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PI-FLOW: POLICY-BASED FEW-STEP GENERATION
VIA IMITATION DISTILLATION

Anonymous authors
Paper under double-blind review

Figure 1: High quality 4-NFE text-to-image generations by π-Flow, distilled from FLUX.1-12B
(top-right three images) and Qwen-Image-20B (all remaining images). π-Flow preserves the
teacher’s coherent structures, fine details (e.g., skin and hair), and accurate text rendering, while
avoiding diversity collapse (see Fig. 4 for sample diversity).

ABSTRACT

Few-step diffusion or flow-based generative models typically distill a velocity-
predicting teacher into a student that predicts a shortcut towards denoised data.
This format mismatch has led to complex distillation procedures that often suffer
from a quality–diversity trade-off. To address this, we propose policy-based flow
models (π-Flow). π-Flow modifies the output layer of a student flow model to
predict a network-free policy at one timestep. The policy then produces dynamic
flow velocities at future substeps with negligible overhead, enabling fast and ac-
curate ODE integration on these substeps without extra network evaluations. To
match the policy’s ODE trajectory to the teacher’s, we introduce a novel imitation
distillation approach, which matches the policy’s velocity to the teacher’s along
the policy’s trajectory using a standard ℓ2 flow matching loss. By simply mimick-
ing the teacher’s behavior, π-Flow enables stable and scalable training and avoids
the quality–diversity trade-off. On ImageNet 2562, it attains a 1-NFE FID of 2.85,
outperforming previous 1-NFE models of the same DiT architecture. On FLUX.1-
12B and Qwen-Image-20B at 4 NFEs, π-Flow achieves substantially better diver-
sity than state-of-the-art DMD models, while maintaining teacher-level quality.
Code and models will be released publicly.
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1 INTRODUCTION

Diffusion and flow matching models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon,
2019; Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023) have become the dominant method for
visual generation, delivering compelling image quality and diversity. However, these models rely on
a costly denoising process for inference, which integrates a probability flow ODE (Song et al., 2021)
over multiple timesteps, each step requiring a neural network evaluation. Commonly, the inference
cost of diffusion models is quantified by the number of function (network) evaluations (NFEs).

To reduce the inference cost, diffusion distillation methods compress a pre-trained multi-step model
(the teacher) into a student that requires only one or a few network evaluation steps. Existing distilla-
tion approaches avoid ODE integration by taking one or a few shortcut steps that map noise to data,
where each shortcut path is predicted by the student network, referred to as a shortcut-predicting
model. Learning these shortcuts is a significant challenge because they cannot be directly inferred
from the teacher model. This necessitates the use of complex training methods, such as progres-
sive distillation (Salimans & Ho, 2022; Liu et al., 2023; 2024), consistency distillation (Song et al.,
2023), and distribution matching (Sauer et al., 2024a; Yin et al., 2024b;a; Salimans et al., 2024).
In turn, the sophisticated training often lead to degraded image quality from error accumulation or
compromised diversity due to mode collapse.

To sidestep the difficulties in shortcut-predicting distillation, we propose a novel policy-based flow
model (π-Flow or pi-Flow) paradigm: given noisy data at one timestep, the student network predicts
a network-free policy, which maps new noisy states to their corresponding flow velocities with
negligible overhead, allowing fast and accurate ODE integration using multiple substeps of policy
velocities instead of network evaluations.

To train the student network, we introduce policy-based imitation distillation (π-ID), a DAgger-
style (Ross et al., 2011) on-policy imitation learning (IL) method. π-ID trains the policy on its own
trajectory: at visited states, we query the teacher velocity and match the policy’s output to it, using
the teacher’s corrective signal to teach the policy to recover from its own mistakes and reduce error
accumulation. Specifically, the matching employs a standard ℓ2 loss aligned with the teacher’s flow
matching objective, thus naturally preserving its quality and diversity.

We validate our paradigm with two types of policies: a simple dynamic-x̂(t)
0 (DX) policy and an

advanced GMFlow policy based on Chen et al. (2025). Experiments show that GMFlow policy
outperforms DX policy and delivers strong ImageNet 2562 FIDs at 1- and 2-NFE generation. To
demonstrate its scalability, we distill FLUX.1-12B (Black Forest Labs, 2024b) and Qwen-Image-
20B (Wu et al., 2025) text-to-image models into 4-NFE π-Flow students, which achieve state-of-
the-art diversity, while maintaining teacher-level quality.

We summarize the contributions of this work as follows:
• We propose π-Flow, a new paradigm that decouples ODE integration substeps from network

evaluation steps, enabling both fast generation and straightforward distillation.
• We introduce π-ID, a novel on-policy IL method for few-step π-Flow distillation, which reduces

the training objective to a simple ℓ2 flow matching loss.
• We demonstrate strong performance and scalability of π-Flow, particularly, its superior diversity

and teacher alignment compared to other state-of-the-art 4-NFE text-to-image models.

2 PRELIMINARIES

In this section, we briefly introduce flow matching models (Lipman et al., 2023; Liu et al., 2023)
and the notations used in this paper.

Let p(x0) denote the (latent) data probability density, where x0 ∈ RD is a data point. A stan-
dard flow model defines an interpolation between a data sample and a random Gaussian noise
ϵ ∼ N (0, I), yielding the diffused noisy data xt = αtx0 + σtϵ, where t ∈ (0, 1] denotes the
diffusion time, and αt = 1 − t, σt = t are the linear flow noise schedule. The optimal transport
map across all marginal densities p(xt) =

∫
RD N (xt;αtx0, σ

2
t I)p(x0) dx0 can be described by

2
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Figure 2: Comparison between (a) standard flow model (teacher), (b) shortcut-predicting model, and
(c) our policy-based model. The shortcut-predicting model skips all intermediate states, whereas the
our-based model retains all intermediate substeps with minimal overhead.

the following probability flow ODE (Song et al., 2021; Liu, 2022):

dxt

dt
= ẋt =

xt − Ex0∼p(x0|xt)[x0]

t
=

xt −
∫
RD x0p(x0|xt) dx0

t
, (1)

with the denoising posterior p(x0|xt) :=
N(xt;αtx0,σ

2
t I)p(x0)

p(xt)
. At test time, the model can generate

samples by first initializing the noise x1 ← ϵ and then solving the ODE to obtain limt→0 xt.

In practice, flow matching models approximate the ODE velocity dxt

dt using a neural network
Gθ(xt, t) with learnable parameters θ, trained using the ℓ2 flow matching loss:

Lθ = Et,x0,xt

[
1

2
∥u−Gθ(xt, t)∥2

]
, with sample velocity u :=

xt − x0

t
. (2)

Since each velocity query requires evaluating the network (Fig. 2 (a)), flow matching models couple
sampling efficiency with solver precision. Despite the progress in advanced solvers (Karras et al.,
2022; Zhang & Chen, 2023; Lu et al., 2022; 2023; Zhao et al., 2023), high-quality sampling typically
requires over 10 steps due to inherent ODE truncation error, making it computationally expensive.

3 π-FLOW: POLICY-BASED FEW-STEP GENERATION

In π-Flow, we define the policy as a network-free function π : RD × R → RD that maps a state
(xt, t) to a flow velocity. A policy can be network-free if it only needs to describe a single ODE
trajectory, which is fully determined by its initial state (xtsrc , tsrc) with tsrc ≥ t. In this case, the
policy for each trajectory must be dynamically predicted by a neural network conditioned on that
initial state (xtsrc , tsrc). We therefore adapt a flow model to output not a single velocity, but an entire
dynamic policy that governs the full trajectory. Formally, define the policy function space F :={
π : RD × R→ RD

}
. Then, our goal is to distill a policy generator network Gϕ : RD × R → F

with learnable parameters ϕ, such that π(xt, t) = Gϕ(xtsrc , tsrc)(xt, t).

As shown in Fig. 2 (c), π-Flow performs ODE-based denoising from tsrc to tdst via two stages:
• A policy generation step, which feeds the initial state (xtsrc , tsrc) to the student network Gϕ to

produce the policy π, i.e., π ← Gϕ(xtsrc , tsrc).
• Multiple policy integration substeps, which integrates the ODE by querying the policy velocity

over multiple substeps, obtaining a less noisy state by xtdst ← xtsrc +
∫ tdst

tsrc
π(xt, t) dt.

Unlike previous few-step distillation methods, π-Flow decouples network evaluation steps from
ODE integration substeps. This allows it to combine the key advantages of two paradigms: it per-
forms only a few network evaluations for efficient generation, similar to a shortcut-predicting model,
while also executing dense integration substeps, just like a standard flow matching teacher. Thanks
to its teacher-like ODE integration process, a π-Flow student offers unprecedented advantage in
training, as we can now follow well-established imitation learning (IL) approaches to directly match
the policy velocity π(xt, t) to the teacher velocity Gθ(xt, t), as discussed later in § 4.

To identify the appropriate function classes of student policies for fast image generation, we need to
consider the following requirements:
• Efficiency. The policy should provide closed-form velocities with minimal overhead, so that

rolling out dense (e.g., 100+) substeps incurs negligible cost compared to a network evaluation.

3
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• Compatibility. The policy should have a compact set of parameters that can be easily predicted
by the student Gϕ with standard backbones (e.g., DiT (Peebles & Xie, 2023)).

• Expressiveness. The policy should be able to approximate a complicated ODE trajectory starting
from a certain initial state xtsrc .

• Robustness. The policy should be able to handle trajectory variations that arise from perturba-
tions to the initial state xtsrc . For instance, a suboptimal student network will produce an erroneous
mapping from xtsrc to π. This introduces the randomness that the policy needs to accommodate
throughout the rollout. Consequently, the policy function should adapt its velocity output to vari-
ations in its state input xt, which is a challenging requirement for network-free functions.

3.1 DYNAMIC-x̂(t)
0 POLICY

We introduce a simple baseline policy called dynamic-x̂(t)
0 policy (DX policy). DX policy defines

π(xt, t) :=
xt−x̂

(t)
0

t , where x̂
(t)
0 approximates the posterior moment Ex0∼p(x0|xt)[x0] in Eq. (1).

Along a fixed trajectory starting from an initial state (xtsrc , tsrc), the posterior moment is only depen-
dent on t. Therefore, we first predict a grid of x̂(ti)

0 at N evenly spaced times t1, ..., tN ∈ [tdst, tsrc]
by a single evaluation of the student network Gϕ(xtsrc , tsrc). This is achieved by expanding the out-
put channels of the student network and performing u-to-x0 reparameterization. Then, for arbitrary
t ∈ [tdst, tsrc], we obtain the approximated moment x̂(t)

0 by a linear interpolation over the grid.

Apparently, DX policy is fast, compatible, and expressive enough so that any N -step teacher tra-
jectory can be matched with N grid points. However, its robustness is limited because x̂

(t)
0 is not

adaptive to perturbations in xt.

3.2 GMFLOW POLICY

For stronger robustness, we incorporate an advanced GMFlow policy based on the closed-
form GM velocity field in Chen et al. (2025). GMFlow policy expands the network out-
put channels to predict a factorized Gaussian mixture (GM) velocity distribution q(u|xtsrc) =∏L

i=1

∑K
k=1 AikN

(
ui;µik, s

2I
)
, where Aik ∈ R+, µik ∈ RC , s ∈ R+ are GM parameters pre-

dicted by the network, L × C factorizes the data dimension D into sequence length L and channel
size C, and K is a hyperparameter specifying the number of mixture components. Intuitively, the
student network Gϕ maps the initial state xtsrc to multiple denoising modes that parameterize the
GMFlow policy. The policy then enables a closed-form velocity expression at future state (xt, t)
for any 0 < t < tsrc (see § F for details). The speed and compatibility of GMFlow has already been
discussed in Chen et al. (2025), thus we focus on analyzing its expresiveness and robustness.

Expressiveness. With the L × C factorization, each individual C-dimensional GM needs to be
expressive enough to approximate a C-dimensional chunk of the teacher trajectory. In § E, we
rigorously prove the following theorem, demonstrating GMFlow’s expressiveness.

Theorem 1 (A GMFlow policy with K = N ·C can accurately approximate any N -step trajectory).
Given pairwise distinct times t1, . . . , tN ∈ (0, 1] and vectors xtn , ẋtn ∈ RC for n = 1, . . . , N ,
there exists a GM parameterization of p(x0) with N ·C components, such that ẋtn can be approxi-
mated arbitrarily well using Eq (1) at t = tn for every n = 1, . . . , N .

In practice, we can use K ≪ N · C (e.g., K = 8) since the teacher trajectory is mostly smooth.
More analysis of GMFlow hyperparameters are presented in § C.1.

Robustness. GMFlow is highly robust against trajectory perturbation due to its probabilistic origin.
Unlike DX policy, GMFlow models a fully dynamic denoising posterior (Eq. (23)) dependent on
both xt and t. Leveraging its robustness, the policy can be flexibly altered via GM dropout in
training (§ 4) and GM temperature in inference (§ B.1), both improving generalization performance.

4
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Algorithm 1: On-policy π-ID.
Input: NFE , teacher Gθ , student Gϕ, condition c

1 Sample tsrc from
{

1
NFE

, 2
NFE

, · · · , 1
}

2 Initialize xtsrc (data-free or data-dependent)
3 π ← Gϕ(xtsrc , tsrc, c)
4 πD ← stopgrad(π)
5 Lϕ ← 0

6 for finite samples t ∼ U
(
tsrc − 1

NFE
, tsrc

)
do

7 xt ← xtsrc +
∫ t

tsrc
πD(xt, t) dt

8 Lϕ ← Lϕ + 1
2
∥Gθ(xt, t, c)− π(xt, t)∥2

9 ϕ← Adam(ϕ,∇ϕLϕ) // optimizer step

Policy 𝜋𝜋

𝒙𝒙𝑡𝑡src

Detached policy 𝜋𝜋D

stopgrad 
(+ dropout)

𝒙𝒙𝑡𝑡dst

Teacher velocity 𝐺𝐺𝜽𝜽(𝒙𝒙𝑡𝑡, 𝑡𝑡)
Policy velocity 𝜋𝜋(𝒙𝒙𝑡𝑡, 𝑡𝑡)

Detached policy 𝜋𝜋D rollout

𝐺𝐺𝝓𝝓

Figure 3: On-policy flow imitation dis-
tillation. Intermediate states are sampled
along the detached policy rollout, where
the loss matches the policy to the teacher.

4 π-ID: POLICY-BASED IMITATION DISTILLATION

With the policy rollout sharing the same format as the teacher’s ODE integration, it is straightfor-
ward to adopt imitation learning to learn the policy by directly matching the policy’s velocity to the
teacher’s velocity. In this section, we introduce a simple policy-based imitation distillation (π-ID)
algorithm based on DAgger-style (Ross et al., 2011) on-policy imitation.

On-policy imitation learning is robust to error accumulation since it trains the policy on its own
trajectory, allowing the teacher’s corrective signal to steer a deviating trajectory back on track. As
shown in Fig. 3 and Algorithm 1, for a time interval from tsrc to tdst (i.e., a 1-NFE segment), we first
feed the initial state (xtsrc , tsrc) to the student network Gϕ to obtain the policy π. We then sample
an intermediate time t ∈ (tdst, tsrc] and roll out a detached policy πD from tsrc to t using high-
accuracy ODE integration (with a small step size of 1/128), yielding an intermediate state xt on
the policy trajectory. This state is fed to both the learner policy π and the frozen teacher Gθ, which
produce their respective velocities. Finally, we compute a standard ℓ2 flow matching loss between
the two velocities, and backpropagate its gradients through the policy π to the student network Gϕ.
Because the student forward/backward pass dominates compute while policy and teacher queries are
relatively cheap, we may repeat the rollout-and-matching step multiple times for additional teacher
supervisions. In practice, we sample two intermediate states per student forward pass.

Data-dependent and data-free π-ID. The initial state xtsrc can be obtained via forward diffusion
from real data x0 (data-dependent Algorithm 2), or via π-Flow’s reverse denoising from random
noise x1 (data-free Algorithm 3). Both methods have roughly the same computational cost, and
comparable performance, as demonstrated in the experiments (§ 5).

Error bounds and convergence. As discussed by Ross et al. (2011), on-policy imitation learning
guarantees that the performance of the learned policy is bounded by the teacher’s performance plus
an error term that scales as O(nε), where n is the number of substeps and ε is the average imitation
error (velocity error × substep size), which is strictly better than the O(n2ε) compounding-error
behavior of off-policy behavior cloning. Moreover, the sequence of on-policy iterates converges in
performance to the best policy in the function class, under the student’s capacity constraint.

5 EXPERIMENTS

To demonstrate the versatility of π-Flow, we evaluate it with three distinct image generation mod-
els of different scales and architectures: DiT(SiT)-XL/2 (675M) (Peebles & Xie, 2023; Ma et al.,
2024; Vaswani et al., 2017) for ImageNet 2562 (Deng et al., 2009) class-conditioned generation,
FLUX.1-12B (Black Forest Labs, 2024b) and Qwen-Image-20B (Wu et al., 2025) for text-to-image
generation.

5.1 IMPLEMENTATION DETAILS

In this subsection, we discuss key implementation details essential to model performance. More
training details and hyperparameter choices are presented in § C.

5
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Table 1: 1-NFE generation results of π-Flow with DX and
GMFlow policies on ImageNet. Tested after 40K training it-
erations. FM stands for standard flow matching.

Policy Teacher FID↓ IS↑ Precision↑ Recall↑
DX (N = 10) REPA 4.73 327.6 0.781 0.514
DX (N = 20) REPA 4.44 329.8 0.786 0.531
DX (N = 40) REPA 4.90 321.8 0.778 0.537
GM (K = 8) REPA 3.07 336.9 0.789 0.572
GM (K = 32) REPA 3.08 341.7 0.791 0.562

GM (K = 32) FM 3.65 282.0 0.797 0.533
GM (K = 32) w/o dropout FM 4.14 279.6 0.799 0.525

Table 2: Comparison with previ-
ous few-step DiTs on ImageNet.

Model NFE FID↓

iCT 2 20.30
iMM 1×2 7.77
MeanFlow 2 2.20
FACM (REPA) 2 1.52
π-Flow (GM-REPA) 2 1.97

iCT 1 34.24
Shortcut 1 10.60
MeanFlow 1 3.43
π-Flow (GM-FM) 1 3.34
π-Flow (GM-REPA) 1 2.85

GM dropout. Dropout is a widely adopted technique in supervised/imitation learning and rein-
forcement learning to improve generalization (Srivastava et al., 2014; Cobbe et al., 2019). For the
GMFlow policy, we introduce GM dropout in training to stochastically perturb and diversify π-ID
rollouts to make the policy more robust to potential trajectory variations. Given the GM mixture
weights Aik of the detached policy πD, we sample a binary mask for each component k = 1, · · · ,K
and multiply it into Aik synchronously across all i = 1, · · · , L. The masked weights are then
renormalized and used for the detached rollout. By exploring alternative GM modes, this simple
technique improves the policy’s robustness, yielding better FID on ImageNet 2562 (§ 5.2).

Handling guidance-distilled teachers. On-policy imitation learning assumes the teacher is robust
to out-of-distribution (OOD) intermediate states and can steer trajectories back on track. This gen-
erally holds for standard flow models with classifier-free guidance (CFG) (Ho & Salimans, 2021),
which exhibit error-correction behavior (Chidambaram et al., 2024). However, FLUX.1 dev (Black
Forest Labs, 2024b) is a guidance-distilled model without true CFG and is less robust to OOD in-
puts. To mitigate OOD exposure, we adopt a scheduled trajectory mixing strategy, which rolls out
the trajectory using a mixture of teacher and student with a linearly decaying teacher ratio (see § B.2
for details).

5.2 IMAGENET DIT

Our study utilizes two pretrained teachers with the same DiT architecture: a standard flow match-
ing (FM) DiT (the baseline in Chen et al. (2025)), and the REPA DiT (Yu et al., 2025). Interval
CFG (Kynkäänniemi et al., 2024) is applied to both teachers to maximize their performance. Each
π-Flow student is initialized with the teacher weights and then fully finetuned using the π-ID loss.

Evaluation metrics. We adopt the standard evaluation protocol in ADM (Dhariwal & Nichol, 2021)
with the following metrics: Fréchet Inception Distance (FID) (Heusel et al., 2017), Inception Score
(IS), and Precision–Recall (Kynkäänniemi et al., 2019).

Comparison of DX and GMFlow policies. As shown in Table 1, both policies yield strong 1-
NFE FIDs after 40k training iterations, with the GMFlow policy consistently outperforming the
DX policy by a clear margin. Notably, the DX policy exhibits sensitivity to the hyperparameter N
(number of grid points), whereas the GMFlow policy produces consistent results across different
values of K (number of Gaussians).

Comparison with prior few-step DiTs. In Table 2, we compare π-Flow (GM policy with K = 32)
to prior few-step DiTs on ImageNet 2562: iCT (Song & Dhariwal, 2024), Shortcut models (Frans
et al., 2025), iMM (Zhou et al., 2025), MeanFlow (Geng et al., 2025), and the concurrent work
FACM (Peng et al., 2025). FACM (distilled from REPA) improves MeanFlow with an auxiliary
loss and attains a leading 2-NFE FID, though it still relies on the inefficient JVP operation. In
contrast, π-Flow uses a minimal training framework with no JVP and adaptive loss scalings, yet still
outperforms the original MeanFlow DiT across both 1-NFE and 2-NFE generation.

Ablation study on GM dropout. From the two bottom rows in Table 1 we conclude that our
standard implementation with a 0.05 GM dropout rate yields better FID and Recall compared to the
setting without dropout, confirming the effectiveness of our GM dropout technique.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Quantitative comparisons on COCO-10k dataset and HPSv2 prompt set.

Model Distill method NFE
COCO-10k prompts HPSv2 prompts

Data align. Prompt align. Pref. align. Teacher align. Prompt align. Pref. align.

FID↓ pFID↓ CLIP↑ VQA↑ HPSv2.1↑ FID↓ pFID↓ CLIP↑ VQA↑ HPSv2.1↑

FLUX.1 dev - 50 27.8 34.9 0.268 0.900 0.309 - - 0.284 0.805 0.314

FLUX Turbo GAN 8 26.7 32.0 0.267 0.900 0.308 13.8 18.5 0.286 0.814 0.313
Hyper-FLUX CD+Re 8 29.8 33.3 0.268 0.894 0.309 15.6 22.2 0.285 0.807 0.315
π-Flow (GM-FLUX) π-ID 8 29.0 35.4 0.268 0.901 0.311 12.6 15.9 0.285 0.810 0.316
SenseFlow (FLUX) VSD+CD+GAN 4 34.1 44.2 0.266 0.879 0.308 23.3 28.2 0.283 0.806 0.318
π-Flow (GM-FLUX) π-ID 4 29.8 36.1 0.269 0.903 0.308 14.3 19.2 0.288 0.816 0.313
π-Flow (GM-FLUX) π-ID (data-free) 4 29.7 36.2 0.269 0.905 0.310 14.4 19.7 0.287 0.813 0.314

Qwen-Image - 50×2 34.1 45.6 0.282 0.936 0.312 - - 0.302 0.872 0.309

Qwen-Image Lightning VSD 4 37.5 51.6 0.280 0.935 0.322 15.6 19.7 0.299 0.867 0.328
π-Flow (GM-Qwen) π-ID 4 36.0 46.1 0.281 0.934 0.314 12.8 16.6 0.300 0.860 0.310
π-Flow (GM-Qwen) π-ID (data-free) 4 36.0 45.7 0.282 0.936 0.315 12.9 16.8 0.301 0.862 0.312

Table 4: Quantitative comparisons on OneIG-Bench (Chang et al., 2025).

Model Distill Method NFE Alignment↑ Text↑ Diversity↑ Style↑ Reasoning↑

FLUX.1 dev - 50 0.790 0.556 0.238 0.370 0.257

FLUX Turbo GAN 8 0.791 0.334 0.234 0.370 0.239
Hyper-FLUX CD+Re 8 0.790 0.530 0.198 0.369 0.254
π-Flow (GM-FLUX) π-ID 8 0.792 0.517 0.234 0.369 0.256
SenseFlow (FLUX) VSD+CD+GAN 4 0.776 0.384 0.151 0.343 0.238
π-Flow (GM-FLUX) π-ID 4 0.799 0.437 0.229 0.360 0.251
π-Flow (GM-FLUX) π-ID (data-free) 4 0.799 0.460 0.224 0.363 0.249

Qwen-Image - 50×2 0.880 0.888 0.194 0.427 0.306

Qwen-Image Lightning VSD 4 0.885 0.923 0.116 0.417 0.311
π-Flow (GM-Qwen) π-ID 4 0.875 0.892 0.180 0.434 0.298
π-Flow (GM-Qwen) π-ID (data-free) 4 0.881 0.890 0.176 0.433 0.300

5.3 FLUX.1-12B AND QWEN-IMAGE-20B

For text-to-image generation, we distill the 12B FLUX.1 dev (Black Forest Labs, 2024b) and 20B
Qwen-Image (Wu et al., 2025) models into π-Flow students. During student training, we freeze
the base parameters inherited from the teacher and finetune only the expanded output layer along
with 256-rank LoRA adapters (Hu et al., 2022) on the feed-forward layers. For data-dependent
distillation, we prepare 2.3M one-megapixel (1MP) images captioned with Qwen2.5-VL (Bai et al.,
2025). In the data-free setting, we use only the generated captions as conditioning inputs while
keeping the same 1MP resolution when initializing the noise.

Evaluation protocol. We conduct a comprehensive evaluation on 10242 high-resolution image
generation from three distinct prompt sets: (a) 10K captions from the COCO 2014 validation set (Lin
et al., 2014), (b) 3200 prompts from the HPSv2 benchmark (Wu et al., 2023), and (c) 1120 prompts
from OneIG-Bench (Chang et al., 2025). For the COCO and HPSv2 sets, we report common metrics
including FID (Heusel et al., 2017), patch FID (pFID) (Lin et al., 2024a), CLIP similarity (Radford
et al., 2021), VQAScore (Lin et al., 2024b), and HPSv2.1 (Wu et al., 2023). On COCO prompts,
FIDs are computed against real images, reflecting data alignment. On HPSv2, FIDs are computed
against the 50-step teacher generations, reflecting teacher alignment. CLIP and VQAScore measure
prompt alignment, while HPSv2 captures human preference alignment. For OneIG-Bench, we adopt
its official evaluation protocol and metrics. All quantitative results are presented in Table 3 and 4.

Competitor models. We compare π-Flow against other few-step student models distilled from the
same teacher. For FLUX, we compare against: 4-NFE SenseFlow (Ge et al., 2025), primarily lever-
aging variational score distillation (VSD) (Wang et al., 2023), also known as distribution matching
distillation (DMD) (Yin et al., 2024b); 8-NFE Hyper-FLUX (Ren et al., 2024), trained with consis-
tency distillation (CD) (Song et al., 2023) and reward models (Re) (Xu et al., 2023); 8-NFE FLUX
Turbo, based on GAN-like adversarial distillation (Goodfellow et al., 2014; Sauer et al., 2024b). For
Qwen-Image, we compare with the 4-NFE Qwen-Image Lighting based on VSD (ModelTC, 2025).
Note that the 4-NFE FLUX.1 schnell is distilled from the closed-source FLUX.1 pro instead of the
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With a clear box 
hovering above 
showing "System 
Update: Now 
supports gardening 
mode!", generate 
pixel art of a cheerful 
robot watering 
pixelated flowers in a 
futuristic garden.

Young woman in 
dynamic neon 
streetwear poses on 
bustling Tokyo street 
at night, surrounded 
by illuminated signs. 
Captured in a 
photograph that 
features lifelike 
individuals.

FLUX.1 dev 50-NFE𝝅𝝅-Flow (GM-FLUX) 4-NFE

𝝅𝝅-Flow (GM-Qwen) 4-NFE Qwen-Image 50x2-NFE

SenseFlow (FLUX) 4-NFE

Qwen-Image Lightning 4-NFE

FLUX.1 dev 50-NFE𝝅𝝅-Flow (GM-FLUX) 4-NFE

𝝅𝝅-Flow (GM-Qwen) 4-NFE Qwen-Image 50x2-NFE

SenseFlow (FLUX) 4-NFE

Qwen-Image Lightning 4-NFE

FLUX.1 dev 50-NFE𝝅𝝅-Flow (GM-FLUX) 4-NFE SenseFlow (FLUX) 4-NFE

The image should 
capture a lifelike 
essence, showcasing 
a young woman 
gracefully positioned 
in a golf swing on a 
bright summer day. 
Her long hair 
effortlessly streams 
behind her, 
complementing her 
ideal physique, which 
is accentuated by 
form-fitting red 
leggings adorned with 
striking geometric 
patterns. The scene is 
bathed in vibrant 
sunlight, creating 
dynamic shadows as 
she elegantly executes 
her swing with finesse.𝝅𝝅-Flow (GM-Qwen) 4-NFE Qwen-Image 50x2-NFE Qwen-Image Lightning 4-NFE

Figure 4: Images generated from the same batch of initial noise by π-Flows, teachers, and VSD stu-
dents (SenseFlow, Qwen-Image Lightning). π-Flow models produce diverse structures that closely
mirror the teacher’s. In contrast, VSD students tend to repeat the same structure. Notably, Sense-
Flow mostly generates symmetric images.

publicly available FLUX.1 dev (Black Forest Labs, 2024a), so we do not compare with it directly,
but include further discussion in § D.

Strong all-around performance. As shown in Table 3 and Table 4, π-Flow demonstrates strong all-
around performance, outperforming other few-step students on roughly 70% of all metrics, without
exhibiting obvious weaknesses in any specific area.

Superior diversity and teacher alignment. π-Flow consistently achieves the highest diversity
scores and the best teacher-referenced FIDs by clear margins, especially in the 4-NFE setting. These
results strongly suggest that π-Flow effectively avoids both diversity collapse and style drift. As
a result, most of its scores closely match those of the teacher, with some even slightly surpass-
ing the teacher scores (e.g., prompt alignment and several Qwen-Image OneIG scores). Its strong
teacher alignment is also evident in Fig. 4, where π-Flow generates structurally similar images to
the teacher’s from the same initial noise.

Comparison with VSD (DMD) students. VSD models are notable for high visual quality, some-
times surpassing teachers in quality and preference metrics. However, they are widely known to
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𝝅𝝅-Flow (GM-FLUX) 8-NFE FLUX Turbo 8-NFE

Figure 5: Images generated from the same initial noise by π-Flow and FLUX Turbo. π-Flow renders
coherent texts, whereas FLUX Turbo underperforms in text rendering.

𝝅𝝅-Flow (GM-FLUX) 8-NFE Hyper-FLUX 8-NFE

Aoshima's masterpiece depicts a forest illuminated by morning light.

A painting depicting a scenic view of Guangzhou, China as a tourist destination by David Inshaw.

Figure 6: Images generated from the same initial noise by π-Flow and Hyper-FLUX. π-Flow pro-
duces notably finer details, as highlighted in the zoomed-in patches.

suffer from mode collapse, as reflected in our experiments: both SenseFlow and Qwen-Image Light-
ning show significant drops in diversity and FIDs. Visual examples in Fig. 4 further highlight the
collapse, where different initial noises produce visually similar images with only minor variations.
In contrast, π-Flow maintains high quality and diversity without sacrificing either aspect.

Comparison with other students. FLUX Turbo achieves better data alignment FIDs than the
teacher due to GAN training, yet its text rendering performance is significantly weaker, as shown
in Fig. 5. Meanwhile, Hyper-FLUX often produces undesirable texture artifacts and fuzzy details,
whereas π-Flow achieves superior detail rendering, as shown in Fig. 6.

Data-dependent vs. data-free. As shown in Table 3 and Table 4, data-dependent and data-free
π-Flow models achieve nearly identical results. This demonstrates the practicality of π-Flow in
scenarios where high-quality data is unavailable.

GMFlow vs. DX policy. Consistent with prior ImageNet findings, the DX policy slightly underper-
forms comapred to the GMFlow policy (Table 5), highlighting the latter’s superior robustness.

Convergence. Figure 7 illustrates the convergence of π-Flow (GM-Qwen) over training iterations.
Both FID and Patch FID scores initially improve rapidly, outperforming Qwen-Image Lightning
within the first 400 iterations, and continue to improve steadily thereafter. This contrasts with previ-
ous GAN or VSD-based methods that often require frequent checkpointing and cherry-picking (Ge
et al., 2025), demonstrating the scalability and robustness of our approach.

Inference time. To validate that the policies are indeed fast enough so that the overhead is negligible
compared to shortcut-predicting models, we compare the inference times of 4-NFE π-Flow models
and Qwen-Image Lightning in Table 6. For π-Flow, each policy generation step (with one network
evaluation) is followed by 32 policy integration substeps on average. The results in Table 6 show
that 32 policy substeps cost around 15 ms in total, which is only 3% of the network time. Therefore,
the overall speed of π-Flow is on par with shortcut-predicting models.

9
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Table 5: Comparisons between DX and GMFlow policies on
text-to-image generation.

Policy Teacher
HPSv2 prompts OneIG-Bench

FID↓ pFID↓ HPSv2.1↑ Text↑ Diversity↑

DX (N = 10) FLUX 14.9 20.9 0.313 0.397 0.225
GM (K = 8) FLUX 14.3 19.2 0.313 0.437 0.229
DX (N = 10) Qwen-Image 12.7 17.0 0.306 0.869 0.185
GM (K = 8) Qwen-Image 12.8 16.6 0.310 0.892 0.180

Table 6: Per-NFE inference time of π-Flow models and the
shortcut-predicting model (Qwen-Image Lightning). Tested on
an A100 GPU with 12 CPU cores (3.0 GHz).

Model Network time (sec) Policy time (sec)
Qwen-Image Lightning 0.465 -
π-Flow (DX-Qwen) 0.464 0.015
π-Flow (GM-Qwen) 0.465 0.014

0 2K 4K 6K 8K
Iteration

14

16

18

20

Sc
or

e

Qwen Lightning

Qwen Lightning
FID
Patch FID

Figure 7: Teacher-referenced
FID and Patch FID of GM-Qwen
evaluated on HPSv2 prompts.

6 RELATED WORK

Prior work on diffusion model distillation primarily focuses on predicting shortcuts towards less
noisy states, with training objectives ranging from direct regression to distribution matching.

Early work (Luhman & Luhman, 2021) directly regresses the teacher’s ODE integral in a single step,
but suffers from degraded quality, since regressing x0 with an ℓ2 loss tends to produce blurry results.
Progressive distillation methods (Salimans & Ho, 2022; Liu et al., 2023; 2024; Frans et al., 2025)
make further improvements via a multi-stage process that progressively increases the student’s step
size and reduces its NFE by regressing the previous stage’s multi-step outputs with fewer steps, yet
this introduces error accumulation.

Consistency-based models (Song et al., 2023; Gu et al., 2023; Kim et al., 2024; Song & Dhari-
wal, 2024; Geng et al., 2025; Boffi et al., 2025) implicitly impose a velocity-based regression loss,
which improves quality compared to x-based regression. However, the flow velocity of a shortcut-
predicting student must be constructed implicitly using either inaccurate finite differences or expen-
sive Jacobian–vector products (JVPs). Moreover, their quality is still limited due to accumulation
of velocity errors into the integrated shortcut. Therefore, in practice, consistency distillation is of-
ten augmented with additional objectives to improve quality (Ren et al., 2024; Zheng et al., 2025),
further complicating training.

Conversely, distribution matching approaches (Yin et al., 2024b;a; Sauer et al., 2024b; Zhou et al.,
2024; Luo et al., 2024; Salimans et al., 2024; Zhou et al., 2025) adopt score matching and adversar-
ial training to align the student’s output distribution with the teacher’s. The VSD objective achieves
superior quality but risks diversity loss due to mode collapse; GAN and SiD objectives balance qual-
ity and diversity but can cause style drift. Their common reliance on auxiliary networks introduces
additional tuning complexity and may lead to stability issues at scale (Ge et al., 2025).

7 CONCLUSION

We introduced policy-based flow models (π-Flow), a novel framework for few-step generation in
which the network outputs a fast policy that enables accurate ODE integration via dense substeps
reach the denoised state. To distill π-Flow models, we proposed a simple on-policy imitation learn-
ing approach that reduces the training objective to a single ℓ2 loss, mitigating error accumulation
and quality–diversity trade-offs. Extensive experiments distilling ImageNet DiT, FLUX.1-12B, and
Qwen-Image-20B models show that few-step π-Flows consistently attain teacher-level image qual-
ity while significantly outperforming competitors in diversity and teacher alignment. π-Flow offers
a scalable, principled paradigm for efficient, high-quality generation and opens new directions for
future research, such as exploring more robust policy families, improved distillation objectives, and
extensions to other applications (e.g., video generation).
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Reproducibility statement. To facilitate reproduction, we describe the detailed training procedures
in Algorithms 2 and 3, and list all important hyperparameters in §C.
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Algorithm 2: Data-dependent on-policy π-ID training loop with time shifting.
Input: NFE , teacher Gθ , data–condition distribution p(x0, c), shift m
Output: Student Gϕ

1 Initialize student params ϕ
2 S ←

{
1

NFE
, 2
NFE

, · · · , 1
}

// can be adjusted to reduce final step size
3 for finite samples x0, c ∼ p(x0, c), ϵ ∼ N (0, I), τ ′ ∼ U(0, 1) do
4 τsrc ← min{ τsrc | τsrc ∈ S and τsrc ≥ τ ′ }
5 τdst ← max{ τdst | τdst ∈ S ∪ { 0 } and τdst < τsrc }
6 tsrc ← mτsrc

1+(m−1)τsrc
// time shifting (Esser et al., 2024)

7 xtsrc ← αtsrcx0 + σtsrcϵ
8 π ← Gϕ(xtsrc , tsrc, c)
9 πD ← stopgrad(π) or πD ← dropout(stopgrad(π))

10 Lϕ ← 0
11 for finite samples τ ∼ U(τdst, τsrc) do
12 t← mτ

1+(m−1)τ

13 xt ← xtsrc +
∫ t

tsrc
πD(xt, t) dt

14 Lϕ ← Lϕ + 1
2
∥Gθ(xt, t, c)− π(xt, t)∥2 // can be replaced with Eq. (6)

15 ϕ← Adam(ϕ,∇ϕLϕ) // optimizer step

Algorithm 3: Data-free on-policy π-ID training loop with time shifting.
Input: NFE , teacher Gθ , condition distribution p(c), shift m
Output: Student Gϕ

1 Initialize student params ϕ
2 for finite samples c ∼ p(c), x1 ∼ N (0, I) do
3 τsrc ← 1, tsrc ← 1
4 Lϕ ← 0
5 while τsrc > 0 do
6 τdst ← τsrc − 1

NFE
// can be adjusted to reduce final step size

7 tdst ← mτdst
1+(m−1)τdst

// time shifting (Esser et al., 2024)
8 π ← Gϕ(xtsrc , tsrc, c)
9 πD ← stopgrad(π) or πD ← dropout(stopgrad(π))

10 for finite samples τ ∼ U(τdst, τsrc) do
11 t← mτ

1+(m−1)τ

12 xt ← xtsrc +
∫ t

tsrc
πD(xt, t) dt

13 Lϕ ← Lϕ + τsrc−τdst
2
∥Gθ(xt, t, c)− π(xt, t)∥2 // can be replaced with Eq. (6)

14 xtdst ← xtsrc +
∫ tdst
tsrc

πD(xt, t) dt

15 τsrc ← τdst, tsrc ← tdst

16 ϕ← Adam(ϕ,∇ϕLϕ) // optimizer step

A USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used large language models (LLMs) as general-purpose writing
assistants for grammar corrections, rephrasing, and clarity/concision edits. All LLM-suggested edits
were reviewed and verified by the authors, who take full responsibility for the final manuscript.

B ADDITIONAL TECHNICAL DETAILS

B.1 GM TEMPERATURE

Inspired by the temperature parameter in language models, we introduce a similar temperature pa-
rameter for the GMFlow policy during inference. Let T > 0 be the temperature parameter. Given a
C-dimensional GM velocity distribution q(u|xtsrc) =

∑K
k=1 AkN

(
u;µk, s

2I
)
, the new GM prob-
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Teacher 𝐺𝐺𝜽𝜽 step
Policy 𝜋𝜋 rollout

Detached policy 𝜋𝜋D rollout

Policy 𝜋𝜋

𝒙𝒙𝑡𝑡src

𝒙𝒙𝑡𝑡dst𝐺𝐺𝝓𝝓

Policy 𝜋𝜋

𝒙𝒙𝑡𝑡src

Detached policy 𝜋𝜋D

stopgrad 
(+ dropout)

𝒙𝒙𝑡𝑡dst𝐺𝐺𝝓𝝓
(see Fig. 3)

decay(a) Off-policy: 
teacher ratio=100%

(b) Mixture of 
teacher and detached policy

(c) On-policy:
teacher ratio=0%

decay

Figure 8: Three stages of scheduled trajectory mixing. (a) Off-policy behavior cloning with a teacher
ratio of 1. (b) Mixed teacher and detached-policy segments with a decaying teacher ratio. (c) On-
policy imitation learning with a teacher ratio of 0 (Fig. 3).

ability with temperature T is defined as:

qT (u|xtsrc) :=
q

1
T (u|xtsrc)∫

RC q
1
T (u|xtsrc) du

. (3)

Although qT (u|xtsrc) does not have a general closed-form expression, it can be approximated by the
following expression, which works very well as a practical implementation:

qT (u|xtsrc) ≈
K∑

k=1

A
1
T

k∑K
z=1 A

1
T
z

N
(
u;µk, s

2TI
)
. (4)

For the distilled FLUX and Qwen-Image models, we set T = 0.3 for 4-NFE generation and T = 0.7
for 8-NFE generation. An exception is that we do not apply temperature scaling to the final step, as
we found this can impair texture details. As shown in Table 7, ablating GM temperature from the
4-NFE GM-FLUX leads to degraded teacher alignment.

B.2 SCHEDULED TRAJECTORY MIXING FOR GUIDANCE-DISTILLED TEACHERS

To reduce out-of-distribution exposure in imitation learning, scheduled sampling (Bengio et al.,
2015) stochastically alternates between expert (teacher) and learner policy during trajectory integra-
tion, decaying the expert probability from 1 to 0. However, naively applying it to π-ID is impractical
because the teacher flow model Gθ is much slower than the network-free policy πD.

To maintain constant compute throughout training, we introduce a scheduled trajectory mixing strat-
egy. Since the teacher is slow, we fix the total number of teacher queries, allow each query to cover a
coarse, longer step initially, and gradually shrink the teacher step size while filling the gaps with the
fast policy πD. As shown in Fig. 8 (a), training initially adopts a fully off-policy teacher trajectory
(behavior cloning). At the beginning time ta of each teacher step, we roll in the learner policy π,
integrate it over the same interval from ta to tb, and match its average velocity to the teacher velocity
with the ℓ2 loss:

Lϕ = E

[
1

2

∥∥∥∥Gθ(xta , ta)−
1

tb − ta

∫ tb

ta

π(xt, t) dt

∥∥∥∥2
]
. (5)

As training progresses (Fig. 8 (b)), we then mix teacher and detached-policy segments while using
the same loss, and linearly decay the teacher ratio—the sum of teacher step lengths divided by the
total interval length tsrc − tdst. Finally, when the teacher ratio reaches 0, training reduces to on-
policy π-ID. All teacher step boundaries (starts and ends) are randomly sampled within the interval
[tdst, tsrc] under the teacher ratio constraint, so that step sizes and locations vary while the total
teacher-covered length follows the current ratio schedule.

We apply scheduled trajectory mixing exclusively when distilling the FLUX.1 dev model, as it lacks
real CFG. Since omitting CFG doubles the teacher’s speed, we increase the number of intermediate
samples (teacher steps) to 4 accordingly.

B.3 MICRO-WINDOW VELOCITY MATCHING

For on-policy π-ID, in practice we found that replacing the instantaneous velocity matching loss
in Algorithm 1 with a modified average velocity loss over a micro time window generally benefits
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Table 7: Ablation study on 4-NFE π-Flow (GM-FLUX), evaluated on the HPSv2 prompt set using
teacher-referenced FID metrics (reflecting teacher alignment).

GM
temperature

Micro
window FID↓ pFID↓

✓ ✓ 14.3 19.2
✓ 14.9 20.1

✓ 14.6 20.3

A futuristic, sleek sports car with a low, aerodynamic design is shown in motion against a backdrop of a city skyline at sunset. 
The car features sharp angles, large wheels with orange accents, and a prominent front grille. The cityscape includes tall 
buildings with illuminated windows, and the sky is painted with hues of orange and blue as the sun sets. The lighting is warm 
and golden, with the sun setting behind the city, casting a glow over the scene. The car is positioned in the foreground, with 
the city skyline in the background, creating a sense of depth and movement.

FLUX.1 dev
128-NFE

FLUX.1 dev
43-NFE

Figure 9: The 128-NFE FLUX.1 dev often generates blurry images, whereas the 43-NFE FLUX.1
dev reduces the blur and produces sharper edges.

training. The modified loss is defined as:

Lϕ = E

1

2

∥∥∥∥∥Gθ(xt, t)−
1

−∆t

∫ t−∆t

t

π(xt, t) dt

∥∥∥∥∥
2
, (6)

where ∆t is the window size. We set ∆t = 3/128 (three policy integration steps) for all FLUX.1
and Qwen-Image experiments.

The benefits of micro-window velocity matching are threefold:
• It generally smooths the training signal, reducing sensitivity to sharp local variations in the teacher

trajectory.
• It stabilizes the less robust DX policy. In the ImageNet experiments, we observe that training with

the DX policy diverges without this modification.
• With ∆t = 3/128, the policy effectively mimics teacher sampling with 128

3 ≈ 43 steps instead
of 128 steps. For the guidance-distilled FLUX.1 dev model, we observe that the teacher often
generates blurry images using 128-step sampling, while 43-step sampling yields sharper results
(see Fig. 9). This behavior is inherited by the student, so micro-window velocity matching helps
reduce blur.
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Table 8: Hyperparameters used in the ImageNet experiments.

1-NFE 2-NFE

GM-FM
(K = 32)

GM-REPA
(K = 8)

GM-REPA
(K = 32)

DX-REPA
(N = 10)

DX-REPA
(N = 20)

DX-REPA
(N = 40)

GM-REPA
(K = 32)

GM dropout 0.05 0.05 0.05 - - - 0.05

# of intermediate states 2 2 2 2 2 2 2

Window size (raw) ∆τ - - - 10/128 5/128 3/128 -

Shift m 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Teacher CFG 2.7 3.2 3.2 3.2 3.2 3.2 2.8

Teacher CFG interval t ∈ [0, 0.6] t ∈ [0, 0.7] t ∈ [0, 0.7] t ∈ [0, 0.7] t ∈ [0, 0.7] t ∈ [0, 0.7] t ∈ [0, 0.7]

Learning rate 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5

Batch size 4096 4096 4096 4096 4096 4096 4096
# of training iterations
in Table 2 140K - 140K - - - 24K

EMA param γ in
Karras et al. (2024) 7.0 7.0 7.0 7.0 7.0 7.0 7.0

Table 9: Hyperparameters used in FLUX and Qwen-Image experiments.

4-NFE 8-NFE

GM-FLUX
(K = 8)

GM-Qwen
(K = 8)

DX-FLUX
(N = 10)

DX-Qwen
(N = 10)

GM-FLUX
(K = 8)

GM dropout 0.1 0.1 - - 0.1

GM temperature T 0.3 0.3 - - 0.7

# of intermediate states 4 2 4 2 4

Window size (raw) ∆τ 3/128 3/128 3/128 3/128 3/128

Shift m 3.2 3.2 3.2 3.2 3.2

Final step size scale 0.5 0.5 0.5 0.5 0.5

Teacher CFG 3.5 4.0 3.5 4.0 3.5

Learning rate 1e-4 1e-4 1e-4 1e-4 1e-4

Batch size 256 256 256 256 256

# of training iterations 3K 9K 3K 9K 3K

# of decay iterations (§ B.2) 2K - 2K - 2K
EMA param γ in
Karras et al. (2024) 7.0 7.0 7.0 7.0 7.0

As shown in Table 7, ablating the micro window trick from the 4-NFE GM-FLUX leads to degraded
teacher alignment.

B.4 TIME SAMPLING

For high resolution image generation, Esser et al. (2024) proposed a time shifting mechanism to
rescale the noise strength. Let τ be the pre-shift raw time and m be the shift hyperparameter, the
shifted time is defined as t := mτ

1+(m−1)τ .

Following this idea, π-ID samples times uniformly in raw-time space and then applies the shift to
remap those samples. Detailed time sampling routines are given in Algorithms 2 and 3.

For FLUX.1 and Qwen-Image, we use a fixed shift m = 3.2, which is a rounded approximation
of FLUX.1’s official dynamic shift at 1MP resolution. In addition, several diffusion/flow models
reduce the noise strength at the final step to improve detail (Karras et al., 2022; Wu et al., 2025).
Accordingly, for FLUX.1 and Qwen-Image we halve the final step size (relative to previous steps)
in raw-time space.
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Table 10: FLUX.1 schnell evaluation results on COCO-10k dataset and HPSv2 prompt set.

Model Distill method NFE
COCO-10k prompts HPSv2 prompts

Data align. Prompt align. Pref. align. Prompt align. Pref. align.

FID↓ pFID↓ CLIP↑ VQA↑ HPSv2.1↑ CLIP↑ VQA↑ HPSv2.1↑

FLUX.1 schnell GAN 4 21.8 29.1 0.274 0.913 0.297 0.297 0.843 0.301

𝝅𝝅-Flow (GM-FLUX) 
4-NFE

FLUX.1 schnell
4-NFE

The president being abducted by aliens.

A puppy is driving a car in a film still.

A portrait of a melting skull with intricate abstract details, created by Tooth Wu, Wlop Beeple, 
and Dan Mumford, using Octane Render.

Spiderman character in the game Sea of Thieves.

The image depicts a beautiful goddess of spring wearing a wreath and flowy green skirt, created by 
artist wlop.

FLUX.1 dev
50-NFE

Figure 10: Typical failure cases of FLUX.1 schnell. For reference, we also show the corresponding
FLUX.1 dev and π-Flow results from the same initial noise.

C ADDITIONAL IMPLEMENTATION DETAILS AND HYPERPARAMETERS

All models are trained with BF16 mixed precision, using the 8-bit Adam optimizer (Kingma &
Ba, 2014; Dettmers et al., 2022) without weight decay. For inference, we use EMA weights with
a dynamic moment schedule (Karras et al., 2024). Detailed hyperparameter choices are listed in
Table 8 and 9.
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Pixel-wise factorization
𝐻𝐻 × 𝑊𝑊 × 16

Element-wise factorization
𝐻𝐻 × 𝑊𝑊 × 16 × 1

Patch-wise factorization
𝐻𝐻/2 × 𝑊𝑊/2 × 64

A painting depicting a scenic view of Guangzhou, China as a tourist destination by David Inshaw.

Figure 11: Comparison of different L× C factorization schemes for the GMFlow policy, evaluated
on the toy models after 4000 optimization iterations. The default pixel-wise factorization (C =
VAE latent channels) proposed by Chen et al. (2025) produces neutral colors and detailed textures.
In contrast, element-wise factorization (C = 1) leads to over-saturated colors, high contrast, and
over-smoothed textures, while patch-wise factorization (C = 2 × 2 × VAE latent channels) results
in “confetti” artifacts and noisy textures.

C.1 DISCUSSION ON GMFLOW POLICY HYPERPARAMETERS

For the GMFlow policy, we observed that the hyperparameters suggested by Chen et al. (2025)
(K = 8, C = VAE latent channel size) generally work well. These parameters play important roles
in balancing compatibility, expresiveness, and robustness. A larger K improves expresiveness but
impairs compatibility as it may complicate network training. A larger C improves robustness (since
GMFlow models correlations within each C-dimensional chunk) but impairs expresiveness (raises
the theoretical K = N ·C bound). In addition, improving expresiveness may generally compromise
robustness, due to the increased chance of encountering outlier trajectories during inference.

To further justify the design choice of pixel-wise factorization in GMFlow (where the latent grid is
factorized by L = H×W , C = VAE latent channel size), we conduct toy model experiments to test
alternative factorizations. In each experiment, we initialize a set of GMFlow parameters Aik,µik, s
with K = 32 components, and directly optimize them to overfit the FLUX teacher’s behavior over
the entire time domain t ∈ (0, 1], using simple π-ID (Algorithm 1) on a fixed initial noise x1 and
a fixed text prompt. This setup isolates the inductive bias of the policy itself, without any influence
from the student network. As shown in Fig. 11, pixel-wise factorization achieves the best results
within 4000 optimization iterations, producing neutral colors and rich textures, and is therefore the
most suitable choice for the GMFlow policy.

D DISCUSSION ON FLUX.1 SCHNELL

The official 4-NFE FLUX.1 schnell model (Black Forest Labs, 2024a) (based on adversarial distil-
lation (Sauer et al., 2024a)) is distilled from the closed-source FLUX.1 pro instead of the publicly
available FLUX.1 dev. This makes a direct comparison to the student models in Table 3 inequitable.

For reference, nevertheless, we include the COCO-10k and HPSv2 metrics for FLUX.1 schnell
in Table 10. These metrics reveal a trade-off: while FLUX.1 schnell achieves significantly better
data and prompt alignment than FLUX.1 dev, its preference alignment is substantially weaker than
FLUX.1 dev and all of its students.

To validate this observation, we conducted a human preference study. Our 4-NFE π-Flow (GM-
FLUX) was compared against FLUX.1 schnell on 200 images generated from HPSv2 prompts.
π-Flow was preferred by users 59.5% of the time, aligning with the HPSv2.1 preference metric.
Furthermore, qualitative comparisons in Fig. 10 reveals that FLUX.1 schnell is prone to frequent
structural errors (e.g., missing/extra/distorted limbs), whereas π-Flow maintains coherent structures.

E PROOF OF THEOREM 1

We will prove that a GM with N · C components suffices for approximating any N -step trajectory
in RC by first establishing Theorem 2, and then applying the Richter–Tchakaloff theorem to show
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that a mixture of N ·C Dirac deltas satisfy all ODE moment equations, which finally leads to N ·C
Gaussian components.

Theorem 2. Given pairwise distinct times t1, . . . , tN ∈ (0, 1] and vectors xtn , ẋtn ∈ RC for
n = 1, . . . , N , there exists a probability measure p(dx0) on RC , such that Eq (1) holds at t = tn
for every n = 1, . . . , N .

E.1 MOMENT EQUATION

For every t ∈ (0, 1], the ODE moment equation has the following equivalent forms:

ẋt =

∫
RC

xt − x0

t
p(dx0|xt)

⇔ ẋt

∫
RC

p(dx0|xt) =

∫
RC

xt − x0

t
p(dx0|xt)

⇔
∫
RC

x0 − xt + tẋt

t
p(dx0|xt) = 0

⇔
∫
RC

(x0 − xt + tẋt)N
(
xt;αtx0, σ

2
t I

)
p(dx0)

tp(xt)
= 0

⇔
∫
RC

(x0 − xt + tẋt)N
(
xt;αtx0, σ

2
t I

)
p(dx0) = 0. (7)

Let g(t,x0) := (x0−xt + tẋt)N
(
xt;αtx0, σ

2
t I

)
be a kernel function. The above equation can be

written as a multivariate homogeneous Fredholm integral equation of the first kind:∫
RC

g(t,x0)p(dx0) = 0. (8)

To prove Theorem 2, we need to show that there exists a probability measure p(dx0) on RC that
solves the Fredholm equation at t = tn for every n = 1, · · · , N .

E.2 UNIVARIATE MOMENT EQUATION

To prove the existence of a solution to the multivariate Fredholm equation, we can simplify the
proof into a univariate case by showing that an element-wise probability factorization p(dx0) =∏C

i=1 p(dxi0) exists that solves the Fredholm equation. In this case, Eq. (7) can be written as:

∀i = 1, 2, · · · , C,∫
R
(xi0 − xit + tẋit)N

(
xit;αtxi0, σ

2
t

)
p(dxi0)

∏
j ̸=i

∫
R
N
(
xjt;αtxj0, σ

2
t

)
p(dxj0) = 0

⇔ ∀i = 1, 2, · · · , C,
∫
R
(xi0 − xit + tẋit)N

(
xit;αtxi0, σ

2
t

)
p(dxi0) = 0. (9)

To see this, we need to prove that there exists a probability measure p(x0) on R that solves the
following univariate Fredholm equation at t = tn for every n = 1, · · · , N :∫

R
g(t, x0)p(dx0) = 0, (10)

where g(t, x0) := (x0 − xt + tẋt)N
(
xt;αtx0, σ

2
t

)
is the univariate kernel function.

E.3 CONVEX COMBINATION

Lemma 1. Define the vector function:

γ : R→ RN , γ(x0) = (g(t1, x0), g(t2, x0), · · · , g(tN , x0)). (11)

Then, the zero vector lies in the convex hull in RN , i.e.:

0 ∈ conv{ γ(x0) | x0 ∈ R } ∈ RN . (12)
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Proof. Define S := conv{ γ(x0) | x0 ∈ R }. Assume for the sake of contradiction that 0 /∈ S.

By the supporting and separating hyperplane theorem, there exists w ̸= 0 ∈ RN , such that:

∀χ ∈ S, ⟨w,χ⟩ ≤ 0. (13)

In particular, this implies that:

∀x0 ∈ R, ⟨w,γ(x0)⟩ ≤ 0. (14)

Define h(x0) := ⟨w,γ(x0)⟩ =
∑N

n=1 wng(tn, x0). Recall the definition of g(t, x0) that:

g(t, x0) = (x0 − xt + tẋt)N
(
xt;αtx0, σ

2
t

)
=

x0 − xt + tẋt√
2πt2

exp

(
− (xt − αtx0)

2

2σ2
t

)
. (15)

Let n∗ be an index with wn∗ ̸= 0 for which the exponential term above decays the slowest, i.e.:

α2
tn∗

2σ2
tn∗

= min

{
α2
tn

2σ2
tn

∣∣∣∣ wn∗ ̸= 0

}
. (16)

Note that since α2
t

2σ2
t

is monotonic, for every n ̸= n∗ with wn ̸= 0, we have
α2

tn

2σ2
tn

>
α2

tn∗
2σ2

tn∗
. Therefore,

as |x0| → ∞, h(x0) is dominated by the n∗-th component, i.e.:

h(x0) = wn∗
x0 − xtn∗ + tn∗ ẋtn∗√

2πt2n∗

exp

(
− (xtn∗ − αtn∗x0)

2

2σ2
tn∗

)
(1 +O(1)). (17)

Because the term x0−xtn∗ +tn∗ ẋtn∗ changes sign between−∞ and +∞, h(x0) takes both positive
and negative values. This contradicts the hyperplane implication that h(x0) ≤ 0. Therefore, we
conclude that 0 ∈ S.

By Lemma 1 and Carathéodory’s theorem, the zero vector can be expressed as a convex combination
of at most N+1 points on γ(x0). Therefore, there exists a finite-support probability measure p(dx0)
consisting of N + 1 Dirac delta components that solves the univariate Fredholm equation at t = tn
for every n = 1, · · · , N , completing the proof of Theorem 2.

E.4 N · C COMPONENTS SUFFICE

Richter’s extension to Tchakaloff’s theorem states as follows.

Theorem 3 (Richter (1957); Tchakaloff (1957)). Let V be a finite-dimensional space of measurable
functions on RC . For some probability measure p(dx0) on RC , define the moment functional:

Λ: V → R, Λ[g] :=

∫
RC

g(x0)p(dx0). (18)

Then there exists a K-atomic measure p∗(dx0) =
∑K

k=1 Akδµk
(dx0) with Ak > 0 and K ≤ dimV

such that:

∀g ∈ V, Λ[g] =

∫
RC

g(x0)p
∗(dx0) =

K∑
k=1

Akg(µk). (19)

By Theorem 2, we know that for V = span{ gi(tn,x0) | i = 1, · · · , C, n = 1, · · · , N } with the
scalar function gi(tn,x0) := (xi0−xit+tẋit)N

(
xt;αtx0, σ

2
t I

)
, there exists a probability measure

p(dx0) such that
∫
RD gi(tn,x0)p(dx0) = 0 for every i, n. Then, by the Richter–Tchakaloff theo-

rem, there also exists a K-atomic measure with K ≤ dimV ≤ N · C that satisfies all the moment
equations. By taking the upper bound, this implies the existence of an N · C-atomic probability
measure p∗(dx0) =

∑N ·C
k=1 Akδµk

(dx0) with Ak > 0,
∑N ·C

k=1 Ak = 1 that solves the Fredholm
equation (Eq. (8)) at t = tn for every n = 1, · · · , N .
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Finally, since N
(
xt;αtx0, σ

2
t I

)
is continuous, the N · C Dirac deltas in p∗(dx0) can be replaced

by a mixture of N · C narrow Gaussians, such that ẋn is approximated arbitrarily well for every n,
i.e.:

∀n = 1, · · · , N,

lim
s→0

xtn −
∫
RD x0p(dx0|xtn)

tn

∣∣∣∣
p(dx0)=

∑N·C
k=1 AkN (dx0;µk,s2I)

=
xtn −

∫
RD x0p(dx0|xtn)

tn

∣∣∣∣
p(dx0)=

∑N·C
k=1 Akδµk

(dx0)

= ẋtn (20)
This completes the proof of Theorem 1.

F DERIVATION OF CLOSED-FORM GMFLOW VELOCITY

In this section, we provide details regarding the derivation of closed-form GMFlow velocity, which
was originally presented by Chen et al. (2025) but not covered in detail.

Given the u-based GM prediction q(u|xtsrc) =
∑K

k=1 AkN
(
u;µk, s

2I
)

with Ak ∈ R+, µk ∈ RC ,
s ∈ R+, we first convert it into the x0-based parameterization by substituting u =

xtsrc−x0

σtsrc
into the

density function, which yields:

q(x0|xtsrc) =

K∑
k=1

AkN
(
x0;µxk, s

2
xI

)
, (21)

with the new parameters µxk = xtsrc − σtsrcµk and sx = σtsrcs. Then, for any t < tsrc and any
xt ∈ RC , the denoising posterior at (xt, t) is given by:

q(x0|xt) =
p(xt|x0)

Z · p(xtsrc |x0)
q(x0|xtsrc), (22)

where Z is a normalization factor dependent on xtsrc ,xt, tsrc, t. Using the definition of forward
diffusion p(xt|x0) = N

(
xt;αtx0, σ

2
t I

)
, we have:

q(x0|xt) =
N
(
xt;αtx0, σ

2
t I

)
Z · N

(
xtsrc ;αtsrcx0, σ2

tsrc
I
)q(x0|xtsrc)

=
N
(
x0;

1
αt
xt,

σ2
t

α2
t
I
)

Z ′ · N
(
x0;

1
αtsrc

xtsrc ,
σ2
tsrc

α2
tsrc

I
)q(x0|xtsrc)

=
1

Z ′′N
(
x0;

ν

ζ
,
σ2
tsrc
σ2
t

ζ
I

)
q(x0|xtsrc),

where ν = σ2
tsrc
αtxt − σ2

tαtsrcxtsrc ,

ζ = σ2
tsrc
α2
t − σ2

tα
2
tsrc
.

The result can be further simplified into a new GM:

q(x0|xt) =

K∑
k=1

A′
kN

(
x0;µ

′
k, s

′2I
)
, (23)

with the following parameters:

s′
2
=

s2xσ
2
tsrc
σ2
t

s2xζ + σ2
tsrc
σ2
t

(24)

µ′
k =

s2xν + σ2
tsrc
σ2
tµxk

s2xζ + σ2
tsrc
σ2
t

(25)

A′
k =

exp a′k∑K
k=1 exp a

′
k

, (26)
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where the new logit a′k is given by:

a′k = logAk −
1

2

∥ν − ζµxk∥2

ζ
(
s2xζ + σ2

tsrc
σ2
t

) . (27)

Finally, the closed-form GMFlow velocity at (xt, t) is given by function π:

π : RC × R→ RC , π(xt, t) =
xt − Ex0∼q(x0|xt)[x0]

t

=
xt −

∑K
k=1 A

′
kµ

′
k

t
. (28)

Extension to discrete support. The closed-form GMFlow velocity can also be generalized to dis-
crete support by taking limsx→0 π(xt, t), which yields the simplified parameters:

µ′
k = µxk (29)

a′k = logAk −
1

2

∥ν − ζµxk∥2

ζσ2
tsrc
σ2
t

. (30)

G ADDITIONAL QUALITATIVE RESULTS.

We show additional uncurated results of FLUX-based models in Fig. 12 and 13.
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FLUX.1 dev
50-NFE

𝝅𝝅-Flow (GM-FLUX) 
8-NFE

FLUX Turbo
8-NFE

Hyper-FLUX
8-NFE

𝝅𝝅-Flow (GM-FLUX) 
4-NFE

SenseFlow (FLUX) 
4-NFE

This picture follows the abstract expressionism visual style. A character with short pink hair, blue eyes, wearing a black hoodie, blue neck gaiter, black shorts, and sneakers, 
stands in a busy street. Vibrant shop signs, lanterns, traffic cones, a fire hydrant, and sunlight create a dynamic atmosphere.

A battle-hardened male warrior stands tall, his blood-drenched face and determined eyes reflecting fierce resolve. He grips an intricately decorated sword, its hilt gleaming in 
the dim light. The Baroque style fills the scene, with dramatic lighting casting deep shadows on his worn features and intricate armor textures.

Please recreate the extravagant apartment's living room, overlooking the Mediterranean from the desert. The striking surroundings feature succulents and cacti. The furniture 
is crocheted, including the sofa, walls, curtains, carpet, tables, and wall art, with a desert wildlife view visible through the window, also crocheted.

The bed features a modern, minimalist design with a clean look and low profile. Its headboard is subtly curved and remains within the bed's width without wrapping around the sides, maintaining moderate 
height for functionality and comfort. Upholstered entirely in textured neutral fabric like light grey or beige, the frame includes headboard, side rails, and footboard without tufting or embellishments. The mattress 
fits snugly with no visible gap between it and the frame. Short, dark-colored legs subtly contrast with the light upholstery. Bedding consists of neatly arranged white fitted sheets, flat sheets, and pillows. A 
simple, light-colored wall serves as the neutral background, ensuring the bed remains the image's focal point.

Stunning woman in misty sunlit field, delicate lace rose gold dress flowing in breeze, gazing over shoulder, hair adorned with sunflowers, sunlight highlighting her melancholy face, sorrowful expression, 
shimmering eyes, leaves swirling around her, overcast sky with lively atmosphere, intricate dress details, realistic style.

Please craft an image of a genuine individual. A young woman, dressed in an authentic cowboy outfit, stands confidently next to a weathered barn. The scene is evocatively captured in sepia tones. In the 
distance, a vast field stretches out, dotted with tall grasses and dried hay bales, while a vibrant blue sky peeks in from the corner.

In a captivating style reminiscent of animated storytelling, behind prison bars stands a powerful woman, eyes glowing red and intense, with a prominent scar.

Figure 12: An uncurated random batch from the OneIG-Bench prompt set, part A.
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FLUX.1 dev
50-NFE

𝝅𝝅-Flow (GM-FLUX) 
8-NFE

FLUX Turbo
8-NFE

Hyper-FLUX
8-NFE

𝝅𝝅-Flow (GM-FLUX) 
4-NFE

SenseFlow (FLUX) 
4-NFE

A row of blue buses idles beneath a metal canopy marked "GATE 12 - INTERCITY EXPRESS" at a busy bus terminal. An LED screen scrolls "NEXT DEPARTURE: 15:30." Travelers 
sip coffee from paper cups, while a nearby newsstand labeled "CITY NEWS" displays headlines and postcards of local landmarks.

Could you explore the differences between nuclear fission and fusion by designing a comparison chart?Tips: Energy release, reaction process, atomic nuclei

Could you show us the educational diagram of nanomaterial structures? Tips: nanomaterials, structure

Green tea ice cubes float in milk, each with a distinct ink pattern. The surface appears smooth and glass-like, enhancing the realistic feel and inviting a tactile experience. The entire scene is depicted in 3d 
rendering.

Create an image with lifelike depiction of people, featuring a mid-thirties salaryman with thinning jet black hair. He stands confidently with hands on his hips, showcasing a crisp blue suit against the dynamic 
backdrop of a vibrant Tokyo cityscape.

Beneath a starry sky stretching over a serene desert landscape, the poster title "Celestial Wonders: Stargazing Nights" glows softly in silver. Midway down, text invites "Discover the universe through guided 
telescope tours and expert talks." Footer information provides "Every Saturday evening at Mirage Dunes Observatory. Tickets available online."

Young woman in wedding attire, ivory skirt, white block heel sandals, delicate train, snug-fitting garment creating stunning silhouette, white mesh top with beadwork and intricate maple leaf pattern, realistic 
portrayal.

Figure 13: An uncurated random batch from the OneIG-Bench prompt set, part B.
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