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Abstract001

This paper addresses the critical challenge of002
deriving interpretable confidence scores from003
generative language models (LLMs) when ap-004
plied to multi-label content safety classification.005
While models like LLaMA Guard are effec-006
tive for identifying unsafe content and its cate-007
gories, their generative architecture inherently008
lacks direct class-level probabilities, which hin-009
ders model confidence assessment and perfor-010
mance interpretation. This limitation compli-011
cates the setting of dynamic thresholds for con-012
tent moderation and impedes fine-grained error013
analysis. This research proposes and evaluates014
three novel token-level probability estimation015
approaches to bridge this gap. The aim is to016
enhance model interpretability and accuracy,017
and evaluate the generalizability of this frame-018
work across different instruction-tuned mod-019
els. Through extensive experimentation on a020
synthetically generated, rigorously annotated021
dataset, it is demonstrated that leveraging token022
logits significantly improves the interpretabil-023
ity and reliability of generative classifiers, en-024
abling more nuanced content safety modera-025
tion.026

1 Introduction027

The rise of user-generated content has heightened028

the importance of content safety on digital plat-029

forms. Effective moderation systems must not only030

detect harmful content but also accurately catego-031

rize violations. Large Language Models (LLMs),032

known for their robust language understanding,033

are increasingly central to this task (Padhi et al.,034

2024; Zeng et al., 2024; Inan et al., 2023). Mod-035

els like LLaMA Guard (Inan et al., 2023) have036

been adapted for multi-label classification, produc-037

ing structured outputs such as ‘unsafe\nS1, S3‘,038

aligned with a predefined safety taxonomy.039

However, generative models like LLaMA Guard040

lack native support for producing confidence scores041

per predicted label, unlike discriminative classifiers.042

This absence complicates tasks such as threshold- 043

ing, prioritization, and error analysis, which are 044

critical in high-stakes settings (Geng et al., 2024; 045

Detommaso et al., 2024; Tian et al., 2023). With- 046

out interpretable confidence, such systems risk both 047

over-censorship and under-moderation. 048

To mitigate this, we introduce a framework 049

that derives category-level confidence scores from 050

token-level probabilities during autoregressive de- 051

coding. Following prior work (Cheng et al., 2024; 052

Zhang et al., 2025), we evaluate three types of 053

uncertainty estimation strategies: conditional prob- 054

ability, joint probability, and marginal probability. 055

Contributions: 056

1. A principled method to extract confidence 057

scores from generative LLMs; 058

2. A comparison of multiple probability estima- 059

tion techniques; 060

3. Demonstration of the method’s generalizabil- 061

ity to instruction-tuned models. 062

2 Related Work 063

Recent work has explored deriving confidence es- 064

timates from generative large language models 065

(LLMs) (Ma et al., 2025; Xia et al., 2025; Yang 066

et al., 2024; Vashurin et al., 2025). Given their 067

token-by-token decoding mechanism, researchers 068

have proposed using logits and log-probabilities to 069

estimate uncertainty (Mena et al., 2021; Vazhentsev 070

et al., 2025; Yang et al., 2025). Log-probabilities 071

which are obtained via softmax over logits, can pro- 072

vide token or sequence-level likelihoods through 073

methods such as joint or conditional probability 074

aggregation (Fadeeva et al., 2024). 075

Methods like Logits-induced Token Uncertainty 076

(LogU) compute token-level uncertainty efficiently 077

without sampling, enabling applications in rerank- 078

ing and prompt engineering (Ma et al., 2025). 079
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Figure 1: We explore Conditional, Joint, and Marginal probability-based approaches to estimate model confidence.
The category labels (e.g., S1, S3, etc.) correspond to classes defined in the LLaMA Guard taxonomy and are treated
as tokens for simplicity.

Claim-conditioned probability estimation has been080

used to assess uncertainty around specific factual081

claims in tasks such as fact-checking (Fadeeva082

et al., 2024), and prompt recovery techniques like083

LOGIT2PROMPT leverage similar signal (Morris084

et al., 2023).085

However, most prior work focuses on single-086

label classification or holistic sequence scoring.087

The challenge of systematically mapping token-088

level uncertainty to structured multi-label confi-089

dence remains underexplored.090

3 Methodology091

3.1 Problem Formulation: Generative Models092

as Multi-label Classifiers093

Formally, let X represent a textual content instance094

(input) and let Y denote the set of K predefined095

safety categories, C = {C1, C2, . . . , CK}. For a096

multi-label classification task, an input instance x097

can be associated with any subset of these labels,098

i.e., y ⊆ C. This can be represented by a binary vec-099

tor y = [y1, y2, . . . , yK ], where yi = 1 if category100

Ci is violated, and yi = 0 otherwise.101

Generative LLMs, such as LLaMA Guard, are102

trained to model the joint probability distribution103

of input and output tokens, P (X,T ), or, more com-104

monly, the conditional probability of output tokens105

given the input, P (T | X). Here,106

T = (t1, t2, . . . , tL)107

represents the generated sequence of tokens108

that constitutes the classification output (e.g., 109

"unsafe\nS1, S3"). 110

The fundamental challenge lies in deriving in- 111

terpretable and reliable category-level confidence 112

scores, P (yi = 1 | X), from this generative output, 113

which is a sequence of tokens rather than explicit 114

class probabilities. 115

3.2 Token-Level Probability Estimation 116

Approaches 117

All proposed methods leverage the raw, un- 118

normalized scores (logits) generated by the LLM’s 119

final layer for each token in its vocabulary. These 120

logits are then transformed into probabilities via a 121

softmax function. 122

3.2.1 Conditional Probability 123

This approach computes the likelihood of a label 124

token (e.g., "S1") appearing at a specific step in 125

the output, conditioned on the input prompt and 126

previously generated tokens. It reflects the model’s 127

immediate probability of generating a given safety 128

label during decoding. 129

For a target label Ci represented by token(s) tCi , 130

its conditional probability at generation step j is: 131

P (tj = tCi | X, t1, . . . , tj−1), (1) 132

which is obtained directly from the softmax out- 133

put at step j. 134

In multi-label settings, we identify the label to- 135

kens (e.g., "S1", "S3") in the output and log their 136

2



probabilities at generation. 1137

3.2.2 Joint Probability138

This method computes the joint probability of gen-139

erating each individual token in the output, con-140

ditioned on the input prompt and all previously141

generated tokens. For any target token tj in the142

generated sequence T = (t1, t2, . . . , tL), the joint143

probability up to and including tj is given by:144

P (t≤j | X) = P (t1 | X)× P (t2 | X, t1)× · · ·145

× P (tj | X, t1, . . . , tj−1) (2)146

In practice, to improve numerical stability, the loga-147

rithm of the joint probability is computed as a sum148

of log probabilities.149

3.2.3 Marginal Probability150

Marginal probability estimates the overall likeli-151

hood of a specific label Ci appearing in the model’s152

output, considering all possible sequences contain-153

ing that label, given an input X:154

P (Ci | X) =
∑

T∈TCi

P (T | X), (3)155

where TCi denotes the set of output sequences that156

include Ci. The joint probability of each sequence157

T = (t1, . . . , tL) is given by:158

P (T | X) =
L∏

j=1

P (tj | X, t<j). (4)159

While theoretically comprehensive, capturing160

the true likelihood of label presence, this formula-161

tion is computationally intractable due to the expo-162

nential size of TCi .163

To approximate this, we adopt a constrained de-164

coding strategy, detailed in Appendix A.1165

1. Top-p Filtering: At each step, only to-166

kens whose cumulative probability is below a167

threshold (e.g., 0.99) are considered, follow-168

ing nucleus sampling to prune unlikely paths.169

2. Maximum generation depth: We set a limit170

on the maximum number of tokens that can171

be generated along any given path.172

1When labels span multiple tokens (as in LLaMA Guard,
where "S1" is tokenized as ’S’, ’1’), the probability of the
final token (e.g., ’1’) is used as a proxy for the label’s likeli-
hood.

3. Early Stopping on [EOS]: Decoding halts 173

upon generating an end-of-sequence token, 174

ensuring that only complete outputs contribute 175

to the final estimate. 176

This approximation balances tractability with fi- 177

delity, enabling category-level marginal probability 178

estimation in practice. 179

The distinction between conditional, joint, and 180

marginal probabilities is crucial, as each offers a 181

unique perspective on the model’s confidence. Con- 182

ditional probability focuses on the likelihood of 183

individual label tokens at their point of generation. 184

Joint probability assesses the confidence of the en- 185

tire predicted label string. Marginal probability, 186

being the most complex, attempts to capture the 187

overall likelihood of a label independent of its ex- 188

act position or co-occurrence with other specific 189

tokens in the output string. 190

3.3 Data Generation and Annotation 191

As LLaMA Guard has not officially released any 192

test datasets and no publicly available benchmark 193

exists that aligns with its taxonomy, we opted 194

to synthetically generate the evaluation data (Ap- 195

pendix A.2). Each content instance in the synthetic 196

dataset is crafted to violate at least 2–3 safety cate- 197

gories based on LLaMA Guard 3 taxonomy. This 198

controlled generation ensures a diverse set of multi- 199

label examples, allowing for comprehensive evalu- 200

ation across various safety categories. 201

To ensure accurate ground truth labels, each data 202

point’s category annotations are derived by three 203

separate LLMs. Only examples with at least 2 out 204

of 3 model agreements matching the ground truth 205

are retained. This reconciliation strategy creates a 206

highly reliable "gold standard" dataset for evalua- 207

tion. The final evaluation dataset consists of 2.3k 208

records, with each category containing between 209

229 and 491 samples. 210

4 Evaluation 211

4.1 Benchmarks 212

We evaluate our approaches using greedy decod- 213

ing across all models. For comparison, we include 214

uncertainty estimation techniques introduced by 215

(Ma et al., 2025), namely Probability Uncertainty, 216

Entropy Uncertainty, and LogTokU. In addition to 217

our synthetically generated dataset, we incorporate 218

the Beavertails benchmark (Ji et al., 2023) to as- 219

sess the performance of different methods under 220

standardized evaluation settings. 221

3



Model Method Synthetic Dataset Beavertails

F1 AUCROC F1 AUCROC

L
L

aM
A

G
ua

rd
2

Greedy Generation 0.644 – 0.430 –
Probability Uncertainty 0.496 – 0.431 –
Entropy Uncertainty 0.496 – 0.431 –
LogTokU 0.533 – 0.430 –
Conditional Probability 0.644 0.756 0.430 0.649
Joint Probability 0.644 0.754 0.430 0.649
Marginal Probability 0.658 0.824 0.442 0.705

L
L

aM
A

G
ua

rd
3

Greedy Generation 0.701 – 0.418 –
Probability Uncertainty 0.698 – 0.417 –
Entropy Uncertainty 0.698 – 0.417 –
LogTokU 0.669 – 0.418 –
Conditional Probability 0.701 0.777 0.418 0.640
Joint Probability 0.700 0.777 0.419 0.640
Marginal Probability 0.768 0.906 0.449 0.805

L
L

aM
A

3.
1

8B
In

st
ru

ct

Greedy Generation 0.697 – 0.373 –
Probability Uncertainty 0.453 – 0.420 –
Entropy Uncertainty 0.453 – 0.420 –
LogTokU 0.462 – 0.426 –
Conditional Probability 0.704 0.876 0.376 0.677
Joint Probability 0.626 0.874 0.401 0.678
Marginal Probability 0.738 0.934 0.424 0.809

Table 1: Comparison of various methods across multiple LLM-based safety classifiers. ↑ indicates higher-is-better
metrics; ↓ indicates lower-is-better.

4.2 Evaluation Metrics222

We evaluate model performance using standard223

metrics for multi-label classification: F1-score and224

AUCROC. F1-score is the harmonic mean of pre-225

cision and recall. We report micro-averaged F1226

across all labels to capture overall performance.227

AUCROC evaluates the model’s ability to distin-228

guish between positive and negative classes. For229

multi-label settings, it is averaged over all labels.230

4.3 Results231

The primary models considered for content safety232

classification is the LLaMA Guard models. Its233

direct classification output (e.g., "unsafe234

nS1, S3") will serve as the baseline for performance235

comparison.236

The evaluation of the Conditional, Joint, and237

Marginal probability methods (outlined in Sec-238

tion 3.2) for deriving category-level confidence239

scores on the LLaMA Guard model is shown in240

Table 1. The results show that leveraging token241

logits for probability estimation significantly im-242

proves classification performance. The results243

shows that the Marginal Probability, leveraging244

its ability to aggregate probabilities across multi-245

ple paths, provides the most robust and accurate246

confidence scores, leading to superior overall clas-247

sification performance.248

4.4 Generalizability of the approach 249

To assess the transferability of the proposed strat- 250

egy, LLaMA 3.1-8B-Instruct is considered. This 251

model is an instruction-tuned LLM that has not 252

been explicitly fine-tuned for content safety. The 253

proposed probability-based decoding approach will 254

be applied to the model and the performance of our 255

approach is compared against the vanilla greedy 256

decoding approach. Evaluation results in Table 1 257

show that even without explicit safety fine-tuning, 258

a general instruction-tuned model, when used in 259

the multi-label classification setting would show 260

improved performance with marginal probability 261

based approach. 262

5 Conclusion 263

This paper addressed the challenge of deriving 264

interpretable confidence scores from generative 265

LLMs for multi-label content safety classifica- 266

tion. We proposed three token-level probabil- 267

ity estimation methods—Conditional, Joint, and 268

Marginal—to extract confidence scores from token 269

logits. Experiments on a synthetic dataset show that 270

these methods, especially the Marginal approach, 271

significantly enhance classification accuracy. Over- 272

all, this work demonstrates that generative models 273

can be adapted into reliable, interpretable multi- 274

label classifiers, enabling broader use. 275
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5.1 Limitations and Future Work276

This work presents a novel approach for deriving277

confidence scores from generative LLMs in multi-278

label settings, but several limitations remain.279

First, evaluations were performed on synthetic280

datasets. While useful for controlled experimenta-281

tion, such data may not fully reflect the complexity282

and ambiguity of real-world harmful content, de-283

spite efforts to simulate realistic label distributions.284

Second, the marginal probability estimation is285

approximate and does not explore the full space of286

generation paths. While tractable, this limits accu-287

racy. Future work could investigate more efficient288

or principled marginal estimation techniques and289

examine how decoding strategies (e.g., beam width,290

top-p sampling) affect robustness.291

Finally, the marginal probability method incurs292

token-level overhead due to multiple path explo-293

rations, which may hinder real-time applications.294

Practical deployment will require strategies to re-295

duce this cost, such as adaptive path selection or296

approximation schemes.297
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A Appendix 415

A.1 Marginal Probability Algorithm 416

Algorithm 1: Compute Marginal Probability of Label via Beam-like DFS with Max Token Cutoff

1 Function ComputeMarginalProbability(inputs, labels, max_new_tokens):
2 Initialize probabilities[label]← 0 for each label
3 Procedure DFS(inputs, current_probability, depth):
4 If current_probability < 1e−7 Return Generate next token logits using model
5 top_tokens← Get top-p tokens with their probabilities
6 For each (token, probability) in top_tokens new_inputs← Append token to input_ids and

attention_mask
7 generation← Decode new_inputs to text
8 For each label in labels If generation ends with label probabilities[label]

+= current_probability × probability
9 If token is EOS and probability ≥ 0.7 break // Stop exploring this path

10 If EOS token is among top tokens and this is the third token break // Stop exploring
this path

11 If depth = max_new_tokens or token is EOS continue // Skip recursion
12 Call DFS(new_inputs, current_probability × probability, depth + 1)
13 Call DFS(inputs, 1.0, 0)
14 Return probabilities

A.2 Synthetic Data Generation 417

Generate Unsafe Query based 
on the sampled categories using 

QwQ-32B*

Final Dataset

Randomly Sample 2 or 3  
Unsafe Categories from 

Llama Guard 3 Taxonomy 

Predict categories for unsafe 
query using Llama-3.3-70B-​

Instruct*

Predict categories for unsafe 
query using Phi-3-​mini-128k-​

instruct*

Predict categories for unsafe 
query using QwQ-32B*

Final 
Categories 

using 
Majority 
Voting

Final Categories 
equals to Initial 
Seed Categories

No

Yes

❌
Drop the generated 

unsafe query

Save the unsafe query 
and corresponding 

labels to Final Dataset

Semantical 
Deduping ✅

Unique sample 
generated

❌
Drop as similar 

query exists

* Abliterated versions of the models were used

Figure 2: An overview of the synthetic data generation pipeline used for generating the evaluation data. The models
employed in this process include Qwen/QwQ-32B (huihui-ai, 2024b), Meta-Llama/Llama-3.3-70B-Instruct (huihui-
ai, 2024a), and Microsoft/Phi-3-mini-128k-Instruct (dphn, 2024). Abliterated versions of these models were utilized
to enable the generation of unsafe and offensive content.
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