be unstable: meta-gradients
derived from limited in-context examples may fail to fully
capture the task and might not scale appropriately with
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Figure 2. An illustration of the extraction and application of Iterative Vectors. By subtracting the zero-shot component, we obtain the
meta-gradients that represent the ICL adjustments. These are subsequently refined through successive iterations to obtain the final vectors.

the original parameters. For this reason, we propose Itera-
tive Vectors to extract the meta-gradients—specifically, the
activations induced by in-context examples—from the lan-
guage model’s inference process to enhance its accuracy and
robustness. This would also allow us to apply these meta-
gradients directly in future inference tasks, eliminating the
need to compute them afresh from the examples each time
a query is evaluated.

Before defining IV, it is necessary to establish the notations
employed to evaluate activation vectors.

3.2. Activation Vector Evaluation

We adhere to standard few-shot benchmarking protocols
(Vinyals et al., 2016; Finn et al., 2017; Snell et al., 2017) to
define the activation vector evaluation setting. To assist read-
ers with key terminology and concepts, a comprehensive
Glossary is included in Appendix A.

For a given split of an n-way k-shot classification task T =
{Ttrain, Tval, Ttest}, which comprises textual query-answer
pairs (x, y), an ICL episode 1 is sampled as:

E = [(x1, y1), . . . , (xn×k, yn×k), (xq, yq)] . (10)

Here, (xq, yq) represents the query and its label, preceded
by the n × k support examples. To avoid the impact of
unbalanced samples, we uniformly sample k examples from
each of the n classes and shuffle them to mitigate any bias
arising from sample permutation. We maintain a record of
the labels for each example, which can be accessed using
Class(xi) ∈ {1, 2, . . . , n, q}.

The episode must first be converted into a pure text sequence
before the language model LM(·) can process it. This con-
version is handled by a verbalizer, which uses a predefined
prompt template to instantiate the samples. The template

1The term is borrowed from meta-learning, considering the
meta-gradients at play.

contains two key components: the input-output separator
that links a question with its answer, and the example sep-
arator that joins the given support set. To preserve the
simplicity of the template, we choose to use one newline
(\n) for the input-output separator and three newlines for
the example separator, as adopted in Min et al. (2022a).

When the language model LM(·) is provided with an
episode E, it performs autoregressive inference on each
of the tokens within the verbalized episode. The clean pre-
diction of the language model is derived by applying the
softmax function to the logits on the potential labels pro-
duced by the model, as expressed in the following equation:

ŷclean = LM(E). (11)

In contrast, an edited run involves the use of an activation
vector editor fedit. The specific method of editing varies
based on the chosen approach, and we express the general
form as follows:

ŷedit = LM(E; fedit(V,P)), (12)

which depends on the set of vectors V extracted by an acti-
vation vector extractor, fext, with hyperparameters P:

V = fext(Ttrain;P). (13)

The extractor retrieves its target vectors V from Ttrain and
identifies the optimal hyperparameters P∗ from Tval by max-
imizing the metric M:

P∗ = argmax
P

ME∼Tval (ŷedit, yE) (14)

V∗ = fext(Ttrain;P∗). (15)

These formulations are presented to illustrate the general
principle of activation vector extraction and application, and
are therefore intentionally abstract, as their implementation
requires flexibility.
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For single-token classification tasks, macro-F1, micro-F1,
and weighted-F1 scores can serve as the metrics. The
vectors V∗ and the optimal hyperparameters P∗ are then
applied to the test set Ttest to evaluate the final results
ME∼Ttest (ŷedit, yq).

3.3. Iterative Vectors

We have demonstrated that attention layers significantly
influence ICL, with demonstrations acting as meta-gradients
to help the model adapt to the task during inference. We
define the extractor fext for Iterative Vectors based on this
concept.

Episode Verbalization To extract the gradients, we
construct two verbalized versions of a given n-
way k-shot episode E. The first version, E =
[(x1, y1), . . . , (xn×k, yn×k), (xq, yq)], is the typical shuf-
fled verbalization, which serves as the complete episode.
The second version, E0 = [(xq, yq)], is stripped of all
demonstrations, resulting in a zero-shot query that provides
no information about the task.

Input-output separators are responsible for generating the
label words, which gather information and contribute to
forming the final prediction (Wang et al., 2023), making the
meta-gradients associated with them particularly important.
These separators are integral to each xi, specifically as the
last token of each, and the subsequent token, denoted as yi,
is generated by the language model at the position of the
separator token. Given their significance, we use Actl(xi)
to denote the activation from the l-th attention layer of the
i-th input-output separator. This generation process causally
considers all preceding tokens, including all prior (xi, yi)
demonstration pairs. Therefore, each Actl(xi) has access to
the information contained in all preceding pairs {(xj , yj) |
j < i} as well as the current xi.

Meta-gradient Extraction During inference on the two
verbalized versions, the extractor collects activations,
Actl(xi), for the input-output separator of the i-th example
in the complete episode E, as well as Act0l (xq) of the query
in the zero-shot query E0, across each attention layer l of
the LM.

Subsequently, we subtract the zero-shot activations from the
complete activations to select and extract the meta-gradients
representing the ICL adjustments. Since there are no input-
output separators for demonstrations in the zero-shot se-
quence, all activations from the complete episode use the
activations on the input-output separator of the query as the
subtrahend:

∆Actl(xi) = Actl(xi)−Act0l (xq) (16)

When k > 1, we average the activations for each class,

resulting in n vectors for each class, plus a vector for the
final query:

vj
l =

1

|Cj |
∑
i∈Cj

∆Actl(xi), (17)

vq
l = ∆Actl(xq) = Actl(xq)−Act0l (xq), (18)

where Cj = {i | Class(xi) = j}. This process yields the
meta-gradients for a single episode

VE
l = {v1

l ,v
2
l , . . . ,v

n
l ,v

q
l }. (19)

By averaging across the task set under extraction, a prelimi-
nary version of activation vectors can be obtained.

Iterative Refinement To refine these preliminary vectors,
we introduce the concept of Iterative Vectors (IVs) by ap-
plying the extracted vectors with the editor (fedit) during
the extraction phase itself. This emulates standard batched
gradient updates. We divide the training set Ttrain into m
sequential batches of size b, denoted B1, . . . ,Bm. The it-
erative extraction process computes a sequence of batch
vectors V1, . . . ,Vm. These are defined as sets containing
the averaged vectors {vj

l ,v
q
l } for each layer l and class j or

query q:

The vectors for the first batch B1 are calculated by averaging
the base vectors VE

l from each episode E ∈ B1:

V1
l =

1

|B1|
∑
E∈B1

VE
l (20)

For subsequent batches, the vectors Vi are computed by
averaging episode-specific vectors obtained from episodes
E ∈ Bi, where the language model’s activations during
extraction are edited by the cumulative average of vectors
from all preceding batches, using the extraction strength α1:

Vi
l =

1

|Bi|
∑
E∈Bi

Vl

[
E|fedit

(
V̄i−1

l , α1

)]
, (21)

V̄i−1
l =

1

i− 1

i−1∑
j=1

Vj
l , (22)

for i ∈ {2, . . . ,m}. Here, Vl

[
E|fedit

(
V̄i−1

l , α1

)]
denotes

the set of vectors extracted from episode E at layer l when
activations are modified according to Definition 25 using
V̄i−1

l with strength α1, which will be defined below.

Finally, the extractor fext yields the Iterative Vectors by
averaging the batch vectors across all iterations:

Vl =
1

m

m∑
i=1

Vi
l, (23)

fext(Ttrain;P) = {Vl | l ∈ LM} . (24)
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Model Method abort. agnews athei. clima. emoti. femin. hate hilla. irony offen. senti. sst5 trec Avg.

gpt-j-6b

Clean 32.96 53.53 25.38 27.11 24.07 31.80 49.38 35.74 55.93 51.98 36.94 29.33 64.57 39.90
FV 37.29 51.53 32.86 21.19 17.78 37.87 38.84 30.96 55.09 51.16 41.81 31.91 67.02 39.64
TV 29.83 60.89 20.50 24.62 25.49 31.72 49.74 33.75 48.32 51.61 38.82 32.94 63.72 39.38
IV (Ours) 36.06 56.13 32.05 19.23 32.70 38.20 47.30 40.68 54.65 46.32 33.17 39.07 67.32 41.76

llama-2-7b

Clean 27.52 61.94 22.13 28.60 54.45 29.27 53.27 29.42 58.65 51.86 38.96 28.93 74.93 43.07
FV 25.11 67.56 14.58 23.70 58.66 31.01 52.57 32.26 60.44 54.89 42.40 30.89 71.29 43.49
TV 27.91 72.11 21.75 31.98 59.37 29.56 50.08 29.54 50.21 52.00 41.64 29.94 74.77 43.91
IV (Ours) 30.33 69.64 28.38 35.67 56.75 30.35 55.97 42.83 52.69 59.38 33.82 30.55 79.29 46.59

llama-3.1-8b

Clean 29.71 79.47 13.50 19.62 69.01 34.40 53.45 40.36 52.44 56.46 38.96 36.64 74.25 46.02
FV 29.21 83.84 15.27 18.87 68.94 34.65 55.34 34.13 55.34 56.77 47.73 36.81 72.51 46.88
TV 30.14 80.06 13.95 15.20 68.87 28.66 53.45 43.27 52.04 56.47 39.38 36.62 74.53 45.59
IV (Ours) 29.81 87.13 23.49 23.01 69.73 36.84 58.82 40.34 50.21 55.29 42.45 41.50 75.63 48.79

llama-2-13b

Clean 34.96 76.23 27.11 20.96 61.89 37.13 53.83 45.53 55.17 60.34 38.77 38.66 76.01 48.20
FV 36.55 77.37 27.25 19.71 66.73 43.35 50.57 51.16 51.26 58.94 46.15 42.72 72.57 49.56
TV 34.71 76.28 27.24 30.88 63.27 31.87 52.63 45.03 54.98 60.14 37.82 37.98 77.05 48.45
IV (Ours) 35.32 79.07 27.32 38.19 67.40 46.20 57.18 50.13 66.76 59.09 35.88 44.14 80.93 52.89

Table 1. Main experiment results with macro-F1 as the metric. “Clean” denotes a standard one-shot ICL result. The models are GPT-J-6B
(Wang & Komatsuzaki, 2021), Llama 2 (Touvron et al., 2023) and Llama 3.1 (Dubey et al., 2024). FV refers to Function Vectors (Todd
et al., 2023), while TV denotes Tasks Vectors (Hendel et al., 2023).

IV Editor We will now formalize the editor, fedit, for
IVs. For the l-th attention layer Attnl(·), let Vl denote its
corresponding set of extracted IVs. During inference, the
editing is performed on each of the input-output separators
with the IVs from their corresponding classes, across all
layers:

EditedAttnl(xi) = Attnl(xi) + α× v
Class(xi)
l . (25)

This introduces the strength hyperparameter α analogous
to learning rates in gradient-based optimization, which con-
trols the update magnitude. Given that meta-gradients tend
to be less stable during the iterative process, we have differ-
entiated α into two parameters: the extraction strength α1

and the inference strength α2. These are applied during the
iterative extraction and evaluation phases, respectively.

The complete IV hyperparameter set is thus

P = {k, b, α1, α2}. (26)

The extraction shot k controls the number of samples in
a sequence during the extraction process. The extraction
batch size b serves to replicate a typical batch size used
during standard training. The extraction strength α1 denotes
the magnitude with which meta-gradients are applied during
iterative extraction. Similarly, the inference strength α2

represents the magnitude with which meta-gradients are
applied during evaluation. These two parameters share the
same notation because they fundamentally represent the
same concept, albeit applied in different phases.

The pseudocode for the extraction and evaluation process
is available in Appendix B. To facilitate understanding, Ap-
pendix C includes an example of the processes described. A
comprehensive discussion of hyperparameters is provided
in Appendix D.

4. Experiments
Iterative Vectors can significantly enhance ICL performance,
as demonstrated across four models and 13 diverse tasks
(Section 4.1). Furthermore, IVs demonstrate significant
time savings in achieving boosted one-shot performance
(Section 4.2). They also effectively scale with the quantity
of demonstration shots preceding the query (Section 4.3).
Whether supplied with only a few or numerous examples for
extraction, IVs consistently adapt to the given task, main-
taining a trajectory of improved performance (Section 4.4).
Finally, through ablating the hyperparameters of our method,
we discover an optimal interaction among them that maxi-
mizes performance, thereby affirming that each is an essen-
tial component of the methodology (Section 4.5).

4.1. Main Experiment

We apply our IVs to four popular models across 13 tasks.
The results are presented in Table 1. Details of all the
datasets used in this paper can be found in Appendix E,
while additional results with the other two metrics are pro-
vided in Appendix F.

To offer further evidence and a comparative analysis, we
adapt two foundational approaches to activation vectors:
Function Vectors (Todd et al., 2023) and Task Vectors (Hen-
del et al., 2023). While these methods were not initially
developed for the ICL evaluation setting, we modify them
to incorporate the training set by averaging the activations.
To ensure a fair comparison, we conduct a search over their
respective hyperparameters, as well as the extraction shot
parameter k. For a detailed overview of their designs, please
refer to Appendix G.

During testing, the model cannot ascertain the true class dis-
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Setting 1-shot 2-shot 3-shot 4-shot 1-shot + FV 1-shot + TV 1-shot + IV (ours)

Macro-F1 9.13 12.90 12.64 13.11 10.77 10.30 12.90
Inference Time (s) 1374 2434 3426 4506 1389 1384 1452
Extraction Time (min) - - - - 438.3 14.58 23.75

Table 2. Clean and activation vector results on the emoji dataset with model Llama-2-7b. Inference time measurements are based on
10,000 episodes, while extractions are based on 200 episodes.

Dataset 2-shot 3-shot 4-shot 5-shot
Clean +IV Diff Clean +IV Diff Clean +IV Diff Clean +IV Diff

AG News 76.86 79.94 +3.08 80.55 82.49 +1.94 82.12 84.82 +2.70 82.47 85.84 +3.37
Rotten Tomatoes 70.28 87.50 +17.22 78.97 90.57 +11.60 83.74 90.74 +7.00 87.80 91.48 +3.68

Table 3. Multi-shot clean and IV results using the Llama-2-7b model. The displayed metric is macro-F1.

tribution of the test set due to the few-shot setting, which is
often imbalanced. Therefore, we adhere to one-shot during
the main experiment, 2 which supplies the model with min-
imal yet sufficient information through a set of uniformly
distributed demonstration examples.

We evaluate over 200 episodes for both extraction (Ttrain)
and hyperparameter search (Tval). For the hyperparame-
ters of IVs, we use a fixed iterative batch size of b = 10
and explore the extraction strength and inference strength
α1, α2 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} across all tasks. Regard-
ing the extraction shot k, we test k ∈ {1, 2, 3, 4} for both
TVs and IVs. However, due to their inherent design, FVs
are excessively slow to extract, making it impractical to
incorporate additional examples. One significant issue with
FV is that it necessitates an extensive search through all
attention heads of every layer, posing considerable scaling
challenges as the model size grows. Even when limited to
k = 1, extracting FVs takes approximately 20 times longer
than extracting IVs. We present an example of the extraction
time required in Table 2.

All experiments were conducted using a predetermined ran-
dom seed (42) to mitigate selection bias. To ensure a ro-
bust representation of result distributions, the tests are aver-
aged over a substantial number of episodes, namely 10,000.
All experiments can be performed on a single Nvidia RTX
A6000 GPU unless stated otherwise.

The results indicate that Iterative Vectors successfully
achieve the goal, surpassing the baselines in most individual
tasks as well as in the overall average. For the overall av-
erage, Iterative Vectors maintain robust performance gains
in all evaluated scenarios, whereas FV/TV exhibit signifi-
cant performance degradation compared to standard ICL in
37% of the cases (3/8)—a concerning regression that under-
mines their viability despite their computational overhead.
Additionally, IVs show particularly strong results in larger

2A discussion regarding the decision not to use zero-shot se-
quences is available in Appendix H.

models. This indicates a promising potential for applica-
tion to even larger models, as evidenced by our experiments
with the Llama-2-70b model, detailed in a supplementary
experiment introduced in Section 4.3.

Task Vectors simply identifies the optimal layer for the
extraction and application of vectors, which can serve as
a simple baseline for future research. Although Function
Vectors achieve relatively better results than Task Vectors,
their high search time presents significant challenges for
optimization in practical ICL applications.

4.2. IVs Save Inference Time

All the aforementioned experiments require only a sin-
gle demonstration example during application, demonstrat-
ing that activation vectors can significantly reduce infer-
ence time. To highlight this point, we turn to the emoji
dataset, a 20-class classification task. Evaluating this dataset
with multi-shot demonstrations would be exceedingly time-
consuming due to the rapid increase in the length of the
demonstration sequence.

We apply IV on this dataset and further fix the extrac-
tion shot at k = 1 rather than exploring the range k =
{1, 2, 3, 4} to further minimize the time required for hyper-
parameter search.

The results, presented in Table 2, clearly show that IVs
substantially enhance performance with minimal time ex-
penditure, in stark contrast to higher-shot ICL cases, which
required significantly more time. In 2-shot and 3-shot set-
tings, the inference times are 2,434s and 3,426s, respectively.
However, IV achieves the same score of 12.90 as the 2-shot
setting in 1,452s—41% faster—and exceeds the 3-shot per-
formance (12.64). Crucially, IV reduces feature extraction
time by 95% compared to FV (23.75 min vs 438.3 min),
while maintaining a 20% performance advantage over TV
(12.90 vs 10.30). While TV’s naive architecture enables
rapid extraction, this approach exhibits catastrophic failure
in 50% of the model averages, as previously shown. This
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positions IV as the most time-effective solution, balancing
accuracy with practical computational demands.

4.3. IVs Scale with In-Context Demonstrations

One might wonder why activation vectors are not applied
to higher-shot settings. The primary reason is that a key
objective of using activation vectors is to reduce the prompt
length and the inference time associated with higher-shot
scenarios. Nonetheless, we conducted experiments to evalu-
ate their performance with longer demonstrations.

For this study, we have chosen the AG News and Rotten
Tomatoes datasets. This selection is based on the observa-
tion that the language model under evaluation demonstrates
progressively improved performance as the number of ex-
amples increases, as illustrated in Table 3. Consequently,
this poses a more substantial challenge for the IVs to im-
prove upon. However, the results demonstrate that IVs scale
effectively with the number of demonstration shots preced-
ing the query. IV boosts high baselines while maintaining
ICL compatibility, delivering +3.37% on AG News’ near-
peak 5-shot (82.47% to 85.84%) and +17.22% on Rotten
Tomatoes’ 2-shot (70.28% to 87.50%). Consistent gains
across all shots (1-5) confirm its compatibility with the ICL
framework. This suggests that IVs can offer advantages
even when initial performance levels are already high, and
they integrate seamlessly with the ICL framework.

In addition, one could contemplate a similar challenge using
larger models. The results are comparable; please refer to
Table 8, where the improvement of IVs is once again evident
with Llama-2-70b.

4.4. IVs Improve with Increased Extraction Episodes

An important aspect to consider is the number of examples
required for IVs to function effectively. We design an exper-
iment to test various numbers of extraction episodes, which
in turn controls the number of examples used to extract the
IVs. Additionally, another critical aspect is the stability
of IVs when extracted from different numbers of episodes.
To evaluate this, we reuse hyperparameters obtained from
prior searches in the main experiment (k = 4, b = 10
fixed, α1 = 0.3, α2 = 0.5), rather than optimizing hyperpa-
rameters for each different episode count. The results are
presented in Table 4.

The data shows that, IVs surpass ICL prompt limitations
through scalable example utilization, delivering consistent
gains with ≥ 3 episodes (+0.57–7.6%) even under fixed,
potentially suboptimal hyperparameters. While minor fluc-
tuations occur with a smaller number of episodes (≤ 2),
performance consistently improves with an increased vol-
ume of examples. This demonstrates the IVs’ capability
to extract and utilize a larger number of examples, thereby

Episodes Clean 1 2 3 5 10
Macro-F1 62.15 40.64 54.44 62.72 66.17 64.27

Episodes 20 30 50 100 150 200
Macro-F1 63.01 65.05 66.77 68.14 69.71 69.62

Table 4. IV results with different number of extraction episodes,
using a fixed set of hyperparameters. The model utilized is Llama-
2-7b, and the dataset is AG News.

surpassing the traditional limits of ICL.

4.5. Ablation Study

We conduct an ablation study to analyze the impact of key
hyperparameters on our method’s performance and dynam-
ics. We focus particularly on the extraction batch size b,
which was set to b = 10 in the experiments presented earlier.
We analyze the results on the validation set, which is used to
determine the optimal hyperparameters during tuning. The
results are visualized in Figure 3.

Varying the extraction batch size b reveals insights into the
iterative refinement process.

No Iteration (b = 0) When b = 0, the iterative update
mechanism is effectively disabled. Extracted vectors are
not reintroduced into the model to influence subsequent ex-
tractions. This configuration results in significantly poorer
performance compared to any setting where b ≥ 1. Fur-
thermore, without editing during extraction, the extraction
strength α1 becomes irrelevant as there is no process for it
to control.

Single-Episode Iteration (b = 1) Setting b = 1 means
each “batch” consists of a single episode. While not true
batching, this setting does enable the iterative refinement
process where vectors extracted from one episode are used
to edit the extraction from the next episode. This results in
a substantial performance boost over the b = 0 case. This
underscores the critical importance and contribution of the
core Iterative Vectors concept – the process of reintroducing
and refining vectors across episodes, even without explicit
multi-episode batch averaging before application.

Increasing Batch Size (b > 1) As the extraction batch
size b increases beyond 1, we observe a general trend of
improved performance. Examining the optimal hyperpa-
rameter pairs (α1, α2) found during the validation search,
we see that for small batch sizes (b ≥ 1), optimal solu-
tions often involve a high extraction strength (α1) and a
relatively low inference strength (α2). This suggests that
vectors extracted from smaller batches are less stable and
require strong iterative refinement (α1) but must be applied
cautiously during inference (α2). As b increases, allowing
averaging over larger groups of episodes before each itera-
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Figure 3. Ablation study on the hyperparameters. The model utilized is Llama-2-7b, and the dataset evaluated is the validation split of AG
News, with macro-F1 serving as the metric. Note that b = 0 indicates the absence of iterative refining and batching.

tive update step, the extracted vectors become more stable.
This increased stability is reflected in the optimal α2 values,
which tend to rise, enabling the method to leverage stronger
inference strengths for better performance.

Excessively Large Batch Size While increasing batch
size generally helps stabilize vectors, Figure 3 also indicates
diminishing returns. If the batch size becomes excessively
large, performance may plateau or even decrease. We hy-
pothesize that very large batches lead to fewer total iterative
updates over the training data (as m decreases), thereby
reducing the opportunities for the vectors to be iteratively
refined across different subsets of the training distribution.
This suggests a trade-off between the stability gained by av-
eraging over a larger batch and the benefits of more frequent
iterative refinement steps.

These observed interactions between the extraction batch
size (b), the extraction strength (α1), and the inference
strength (α2) clearly demonstrate how each hyperparameter
plays a crucial role in the overall dynamics and effectiveness
of the Iterative Vectors methodology. For a more compre-
hensive discussion, including guidance on tuning these and
other hyperparameters, please refer to Appendix D.

5. Conclusion
In this work, we introduced Iterative Vectors (IVs), a novel
method for enhancing In-Context Learning (ICL) by refin-
ing task-specific activation differences directly in a language
model’s activation space—without backpropagation or pa-
rameter updates. Our key innovation is an iterative refine-
ment process: by splitting the extraction into batches and

successively refining each batch’s result with previous ones,
IVs achieve greater stability and effectiveness than prior
activation steering methods like Function Vectors (FV) and
Task Vectors (TV).

Comprehensive experiments across four language models
and 13 real-world tasks consistently showed IVs outperform
standard ICL and existing baselines, with ablation studies
confirming the iterative process’s importance and the influ-
ence of batch size and application strengths. These findings
highlight IVs as a resource-efficient, practical alternative
to fine-tuning or prompt engineering, opening promising
avenues for improving and adapting large language models
by leveraging their rich activation spaces.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Barbieri, F., Camacho-Collados, J., Espinosa Anke, L., and

Neves, L. TweetEval: Unified Benchmark and Compara-
tive Evaluation for Tweet Classification. In Cohn, T., He,
Y., and Liu, Y. (eds.), Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pp. 1644–1650,
Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.findings-emnlp.148.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,

9



Iterative Vectors: In-Context Gradient Steering without Backpropagation

Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
Models are Few-Shot Learners. In Advances in Neural
Information Processing Systems, volume 33, pp. 1877–
1901. Curran Associates, Inc., 2020.

Chan, S., Santoro, A., Lampinen, A., Wang, J., Singh, A.,
Richemond, P., McClelland, J., and Hill, F. Data Distri-
butional Properties Drive Emergent In-Context Learning
in Transformers. Advances in Neural Information Pro-
cessing Systems, 35:18878–18891, December 2022.

Dai, D., Sun, Y., Dong, L., Hao, Y., Ma, S., Sui, Z., and Wei,
F. Why Can GPT Learn In-Context? Language Models
Secretly Perform Gradient Descent as Meta-Optimizers.
In Rogers, A., Boyd-Graber, J., and Okazaki, N. (eds.),
Findings of the Association for Computational Linguis-
tics: ACL 2023, pp. 4005–4019, Toronto, Canada, July
2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.findings-acl.247.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A.,
Letman, A., Mathur, A., Schelten, A., Yang, A., Fan, A.,
Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sravanku-
mar, A., Korenev, A., Hinsvark, A., Rao, A., Zhang, A.,
Rodriguez, A., Gregerson, A., Spataru, A., Roziere, B.,
Biron, B., Tang, B., Chern, B., Caucheteux, C., Nayak,
C., Bi, C., Marra, C., McConnell, C., Keller, C., Touret,
C., Wu, C., Wong, C., Ferrer, C. C., Nikolaidis, C., Al-
lonsius, D., Song, D., Pintz, D., Livshits, D., Esiobu, D.,
Choudhary, D., Mahajan, D., Garcia-Olano, D., Perino,
D., Hupkes, D., Lakomkin, E., AlBadawy, E., Lobanova,
E., Dinan, E., Smith, E. M., Radenovic, F., Zhang, F., Syn-
naeve, G., Lee, G., Anderson, G. L., Nail, G., Mialon, G.,
Pang, G., Cucurell, G., Nguyen, H., Korevaar, H., Xu, H.,
Touvron, H., Zarov, I., Ibarra, I. A., Kloumann, I., Misra,
I., Evtimov, I., Copet, J., Lee, J., Geffert, J., Vranes,
J., Park, J., Mahadeokar, J., Shah, J., van der Linde, J.,
Billock, J., Hong, J., Lee, J., Fu, J., Chi, J., Huang, J.,
Liu, J., Wang, J., Yu, J., Bitton, J., Spisak, J., Park, J.,
Rocca, J., Johnstun, J., Saxe, J., Jia, J., Alwala, K. V.,
Upasani, K., Plawiak, K., Li, K., Heafield, K., Stone, K.,
El-Arini, K., Iyer, K., Malik, K., Chiu, K., Bhalla, K.,
Rantala-Yeary, L., van der Maaten, L., Chen, L., Tan, L.,
Jenkins, L., Martin, L., Madaan, L., Malo, L., Blecher, L.,
Landzaat, L., de Oliveira, L., Muzzi, M., Pasupuleti, M.,
Singh, M., Paluri, M., Kardas, M., Oldham, M., Rita, M.,
Pavlova, M., Kambadur, M., Lewis, M., Si, M., Singh,
M. K., Hassan, M., Goyal, N., Torabi, N., Bashlykov, N.,
Bogoychev, N., Chatterji, N., Duchenne, O., Çelebi, O.,
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A. Glossary
Act(xi) Notation used to represent the activation vector extracted at the position of the input-output separator token for the

i-th example (xi) within a complete verbalized episode, capturing information from all preceding tokens.

Act0(xq) Notation used to represent the activation vector extracted at the position of the input-output separator token for
the query (xq) within a zero-shot verbalized version of the episode (containing only the query).

Activation Vector(s) (V) A general term encompassing lightweight vectors derived from language model activations that
are used to manipulate the model’s behavior, typically by adding or modifying activations during inference. Iterative
Vectors (IVs) are a specific type of activation vector.

Activation Vector Editor (fedit) A function or mechanism that applies extracted activation vectors to the language model’s
internal state (e.g., attention activations) during inference to steer its behavior.

Activation Vector Extractor (fext) A function or process that derives activation vectors (V) from a given dataset or set of
examples, often involving hyperparameters (P). The final Iterative Vectors are the output of the extractor fext(Ttrain;P).

Batch (Bi) In the context of Iterative Vector extraction, a subset of the training episodes used in a single step of the
sequential iterative process. The full training set is divided into n sequential batches B1, . . . ,Bn.

Batch Vectors (Vi) The set of activation vectors obtained by averaging the episode-specific vectors (VE
l ) from all episodes

within a single batch Bi. In the iterative process, these batch vectors are computed sequentially, with extraction for
batch i potentially being edited by the cumulative average of vectors from previous batches.

Clean Prediction (ŷclean) The standard output or prediction of the language model when processing an episode or query
without any modification by an activation vector editor.

∆Actl(xi) The difference between the activation at layer l for the input-output separator of the i-th example in the complete
episode and the activation at layer l for the input-output separator of the query in the zero-shot episode. Represents the
ICL-induced activation difference.

Edited Run (ŷedit) An inference pass where an activation vector editor modifies the language model’s internal activations
based on extracted activation vectors.

Episode (E) In the context of activation vector evaluation, a single sample for ICL consisting of a set of support examples
(xi, yi) followed by a query example xq , arranged in a specific sequence.

Example Separator A token or sequence of tokens used in a verbalizer’s template to separate individual demonstration
examples from each other and from the query example within a prompt.

Extraction Batch Size (b) A hyperparameter in the iterative refinement process specifying the number of episodes included
in each batch (Bi) used during iterative extraction.

Extraction Episode (k) A hyperparameter specifying the number of support examples used in each episode sampled from
the training set during the activation vector extraction process.

Extraction Strength (α1) A hyperparameter controlling the magnitude with which the cumulative average of previously
extracted vectors (V̄i−1) is applied to edit activations during the iterative extraction process.

Inference Strength (α2) A hyperparameter controlling the magnitude with which the final, extracted Iterative Vectors
(fext(Ttrain;P)) are applied to edit activations during the evaluation phase on the validation or test set.

Input-Output Separator A token or sequence of tokens used in a verbalizer’s template to link an input (e.g., a question)
with its corresponding output (e.g., an answer) within a demonstration or query example.

VE
l The set of class-specific (vj

l ) and query (vq
l ) activation vectors derived from a single episode E at layer l using the base

subtraction method.

V̄i−1 In the iterative extraction process for batch i (i ≥ 2), this refers to the average of the vectors V1, . . . ,Vi−1 computed
from all preceding batches. This cumulative average is used to edit activations when extracting vectors from episodes
in batch i.
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Vl

[
E|fedit

(
V̄i−1

l , α1

)]
The set of vectors extracted from a single episode E at layer l, obtained when the language model’s

activations during the extraction forward pass are modified (edited) using the cumulative average of vectors from
preceding batches (V̄i−1

l ) with the extraction strength (α1).

vj
l The average ∆Actl vector for all examples belonging to class j within an episode, representing the aggregated

meta-gradient for that class at layer l.

vq
l The ∆Actl vector for the query example, representing the meta-gradient associated with the query itself at layer l.

Verbalizer A component that converts structured data (like an ICL episode) into a pure text sequence suitable for a language
model, typically using a predefined prompt template with input-output and example separators.

B. Pseudocode
We present the extraction process in Algorithm 1. The evaluation procedures are defined in Algorithm 2. The episodic
functions employed in the processes can be found in Algorithm 3.

For information on our hyperparameters, please refer to the extraction shot k, batch size b, and strength α1 as detailed in
Algorithm 1. The inference strength, denoted as α2, is used in Algorithm 2.

C. Example
For instance, consider a 2-way (Positive/Negative) 2-shot task. A verbalized episode (E) might look like this (using newline
for input-output separator and triple newline for example separator):

great movie \n Positive \n\n\n
terrible book \n Negative \n\n\n
hated it \n Negative \n\n\n
amazing film \n Positive \n\n\n
loved that movie \n

The zero-shot query (E0) for the query input “loved that movie” is:

loved that movie \n

Here, there are four support examples (two Positive, two Negative), followed by the query “loved that movie\n”. During
inference on the complete episode E, we collect activations at the input-output separator token (the newline after “Positive”,
“Negative”, “Negative”, “Positive”, and the newline after “loved that movie”). This is done for each attention layer l. In
parallel, we collect the activation at the input-output separator token (the newline after “loved that movie”) from the zero-shot
version E0. Let these activations be:

• Actl(“great movie”): Activation for the separator after the 1st support input (Positive) in E.

• Actl(“terrible book”): Activation for the separator after the 2nd support input (Negative) in E.

• Actl(“hated it”): Activation for the separator after the 3rd support input (Negative) in E.

• Actl(“amazing film”): Activation for the separator after the 4th support input (Positive) in E.

• Actl(“loved that movie”): Activation for the separator after the query input in E.

• Act0l (“loved that movie”): Activation for the separator after the query input in E0.

Subsequently, we subtract the zero-shot activation Act0l (“loved that movie”) from the complete activations to isolate the
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ICL-induced component. For our 2-shot example, this yields five ∆Actl vectors at layer l:

∆Actl(“great movie”) = Actl(“great movie”)−Act0l (“loved that movie”)

∆Actl(“amazing film”) = Actl(“amazing film”)−Act0l (“loved that movie”)

∆Actl(“terrible book”) = Actl(“terrible book”)−Act0l (“loved that movie”)

∆Actl(“hated it”) = Actl(“hated it”)−Act0l (“loved that movie”)

∆Actl(“loved that movie”) = Actl(“loved that movie”)−Act0l (“loved that movie”)

These ∆Actl values represent the change in activation space attributable to the presence of the demonstration example(s)
compared to the zero-shot baseline, specific to each example in the episode.

As k > 1, Equation 17 involves averaging the ∆Actl vectors for all examples within a specific class j to obtain the
class-specific meta-gradient vector vj

l . For our 2-way 2-shot example, we have two positive and two negative examples:

vPositive
l =

1

2
(∆Actl(“great movie”) + ∆Actl(“amazing film”))

vNegative
l =

1

2
(∆Actl(“terrible book”) + ∆Actl(“hated it”))

The query vector vq
l is simply the ∆Actl calculated for the query example:

vq
l = ∆Actl(“loved that movie”)

This averaging aggregates the meta-gradients from multiple instances of the same class, yielding the set of vectors for this
episode: VE

l = {vPositive
l ,vNegative

l ,vq
l }.

The iterative refinement process emulates batched gradient updates. Consider a total of 10 extraction episodes and a batch
size b = 2, which gives us m = 5 batches.

1. We process the first batch of b = 2 episodes (B1). Extract V1
l from these episodes without editing. V1

l is the average of
the VE

l sets derived from the two episodes in B1.

2. We then process the second batch of b = 2 episodes (B2). During the extraction pass for each episode in B2, we
use the already computed vectors V1

l with strength α1 to edit the model’s activations – specifically, by adding the
relevant class/query vector from V1

l to the corresponding separator activations. The extractor then computes VE
l for

each episode in B2 based on these edited runs, and averages them to produce V2
l .

3. This continues for batches i = 3, . . . ,m. During the extraction pass for each episode in batch i, the model’s activations
are edited using the cumulative average of the vectors obtained from all preceding batches (V̄i−1

l = 1
i−1

∑i−1
j=1 V

j
l )

with strength α1. The extractor computes VE
l for each episode in batch i based on these edited runs, and averages them

to produce Vi
l .

4. Finally, the extractor fext averages the vectors obtained from all batches: 1
5 (V

1
l +V2

l +V3
l +V4

l +V5
l ). This yields the

refined set of IVs for each layer.

This process allows the vectors to be refined based on previous iterations, analogous to how model weights are updated in
batches during training.

D. Hyperparameters of IV
In this paper, we introduce four hyperparameters: the extraction shot k, the extraction batch size b, the extraction strength
α1, and the inference strength α2. These notations have been used consistently throughout the paper, including in formulas,
pseudocode, and explanations. We now provide a detailed discussion of each hyperparameter and its function, followed by a
guide on how to tune them effectively.
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The extraction shot k controls the number of samples in a sequence during the extraction process. This originates
from the definition of an n-way k-shot episode (Eq. 10). During extraction, a longer support sequence may enhance
the model’s understanding of the task, thereby producing higher-quality meta-gradients. However, since adding more
samples does not guarantee improved performance, and a larger k increases extraction time, we propose optimizing this
hyperparameter through a search process.

The extraction batch size b serves to replicate a typical batch size used during standard training. As implemented
in Algorithm 1, the preliminary vectors extracted are averaged every b episodes to form the Iterative Vectors, which are
subsequently incorporated into the extraction process. Unlike previous approaches that defer meta-gradient application,
our method introduces them during extraction, enabling immediate feedback to the model’s hidden states. This iterative
refinement mechanism ensures that meta-gradients actively guide each forward pass of the LM, progressively refining
intermediate representations and amplifying their influence on subsequent episodes. The result is a self-reinforcing cycle
where meta-gradients sharpen the contrast between zero-shot sequences and iteratively improve their own quality, driving
robust representation learning.

In Section 4.5, we empirically validate the critical role of batch size b through ablation studies, demonstrating that optimal b
selection yields measurable performance gains.

The extraction strength α1 denotes the magnitude with which meta-gradients are applied during iterative extraction.
Similarly, the inference strength α2 represents the magnitude with which meta-gradients are applied during evaluation.
These two parameters share the same notation because they fundamentally represent the same concept, albeit applied in
different phases.

In the application of vectors, all methods evaluated in this paper utilize vector addition. However, the meta-gradients may
not scale properly with the original parameters. Therefore, we propose scaling them before incorporating them into the
hidden states, a consideration not derived from nor addressed in previous methods. During the iterative extraction phase, the
scaling constant is α1, whereas during evaluation, the constant is α2.

We differentiate the strength into two parameters because meta-gradients are less stable during the iterative process. This
instability can accumulate across layers and episodes, so we aim to apply a lower strength during extraction, if necessary, to
mitigate this issue.

Guide to tuning the hyperparameters. We recommend a higher value of k for tasks in which the LM demonstrates
greater proficiency. Exploring the range of k ∈ {1, 2, 3, 4} is both straightforward and effective, as demonstrated in our
experiments.

Concerning batch size, we have demonstrated that it should neither be too large nor too small. We recommend starting with
b = 5 or b = 10. Methods for tuning typical batch sizes may also be considered.

Regarding the strength parameters α1 and α2, we performed a comprehensive grid search within the range [0.1, 0.9]. Future
research is encouraged to employ more sophisticated search strategies, as these parameters often cluster in a low-performance
consecutive area (see Figure 3), which can be pruned if properly identified.

E. Datasets
A full list of all datasets utilized in this research, along with their corresponding access labels, is detailed in Table 5. The
datasets are obtained from HuggingFace (Lhoest et al., 2021).

AG News (Zhang et al., 2015) is a subdataset of AG’s corpus of news articles constructed by assembling titles and description
fields of articles from the 4 largest classes (“World”, “Sports”, “Business”, “Sci/Tech”) of AG’s Corpus.

TweetEval (Barbieri et al., 2020) introduces an evaluation framework consisting of a series of Twitter-specific classification
tasks. We selected all single-token classification tasks from the dataset.

The Rotten Tomatoes dataset (Pang & Lee, 2005) is a collection of movie reviews and ratings from the Rotten Tomatoes
website, often used for sentiment analysis and natural language processing tasks.

The SST5 dataset, derived from the Stanford Sentiment Treebank (Socher et al., 2013), is a collection of movie reviews
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Name Abbr. Used Huggingface Label

Abortion abor. tweet eval/stance abortion
AG News agnews ag news
Atheism athe. tweet eval/stance atheism
Climate clim. tweet eval/stance climate
Emoji - tweet eval/emoji
Emotion emot. tweet eval/emotion
Feminist femi. tweet eval/stance feminist
Hate hate tweet eval/hate
Hillary hill. tweet eval/stance hillary
Irony irony tweet eval/irony
Offensive offe. tweet eval/offensive
Rotten Tomatoes - rotten tomatoes
Sentiment sent. tweet eval/sentiment
SST 5 sst5 SetFit/sst5
TREC trec trec

Table 5. The datasets and tasks employed, along with their corresponding abbreviations used in the result tables, and their respective labels
as hosted on Hugging Face.

Model Task abort. agnews athei. clima. emoti. femin. hate hilla. irony offen. senti. sst5 trec Avg.

gpt-j-6b

Clean 39.17 57.97 30.49 30.92 31.91 37.70 49.39 40.33 59.86 63.22 38.73 32.62 68.23 44.66
FV 51.93 55.39 45.81 24.89 29.62 54.20 45.48 58.97 57.30 58.25 41.77 37.37 69.70 48.51
TV 51.52 65.86 23.72 32.84 32.85 37.64 49.74 37.89 48.32 60.05 40.23 35.60 64.75 44.69
IV (Ours) 60.02 61.30 44.59 20.49 37.36 49.05 48.32 55.29 56.30 46.94 34.48 40.08 67.32 47.81

llama-2-7b

Clean 28.69 63.40 24.90 34.88 57.31 30.25 53.64 30.05 62.22 53.67 40.02 43.08 77.33 46.11
FV 30.25 69.56 18.50 25.49 62.91 36.07 57.16 35.29 63.83 63.95 46.44 45.22 75.54 48.48
TV 29.31 72.97 24.50 62.14 62.52 30.47 50.09 30.14 52.86 53.53 41.07 43.28 77.10 48.46
IV (Ours) 35.88 72.45 39.17 58.46 58.96 40.03 58.46 48.83 53.01 63.59 36.25 46.67 76.83 52.97

llama-3.1-8b

Clean 39.18 80.64 18.14 21.26 74.06 47.17 53.66 48.14 53.96 60.12 39.01 45.25 69.69 50.02
FV 41.93 84.31 21.15 20.47 74.35 51.76 55.45 44.08 56.06 69.89 48.32 42.43 68.20 52.18
TV 39.07 81.12 18.55 20.21 74.47 40.21 53.47 50.33 53.67 60.35 39.13 43.04 69.62 49.48
IV (Ours) 44.25 87.30 36.33 22.33 77.70 56.57 58.84 56.07 52.23 69.20 42.83 48.85 70.24 55.60

llama-2-13b

Clean 52.57 77.96 42.78 20.36 65.42 55.94 54.00 56.83 55.19 63.56 41.41 44.44 78.56 54.54
FV 53.16 78.81 48.92 19.57 69.99 64.96 58.94 62.25 52.32 70.70 47.87 49.19 76.58 57.94
TV 51.34 78.07 43.22 49.38 67.27 47.60 53.22 56.05 55.05 62.82 39.70 43.86 76.16 55.67
IV (Ours) 55.67 80.33 46.74 65.56 71.03 58.84 58.67 63.13 66.96 73.80 36.74 47.90 77.47 61.76

Table 6. Main experiment results with micro-F1 as the metric. “Clean” denotes a standard one-shot ICL result.

annotated with fine-grained sentiment labels, offering a five-class sentiment classification task ranging from very negative to
very positive.

Text Retrieval Conference Question Answering (TrecQA) (Wang et al., 2007) is a dataset created from the TREC-8 (1999)
to TREC-13 (2004) Question Answering tracks.

Our few-shot evaluation methodology employs episodic sampling to regulate the duration of both extraction and inference
processes, rather than relying solely on the absolute number of samples. Consequently, not all available samples are utilized
during the experimental procedures. This aspect underscores an additional dimension of efficiency inherent in activation
vectors.

F. Additional results
We present the results of our main experiment on the other two metrics, namely micro-F1 and weighted-F1, derived from
our main experiment, in Table 6 and Table 7, respectively.

According to these evaluation criteria, IV outperforms both FV and TV in the majority of tasks, consistently achieving a
higher average score. The only exception occurs in the GPT-J-6B and micro-F1 setting (Table 6), where FV demonstrates
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Model Task abort. agnews athei. clima. emoti. femin. hate hilla. irony offen. senti. sst5 trec Avg.

gpt-j-6b

Clean 42.61 53.69 34.82 34.83 22.48 40.34 49.46 42.14 58.64 62.47 33.50 31.82 68.12 44.22
FV 52.83 51.62 50.11 31.38 17.29 52.93 35.96 47.47 57.23 59.41 39.82 35.19 69.86 46.24
TV 49.48 61.07 26.01 34.19 22.74 40.30 49.79 39.49 48.21 60.68 34.78 35.52 65.18 43.65
IV (Ours) 56.37 56.16 48.98 15.48 33.59 50.39 46.26 52.34 56.49 48.88 32.98 40.08 68.38 46.64

llama-2-7b

Clean 30.58 62.03 27.50 38.72 57.45 31.75 53.83 27.79 61.15 56.07 35.33 34.46 77.58 45.71
FV 31.40 67.69 16.00 25.62 62.86 38.41 54.68 33.09 62.93 63.85 35.83 36.79 77.29 46.65
TV 31.43 72.23 27.39 60.09 62.70 32.06 50.00 27.66 52.57 55.85 39.36 35.39 77.27 48.00
IV (Ours) 38.90 69.75 44.22 59.10 59.02 41.32 57.46 50.01 51.86 65.18 27.70 36.94 78.22 52.28

llama-3.1-8b

Clean 40.92 79.57 15.32 13.97 73.77 47.66 53.04 48.62 50.70 62.16 36.04 40.44 70.66 48.68
FV 43.03 83.91 20.32 10.22 74.01 50.30 55.02 43.71 54.11 67.33 44.67 38.50 70.74 50.45
TV 41.06 80.17 16.45 9.35 73.86 41.34 53.33 51.20 50.23 62.30 36.09 39.41 70.65 48.11
IV (Ours) 44.98 87.18 39.73 11.41 76.67 53.66 58.70 54.28 48.05 66.34 38.88 44.27 72.86 53.62

llama-2-13b

Clean 51.80 76.36 45.57 19.77 65.73 53.00 53.46 55.25 54.99 65.44 33.47 41.63 79.10 53.51
FV 52.92 77.47 49.87 22.99 70.76 60.23 53.47 60.28 49.71 68.68 41.76 46.51 78.98 56.43
TV 51.32 76.43 45.95 51.92 67.44 46.91 51.91 54.67 54.63 64.78 32.12 41.10 77.07 55.10
IV (Ours) 53.93 79.17 48.74 63.85 71.40 59.55 58.32 58.96 67.31 69.96 35.51 46.82 79.27 60.98

Table 7. Main experiment results with weighted-F1 as the metric. “Clean” denotes a standard one-shot ICL result.

Dataset 1-shot 2-shot 3-shot 4-shot
Clean +IV Diff Clean +IV Diff Clean +IV Diff Clean +IV Diff

AG News 86.96 88.17 +1.21 87.99 89.04 +1.05 87.87 88.84 +0.97 89.01 89.32 +0.31
Rotten Tomatoes 82.24 91.52 +9.28 91.29 92.38 +1.09 92.39 93.13 +0.74 92.50 92.69 +0.19

Table 8. Multi-shot clean and IV results using the Llama-2-70b model. The displayed metric is macro-F1. Conducted on 3 Nvidia RTX
A6000 GPUs.

superior performance. We hypothesize that this result indicates a bias of FV towards the majority classes in this specific
model. This bias results in an increased micro-F1 score; however, it causes the macro-F1 score to fall below the clean
baseline, which is highly undesirable.

An additional experiment was conducted utilizing the Llama-2-70b model. Due to our computational budget constraints, it
was not feasible to complete all tasks with a model of this scale. Therefore, we opted to conduct a multi-shot experiment, as
described in Section 4.3 (Table 3), to more effectively showcase the efficacy of IV. The results are presented in Table 8.

G. Comparison of Methodologies
We will begin with an introduction to the motivation and functioning of FV and TV. Following this, we will offer
comprehensive comparisons from various perspectives.

Function Vectors. Function Vectors (Todd et al., 2023) are inspired by the observation that incorporating activations
extracted from few-shot tasks on the last token at specific layers can prompt an LM to execute a task when applied to an
unseen zero-shot prompt. To distill a more effective hidden-state representation, the researchers limit their investigation
to attention heads. This decision is based on the heuristic that attention heads are the components used by transformers
to transfer information across different token positions. The researchers aim to identify attention heads that have a causal
influence on predicting the desired label for a given task. The method for calculating this causal effect is outlined as follows:

1. Compute the average activation ātℓj of each attention head j at layer ℓ over task t.

2. Feed the ICL prompt p̃ti with shuffled labels into model f , and calculate the probability assigned to the target label
f(p̃ti).

3. Use one ātℓj to replace the activation of its corresponding attention head, conducting a separate run for each instance.
Subsequently, compute the edited probability for the target label again as f(p̃ti|aℓj = ātℓj).

4. The causal indirect effect on task t and the shuffled prompt p̃ti is calculated as

CIE(aℓj | p̃ti) = f(p̃ti | aℓj := ātℓj)− f(p̃ti). (27)
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5. The average indirect effect is the average of the CIE across all tasks and prompts:

AIE(aℓj) =
1

|T |
∑
t∈T

1

|P̃t|

∑
p̃t
i∈P̃t

CIE(aℓj | p̃ti). (28)

6. Gather the attention heads with highest AIE over all layers to serve as the activation source, forming set A.

The researchers represent the contribution of A as a single vector by taking the sum of their average outputs, over a task,
which is called a Function Vector for task t:

vt =
∑

alj∈A
ātlj . (29)

To utilize FV, add it to the activation of the final token at a designated layer as the model processes a prompt.

One significant issue with FV is that it necessitates an extensive search through all attention heads of every layer, posing
considerable scaling challenges as the model size grows. Theoretically, aside from the extraction time attributed to the
extraction shot k, the extraction time of FV increases with an additional complexity of O(E × L×H). Here, E represents
the number of extraction episodes, L denotes the layer count of the LM, and H is the number of attention heads in each
layer. For example, GPT-J-6B has a total of 448 heads, while Llama-2-13B has 1600. This increase alone more than triples
the time required to extract the FVs, not to mention the slower computation resulting from a longer prompt and a larger
model size.

In contrast, Task Vector and our Iterative Vector do not encounter this issue and scale smoothly with larger models. During
our experiments, we had to restrict the extraction shot k for FV to maintain practical search times and ensure fairness across
all evaluated methods, as mentioned in Section 4.

Task Vectors. Task Vectors (Hendel et al., 2023) offer a mechanistic perspective on ICL. This approach conceptualizes
ICL as a two-step process: first, a parameter vector θ is computed from the training sample, which is subsequently used to
apply the “rule” defined by the vector to the query x.

There are many possible realizations of the above framework. The researchers presume that a simple way for a transformer
to achieve this is for the initial L layers to compute θ. The remaining layers would take θ and x as inputs to generate an
output.

This provides a straightforward method to extract the language model’s knowledge of a task and subsequently apply it. The
process involves performing a forward pass of the transformer and utilizing the previously extracted θ to patch the L-th
layer of the final token.

However, the boundary that separates this artificially divided two-stage process in the LM remains unclear and needs to be
selected through empirical searching.

Comparison with Iterative Vectors. The theoretical attributes of our methodology, in comparison to the baseline models,
are as follows:

• FV and TV utilize their experiments to validate their respective hypotheses, rather than basing their methods on
theoretical foundations.

• Consequently, their editing processes are heuristic and rely on intuition.

• Our proposed method is grounded in the meta-gradients derived from the demonstrations through the computation of
the attention modules within the model.

• This approach not only identifies where to make edits (the attention layers) but also specifies how to perform the edits
(by performing meta-gradient updates via adding to the activations).

The extraction and editing process differs considerably for each method, as illustrated below:
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• FV examines all attention heads and aggregates the activations of the top-performing ones to obtain the vectors, which
is highly time-consuming.

• TV simply identifies the optimal layer for the extraction and application of vectors.

• IV processes the activations from different classes separately, conducting aggregation and application based on this
separation. We also propose iterative updates and batched extraction for meta-gradients, which have been proven to
significantly enhance performance.

The hyperparameters specific to each method (instead of the evaluation framework) are as follows:

• FV: the count of top heads |A| and the layer to apply the vector.

• TV: the layer to apply the vector.

• IV: extraction strength α1, inference strength α2, and iterative batch size b.

Please refer to Appendix D for a more detailed discussion on the hyperparameters of IV.

As a side note, we can see from the comparisons above that there is considerable flexibility in the design of activation
vectors. We hope that our efforts will serve as a catalyst for further exploration and advancement in this line of inquiry,
ultimately unlocking the full potential of activation vectors.

H. Concerning Zero-Shot Sequences
In both the FV and TV papers (Todd et al., 2023; Hendel et al., 2023), the vectors are utilized on zero-shot sequences.
This aims to demonstrate the effectiveness of activation vectors in guiding the model as expected. The results confirm
this: zero-shot sequences with activation vectors differ significantly from clean zero-shot runs. However, there remains a
noticeable gap between zero-shot applications and standard few-shot ICL performance, which appears difficult to bridge.
For instance, in Figure 4 of the TV paper, all FV runs fall behind the few-shot runs across all models, despite the tasks being
simple synthetic ones.

Previous research has suggested reasons that may account for this disparity. Feng et al. (2023) provide fundamental
impossibility results, indicating that language models cannot solve increasingly complex tasks in a single generation step. If
we view the demonstration sequence as an extension of the inference steps generated by the LM—since the model treats all
previous tokens equally, whether generated or provided—then without demonstrations, the LM’s capabilities are significantly
impaired. A zero-shot attempt might not provide adequate computation for the language model to address a given task.
Consequently, it might be overly optimistic to expect activation vectors to circumvent all necessary computations.

Furthermore, Min et al. (2022b) demonstrated the importance of informing the LM about the label space of the current task
to enhance ICL performance. In a zero-shot scenario, the model might struggle to focus its classification ability on the
desired label, instead distributing it across the entire vocabulary space, as noted by Holtzman et al. (2021). This adds an
extra burden for the model to extract meta-gradients and adjust accordingly.

Our early experiments on real-world tasks also confirmed that activation vectors do not perform well in a zero-shot setting.
While there are some improvements, they remain inferior compared to the results achieved with even a one-shot approach.
For synthetic experiments, these results may be adequate; however, to make activation vectors effective for practical
applications, we must achieve better outcomes.

Table 2 of the FV paper offers an insight: FV is applied not only to zero-shot sequences but also to “uninformative”
sequences, which are essentially few-shot sequences with shuffled labels. These shuffled sequences nearly double the
performance compared to their zero-shot counterparts on synthetic tasks, prompting us to begin our investigation from this
point. However, since using a shuffled sequence is not meaningful for our purposes, we employ a correct one-shot sequence
instead. The advantages of this approach include a basic guarantee of performance, along with the presence of input-output
separators in the support samples, which further facilitate the application of the vectors.

Taking all of the above into account, we have decided to focus on enhancing few-shot performance rather than zero-shot.
Nonetheless, we hope our research will enhance future studies on activation vectors, enabling them to more effectively
address the zero-shot scenario. This would represent a significant, albeit challenging, advancement.
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Algorithm 1 Extraction of Iterative Vectors
Require: extraction shot: k, extraction batch size: b, extraction strength: α1

Ensure: extracted Iterative Vector: V
1: V← ∅ ▷ Initialize the variable to store the IV
2: IVs← ∅ ▷ An empty list to store IV for each episode
3: for the i-th episode do
4: Support, Query← RANDOMEPISODE(k) ▷ Sample a k-shot episode
5: Order, Support← SHUFFLE(Support) ▷ Shuffle and remember the classes
6: SupportAndQuerySequence← VERBALIZE(Support ⊕ Query) ▷ Convert to few-shot prompt
7: QuerySequence← VERBALIZE(Query) ▷ Convert to zero-shot prompt
8: SupportAndQueryVector← APPLYANDEXTRACT(SupportAndQuerySequence, V, α1)
9: QueryVector← EXTRACT(QuerySequence) ▷ See Algorithm 3 for the episodic functions

10: for each class of the task do
11: p← the position(s) where order is equal to class ▷ Collect by each class
12: v[class]← MEAN(SupportAndQueryVector[p] − QueryVector) ▷ Average over shots
13: end for
14: v[QUERY]← SupportAndQueryVector[QUERY] − QueryVector ▷ Collect the query as well
15: IVs← IVs ∪ {v} ▷ Append the current episode’s IV to the list
16: if i mod b = 0 then ▷ Check if the current episode is a multiple of batch size
17: V← MEAN(IVs) ▷ Update the IV to apply as the average over episodes
18: end if
19: end for

Algorithm 2 Evaluation
Require: evaluation shot k′, extracted Iterative Vector: V, inference strength: α2

Ensure: classification labels: Results
1: Results← ∅ ▷ An empty list to store results for each episode
2: for the i-th episode do
3: Support, Query← RANDOMEPISODE(k′) ▷ Sample an episode, typically with k′ = 1
4: Support← SHUFFLE(Support) ▷ Shuffle to avoid patterned few-shot sequence
5: SupportAndQuerySequence← VERBALIZE(Support ⊕ Query) ▷ Convert to prompt
6: Logits← APPLY(SupportAndQuerySequence, V, α2) ▷ Run the LM with editing
7: Results← Results ∪ {ARGMAX(Logits)} ▷ Calculate the classification result
8: end for
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Algorithm 3 Episodic Functions
1: function EXTRACT(sequence) ▷ Extracts activations from the LM
2: v ← ∅
3: run LM(sequence) with ▷ Hook into the LM with the following operations
4: for each layer in LM do ▷
5: p← the position of the input-output separator after the query
6: v ← v ∪ {Attn[p]} ▷ Store the activation of each attention layer
7: end for
8: end run
9: return v

10: end function

11: function APPLY(sequence, V, α) ▷ Apply IV to LM inference process
12: run logits← LM(sequence) with
13: for each layer in LM do
14: for each support sample in sequence do
15: p← the position of the input-output separator after the sample
16: c← the class of the sample
17: Attn[p]← Attn[p] + α× V[c] ▷ Edit the separators in the support sequence...
18: end for
19: p← the position of the input-output separator after the query
20: Attn[p]← Attn[p] + α× V[QUERY] ▷ ...as well as the query
21: end for
22: end run
23: return logits
24: end function

25: function APPLYANDEXTRACT(sequence, V, α) ▷ Apply the IV during extraction
26: v ← ∅
27: run LM(sequence) with
28: for each layer in LM do
29: if V ̸= ∅ then ▷ The first batch does not have V for editing
30: for each support sample in sequence do
31: p← the position of the input-output separator after the sample
32: c← the class of the sample
33: Attn[p]← Attn[p] + α× V[c] ▷ Edit (support)
34: end for
35: p← the position of the input-output separator after the query
36: Attn[p]← Attn[p] + α× V[QUERY] ▷ Edit (query)
37: end if
38: p← the position of the input-output separator after the query
39: v ← v ∪ {Attn[p]} ▷ Extract and append to list
40: end for
41: end run
42: return v
43: end function
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