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Abstract

This paper addresses the critical challenge of
deriving interpretable confidence scores from
generative language models (LLMs) when ap-
plied to multi-label content safety classification.
While models like LLaMA Guard are effec-
tive for identifying unsafe content and its cate-
gories, their generative architecture inherently
lacks direct class-level probabilities, which hin-
ders model confidence assessment and perfor-
mance interpretation. This limitation compli-
cates the setting of dynamic thresholds for con-
tent moderation and impedes fine-grained error
analysis. This research proposes and evaluates
three novel token-level probability estimation
approaches to bridge this gap. The aim is to
enhance model interpretability and accuracy,
and evaluate the generalizability of this frame-
work across different instruction-tuned mod-
els. Through extensive experimentation on a
synthetically generated, rigorously annotated
dataset, it is demonstrated that leveraging token
logits significantly improves the interpretabil-
ity and reliability of generative classifiers, en-
abling more nuanced content safety modera-
tion.

1 Introduction

The rise of user-generated content has heightened
the importance of content safety on digital plat-
forms. Effective moderation systems must not only
detect harmful content but also accurately catego-
rize violations. Large Language Models (LLMs),
known for their robust language understanding,
are increasingly central to this task (Padhi et al.,
2024; Zeng et al., 2024; Inan et al., 2023). Mod-
els like LLaMA Guard (Inan et al., 2023) have
been adapted for multi-label classification, produc-
ing structured outputs such as ‘unsafe\nS1, S3°,
aligned with a predefined safety taxonomy.
However, generative models like LLaMA Guard
lack native support for producing confidence scores
per predicted label, unlike discriminative classifiers.

This absence complicates tasks such as threshold-
ing, prioritization, and error analysis, which are
critical in high-stakes settings (Geng et al., 2024;
Detommaso et al., 2024; Tian et al., 2023). With-
out interpretable confidence, such systems risk both
over-censorship and under-moderation.

To mitigate this, we introduce a framework
that derives category-level confidence scores from
token-level probabilities during autoregressive de-
coding. Following prior work (Cheng et al., 2024;
Zhang et al., 2025), we evaluate three types of
uncertainty estimation strategies: conditional prob-
ability, joint probability, and marginal probability.
Contributions:

1. A principled method to extract confidence
scores from generative LLMs;

2. A comparison of multiple probability estima-
tion techniques;

3. Demonstration of the method’s generalizabil-
ity to instruction-tuned models.

2 Related Work

Recent work has explored deriving confidence es-
timates from generative large language models
(LLMs) (Ma et al., 2025; Xia et al., 2025; Yang
et al., 2024; Vashurin et al., 2025). Given their
token-by-token decoding mechanism, researchers
have proposed using logits and log-probabilities to
estimate uncertainty (Mena et al., 2021; Vazhentsev
et al., 2025; Yang et al., 2025). Log-probabilities
which are obtained via softmax over logits, can pro-
vide token or sequence-level likelihoods through
methods such as joint or conditional probability
aggregation (Fadeeva et al., 2024).

Methods like Logits-induced Token Uncertainty
(LogU) compute token-level uncertainty efficiently
without sampling, enabling applications in rerank-
ing and prompt engineering (Ma et al., 2025).
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Figure 1: We explore Conditional, Joint, and Marginal probability-based approaches to estimate model confidence.
The category labels (e.g., S1, S3, etc.) correspond to classes defined in the LLaMA Guard taxonomy and are treated

as tokens for simplicity.

Claim-conditioned probability estimation has been
used to assess uncertainty around specific factual
claims in tasks such as fact-checking (Fadeeva
et al., 2024), and prompt recovery techniques like
LOGIT2PROMPT leverage similar signal (Morris
etal., 2023).

However, most prior work focuses on single-
label classification or holistic sequence scoring.
The challenge of systematically mapping token-
level uncertainty to structured multi-label confi-
dence remains underexplored.

3 Methodology

3.1 Problem Formulation: Generative Models
as Multi-label Classifiers

Formally, let X represent a textual content instance
(input) and let Y denote the set of K predefined
safety categories, C = {C1,C9,...,Ck}. For a
multi-label classification task, an input instance x
can be associated with any subset of these labels,
i.e., y C C. This can be represented by a binary vec-
tory = [y1, Y2, - .., Yk], where y; = 1 if category
C; is violated, and y; = 0 otherwise.

Generative LLMs, such as LLaMA Guard, are
trained to model the joint probability distribution
of input and output tokens, P (X, T"), or, more com-
monly, the conditional probability of output tokens
given the input, P(7 | X). Here,

T = (t1,te,...,t1)

represents the generated sequence of tokens

that constitutes the classification output (e.g.,
"unsafe\nS1, S3").

The fundamental challenge lies in deriving in-
terpretable and reliable category-level confidence
scores, P(y; = 1| X), from this generative output,
which is a sequence of tokens rather than explicit
class probabilities.

3.2 Token-Level Probability Estimation
Approaches

All proposed methods leverage the raw, un-
normalized scores (logits) generated by the LLM’s
final layer for each token in its vocabulary. These
logits are then transformed into probabilities via a
softmax function.

3.2.1 Conditional Probability

This approach computes the likelihood of a label
token (e.g., "S1") appearing at a specific step in
the output, conditioned on the input prompt and
previously generated tokens. It reflects the model’s
immediate probability of generating a given safety
label during decoding.

For a target label C; represented by token(s) t¢;,
its conditional probability at generation step j is:

P(tj=tc, | X, t1,...,tj—1), (D)

which is obtained directly from the softmax out-
put at step 7.

In multi-label settings, we identify the label to-
kens (e.g., "S1", "S3") in the output and log their



probabilities at generation. !

3.2.2 Joint Probability

This method computes the joint probability of gen-
erating each individual token in the output, con-
ditioned on the input prompt and all previously
generated tokens. For any target token ¢; in the
generated sequence T' = (t1, to, ..., tr), the joint
probability up to and including ; is given by:

P(tgj | X) = P(tl | X) X P(tg ‘ X,tl) X

X P(t]‘ ‘ X,tl,. .. ,tj_l) 2)

In practice, to improve numerical stability, the loga-
rithm of the joint probability is computed as a sum
of log probabilities.

3.2.3

Marginal probability estimates the overall likeli-
hood of a specific label C; appearing in the model’s
output, considering all possible sequences contain-
ing that label, given an input X:

P(C; | X) = Z

TeTc,

Marginal Probability

P(T]X), 3)

where 7, denotes the set of output sequences that
include C;. The joint probability of each sequence
T = (t1,...,tr) is given by:

L
P(T|X)= H (t; | X, t<j). (4)

While theoretically comprehensive, capturing
the true likelihood of label presence, this formula-
tion is computationally intractable due to the expo-
nential size of 7¢,.

To approximate this, we adopt a constrained de-
coding strategy, detailed in Appendix A.1

1. Top-p Filtering: At each step, only to-
kens whose cumulative probability is below a
threshold (e.g., 0.99) are considered, follow-
ing nucleus sampling to prune unlikely paths.

2. Maximum generation depth: We set a limit
on the maximum number of tokens that can
be generated along any given path.

'When labels span multiple tokens (as in LLaMA Guard,
where "S1" is tokenized as ’S’, ’17), the probability of the
final token (e.g., ’1’) is used as a proxy for the label’s likeli-
hood.

3. Early Stopping on [E0S]: Decoding halts
upon generating an end-of-sequence token,
ensuring that only complete outputs contribute
to the final estimate.

This approximation balances tractability with fi-
delity, enabling category-level marginal probability
estimation in practice.

The distinction between conditional, joint, and
marginal probabilities is crucial, as each offers a
unique perspective on the model’s confidence. Con-
ditional probability focuses on the likelihood of
individual label tokens at their point of generation.
Joint probability assesses the confidence of the en-
tire predicted label string. Marginal probability,
being the most complex, attempts to capture the
overall likelihood of a label independent of its ex-
act position or co-occurrence with other specific
tokens in the output string.

3.3 Data Generation and Annotation

As LLaMA Guard has not officially released any
test datasets and no publicly available benchmark
exists that aligns with its taxonomy, we opted
to synthetically generate the evaluation data (Ap-
pendix A.2). Each content instance in the synthetic
dataset is crafted to violate at least 2-3 safety cate-
gories based on LLaMA Guard 3 taxonomy. This
controlled generation ensures a diverse set of multi-
label examples, allowing for comprehensive evalu-
ation across various safety categories.

To ensure accurate ground truth labels, each data
point’s category annotations are derived by three
separate LLMs. Only examples with at least 2 out
of 3 model agreements matching the ground truth
are retained. This reconciliation strategy creates a
highly reliable "gold standard" dataset for evalua-
tion. The final evaluation dataset consists of 2.3k
records, with each category containing between
229 and 491 samples.

4 Evaluation

4.1 Benchmarks

We evaluate our approaches using greedy decod-
ing across all models. For comparison, we include
uncertainty estimation techniques introduced by
(Ma et al., 2025), namely Probability Uncertainty,
Entropy Uncertainty, and LogTokU. In addition to
our synthetically generated dataset, we incorporate
the Beavertails benchmark (Ji et al., 2023) to as-
sess the performance of different methods under
standardized evaluation settings.



Model Method Synthetic Dataset Beavertails
F1 AUCROC F1 AUCROC
Greedy Generation 0.644 - 0.430 -
Probability Uncertainty  0.496 - 0.431 -
%: g Entropy Uncertainty 0.496 - 0.431 -
< § LogTokU 0.533 - 0.430 -
— O Conditional Probability  0.644 0.756 0.430 0.649
Joint Probability 0.644 0.754 0.430 0.649
Marginal Probability 0.658 0.824 0.442 0.705
Greedy Generation 0.701 - 0.418 -
Probability Uncertainty ~ 0.698 - 0.417 -
§ = Entropy Uncertainty 0.698 - 0.417 -
< § LogTokU 0.669 - 0.418 -
=0 Conditional Probability ~ 0.701 0.777 0.418 0.640
Joint Probability 0.700 0.777 0.419 0.640
Marginal Probability 0.768 0.906 0.449 0.805
Greedy Generation 0.697 - 0.373 -
-5 Probability Uncertainty  0.453 - 0.420 -
2 g Entropy Uncertainty 0.453 - 0.420 -
S £ LogTokU 0.462 - 0.426 -
Sm Conditional Probability  0.704 0.876 0.376 0.677
H Joint Probability 0.626 0.874 0.401 0.678
Marginal Probability 0.738 0.934 0.424 0.809

Table 1: Comparison of various methods across multiple LLM-based safety classifiers. 1 indicates higher-is-better

metrics; | indicates lower-is-better.

4.2 Evaluation Metrics

We evaluate model performance using standard
metrics for multi-label classification: F1-score and
AUCROC. F1-score is the harmonic mean of pre-
cision and recall. We report micro-averaged F1
across all labels to capture overall performance.
AUCROC evaluates the model’s ability to distin-
guish between positive and negative classes. For
multi-label settings, it is averaged over all labels.

4.3 Results

The primary models considered for content safety
classification is the LLaMA Guard models. Its
direct classification output (e.g., "unsafe

nS1, S3") will serve as the baseline for performance
comparison.

The evaluation of the Conditional, Joint, and
Marginal probability methods (outlined in Sec-
tion 3.2) for deriving category-level confidence
scores on the LLaMA Guard model is shown in
Table 1. The results show that leveraging token
logits for probability estimation significantly im-
proves classification performance. The results
shows that the Marginal Probability, leveraging
its ability to aggregate probabilities across multi-
ple paths, provides the most robust and accurate
confidence scores, leading to superior overall clas-
sification performance.

4.4 Generalizability of the approach

To assess the transferability of the proposed strat-
egy, LLaMA 3.1-8B-Instruct is considered. This
model is an instruction-tuned LLM that has not
been explicitly fine-tuned for content safety. The
proposed probability-based decoding approach will
be applied to the model and the performance of our
approach is compared against the vanilla greedy
decoding approach. Evaluation results in Table 1
show that even without explicit safety fine-tuning,
a general instruction-tuned model, when used in
the multi-label classification setting would show
improved performance with marginal probability
based approach.

5 Conclusion

This paper addressed the challenge of deriving
interpretable confidence scores from generative
LLMs for multi-label content safety classifica-
tion. We proposed three token-level probabil-
ity estimation methods—Conditional, Joint, and
Marginal—to extract confidence scores from token
logits. Experiments on a synthetic dataset show that
these methods, especially the Marginal approach,
significantly enhance classification accuracy. Over-
all, this work demonstrates that generative models
can be adapted into reliable, interpretable multi-
label classifiers, enabling broader use.



5.1 Limitations and Future Work

This work presents a novel approach for deriving
confidence scores from generative LLMs in multi-
label settings, but several limitations remain.

First, evaluations were performed on synthetic
datasets. While useful for controlled experimenta-
tion, such data may not fully reflect the complexity
and ambiguity of real-world harmful content, de-
spite efforts to simulate realistic label distributions.

Second, the marginal probability estimation is
approximate and does not explore the full space of
generation paths. While tractable, this limits accu-
racy. Future work could investigate more efficient
or principled marginal estimation techniques and
examine how decoding strategies (e.g., beam width,
top-p sampling) affect robustness.

Finally, the marginal probability method incurs
token-level overhead due to multiple path explo-
rations, which may hinder real-time applications.
Practical deployment will require strategies to re-
duce this cost, such as adaptive path selection or
approximation schemes.
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A Appendix
A.1 Marginal Probability Algorithm

Algorithm 1: Compute Marginal Probability of Label via Beam-like DFS with Max Token Cutoff

1 Function ComputeMarginalProbability (inputs, labels, max_new_tokens):

2 Initialize probabilities[label] < O for each label
3 Procedure DFS (inputs, current_probability, depth):
4 If current_probability < 1le~" Return Generate next token logits using model
5 top_tokens <— Get top-p tokens with their probabilities
6 For each (token, probability) in top_tokens new_inputs <— Append token to input_ids and
attention_mask
7 generation <— Decode new_inputs to text
8 For each label in labels If generation ends with label probabilities[label]
+= current_probability X probability
9 If token is EOS and probability > 0.7 break // Stop exploring this path
10 If EOS token is among top tokens and this is the third token break // Stop exploring
this path
11 If depth = max_new_tokens or token is EOS continue // Skip recursion
12 Call DFS(new_inputs, current_probability x probability, depth + 1)
13 Call DFS (inputs, 1.0, 0)
14 Return probabilities

A.2 Synthetic Data Generation
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Figure 2: An overview of the synthetic data generation pipeline used for generating the evaluation data. The models
employed in this process include Qwen/QwQ-32B (huihui-ai, 2024b), Meta-Llama/Llama-3.3-70B-Instruct (huihui-
ai, 2024a), and Microsoft/Phi-3-mini-128k-Instruct (dphn, 2024). Abliterated versions of these models were utilized
to enable the generation of unsafe and offensive content.
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