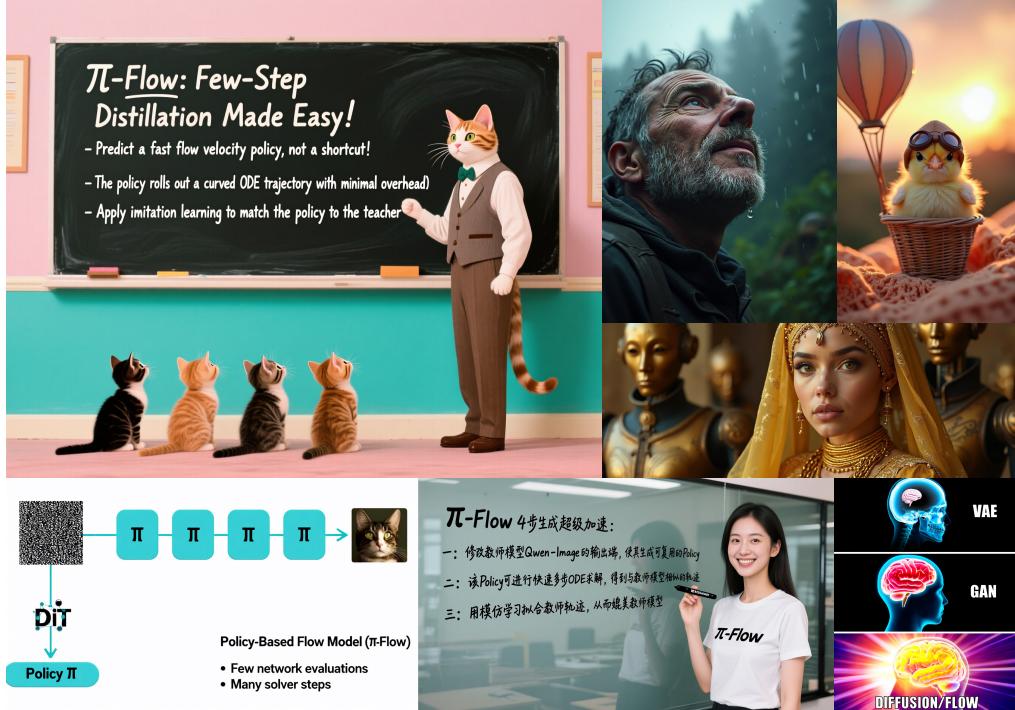


000 001 002 003 004 005 PI-FLOW: POLICY-BASED FEW-STEP GENERATION 006 VIA IMITATION DISTILLATION 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023

Anonymous authors

Paper under double-blind review



031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Figure 1: High quality 4-NFE text-to-image generations by π -Flow, distilled from FLUX.1-12B (top-right three images) and Qwen-Image-20B (all remaining images). π -Flow preserves the teacher's coherent structures, fine details (e.g., skin and hair), and accurate text rendering, while avoiding diversity collapse (see Fig. 4 for sample diversity).

ABSTRACT

Few-step diffusion or flow-based generative models typically distill a velocity-predicting teacher into a student that predicts a shortcut towards denoised data. This format mismatch has led to complex distillation procedures that often suffer from a quality–diversity trade-off. To address this, we propose *policy-based flow models* (π -Flow). π -Flow modifies the output layer of a student flow model to predict a network-free policy at one timestep. The policy then produces dynamic flow velocities at future substeps with negligible overhead, enabling fast and accurate ODE integration on these substeps without extra network evaluations. To match the policy's ODE trajectory to the teacher's, we introduce a novel imitation distillation approach, which matches the policy's velocity to the teacher's along the policy's trajectory using a standard ℓ_2 flow matching loss. By simply mimicking the teacher's behavior, π -Flow enables stable and scalable training and avoids the quality–diversity trade-off. On ImageNet 256², it attains a 1-NFE FID of 2.85, outperforming previous 1-NFE models of the same DiT architecture. On FLUX.1-12B and Qwen-Image-20B at 4 NFEs, π -Flow achieves substantially better diversity than state-of-the-art DMD models, while maintaining teacher-level quality. Code and models will be released publicly.

054
055
056
1 INTRODUCTION

057 Diffusion and flow matching models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon,
 058 2019; Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023) have become the dominant method for
 059 visual generation, delivering compelling image quality and diversity. However, these models rely on
 060 a costly denoising process for inference, which integrates a probability flow ODE (Song et al., 2021)
 061 over multiple timesteps, each step requiring a neural network evaluation. Commonly, the inference
 062 cost of diffusion models is quantified by the number of function (network) evaluations (NFEs).

063 To reduce the inference cost, diffusion distillation methods compress a pre-trained multi-step model
 064 (the teacher) into a student that requires only one or a few network evaluation steps. Existing distilla-
 065 tion approaches avoid ODE integration by taking one or a few shortcut steps that map noise to data,
 066 where each shortcut path is predicted by the student network, referred to as a *shortcut-predicting*
 067 model. Learning these shortcuts is a significant challenge because they cannot be directly inferred
 068 from the teacher model. This necessitates the use of complex training methods, such as progres-
 069 sive distillation (Salimans & Ho, 2022; Liu et al., 2023; 2024), consistency distillation (Song et al.,
 070 2023), and distribution matching (Sauer et al., 2024a; Yin et al., 2024b;a; Salimans et al., 2024).
 071 In turn, the sophisticated training often lead to degraded image quality from error accumulation or
 072 compromised diversity due to mode collapse.

073 To sidestep the difficulties in shortcut-predicting distillation, we propose a novel *policy-based flow*
 074 *model* (π -Flow or pi-Flow) paradigm: given noisy data at one timestep, the student network predicts
 075 a network-free policy, which maps new noisy states to their corresponding flow velocities with
 076 negligible overhead, allowing fast and accurate ODE integration using multiple substeps of policy
 077 velocities instead of network evaluations.

078 To train the student network, we introduce *policy-based imitation distillation* (π -ID), a DAgger-
 079 style (Ross et al., 2011) on-policy imitation learning (IL) method. π -ID trains the policy on its own
 080 trajectory: at visited states, we query the teacher velocity and match the policy’s output to it, using
 081 the teacher’s corrective signal to teach the policy to recover from its own mistakes and reduce error
 082 accumulation. Specifically, the matching employs a standard ℓ_2 loss aligned with the teacher’s flow
 083 matching objective, thus naturally preserving its quality and diversity.

084 We validate our paradigm with two types of policies: a simple dynamic- $\hat{x}_0^{(t)}$ (DX) policy and an
 085 advanced GMFlow policy based on Chen et al. (2025). Experiments show that GMFlow policy
 086 outperforms DX policy and delivers strong ImageNet 256² FIDs at 1- and 2-NFE generation. To
 087 demonstrate its scalability, we distill FLUX.1-12B (Black Forest Labs, 2024b) and Qwen-Image-
 088 20B (Wu et al., 2025) text-to-image models into 4-NFE π -Flow students, which achieve state-of-
 089 the-art diversity, while maintaining teacher-level quality.

090 We summarize the contributions of this work as follows:

091 • We propose π -Flow, a new paradigm that decouples ODE integration substeps from network
 092 evaluation steps, enabling both fast generation and straightforward distillation.

093 • We introduce π -ID, a novel on-policy IL method for few-step π -Flow distillation, which reduces
 094 the training objective to a simple ℓ_2 flow matching loss.

095 • We demonstrate strong performance and scalability of π -Flow, particularly, its superior diversity
 096 and teacher alignment compared to other state-of-the-art 4-NFE text-to-image models.

097
098
099 2 PRELIMINARIES
100

101 In this section, we briefly introduce flow matching models (Lipman et al., 2023; Liu et al., 2023)
 102 and the notations used in this paper.

103 Let $p(\mathbf{x}_0)$ denote the (latent) data probability density, where $\mathbf{x}_0 \in \mathbb{R}^D$ is a data point. A stan-
 104 dard flow model defines an interpolation between a data sample and a random Gaussian noise
 105 $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, yielding the diffused noisy data $\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \epsilon$, where $t \in (0, 1]$ denotes the
 106 diffusion time, and $\alpha_t = 1 - t$, $\sigma_t = t$ are the linear flow noise schedule. The optimal transport
 107 map across all marginal densities $p(\mathbf{x}_t) = \int_{\mathbb{R}^D} \mathcal{N}(\mathbf{x}_t; \alpha_t \mathbf{x}_0, \sigma_t^2 \mathbf{I}) p(\mathbf{x}_0) d\mathbf{x}_0$ can be described by

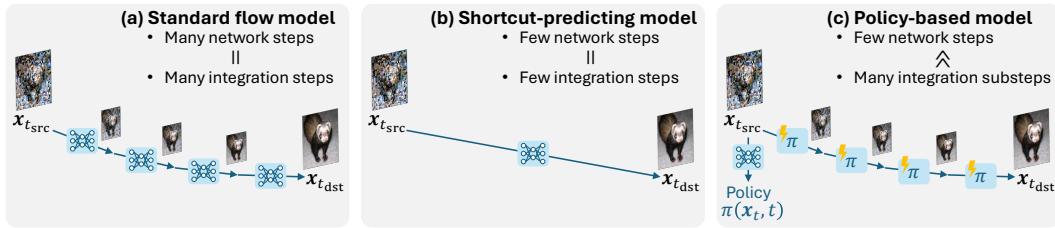


Figure 2: Comparison between (a) standard flow model (teacher), (b) shortcut-predicting model, and (c) our policy-based model. The shortcut-predicting model skips all intermediate states, whereas the our-based model retains all intermediate substeps with minimal overhead.

the following probability flow ODE (Song et al., 2021; Liu, 2022):

$$\frac{dx_t}{dt} = \dot{x}_t = \frac{x_t - \mathbb{E}_{x_0 \sim p(x_0|x_t)}[x_0]}{t} = \frac{x_t - \int_{\mathbb{R}^D} x_0 p(x_0|x_t) dx_0}{t}, \quad (1)$$

with the denoising posterior $p(x_0|x_t) := \frac{\mathcal{N}(x_t; \alpha_t x_0, \sigma_t^2 I) p(x_0)}{p(x_t)}$. At test time, the model can generate samples by first initializing the noise $x_1 \leftarrow \epsilon$ and then solving the ODE to obtain $\lim_{t \rightarrow 0} x_t$.

In practice, flow matching models approximate the ODE velocity $\frac{dx_t}{dt}$ using a neural network $G_\theta(x_t, t)$ with learnable parameters θ , trained using the ℓ_2 flow matching loss:

$$\mathcal{L}_\theta = \mathbb{E}_{t, x_0, x_t} \left[\frac{1}{2} \|u - G_\theta(x_t, t)\|^2 \right], \quad \text{with sample velocity } u := \frac{x_t - x_0}{t}. \quad (2)$$

Since each velocity query requires evaluating the network (Fig. 2 (a)), flow matching models couple sampling efficiency with solver precision. Despite the progress in advanced solvers (Karras et al., 2022; Zhang & Chen, 2023; Lu et al., 2022; 2023; Zhao et al., 2023), high-quality sampling typically requires over 10 steps due to inherent ODE truncation error, making it computationally expensive.

3 π -FLOW: POLICY-BASED FEW-STEP GENERATION

In π -Flow, we define the policy as a *network-free* function $\pi: \mathbb{R}^D \times \mathbb{R} \rightarrow \mathbb{R}^D$ that maps a state (x_t, t) to a flow velocity. A policy can be network-free if it only needs to describe a single ODE trajectory, which is fully determined by its initial state $(x_{t_{\text{src}}}, t_{\text{src}})$ with $t_{\text{src}} \geq t$. In this case, the policy for each trajectory must be dynamically predicted by a neural network conditioned on that initial state $(x_{t_{\text{src}}}, t_{\text{src}})$. We therefore adapt a flow model to output not a single velocity, but an entire dynamic policy that governs the full trajectory. Formally, define the policy function space $\mathcal{F} := \{\pi: \mathbb{R}^D \times \mathbb{R} \rightarrow \mathbb{R}^D\}$. Then, our goal is to distill a policy generator network $G_\phi: \mathbb{R}^D \times \mathbb{R} \rightarrow \mathcal{F}$ with learnable parameters ϕ , such that $\pi(x_t, t) = G_\phi(x_{t_{\text{src}}}, t_{\text{src}})(x_t, t)$.

As shown in Fig. 2 (c), π -Flow performs ODE-based denoising from t_{src} to t_{dst} via two stages:

- A *policy generation step*, which feeds the initial state $(x_{t_{\text{src}}}, t_{\text{src}})$ to the student network G_ϕ to produce the policy π , i.e., $\pi \leftarrow G_\phi(x_{t_{\text{src}}}, t_{\text{src}})$.
- Multiple *policy integration substeps*, which integrates the ODE by querying the policy velocity over multiple substeps, obtaining a less noisy state by $x_{t_{\text{dst}}} \leftarrow x_{t_{\text{src}}} + \int_{t_{\text{src}}}^{t_{\text{dst}}} \pi(x_t, t) dt$.

Unlike previous few-step distillation methods, π -Flow decouples network evaluation steps from ODE integration substeps. This allows it to combine the key advantages of two paradigms: it performs only a few network evaluations for efficient generation, similar to a shortcut-predicting model, while also executing dense integration substeps, just like a standard flow matching teacher. Thanks to its teacher-like ODE integration process, a π -Flow student offers unprecedented advantage in training, as we can now follow well-established imitation learning (IL) approaches to directly match the policy velocity $\pi(x_t, t)$ to the teacher velocity $G_\theta(x_t, t)$, as discussed later in § 4.

To identify the appropriate function classes of student policies for fast image generation, we need to consider the following requirements:

- **Efficiency.** The policy should provide closed-form velocities with minimal overhead, so that rolling out dense (e.g., 100+) substeps incurs negligible cost compared to a network evaluation.

- **Compatibility.** The policy should have a compact set of parameters that can be easily predicted by the student G_ϕ with standard backbones (e.g., DiT (Peebles & Xie, 2023)).
- **Expressiveness.** The policy should be able to approximate a complicated ODE trajectory starting from a certain initial state $\mathbf{x}_{t_{\text{src}}}$.
- **Robustness.** The policy should be able to handle trajectory variations that arise from perturbations to the initial state $\mathbf{x}_{t_{\text{src}}}$. For instance, a suboptimal student network will produce an erroneous mapping from $\mathbf{x}_{t_{\text{src}}}$ to π . This introduces the randomness that the policy needs to accommodate throughout the rollout. Consequently, the policy function should adapt its velocity output to variations in its state input \mathbf{x}_t , which is a challenging requirement for network-free functions.

3.1 DYNAMIC- $\hat{\mathbf{x}}_0^{(t)}$ POLICY

We introduce a simple baseline policy called dynamic- $\hat{\mathbf{x}}_0^{(t)}$ policy (DX policy). DX policy defines $\pi(\mathbf{x}_t, t) := \frac{\mathbf{x}_t - \hat{\mathbf{x}}_0^{(t)}}{t}$, where $\hat{\mathbf{x}}_0^{(t)}$ approximates the posterior moment $\mathbb{E}_{\mathbf{x}_0 \sim p(\mathbf{x}_0 | \mathbf{x}_t)}[\mathbf{x}_0]$ in Eq. (1). Along a fixed trajectory starting from an initial state $(\mathbf{x}_{t_{\text{src}}}, t_{\text{src}})$, the posterior moment is only dependent on t . Therefore, we first predict a grid of $\hat{\mathbf{x}}_0^{(t)}$ at N evenly spaced times $t_1, \dots, t_N \in [t_{\text{dst}}, t_{\text{src}}]$ by a single evaluation of the student network $G_\phi(\mathbf{x}_{t_{\text{src}}}, t_{\text{src}})$. This is achieved by expanding the output channels of the student network and performing \mathbf{u} -to- \mathbf{x}_0 reparameterization. Then, for arbitrary $t \in [t_{\text{dst}}, t_{\text{src}}]$, we obtain the approximated moment $\hat{\mathbf{x}}_0^{(t)}$ by a linear interpolation over the grid.

Apparently, DX policy is fast, compatible, and expressive enough so that any N -step teacher trajectory can be matched with N grid points. However, its robustness is limited because $\hat{\mathbf{x}}_0^{(t)}$ is not adaptive to perturbations in \mathbf{x}_t .

3.2 GMFLOW POLICY

For stronger robustness, we incorporate an advanced GMFlow policy based on the closed-form GM velocity field in Chen et al. (2025). GMFlow policy expands the network output channels to predict a factorized Gaussian mixture (GM) velocity distribution $q(\mathbf{u} | \mathbf{x}_{t_{\text{src}}}) = \prod_{i=1}^L \sum_{k=1}^K A_{ik} \mathcal{N}(\mathbf{u}_i; \boldsymbol{\mu}_{ik}, s^2 \mathbf{I})$, where $A_{ik} \in \mathbb{R}_+$, $\boldsymbol{\mu}_{ik} \in \mathbb{R}^C$, $s \in \mathbb{R}_+$ are GM parameters predicted by the network, $L \times C$ factorizes the data dimension D into sequence length L and channel size C , and K is a hyperparameter specifying the number of mixture components. Intuitively, the student network G_ϕ maps the initial state $\mathbf{x}_{t_{\text{src}}}$ to multiple denoising modes that parameterize the GMFlow policy. The policy then enables a closed-form velocity expression at future state (\mathbf{x}_t, t) for any $0 < t < t_{\text{src}}$ (see § F for details). The speed and compatibility of GMFlow has already been discussed in Chen et al. (2025), thus we focus on analyzing its expressiveness and robustness.

Expressiveness. With the $L \times C$ factorization, each individual C -dimensional GM needs to be expressive enough to approximate a C -dimensional chunk of the teacher trajectory. In § E, we rigorously prove the following theorem, demonstrating GMFlow’s expressiveness.

Theorem 1 (A GMFlow policy with $K = N \cdot C$ can accurately approximate any N -step trajectory). Given pairwise distinct times $t_1, \dots, t_N \in (0, 1]$ and vectors $\mathbf{x}_{t_n}, \dot{\mathbf{x}}_{t_n} \in \mathbb{R}^C$ for $n = 1, \dots, N$, there exists a GM parameterization of $p(\mathbf{x}_0)$ with $N \cdot C$ components, such that $\dot{\mathbf{x}}_{t_n}$ can be approximated arbitrarily well using Eq (1) at $t = t_n$ for every $n = 1, \dots, N$.

In practice, we can use $K \ll N \cdot C$ (e.g., $K = 8$) since the teacher trajectory is mostly smooth. More analysis of GMFlow hyperparameters are presented in § C.1.

Robustness. GMFlow is highly robust against trajectory perturbation due to its probabilistic origin. Unlike DX policy, GMFlow models a fully dynamic denoising posterior (Eq. (23)) dependent on both \mathbf{x}_t and t . Leveraging its robustness, the policy can be flexibly altered via GM dropout in training (§ 4) and GM temperature in inference (§ B.1), both improving generalization performance.

216 **Algorithm 1:** On-policy π -ID.

217 **Input:** NFE , teacher G_θ , student G_ϕ , condition c

218 1 Sample t_{src} from $\{\frac{1}{NFE}, \frac{2}{NFE}, \dots, 1\}$

219 2 Initialize $\mathbf{x}_{t_{src}}$ (data-free or data-dependent)

220 3 $\pi \leftarrow G_\phi(\mathbf{x}_{t_{src}}, t_{src}, c)$

221 4 $\pi_D \leftarrow \text{stopgrad}(\pi)$

222 5 $\mathcal{L}_\phi \leftarrow 0$

223 6 **for** finite samples $t \sim U(t_{src} - \frac{1}{NFE}, t_{src})$ **do**

224 7 $\mathbf{x}_t \leftarrow \mathbf{x}_{t_{src}} + \int_{t_{src}}^t \pi_D(\mathbf{x}_t, t) dt$

225 8 $\mathcal{L}_\phi \leftarrow \mathcal{L}_\phi + \frac{1}{2} \|G_\theta(\mathbf{x}_t, t, c) - \pi(\mathbf{x}_t, t)\|^2$

226 9 $\phi \leftarrow \text{Adam}(\phi, \nabla_\phi \mathcal{L}_\phi)$ // optimizer step

227

228

4 π -ID: POLICY-BASED IMITATION DISTILLATION

231 With the policy rollout sharing the same format as the teacher’s ODE integration, it is straightforward
 232 to adopt imitation learning to learn the policy by directly matching the policy’s velocity to the
 233 teacher’s velocity. In this section, we introduce a simple policy-based imitation distillation (π -ID)
 234 algorithm based on DAgger-style (Ross et al., 2011) on-policy imitation.

235 On-policy imitation learning is robust to error accumulation since it trains the policy on its own
 236 trajectory, allowing the teacher’s corrective signal to steer a deviating trajectory back on track. As
 237 shown in Fig. 3 and Algorithm 1, for a time interval from t_{src} to t_{dst} (i.e., a 1-NFE segment), we first
 238 feed the initial state $(\mathbf{x}_{t_{src}}, t_{src})$ to the student network G_ϕ to obtain the policy π . We then sample
 239 an intermediate time $t \in (t_{dst}, t_{src}]$ and roll out a *detached* policy π_D from t_{src} to t using high-
 240 accuracy ODE integration (with a small step size of 1/128), yielding an intermediate state \mathbf{x}_t on
 241 the policy trajectory. This state is fed to both the learner policy π and the frozen teacher G_θ , which
 242 produce their respective velocities. Finally, we compute a standard ℓ_2 flow matching loss between
 243 the two velocities, and backpropagate its gradients through the policy π to the student network G_ϕ .
 244 Because the student forward/backward pass dominates compute while policy and teacher queries are
 245 relatively cheap, we may repeat the rollout-and-matching step multiple times for additional teacher
 246 supervisions. In practice, we sample two intermediate states per student forward pass.

247 **Data-dependent and data-free π -ID.** The initial state $\mathbf{x}_{t_{src}}$ can be obtained via forward diffusion
 248 from real data \mathbf{x}_0 (data-dependent Algorithm 2), or via π -Flow’s reverse denoising from random
 249 noise \mathbf{x}_1 (data-free Algorithm 3). Both methods have roughly the same computational cost, and
 250 comparable performance, as demonstrated in the experiments (§ 5).

251 **Error bounds and convergence.** As discussed by Ross et al. (2011), on-policy imitation learning
 252 guarantees that the performance of the learned policy is bounded by the teacher’s performance plus
 253 an error term that scales as $O(n\varepsilon)$, where n is the number of substeps and ε is the average imitation
 254 error (velocity error \times substep size), which is strictly better than the $O(n^2\varepsilon)$ compounding-error
 255 behavior of off-policy behavior cloning. Moreover, the sequence of on-policy iterates converges in
 256 performance to the best policy in the function class, under the student’s capacity constraint.

5 EXPERIMENTS

261 To demonstrate the versatility of π -Flow, we evaluate it with three distinct image generation mod-
 262 els of different scales and architectures: DiT(SiT)-XL/2 (675M) (Peebles & Xie, 2023; Ma et al.,
 263 2024; Vaswani et al., 2017) for ImageNet 256² (Deng et al., 2009) class-conditioned generation,
 264 FLUX.1-12B (Black Forest Labs, 2024b) and Qwen-Image-20B (Wu et al., 2025) for text-to-image
 265 generation.

5.1 IMPLEMENTATION DETAILS

266 In this subsection, we discuss key implementation details essential to model performance. More
 267 training details and hyperparameter choices are presented in § C.

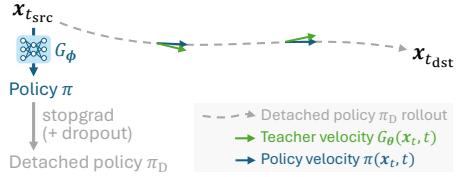


Figure 3: On-policy flow imitation distillation. Intermediate states are sampled along the detached policy rollout, where the loss matches the *policy* to the *teacher*.

270 Table 1: 1-NFE generation results of π -Flow with DX and
 271 GMFlow policies on ImageNet. Tested after 40K training it-
 272 erations. FM stands for standard flow matching.

Policy	Teacher	FID \downarrow	IS \uparrow	Precision \uparrow	Recall \uparrow
DX ($N = 10$)	REPA	4.73	327.6	0.781	0.514
DX ($N = 20$)	REPA	4.44	329.8	0.786	0.531
DX ($N = 40$)	REPA	4.90	321.8	0.778	0.537
GM ($K = 8$)	REPA	3.07	336.9	0.789	0.572
GM ($K = 32$)	REPA	3.08	341.7	0.791	0.562
GM ($K = 32$)	FM	3.65	282.0	0.797	0.533
GM ($K = 32$) w/o dropout	FM	4.14	279.6	0.799	0.525

Table 2: Comparison with previous few-step DiTs on ImageNet.

Model	NFE	FID \downarrow
iCT	2	20.30
iMM	1 \times 2	7.77
MeanFlow	2	2.20
FACM (REPA)	2	1.52
π -Flow (GM-REPA)	2	1.97
iCT	1	34.24
Shortcut	1	10.60
MeanFlow	1	3.43
π -Flow (GM-FM)	1	3.34
π -Flow (GM-REPA)	1	2.85

283 **GM dropout.** Dropout is a widely adopted technique in supervised/imitation learning and
 284 reinforcement learning to improve generalization (Srivastava et al., 2014; Cobbe et al., 2019). For the
 285 GMFlow policy, we introduce GM dropout in training to stochastically perturb and diversify π -ID
 286 rollouts to make the policy more robust to potential trajectory variations. Given the GM mixture
 287 weights A_{ik} of the detached policy π_D , we sample a binary mask for each component $k = 1, \dots, K$
 288 and multiply it into A_{ik} synchronously across all $i = 1, \dots, L$. The masked weights are then
 289 renormalized and used for the detached rollout. By exploring alternative GM modes, this simple
 290 technique improves the policy’s robustness, yielding better FID on ImageNet 256² (§ 5.2).

291 **Handling guidance-distilled teachers.** On-policy imitation learning assumes the teacher is robust
 292 to out-of-distribution (OOD) intermediate states and can steer trajectories back on track. This gen-
 293 erally holds for standard flow models with classifier-free guidance (CFG) (Ho & Salimans, 2021),
 294 which exhibit error-correction behavior (Chidambaram et al., 2024). However, FLUX.1 dev (Black
 295 Forest Labs, 2024b) is a guidance-distilled model without true CFG and is less robust to OOD in-
 296 puts. To mitigate OOD exposure, we adopt a scheduled trajectory mixing strategy, which rolls out
 297 the trajectory using a mixture of teacher and student with a linearly decaying teacher ratio (see § B.2
 298 for details).

300 5.2 IMAGENET DiT

302 Our study utilizes two pretrained teachers with the same DiT architecture: a standard flow match-
 303 ing (FM) DiT (the baseline in Chen et al. (2025)), and the REPA DiT (Yu et al., 2025). Interval
 304 CFG (Kynkänniemi et al., 2024) is applied to both teachers to maximize their performance. Each
 305 π -Flow student is initialized with the teacher weights and then fully finetuned using the π -ID loss.

306 **Evaluation metrics.** We adopt the standard evaluation protocol in ADM (Dhariwal & Nichol, 2021)
 307 with the following metrics: Fréchet Inception Distance (FID) (Heusel et al., 2017), Inception Score
 308 (IS), and Precision–Recall (Kynkänniemi et al., 2019).

310 **Comparison of DX and GMFlow policies.** As shown in Table 1, both policies yield strong 1-
 311 NFE FIDs after 40k training iterations, with the GMFlow policy consistently outperforming the
 312 DX policy by a clear margin. Notably, the DX policy exhibits sensitivity to the hyperparameter N
 313 (number of grid points), whereas the GMFlow policy produces consistent results across different
 314 values of K (number of Gaussians).

315 **Comparison with prior few-step DiTs.** In Table 2, we compare π -Flow (GM policy with $K = 32$)
 316 to prior few-step DiTs on ImageNet 256²: iCT (Song & Dhariwal, 2024), Shortcut models (Frans
 317 et al., 2025), iMM (Zhou et al., 2025), MeanFlow (Geng et al., 2025), and the concurrent work
 318 FACM (Peng et al., 2025). FACM (distilled from REPA) improves MeanFlow with an auxiliary
 319 loss and attains a leading 2-NFE FID, though it still relies on the inefficient JVP operation. In
 320 contrast, π -Flow uses a minimal training framework with no JVP and adaptive loss scalings, yet still
 321 outperforms the original MeanFlow DiT across both 1-NFE and 2-NFE generation.

322 **Ablation study on GM dropout.** From the two bottom rows in Table 1 we conclude that our
 323 standard implementation with a 0.05 GM dropout rate yields better FID and Recall compared to the
 setting without dropout, confirming the effectiveness of our GM dropout technique.

324 Table 3: Quantitative comparisons on COCO-10k dataset and HPSv2 prompt set.
325

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	COCO-10k prompts								HPSv2 prompts							
			326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Data align.		Prompt align.		Pref. align.	Teacher align.		Prompt align.		Pref. align.					
			FID↓	pFID↓	CLIP↑	VQA↑	HPSv2.1↑	FID↓	pFID↓	CLIP↑	VQA↑	HPSv2.1↑						
FLUX.1 dev	-	50	27.8	34.9	0.268	0.900	0.309	-	-	-	-	0.284	0.805	0.314				
FLUX Turbo	GAN	8	26.7	32.0	0.267	0.900	0.308	13.8	18.5	0.286	0.814	0.313						
Hyper-FLUX	CD+Re	8	29.8	33.3	0.268	0.894	0.309	15.6	22.2	0.285	0.807	0.315						
π -Flow (GM-FLUX)	π -ID	8	29.0	35.4	0.268	0.901	0.311	12.6	15.9	0.285	0.810	0.316						
SenseFlow (FLUX)	VSD+CD+GAN	4	34.1	44.2	0.266	0.879	0.308	23.3	28.2	0.283	0.806	0.318						
π -Flow (GM-FLUX)	π -ID	4	29.8	36.1	0.269	0.903	0.308	14.3	19.2	0.288	0.816	0.313						
π -Flow (GM-FLUX)	π -ID (data-free)	4	29.7	36.2	0.269	0.905	0.310	14.4	19.7	0.287	0.813	0.314						
Qwen-Image	-	50x2	34.1	45.6	0.282	0.936	0.312	-	-	-	-	0.302	0.872	0.309				
Qwen-Image Lightning	VSD	4	37.5	51.6	0.280	0.935	0.322	15.6	19.7	0.299	0.867	0.328						
π -Flow (GM-Qwen)	π -ID	4	36.0	46.1	0.281	0.934	0.314	12.8	16.6	0.300	0.860	0.310						
π -Flow (GM-Qwen)	π -ID (data-free)	4	36.0	45.7	0.282	0.936	0.315	12.9	16.8	0.301	0.862	0.312						

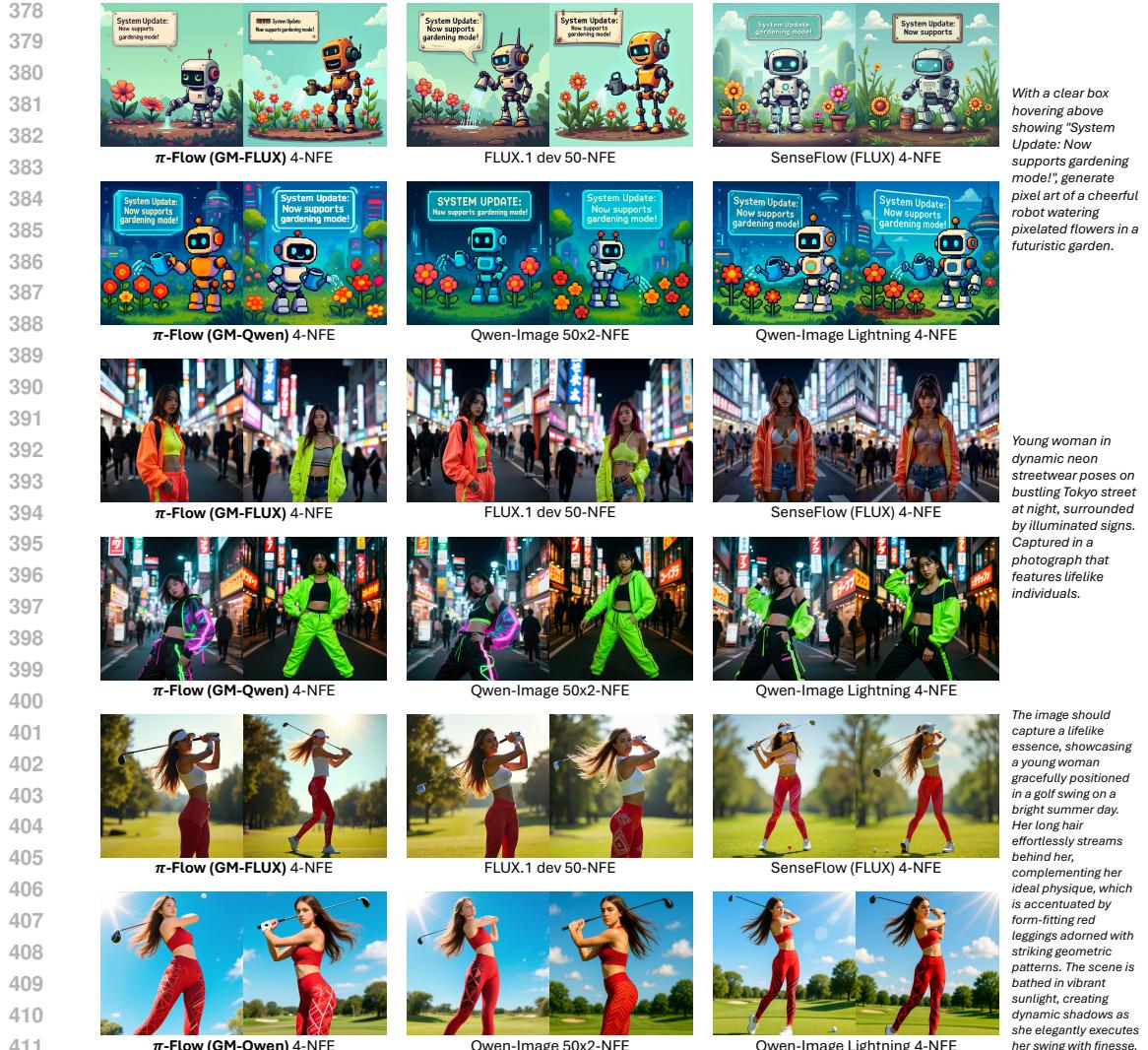
338 Table 4: Quantitative comparisons on OneIG-Bench (Chang et al., 2025).
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Model	Distill Method	NFE	Alignment↑	Text↑	Diversity↑	Style↑	Reasoning↑					
FLUX.1 dev	-	50	0.790	0.556	0.238	0.370	0.257								
FLUX Turbo	GAN	8	0.791	0.334	0.234	0.370	0.239								
Hyper-FLUX	CD+Re	8	0.790	0.530	0.198	0.369	0.254								
π -Flow (GM-FLUX)	π -ID	8	0.792	0.517	0.234	0.369	0.256								
SenseFlow (FLUX)	VSD+CD+GAN	4	0.776	0.384	0.151	0.343	0.238								
π -Flow (GM-FLUX)	π -ID	4	0.799	0.437	0.229	0.360	0.251								
π -Flow (GM-FLUX)	π -ID (data-free)	4	0.799	0.460	0.224	0.363	0.249								
Qwen-Image	-	50x2	0.880	0.888	0.194	0.427	0.306								
Qwen-Image Lightning	VSD	4	0.885	0.923	0.116	0.417	0.311								
π -Flow (GM-Qwen)	π -ID	4	0.875	0.892	0.180	0.434	0.298								
π -Flow (GM-Qwen)	π -ID (data-free)	4	0.881	0.890	0.176	0.433	0.300								

353 For text-to-image generation, we distill the 12B FLUX.1 dev (Black Forest Labs, 2024b) and 20B Qwen-Image (Wu et al., 2025) models into π -Flow students. During student training, we freeze the base parameters inherited from the teacher and finetune only the expanded output layer along with 256-rank LoRA adapters (Hu et al., 2022) on the feed-forward layers. For data-dependent distillation, we prepare 2.3M one-megapixel (1MP) images captioned with Qwen2.5-VL (Bai et al., 2025). In the data-free setting, we use only the generated captions as conditioning inputs while keeping the same 1MP resolution when initializing the noise.

354 **Evaluation protocol.** We conduct a comprehensive evaluation on 1024² high-resolution image generation from three distinct prompt sets: (a) 10K captions from the COCO 2014 validation set (Lin et al., 2014), (b) 3200 prompts from the HPSv2 benchmark (Wu et al., 2023), and (c) 1120 prompts from OneIG-Bench (Chang et al., 2025). For the COCO and HPSv2 sets, we report common metrics including FID (Heusel et al., 2017), patch FID (pFID) (Lin et al., 2024a), CLIP similarity (Radford et al., 2021), VQAScore (Lin et al., 2024b), and HPSv2.1 (Wu et al., 2023). On COCO prompts, FIDs are computed against real images, reflecting data alignment. On HPSv2, FIDs are computed against the 50-step teacher generations, reflecting teacher alignment. CLIP and VQAScore measure prompt alignment, while HPSv2 captures human preference alignment. For OneIG-Bench, we adopt its official evaluation protocol and metrics. All quantitative results are presented in Table 3 and 4.

355 **Competitor models.** We compare π -Flow against other few-step student models distilled from the same teacher. For FLUX, we compare against: 4-NFE SenseFlow (Ge et al., 2025), primarily leveraging variational score distillation (VSD) (Wang et al., 2023), also known as distribution matching distillation (DMD) (Yin et al., 2024b); 8-NFE Hyper-FLUX (Ren et al., 2024), trained with consistency distillation (CD) (Song et al., 2023) and reward models (Re) (Xu et al., 2023); 8-NFE FLUX Turbo, based on GAN-like adversarial distillation (Goodfellow et al., 2014; Sauer et al., 2024b). For Qwen-Image, we compare with the 4-NFE Qwen-Image Lighting based on VSD (ModelTC, 2025). Note that the 4-NFE FLUX.1 schnell is distilled from the closed-source FLUX.1 pro instead of the



412 Figure 4: Images generated from the same batch of initial noise by π -Flows, teachers, and VSD students (SenseFlow, Qwen-Image Lightning). π -Flow models produce diverse structures that closely
 413 mirror the teacher's. In contrast, VSD students tend to repeat the same structure. Notably, Sense-
 414 Flow mostly generates symmetric images.

415
 416
 417
 418 publicly available FLUX.1 dev (Black Forest Labs, 2024a), so we do not compare with it directly,
 419 but include further discussion in § D.

420
 421 **Strong all-around performance.** As shown in Table 3 and Table 4, π -Flow demonstrates strong all-
 422 around performance, outperforming other few-step students on roughly 70% of all metrics, without
 423 exhibiting obvious weaknesses in any specific area.

424
 425 **Superior diversity and teacher alignment.** π -Flow consistently achieves the highest diversity
 426 scores and the best teacher-referenced FIDs by clear margins, especially in the 4-NFE setting. These
 427 results strongly suggest that π -Flow effectively avoids both diversity collapse and style drift. As
 428 a result, most of its scores closely match those of the teacher, with some even slightly surpassing
 429 the teacher scores (e.g., prompt alignment and several Qwen-Image OneIG scores). Its strong
 430 teacher alignment is also evident in Fig. 4, where π -Flow generates structurally similar images to
 431 the teacher's from the same initial noise.

Comparison with VSD (DMD) students. VSD models are notable for high visual quality, sometimes surpassing teachers in quality and preference metrics. However, they are widely known to

Figure 5: Images generated from the same initial noise by π -Flow and FLUX Turbo. π -Flow renders coherent texts, whereas FLUX Turbo underperforms in text rendering.



Figure 6: Images generated from the same initial noise by π -Flow and Hyper-FLUX. π -Flow produces notably finer details, as highlighted in the zoomed-in patches.

suffer from mode collapse, as reflected in our experiments: both SenseFlow and Qwen-Image Lightning show significant drops in diversity and FIDs. Visual examples in Fig. 4 further highlight the collapse, where different initial noises produce visually similar images with only minor variations. In contrast, π -Flow maintains high quality and diversity without sacrificing either aspect.

Comparison with other students. FLUX Turbo achieves better data alignment FIDs than the teacher due to GAN training, yet its text rendering performance is significantly weaker, as shown in Fig. 5. Meanwhile, Hyper-FLUX often produces undesirable texture artifacts and fuzzy details, whereas π -Flow achieves superior detail rendering, as shown in Fig. 6.

Data-dependent vs. data-free. As shown in Table 3 and Table 4, data-dependent and data-free π -Flow models achieve nearly identical results. This demonstrates the practicality of π -Flow in scenarios where high-quality data is unavailable.

GMFlow vs. DX policy. Consistent with prior ImageNet findings, the DX policy slightly underperforms compared to the GMFlow policy (Table 5), highlighting the latter’s superior robustness.

Convergence. Figure 7 illustrates the convergence of π -Flow (GM-Qwen) over training iterations. Both FID and Patch FID scores initially improve rapidly, outperforming Qwen-Image Lightning within the first 400 iterations, and continue to improve steadily thereafter. This contrasts with previous GAN or VSD-based methods that often require frequent checkpointing and cherry-picking (Ge et al., 2025), demonstrating the scalability and robustness of our approach.

Inference time. To validate that the policies are indeed fast enough so that the overhead is negligible compared to shortcut-predicting models, we compare the inference times of 4-NFE π -Flow models and Qwen-Image Lightning in Table 6. For π -Flow, each policy generation step (with one network evaluation) is followed by 32 policy integration substeps on average. The results in Table 6 show that 32 policy substeps cost around 15 ms in total, which is only 3% of the network time. Therefore, the overall speed of π -Flow is on par with shortcut-predicting models.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 5: Comparisons between DX and GMFlow policies on text-to-image generation.

Policy	Teacher	HPSv2 prompts			OneIG-Bench	
		FID↓	pFID↓	HPSv2.1↑	Text↑	Diversity↑
DX ($N = 10$)	FLUX	14.9	20.9	0.313	0.397	0.225
GM ($K = 8$)	FLUX	14.3	19.2	0.313	0.437	0.229
DX ($N = 10$)	Qwen-Image	12.7	17.0	0.306	0.869	0.185
GM ($K = 8$)	Qwen-Image	12.8	16.6	0.310	0.892	0.180

Table 6: Per-NFE inference time of π -Flow models and the shortcut-predicting model (Qwen-Image Lightning). Tested on an A100 GPU with 12 CPU cores (3.0 GHz).

Model	Network time (sec)	Policy time (sec)
Qwen-Image Lightning	0.465	-
π -Flow (DX-Qwen)	0.464	0.015
π -Flow (GM-Qwen)	0.465	0.014

6 RELATED WORK

Prior work on diffusion model distillation primarily focuses on predicting shortcuts towards less noisy states, with training objectives ranging from direct regression to distribution matching.

Early work (Luhman & Luhman, 2021) directly regresses the teacher’s ODE integral in a single step, but suffers from degraded quality, since regressing x_0 with an ℓ_2 loss tends to produce blurry results. Progressive distillation methods (Salimans & Ho, 2022; Liu et al., 2023; 2024; Frans et al., 2025) make further improvements via a multi-stage process that progressively increases the student’s step size and reduces its NFE by regressing the previous stage’s multi-step outputs with fewer steps, yet this introduces error accumulation.

Consistency-based models (Song et al., 2023; Gu et al., 2023; Kim et al., 2024; Song & Dhariwal, 2024; Geng et al., 2025; Boffi et al., 2025) implicitly impose a velocity-based regression loss, which improves quality compared to x -based regression. However, the flow velocity of a shortcut-predicting student must be constructed implicitly using either inaccurate finite differences or expensive Jacobian–vector products (JVPs). Moreover, their quality is still limited due to accumulation of velocity errors into the integrated shortcut. Therefore, in practice, consistency distillation is often augmented with additional objectives to improve quality (Ren et al., 2024; Zheng et al., 2025), further complicating training.

Conversely, distribution matching approaches (Yin et al., 2024b;a; Sauer et al., 2024b; Zhou et al., 2024; Luo et al., 2024; Salimans et al., 2024; Zhou et al., 2025) adopt score matching and adversarial training to align the student’s output distribution with the teacher’s. The VSD objective achieves superior quality but risks diversity loss due to mode collapse; GAN and SiD objectives balance quality and diversity but can cause style drift. Their common reliance on auxiliary networks introduces additional tuning complexity and may lead to stability issues at scale (Ge et al., 2025).

7 CONCLUSION

We introduced policy-based flow models (π -Flow), a novel framework for few-step generation in which the network outputs a fast policy that enables accurate ODE integration via dense substeps reach the denoised state. To distill π -Flow models, we proposed a simple on-policy imitation learning approach that reduces the training objective to a single ℓ_2 loss, mitigating error accumulation and quality–diversity trade-offs. Extensive experiments distilling ImageNet DiT, FLUX.1-12B, and Qwen-Image-20B models show that few-step π -Flows consistently attain teacher-level image quality while significantly outperforming competitors in diversity and teacher alignment. π -Flow offers a scalable, principled paradigm for efficient, high-quality generation and opens new directions for future research, such as exploring more robust policy families, improved distillation objectives, and extensions to other applications (e.g., video generation).

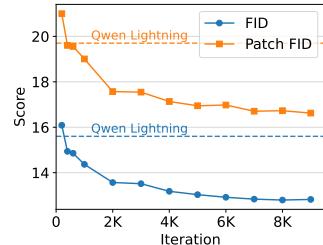


Figure 7: Teacher-referenced FID and Patch FID of GM-Qwen evaluated on HPSv2 prompts.

540 **Reproducibility statement.** To facilitate reproduction, we describe the detailed training procedures
 541 in Algorithms 2 and 3, and list all important hyperparameters in §C.
 542

543 REFERENCES
 544

545 Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
 546 interpolants. In *ICLR*, 2023.

547 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 548 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 549 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 550 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report, 2025.
 551 URL <https://arxiv.org/abs/2502.13923>.

552

553 Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
 554 prediction with recurrent neural networks. In *NeurIPS*, NIPS’15, pp. 1171–1179, Cambridge,
 555 MA, USA, 2015. MIT Press.

556 Black Forest Labs. Flux.1 [schnell]. <https://huggingface.co/spaces/black-forest-labs/FLUX.1-schnell>, 2024a.

557

558 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024b.

559

560 Nicholas Matthew Boffi, Michael Samuel Albergo, and Eric Vanden-Eijnden. Flow map matching
 561 with stochastic interpolants: A mathematical framework for consistency models. *TMLR*, 2025.
 562 ISSN 2835-8856. URL <https://openreview.net/forum?id=cqDH0e6ak2>.

563

564 Jingjing Chang, Yixiao Fang, Peng Xing, Shuhan Wu, Wei Cheng, Rui Wang, Xianfang Zeng,
 565 Gang Yu, and Hai-Bao Chen. Oneig-bench: Omni-dimensional nuanced evaluation for image
 566 generation. In *NeurIPS*, 2025.

567

568 Hansheng Chen, Kai Zhang, Hao Tan, Zexiang Xu, Fujun Luan, Leonidas Guibas, Gordon Wet-
 569 ztein, and Sai Bi. Gaussian mixture flow matching models. In *ICML*, 2025.

570

571 Muthu Chidambaram, Khashayar Gatmiry, Sitan Chen, Holden Lee, and Jianfeng Lu. What does
 572 guidance do? a fine-grained analysis in a simple setting. In *NeurIPS*, 2024. URL <https://openreview.net/forum?id=AdS3H8SaPi>.

573

574 Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generaliza-
 575 tion in reinforcement learning. In *ICML*, 2019.

576

577 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 578 hierarchical image database. In *CVPR*, pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

579

580 Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
 581 quantization. In *ICLR*, 2022.

582

583 Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis.
 584 In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *NeurIPS*, 2021. URL
 585 <https://openreview.net/forum?id=AAWuCvzaVt>.

586

587 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 588 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
 589 glish, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow
 590 transformers for high-resolution image synthesis. In *ICML*, 2024.

591

592 Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
 593 models. In *ICLR*, 2025. URL <https://openreview.net/forum?id=OlzB6LnXcS>.

594

595 Xingtong Ge, Xin Zhang, Tongda Xu, Yi Zhang, Xinjie Zhang, Yan Wang, and Jun Zhang.
 596 Senseflow: Scaling distribution matching for flow-based text-to-image distillation, 2025. URL
 597 <https://arxiv.org/abs/2506.00523>.

594 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J. Zico Kolter, and Kaiming He. Mean flows for
 595 one-step generative modeling. In *NeurIPS*, 2025.

596

597 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 598 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani,
 599 M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), *NeurIPS*, volume 27. Cur-
 600 ran Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

601

602 Jitao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, and Joshua M Susskind. Boot: Data-free
 603 distillation of denoising diffusion models with bootstrapping. In *ICML Workshop*, 2023.

604

605 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 606 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *NeurIPS*,
 607 2017.

608 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS Workshop*, 2021.

609

610 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
 611 2020.

612 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 613 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *ICLR*, 2022. URL
 614 <https://openreview.net/forum?id=nZeVKeFYf9>.

615

616 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 617 based generative models. In *NeurIPS*, 2022.

618 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
 619 ing and improving the training dynamics of diffusion models. In *CVPR*, 2024.

620

621 Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
 622 Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
 623 bility flow ODE trajectory of diffusion. In *ICLR*, 2024. URL <https://openreview.net/forum?id=ymjI8feDTD>.

624

625 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR*, 2014.

626

627 Tuomas Kynkänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
 628 precision and recall metric for assessing generative models. In *NeurIPS*, 2019.

629

630 Tuomas Kynkänniemi, Miika Aittala, Tero Karras, Samuli Laine, Timo Aila, and Jaakko Lehtinen.
 631 Applying guidance in a limited interval improves sample and distribution quality in diffusion
 632 models. In *NeurIPS*, 2024.

633 Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
 634 distillation, 2024a. URL <https://arxiv.org/abs/2402.13929>.

635

636 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 637 Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet,
 638 Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), *ECCV*, pp. 740–755, Cham, 2014.
 639 Springer International Publishing. ISBN 978-3-319-10602-1.

640

641 Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
 642 Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. In *ECCV*,
 643 2024b.

644

645 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 646 matching for generative modeling. In *ICLR*, 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>.

647

648 Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport, 2022. URL
 649 <https://arxiv.org/abs/2209.14577>.

648 Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and
 649 transfer data with rectified flow. In *The Eleventh International Conference on Learning Repre-*
 650 *sentations*, 2023. URL <https://openreview.net/forum?id=XVjTT1nw5z>.

651 Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, and qiang liu. Instaflow: One step is enough
 652 for high-quality diffusion-based text-to-image generation. In *ICLR*, 2024. URL <https://openreview.net/forum?id=1k4yZbbDqX>.

653 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-solver: A
 654 fast ODE solver for diffusion probabilistic model sampling in around 10 steps. In Alice H. Oh,
 655 Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *NeurIPS*, 2022. URL https://openreview.net/forum?id=2uAaGw1P_V.

656 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
 657 solver for guided sampling of diffusion probabilistic models, 2023. URL <https://arxiv.org/abs/2211.01095>.

658 Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
 659 sampling speed, 2021. URL <https://arxiv.org/abs/2101.02388>.

660 Weijian Luo, Zemin Huang, Zhengyang Geng, J. Zico Kolter, and Guo jun Qi. One-step diffusion
 661 distillation through score implicit matching. In *NeurIPS*, 2024.

662 Nanye Ma, Mark Goldstein, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden, and
 663 Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 664 transformers. In *ECCV*, 2024.

665 ModelTC. Qwen-image-lightning. <https://github.com/ModelTC/Qwen-Image-Lightning>, 2025.

666 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *ICCV*, 2023.

667 Yansong Peng, Kai Zhu, Yu Liu, Pingyu Wu, Hebei Li, Xiaoyan Sun, and Feng Wu. Flow-anchored
 668 consistency models, 2025. URL <https://arxiv.org/abs/2507.03738>.

669 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 670 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 671 models from natural language supervision. In *ICML*, pp. 8748–8763, 2021.

672 Yuxi Ren, Xin Xia, Yanzuo Lu, Jiacheng Zhang, Jie Wu, Pan Xie, XING WANG, and Xuefeng Xiao.
 673 Hyper-SD: Trajectory segmented consistency model for efficient image synthesis. In *NeurIPS*,
 674 2024. URL <https://openreview.net/forum?id=05XbOoi0x3>.

675 Hans Richter. Parameterfreie abschätzung und realisierung von erwartungswerten. *Blätter der*
 676 *DGVFM*, 3(2):147–162, Apr 1957. ISSN 1864-0303. doi: 10.1007/BF02808864. URL
 677 <https://doi.org/10.1007/BF02808864>.

678 Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
 679 tured prediction to no-regret online learning. In Geoffrey Gordon, David Dunson, and Miroslav
 680 Dudík (eds.), *AISTATS*, volume 15 of *Proceedings of Machine Learning Research*, pp. 627–635,
 681 Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR. URL <https://proceedings.mlr.press/v15/ross11a.html>.

682 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
 683 *ICLR*, 2022.

684 Tim Salimans, Thomas Mensink, Jonathan Heek, and Emiel Hoogeboom. Multistep distillation of
 685 diffusion models via moment matching. *NeurIPS*, 37:36046–36070, 2024.

686 Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, and Robin Rom-
 687 bach. Fast high-resolution image synthesis with latent adversarial diffusion distillation. In
 688 *SIGGRAPH Asia*, SA ’24, New York, NY, USA, 2024a. Association for Computing Machinery.
 689 ISBN 9798400711312. doi: 10.1145/3680528.3687625. URL <https://doi.org/10.1145/3680528.3687625>.

702 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
 703 tillation. In *ECCV*, pp. 87–103, 2024b.
 704

705 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 706 learning using nonequilibrium thermodynamics. In *ICML*, pp. 2256–2265, 2015.
 707

708 Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In *ICLR*,
 709 2024. URL <https://openreview.net/forum?id=WNzy9bRDvG>.
 710

711 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 712 In *NeurIPS*, 2019.
 713

714 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 715 Poole. Score-based generative modeling through stochastic differential equations. In *ICLR*, 2021.
 716

717 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *ICML*, 2023.
 718

719 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 720 Dropout: a simple way to prevent neural networks from overfitting. *JMLR*, 15(1):1929–1958,
 721 January 2014. ISSN 1532-4435.
 722

723 Vladimir Tchakaloff. Formules de cubatures mécaniques à coefficients non négatifs. *Bulletin des
 724 Sciences Mathématiques*, 81(2):123–134, 1957.
 725

726 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 727 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
 728 S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *NeurIPS*, volume 30.
 729 Curran Associates, Inc., 2017.
 730

731 Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolific-
 732 dreamer: High-fidelity and diverse text-to-3d generation with variational score distillation. In
 733 *NeurIPS*, 2023.
 734

735 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng ming Yin, Shuai
 736 Bai, Xiao Xu, Yilei Chen, Yuxiang Chen, Zecheng Tang, Zekai Zhang, Zhengyi Wang, An Yang,
 737 Bowen Yu, Chen Cheng, Dayiheng Liu, Deqing Li, Hang Zhang, Hao Meng, Hu Wei, Jingyuan
 738 Ni, Kai Chen, Kuan Cao, Liang Peng, Lin Qu, Minggang Wu, Peng Wang, Shuting Yu, Tingkun
 739 Wen, Wensen Feng, Xiaoxiao Xu, Yi Wang, Yichang Zhang, Yongqiang Zhu, Yujia Wu, Yuxuan
 740 Cai, and Zenan Liu. Qwen-image technical report, 2025. URL <https://arxiv.org/abs/2508.02324>.
 741

742 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 743 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 744 image synthesis, 2023. URL <https://arxiv.org/abs/2306.09341>.
 745

746 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 747 Dong. Imagereward: learning and evaluating human preferences for text-to-image generation. In
 748 *NeurIPS*, pp. 15903–15935, 2023.
 749

750 Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Frédo Durand, and
 751 William T. Freeman. Improved distribution matching distillation for fast image synthesis. In
 752 *NeurIPS*, 2024a. URL <https://openreview.net/forum?id=tQukGCDaNT>.
 753

754 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Frédo Durand, William T Freeman,
 755 and Taesung Park. One-step diffusion with distribution matching distillation. In *CVPR*, 2024b.
 756

757 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
 758 Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
 759 than you think. In *ICLR*, 2025.
 760

761 Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
 762 In *ICLR*, 2023. URL <https://openreview.net/forum?id=Loek7hfb46P>.
 763

756 Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
757 corrector framework for fast sampling of diffusion models. In *NeurIPS*, 2023.
758

759 Kaiwen Zheng, Yuji Wang, Qianli Ma, Huayu Chen, Jintao Zhang, Yogesh Balaji, Jianfei Chen,
760 Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Large scale diffusion distillation via score-
761 regularized continuous-time consistency, 2025. URL <https://arxiv.org/abs/2510.08431>.
762

763 Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. In *ICML*, 2025.
764

765 Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
766 distillation: exponentially fast distillation of pretrained diffusion models for one-step generation.
767 In *ICML*, 2024.
768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

Algorithm 2: Data-dependent on-policy π -ID training loop with time shifting.

811

Input: NFE , teacher G_θ , data-condition distribution $p(\mathbf{x}_0, \mathbf{c})$, shift m

812

Output: Student G_ϕ

813

```

1 Initialize student params  $\phi$ 
2  $S \leftarrow \left\{ \frac{1}{NFE}, \frac{2}{NFE}, \dots, 1 \right\}$  // can be adjusted to reduce final step size
3 for finite samples  $\mathbf{x}_0, \mathbf{c} \sim p(\mathbf{x}_0, \mathbf{c})$ ,  $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ ,  $\tau' \sim U(0, 1)$  do
4    $\tau_{src} \leftarrow \min\{\tau_{src} \mid \tau_{src} \in S \text{ and } \tau_{src} \geq \tau'\}$ 
5    $\tau_{dst} \leftarrow \max\{\tau_{dst} \mid \tau_{dst} \in S \cup \{0\} \text{ and } \tau_{dst} < \tau_{src}\}$ 
6    $t_{src} \leftarrow \frac{m\tau_{src}}{1+(m-1)\tau_{src}}$  // time shifting (Esser et al., 2024)
7    $\mathbf{x}_{t_{src}} \leftarrow \alpha_{t_{src}} \mathbf{x}_0 + \sigma_{t_{src}} \epsilon$ 
8    $\pi \leftarrow G_\phi(\mathbf{x}_{t_{src}}, t_{src}, \mathbf{c})$ 
9    $\pi_D \leftarrow \text{stopgrad}(\pi)$  or  $\pi_D \leftarrow \text{dropout}(\text{stopgrad}(\pi))$ 
10   $\mathcal{L}_\phi \leftarrow 0$ 
11  for finite samples  $\tau \sim U(\tau_{dst}, \tau_{src})$  do
12     $t \leftarrow \frac{m\tau}{1+(m-1)\tau}$ 
13     $\mathbf{x}_t \leftarrow \mathbf{x}_{t_{src}} + \int_{t_{src}}^t \pi_D(\mathbf{x}_t, t) dt$ 
14     $\mathcal{L}_\phi \leftarrow \mathcal{L}_\phi + \frac{1}{2} \|G_\theta(\mathbf{x}_t, t, \mathbf{c}) - \pi(\mathbf{x}_t, t)\|^2$  // can be replaced with Eq. (6)
15   $\phi \leftarrow \text{Adam}(\phi, \nabla_\phi \mathcal{L}_\phi)$  // optimizer step

```

814

815

Algorithm 3: Data-free on-policy π -ID training loop with time shifting.

816

Input: NFE , teacher G_θ , condition distribution $p(\mathbf{c})$, shift m

817

Output: Student G_ϕ

818

```

1 Initialize student params  $\phi$ 
2 for finite samples  $\mathbf{c} \sim p(\mathbf{c})$ ,  $\mathbf{x}_1 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$  do
3    $\tau_{src} \leftarrow 1$ ,  $t_{src} \leftarrow 1$ 
4    $\mathcal{L}_\phi \leftarrow 0$ 
5   while  $\tau_{src} > 0$  do
6      $\tau_{dst} \leftarrow \tau_{src} - \frac{1}{NFE}$  // can be adjusted to reduce final step size
7      $t_{dst} \leftarrow \frac{m\tau_{dst}}{1+(m-1)\tau_{dst}}$  // time shifting (Esser et al., 2024)
8      $\pi \leftarrow G_\phi(\mathbf{x}_{t_{src}}, t_{src}, \mathbf{c})$ 
9      $\pi_D \leftarrow \text{stopgrad}(\pi)$  or  $\pi_D \leftarrow \text{dropout}(\text{stopgrad}(\pi))$ 
10    for finite samples  $\tau \sim U(\tau_{dst}, \tau_{src})$  do
11       $t \leftarrow \frac{m\tau}{1+(m-1)\tau}$ 
12       $\mathbf{x}_t \leftarrow \mathbf{x}_{t_{src}} + \int_{t_{src}}^t \pi_D(\mathbf{x}_t, t) dt$ 
13       $\mathcal{L}_\phi \leftarrow \mathcal{L}_\phi + \frac{\tau_{src} - \tau_{dst}}{2} \|G_\theta(\mathbf{x}_t, t, \mathbf{c}) - \pi(\mathbf{x}_t, t)\|^2$  // can be replaced with Eq. (6)
14       $\mathbf{x}_{t_{dst}} \leftarrow \mathbf{x}_{t_{src}} + \int_{t_{src}}^{t_{dst}} \pi_D(\mathbf{x}_t, t) dt$ 
15       $\tau_{src} \leftarrow \tau_{dst}$ ,  $t_{src} \leftarrow t_{dst}$ 
16   $\phi \leftarrow \text{Adam}(\phi, \nabla_\phi \mathcal{L}_\phi)$  // optimizer step

```

819

820

A USE OF LARGE LANGUAGE MODELS

821

In preparing this manuscript, we used large language models (LLMs) as general-purpose writing assistants for grammar corrections, rephrasing, and clarity/concision edits. All LLM-suggested edits were reviewed and verified by the authors, who take full responsibility for the final manuscript.

822

B ADDITIONAL TECHNICAL DETAILS

823

B.1 GM TEMPERATURE

824

Inspired by the temperature parameter in language models, we introduce a similar temperature parameter for the GMFlow policy during inference. Let $T > 0$ be the temperature parameter. Given a C -dimensional GM velocity distribution $q(\mathbf{u}|\mathbf{x}_{t_{src}}) = \sum_{k=1}^K A_k \mathcal{N}(\mathbf{u}; \boldsymbol{\mu}_k, s^2 \mathbf{I})$, the new GM prob-

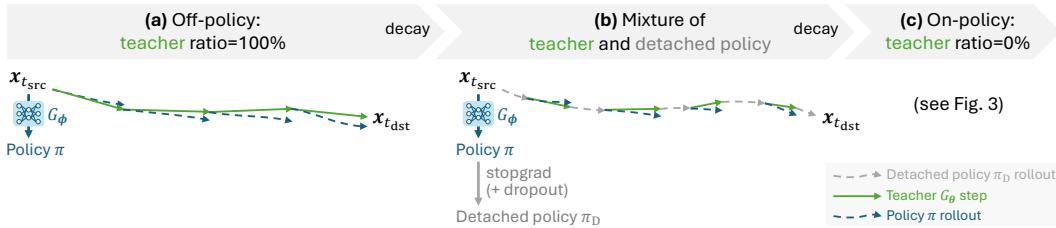


Figure 8: Three stages of scheduled trajectory mixing. (a) Off-policy behavior cloning with a teacher ratio of 1. (b) Mixed teacher and detached-policy segments with a decaying teacher ratio. (c) On-policy imitation learning with a teacher ratio of 0 (Fig. 3). (see Fig. 3)

ability with temperature T is defined as:

$$q_T(\mathbf{u}|\mathbf{x}_{t_{\text{src}}}) := \frac{q^{\frac{1}{T}}(\mathbf{u}|\mathbf{x}_{t_{\text{src}}})}{\int_{\mathbb{R}^C} q^{\frac{1}{T}}(\mathbf{u}|\mathbf{x}_{t_{\text{src}}}) d\mathbf{u}}. \quad (3)$$

Although $q_T(\mathbf{u}|\mathbf{x}_{t_{\text{src}}})$ does not have a general closed-form expression, it can be approximated by the following expression, which works very well as a practical implementation:

$$q_T(\mathbf{u}|\mathbf{x}_{t_{\text{src}}}) \approx \sum_{k=1}^K \frac{A_k^{\frac{1}{T}}}{\sum_{z=1}^K A_z^{\frac{1}{T}}} \mathcal{N}(\mathbf{u}; \boldsymbol{\mu}_k, s^2 T \mathbf{I}). \quad (4)$$

For the distilled FLUX and Qwen-Image models, we set $T = 0.3$ for 4-NFE generation and $T = 0.7$ for 8-NFE generation. An exception is that we do not apply temperature scaling to the final step, as we found this can impair texture details. As shown in Table 7, ablating GM temperature from the 4-NFE GM-FLUX leads to degraded teacher alignment.

B.2 SCHEDULED TRAJECTORY MIXING FOR GUIDANCE-DISTILLED TEACHERS

To reduce out-of-distribution exposure in imitation learning, scheduled sampling (Bengio et al., 2015) stochastically alternates between expert (teacher) and learner policy during trajectory integration, decaying the expert probability from 1 to 0. However, naively applying it to π -ID is impractical because the teacher flow model G_θ is much slower than the network-free policy π_D .

To maintain constant compute throughout training, we introduce a scheduled trajectory mixing strategy. Since the teacher is slow, we fix the total number of teacher queries, allow each query to cover a coarse, longer step initially, and gradually shrink the teacher step size while filling the gaps with the fast policy π_D . As shown in Fig. 8 (a), training initially adopts a fully off-policy teacher trajectory (behavior cloning). At the beginning time t_a of each teacher step, we roll in the learner policy π , integrate it over the same interval from t_a to t_b , and match its average velocity to the teacher velocity with the ℓ_2 loss:

$$\mathcal{L}_\phi = \mathbb{E} \left[\frac{1}{2} \left\| G_\theta(\mathbf{x}_{t_a}, t_a) - \frac{1}{t_b - t_a} \int_{t_a}^{t_b} \pi(\mathbf{x}_t, t) dt \right\|^2 \right]. \quad (5)$$

As training progresses (Fig. 8 (b)), we then mix teacher and detached-policy segments while using the same loss, and linearly decay the teacher ratio—the sum of teacher step lengths divided by the total interval length $t_{\text{src}} - t_{\text{dst}}$. Finally, when the teacher ratio reaches 0, training reduces to on-policy π -ID. All teacher step boundaries (starts and ends) are randomly sampled within the interval $[t_{\text{dst}}, t_{\text{src}}]$ under the teacher ratio constraint, so that step sizes and locations vary while the total teacher-covered length follows the current ratio schedule.

We apply scheduled trajectory mixing exclusively when distilling the FLUX.1 dev model, as it lacks real CFG. Since omitting CFG doubles the teacher’s speed, we increase the number of intermediate samples (teacher steps) to 4 accordingly.

B.3 MICRO-WINDOW VELOCITY MATCHING

For on-policy π -ID, in practice we found that replacing the instantaneous velocity matching loss in Algorithm 1 with a modified average velocity loss over a micro time window generally benefits

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 7: Ablation study on 4-NFE π -Flow (GM-FLUX), evaluated on the HPSv2 prompt set using teacher-referenced FID metrics (reflecting teacher alignment).

GM temperature	Micro window	FID \downarrow	pFID \downarrow
✓	✓	14.3	19.2
	✓	14.9	20.1
✓		14.6	20.3

A futuristic, sleek sports car with a low, aerodynamic design is shown in motion against a backdrop of a city skyline at sunset. The car features sharp angles, large wheels with orange accents, and a prominent front grille. The cityscape includes tall buildings with illuminated windows, and the sky is painted with hues of orange and blue as the sun sets. The lighting is warm and golden, with the sun setting behind the city, casting a glow over the scene. The car is positioned in the foreground, with the city skyline in the background, creating a sense of depth and movement.

Figure 9: The 128-NFE FLUX.1 dev often generates blurry images, whereas the 43-NFE FLUX.1 dev reduces the blur and produces sharper edges.

training. The modified loss is defined as:

$$\mathcal{L}_\phi = \mathbb{E} \left[\frac{1}{2} \left\| G_\theta(\mathbf{x}_t, t) - \frac{1}{-\Delta t} \int_t^{t-\Delta t} \pi(\mathbf{x}_t, t) dt \right\|^2 \right], \quad (6)$$

where Δt is the window size. We set $\Delta t = 3/128$ (three policy integration steps) for all FLUX.1 and Qwen-Image experiments.

The benefits of micro-window velocity matching are threefold:

- It generally smooths the training signal, reducing sensitivity to sharp local variations in the teacher trajectory.
- It stabilizes the less robust DX policy. In the ImageNet experiments, we observe that training with the DX policy diverges without this modification.
- With $\Delta t = 3/128$, the policy effectively mimics teacher sampling with $\frac{128}{3} \approx 43$ steps instead of 128 steps. For the guidance-distilled FLUX.1 dev model, we observe that the teacher often generates blurry images using 128-step sampling, while 43-step sampling yields sharper results (see Fig. 9). This behavior is inherited by the student, so micro-window velocity matching helps reduce blur.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 8: Hyperparameters used in the ImageNet experiments.

	1-NFE						2-NFE
	GM-FM ($K = 32$)	GM-REPA ($K = 8$)	GM-REPA ($K = 32$)	DX-REPA ($N = 10$)	DX-REPA ($N = 20$)	DX-REPA ($N = 40$)	GM-REPA ($K = 32$)
GM dropout	0.05	0.05	0.05	-	-	-	0.05
# of intermediate states	2	2	2	2	2	2	2
Window size (raw) $\Delta\tau$	-	-	-	10/128	5/128	3/128	-
Shift m	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Teacher CFG	2.7	3.2	3.2	3.2	3.2	3.2	2.8
Teacher CFG interval	$t \in [0, 0.6]$	$t \in [0, 0.7]$	$t \in [0, 0.7]$	$t \in [0, 0.7]$	$t \in [0, 0.7]$	$t \in [0, 0.7]$	$t \in [0, 0.7]$
Learning rate	5e-5	5e-5	5e-5	5e-5	5e-5	5e-5	5e-5
Batch size	4096	4096	4096	4096	4096	4096	4096
# of training iterations in Table 2	140K	-	140K	-	-	-	24K
EMA param γ in Karras et al. (2024)	7.0	7.0	7.0	7.0	7.0	7.0	7.0

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 9: Hyperparameters used in FLUX and Qwen-Image experiments.

	4-NFE				8-NFE
	GM-FLUX ($K = 8$)	GM-Qwen ($K = 8$)	DX-FLUX ($N = 10$)	DX-Qwen ($N = 10$)	GM-FLUX ($K = 8$)
GM dropout	0.1	0.1	-	-	0.1
GM temperature T	0.3	0.3	-	-	0.7
# of intermediate states	4	2	4	2	4
Window size (raw) $\Delta\tau$	3/128	3/128	3/128	3/128	3/128
Shift m	3.2	3.2	3.2	3.2	3.2
Final step size scale	0.5	0.5	0.5	0.5	0.5
Teacher CFG	3.5	4.0	3.5	4.0	3.5
Learning rate	1e-4	1e-4	1e-4	1e-4	1e-4
Batch size	256	256	256	256	256
# of training iterations	3K	9K	3K	9K	3K
# of decay iterations (§ B.2)	2K	-	2K	-	2K
EMA param γ in Karras et al. (2024)	7.0	7.0	7.0	7.0	7.0

As shown in Table 7, ablating the micro window trick from the 4-NFE GM-FLUX leads to degraded teacher alignment.

B.4 TIME SAMPLING

For high resolution image generation, Esser et al. (2024) proposed a time shifting mechanism to rescale the noise strength. Let τ be the pre-shift raw time and m be the shift hyperparameter, the shifted time is defined as $t := \frac{m\tau}{1+(m-1)\tau}$.

Following this idea, π -ID samples times uniformly in raw-time space and then applies the shift to remap those samples. Detailed time sampling routines are given in Algorithms 2 and 3.

For FLUX.1 and Qwen-Image, we use a fixed shift $m = 3.2$, which is a rounded approximation of FLUX.1’s official dynamic shift at 1MP resolution. In addition, several diffusion/flow models reduce the noise strength at the final step to improve detail (Karras et al., 2022; Wu et al., 2025). Accordingly, for FLUX.1 and Qwen-Image we halve the final step size (relative to previous steps) in raw-time space.

1026 Table 10: FLUX.1 schnell evaluation results on COCO-10k dataset and HPSv2 prompt set.
1027

1028 Model	1029 Distill method	1030 NFE	1031 COCO-10k prompts				1032 HPSv2 prompts			
			1033 Data align.	1034 Prompt align.	1035 Pref. align.	1036 Prompt align.	1037 Pref. align.	1038 CLIP↑	1039 VQA↑	
			1038 FID↓	1039 pFID↓	1040 CLIP↑	1041 VQA↑	1042 HPSv2.1↑	1043 CLIP↑	1044 VQA↑	1045 HPSv2.1↑
FLUX.1 schnell	GAN	4	21.8	29.1	0.274	0.913	0.297	0.297	0.843	0.301

1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
The president being abducted by aliens.

A puppy is driving a car in a film still.

Spiderman character in the game Sea of Thieves.

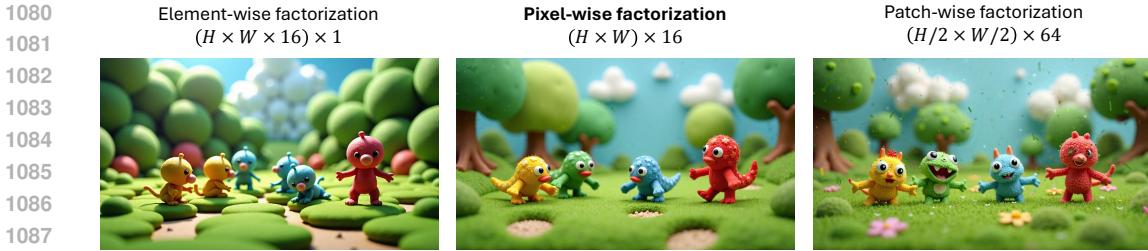
A portrait of a melting skull with intricate abstract details, created by Tooth Wu, Wlop Beeple, and Dan Mumford, using Octane Render.

The image depicts a beautiful goddess of spring wearing a wreath and flowy green skirt, created by artist wlop.

Figure 10: Typical failure cases of FLUX.1 schnell. For reference, we also show the corresponding FLUX.1 dev and π -Flow results from the same initial noise.

C ADDITIONAL IMPLEMENTATION DETAILS AND HYPERPARAMETERS

All models are trained with BF16 mixed precision, using the 8-bit Adam optimizer (Kingma & Ba, 2014; Dettmers et al., 2022) without weight decay. For inference, we use EMA weights with a dynamic moment schedule (Karras et al., 2024). Detailed hyperparameter choices are listed in Table 8 and 9.



A painting depicting a scenic view of Guangzhou, China as a tourist destination by David Inshaw.

Figure 11: Comparison of different $L \times C$ factorization schemes for the GMFlow policy, evaluated on the toy models after 4000 optimization iterations. The default pixel-wise factorization ($C = \text{VAE latent channels}$) proposed by Chen et al. (2025) produces neutral colors and detailed textures. In contrast, element-wise factorization ($C = 1$) leads to over-saturated colors, high contrast, and over-smoothed textures, while patch-wise factorization ($C = 2 \times 2 \times \text{VAE latent channels}$) results in “confetti” artifacts and noisy textures.

C.1 DISCUSSION ON GMFLOW POLICY HYPERPARAMETERS

For the GMFlow policy, we observed that the hyperparameters suggested by Chen et al. (2025) ($K = 8, C = \text{VAE latent channel size}$) generally work well. These parameters play important roles in balancing compatibility, expressiveness, and robustness. A larger K improves expressiveness but impairs compatibility as it may complicate network training. A larger C improves robustness (since GMFlow models correlations within each C -dimensional chunk) but impairs expressiveness (raises the theoretical $K = N \cdot C$ bound). In addition, improving expressiveness may generally compromise robustness, due to the increased chance of encountering outlier trajectories during inference.

To further justify the design choice of pixel-wise factorization in GMFlow (where the latent grid is factorized by $L = H \times W, C = \text{VAE latent channel size}$), we conduct toy model experiments to test alternative factorizations. In each experiment, we initialize a set of GMFlow parameters A_{ik}, μ_{ik}, s with $K = 32$ components, and directly optimize them to overfit the FLUX teacher’s behavior over the entire time domain $t \in (0, 1]$, using simple π -ID (Algorithm 1) on a fixed initial noise \mathbf{x}_1 and a fixed text prompt. This setup isolates the inductive bias of the policy itself, without any influence from the student network. As shown in Fig. 11, pixel-wise factorization achieves the best results within 4000 optimization iterations, producing neutral colors and rich textures, and is therefore the most suitable choice for the GMFlow policy.

D DISCUSSION ON FLUX.1 SCHNELL

The official 4-NFE FLUX.1 schnell model (Black Forest Labs, 2024a) (based on adversarial distillation (Sauer et al., 2024a)) is distilled from the closed-source FLUX.1 pro instead of the publicly available FLUX.1 dev. This makes a direct comparison to the student models in Table 3 inequitable.

For reference, nevertheless, we include the COCO-10k and HPSv2 metrics for FLUX.1 schnell in Table 10. These metrics reveal a trade-off: while FLUX.1 schnell achieves significantly better data and prompt alignment than FLUX.1 dev, its preference alignment is substantially weaker than FLUX.1 dev and all of its students.

To validate this observation, we conducted a human preference study. Our 4-NFE π -Flow (GM-FLUX) was compared against FLUX.1 schnell on 200 images generated from HPSv2 prompts. π -Flow was preferred by users 59.5% of the time, aligning with the HPSv2.1 preference metric. Furthermore, qualitative comparisons in Fig. 10 reveals that FLUX.1 schnell is prone to frequent structural errors (e.g., missing/extraneous/distorted limbs), whereas π -Flow maintains coherent structures.

E PROOF OF THEOREM 1

We will prove that a GM with $N \cdot C$ components suffices for approximating any N -step trajectory in \mathbb{R}^C by first establishing Theorem 2, and then applying the Richter–Tchakaloff theorem to show

1134 that a mixture of $N \cdot C$ Dirac deltas satisfy all ODE moment equations, which finally leads to $N \cdot C$
 1135 Gaussian components.

1136 **Theorem 2.** Given pairwise distinct times $t_1, \dots, t_N \in (0, 1]$ and vectors $\mathbf{x}_{t_n}, \dot{\mathbf{x}}_{t_n} \in \mathbb{R}^C$ for
 1137 $n = 1, \dots, N$, there exists a probability measure $p(d\mathbf{x}_0)$ on \mathbb{R}^C , such that Eq (1) holds at $t = t_n$
 1138 for every $n = 1, \dots, N$.

1140 **E.1 MOMENT EQUATION**
 1141

1142 For every $t \in (0, 1]$, the ODE moment equation has the following equivalent forms:
 1143

$$\begin{aligned}
 1144 \quad & \dot{\mathbf{x}}_t = \int_{\mathbb{R}^C} \frac{\mathbf{x}_t - \mathbf{x}_0}{t} p(d\mathbf{x}_0 | \mathbf{x}_t) \\
 1145 \quad \Leftrightarrow & \dot{\mathbf{x}}_t \int_{\mathbb{R}^C} p(d\mathbf{x}_0 | \mathbf{x}_t) = \int_{\mathbb{R}^C} \frac{\mathbf{x}_t - \mathbf{x}_0}{t} p(d\mathbf{x}_0 | \mathbf{x}_t) \\
 1146 \quad \Leftrightarrow & \int_{\mathbb{R}^C} \frac{\mathbf{x}_0 - \mathbf{x}_t + t\dot{\mathbf{x}}_t}{t} p(d\mathbf{x}_0 | \mathbf{x}_t) = \mathbf{0} \\
 1147 \quad \Leftrightarrow & \int_{\mathbb{R}^C} \frac{(\mathbf{x}_0 - \mathbf{x}_t + t\dot{\mathbf{x}}_t) \mathcal{N}(\mathbf{x}_t; \alpha_t \mathbf{x}_0, \sigma_t^2 \mathbf{I}) p(d\mathbf{x}_0)}{tp(\mathbf{x}_t)} = \mathbf{0} \\
 1148 \quad \Leftrightarrow & \int_{\mathbb{R}^C} (\mathbf{x}_0 - \mathbf{x}_t + t\dot{\mathbf{x}}_t) \mathcal{N}(\mathbf{x}_t; \alpha_t \mathbf{x}_0, \sigma_t^2 \mathbf{I}) p(d\mathbf{x}_0) = \mathbf{0}. \tag{7}
 \end{aligned}$$

1149 Let $\mathbf{g}(t, \mathbf{x}_0) := (\mathbf{x}_0 - \mathbf{x}_t + t\dot{\mathbf{x}}_t) \mathcal{N}(\mathbf{x}_t; \alpha_t \mathbf{x}_0, \sigma_t^2 \mathbf{I})$ be a kernel function. The above equation can be
 1150 written as a multivariate homogeneous Fredholm integral equation of the first kind:
 1151

$$\int_{\mathbb{R}^C} \mathbf{g}(t, \mathbf{x}_0) p(d\mathbf{x}_0) = \mathbf{0}. \tag{8}$$

1152 To prove Theorem 2, we need to show that there exists a probability measure $p(d\mathbf{x}_0)$ on \mathbb{R}^C that
 1153 solves the Fredholm equation at $t = t_n$ for every $n = 1, \dots, N$.

1154 **E.2 UNIVARIATE MOMENT EQUATION**
 1155

1156 To prove the existence of a solution to the multivariate Fredholm equation, we can simplify the
 1157 proof into a univariate case by showing that an element-wise probability factorization $p(d\mathbf{x}_0) =$
 1158 $\prod_{i=1}^C p(dx_{i0})$ exists that solves the Fredholm equation. In this case, Eq. (7) can be written as:
 1159

$$\begin{aligned}
 1160 \quad & \forall i = 1, 2, \dots, C, \\
 1161 \quad & \int_{\mathbb{R}} (x_{i0} - x_{it} + t\dot{x}_{it}) \mathcal{N}(x_{it}; \alpha_t x_{i0}, \sigma_t^2) p(dx_{i0}) \prod_{j \neq i} \int_{\mathbb{R}} \mathcal{N}(x_{jt}; \alpha_t x_{j0}, \sigma_t^2) p(dx_{j0}) = 0 \\
 1162 \quad \Leftrightarrow & \forall i = 1, 2, \dots, C, \quad \int_{\mathbb{R}} (x_{i0} - x_{it} + t\dot{x}_{it}) \mathcal{N}(x_{it}; \alpha_t x_{i0}, \sigma_t^2) p(dx_{i0}) = 0. \tag{9}
 \end{aligned}$$

1163 To see this, we need to prove that there exists a probability measure $p(x_0)$ on \mathbb{R} that solves the
 1164 following univariate Fredholm equation at $t = t_n$ for every $n = 1, \dots, N$:
 1165

$$\int_{\mathbb{R}} g(t, x_0) p(dx_0) = 0, \tag{10}$$

1166 where $g(t, x_0) := (x_0 - x_t + t\dot{x}_t) \mathcal{N}(x_t; \alpha_t x_0, \sigma_t^2)$ is the univariate kernel function.
 1167

1168 **E.3 CONVEX COMBINATION**
 1169

1170 **Lemma 1.** Define the vector function:
 1171

$$\gamma: \mathbb{R} \rightarrow \mathbb{R}^N, \quad \gamma(x_0) = (g(t_1, x_0), g(t_2, x_0), \dots, g(t_N, x_0)). \tag{11}$$

1172 Then, the zero vector lies in the convex hull in \mathbb{R}^N , i.e.:
 1173

$$\mathbf{0} \in \text{conv}\{ \gamma(x_0) \mid x_0 \in \mathbb{R} \} \in \mathbb{R}^N. \tag{12}$$

1188 *Proof.* Define $S := \text{conv}\{\gamma(x_0) \mid x_0 \in \mathbb{R}\}$. Assume for the sake of contradiction that $\mathbf{0} \notin S$.

1189 By the supporting and separating hyperplane theorem, there exists $\mathbf{w} \neq \mathbf{0} \in \mathbb{R}^N$, such that:

1191
$$\forall \chi \in S, \quad \langle \mathbf{w}, \chi \rangle \leq 0. \quad (13)$$

1193 In particular, this implies that:

1194
$$\forall x_0 \in \mathbb{R}, \quad \langle \mathbf{w}, \gamma(x_0) \rangle \leq 0. \quad (14)$$

1196 Define $h(x_0) := \langle \mathbf{w}, \gamma(x_0) \rangle = \sum_{n=1}^N w_n g(t_n, x_0)$. Recall the definition of $g(t, x_0)$ that:

1198
$$\begin{aligned} g(t, x_0) &= (x_0 - x_t + t\dot{x}_t) \mathcal{N}(x_t; \alpha_t x_0, \sigma_t^2) \\ 1199 &= \frac{x_0 - x_t + t\dot{x}_t}{\sqrt{2\pi t^2}} \exp\left(-\frac{(x_t - \alpha_t x_0)^2}{2\sigma_t^2}\right). \end{aligned} \quad (15)$$

1202 Let n^* be an index with $w_{n^*} \neq 0$ for which the exponential term above decays the slowest, i.e.:

1203
$$\frac{\alpha_{t_{n^*}}^2}{2\sigma_{t_{n^*}}^2} = \min \left\{ \frac{\alpha_{t_n}^2}{2\sigma_{t_n}^2} \mid w_{n^*} \neq 0 \right\}. \quad (16)$$

1206 Note that since $\frac{\alpha_t^2}{2\sigma_t^2}$ is monotonic, for every $n \neq n^*$ with $w_n \neq 0$, we have $\frac{\alpha_{t_n}^2}{2\sigma_{t_n}^2} > \frac{\alpha_{t_{n^*}}^2}{2\sigma_{t_{n^*}}^2}$. Therefore, 1207 as $|x_0| \rightarrow \infty$, $h(x_0)$ is dominated by the n^* -th component, i.e.:

1210
$$h(x_0) = w_{n^*} \frac{x_0 - x_{t_{n^*}} + t_{n^*} \dot{x}_{t_{n^*}}}{\sqrt{2\pi t_{n^*}^2}} \exp\left(-\frac{(x_{t_{n^*}} - \alpha_{t_{n^*}} x_0)^2}{2\sigma_{t_{n^*}}^2}\right) (1 + O(1)). \quad (17)$$

1212 Because the term $x_0 - x_{t_{n^*}} + t_{n^*} \dot{x}_{t_{n^*}}$ changes sign between $-\infty$ and $+\infty$, $h(x_0)$ takes both positive 1213 and negative values. This contradicts the hyperplane implication that $h(x_0) \leq 0$. Therefore, we 1214 conclude that $\mathbf{0} \in S$. \square

1216 By Lemma 1 and Carathéodory's theorem, the zero vector can be expressed as a convex combination 1217 of at most $N+1$ points on $\gamma(x_0)$. Therefore, there exists a finite-support probability measure $p(dx_0)$ 1218 consisting of $N+1$ Dirac delta components that solves the univariate Fredholm equation at $t = t_n$ 1219 for every $n = 1, \dots, N$, completing the proof of Theorem 2.

1221 E.4 $N \cdot C$ COMPONENTS SUFFICE

1223 Richter's extension to Tchakaloff's theorem states as follows.

1224 **Theorem 3** (Richter (1957); Tchakaloff (1957)). Let \mathcal{V} be a finite-dimensional space of measurable 1225 functions on \mathbb{R}^C . For some probability measure $p(dx_0)$ on \mathbb{R}^C , define the moment functional:

1227
$$\Lambda: \mathcal{V} \rightarrow \mathbb{R}, \quad \Lambda[g] := \int_{\mathbb{R}^C} g(\mathbf{x}_0) p(d\mathbf{x}_0). \quad (18)$$

1229 Then there exists a K -atomic measure $p^*(d\mathbf{x}_0) = \sum_{k=1}^K A_k \delta_{\mu_k}(d\mathbf{x}_0)$ with $A_k > 0$ and $K \leq \dim \mathcal{V}$ 1230 such that:

1232
$$\forall g \in \mathcal{V}, \quad \Lambda[g] = \int_{\mathbb{R}^C} g(\mathbf{x}_0) p^*(d\mathbf{x}_0) = \sum_{k=1}^K A_k g(\mu_k). \quad (19)$$

1235 By Theorem 2, we know that for $\mathcal{V} = \text{span}\{g_i(t_n, \mathbf{x}_0) \mid i = 1, \dots, C, n = 1, \dots, N\}$ with the 1236 scalar function $g_i(t_n, \mathbf{x}_0) := (x_{i0} - x_{it} + t\dot{x}_{it}) \mathcal{N}(\mathbf{x}_t; \alpha_t \mathbf{x}_0, \sigma_t^2 \mathbf{I})$, there exists a probability 1237 measure $p(dx_0)$ such that $\int_{\mathbb{R}^D} g_i(t_n, \mathbf{x}_0) p(d\mathbf{x}_0) = 0$ for every i, n . Then, by the Richter–Tchakaloff theorem, 1238 there also exists a K -atomic measure with $K \leq \dim \mathcal{V} \leq N \cdot C$ that satisfies all the moment 1239 equations. By taking the upper bound, this implies the existence of an $N \cdot C$ -atomic probability 1240 measure $p^*(d\mathbf{x}_0) = \sum_{k=1}^{N \cdot C} A_k \delta_{\mu_k}(d\mathbf{x}_0)$ with $A_k > 0$, $\sum_{k=1}^{N \cdot C} A_k = 1$ that solves the Fredholm 1241 equation (Eq. (8)) at $t = t_n$ for every $n = 1, \dots, N$.

Finally, since $\mathcal{N}(\mathbf{x}_t; \alpha_t \mathbf{x}_0, \sigma_t^2 \mathbf{I})$ is continuous, the $N \cdot C$ Dirac deltas in $p^*(d\mathbf{x}_0)$ can be replaced by a mixture of $N \cdot C$ narrow Gaussians, such that $\dot{\mathbf{x}}_n$ is approximated arbitrarily well for every n , i.e.:

$$\begin{aligned} \forall n &= 1, \dots, N, \\ \lim_{s \rightarrow 0} \frac{\mathbf{x}_{t_n} - \int_{\mathbb{R}^D} \mathbf{x}_0 p(d\mathbf{x}_0 | \mathbf{x}_{t_n})}{t_n} &\Big|_{p(d\mathbf{x}_0) = \sum_{k=1}^{N \cdot C} A_k \mathcal{N}(\mathbf{x}_0; \boldsymbol{\mu}_k, s^2 \mathbf{I})} \\ = \frac{\mathbf{x}_{t_n} - \int_{\mathbb{R}^D} \mathbf{x}_0 p(d\mathbf{x}_0 | \mathbf{x}_{t_n})}{t_n} &\Big|_{p(d\mathbf{x}_0) = \sum_{k=1}^{N \cdot C} A_k \delta_{\boldsymbol{\mu}_k}(\mathbf{x}_0)} \\ = \dot{\mathbf{x}}_{t_n} \end{aligned} \tag{20}$$

This completes the proof of Theorem 1.

F DERIVATION OF CLOSED-FORM GMFLOW VELOCITY

In this section, we provide details regarding the derivation of closed-form GMFlow velocity, which was originally presented by Chen et al. (2025) but not covered in detail.

Given the \mathbf{u} -based GM prediction $q(\mathbf{u} | \mathbf{x}_{t_{\text{src}}}) = \sum_{k=1}^K A_k \mathcal{N}(\mathbf{u}; \boldsymbol{\mu}_k, s^2 \mathbf{I})$ with $A_k \in \mathbb{R}_+$, $\boldsymbol{\mu}_k \in \mathbb{R}^C$, $s \in \mathbb{R}_+$, we first convert it into the \mathbf{x}_0 -based parameterization by substituting $\mathbf{u} = \frac{\mathbf{x}_{t_{\text{src}}} - \mathbf{x}_0}{\sigma_{t_{\text{src}}}}$ into the density function, which yields:

$$q(\mathbf{x}_0 | \mathbf{x}_{t_{\text{src}}}) = \sum_{k=1}^K A_k \mathcal{N}(\mathbf{x}_0; \boldsymbol{\mu}_{x_k}, s_x^2 \mathbf{I}), \tag{21}$$

with the new parameters $\boldsymbol{\mu}_{x_k} = \mathbf{x}_{t_{\text{src}}} - \sigma_{t_{\text{src}}} \boldsymbol{\mu}_k$ and $s_x = \sigma_{t_{\text{src}}} s$. Then, for any $t < t_{\text{src}}$ and any $\mathbf{x}_t \in \mathbb{R}^C$, the denoising posterior at (\mathbf{x}_t, t) is given by:

$$q(\mathbf{x}_0 | \mathbf{x}_t) = \frac{p(\mathbf{x}_t | \mathbf{x}_0)}{Z \cdot p(\mathbf{x}_{t_{\text{src}}} | \mathbf{x}_0)} q(\mathbf{x}_0 | \mathbf{x}_{t_{\text{src}}}), \tag{22}$$

where Z is a normalization factor dependent on $\mathbf{x}_{t_{\text{src}}}, \mathbf{x}_t, t_{\text{src}}, t$. Using the definition of forward diffusion $p(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \alpha_t \mathbf{x}_0, \sigma_t^2 \mathbf{I})$, we have:

$$\begin{aligned} q(\mathbf{x}_0 | \mathbf{x}_t) &= \frac{\mathcal{N}(\mathbf{x}_t; \alpha_t \mathbf{x}_0, \sigma_t^2 \mathbf{I})}{Z \cdot \mathcal{N}(\mathbf{x}_{t_{\text{src}}}; \alpha_{t_{\text{src}}} \mathbf{x}_0, \sigma_{t_{\text{src}}}^2 \mathbf{I})} q(\mathbf{x}_0 | \mathbf{x}_{t_{\text{src}}}) \\ &= \frac{\mathcal{N}(\mathbf{x}_0; \frac{1}{\alpha_t} \mathbf{x}_t, \frac{\sigma_t^2}{\alpha_t^2} \mathbf{I})}{Z' \cdot \mathcal{N}(\mathbf{x}_0; \frac{1}{\alpha_{t_{\text{src}}}} \mathbf{x}_{t_{\text{src}}}, \frac{\sigma_{t_{\text{src}}}^2}{\alpha_{t_{\text{src}}}^2} \mathbf{I})} q(\mathbf{x}_0 | \mathbf{x}_{t_{\text{src}}}) \\ &= \frac{1}{Z''} \mathcal{N}(\mathbf{x}_0; \frac{\boldsymbol{\nu}}{\zeta}, \frac{\sigma_{t_{\text{src}}}^2 \sigma_t^2}{\zeta} \mathbf{I}) q(\mathbf{x}_0 | \mathbf{x}_{t_{\text{src}}}), \end{aligned}$$

where $\boldsymbol{\nu} = \sigma_{t_{\text{src}}}^2 \alpha_t \mathbf{x}_t - \sigma_t^2 \alpha_{t_{\text{src}}} \mathbf{x}_{t_{\text{src}}}$,
 $\zeta = \sigma_{t_{\text{src}}}^2 \alpha_t^2 - \sigma_t^2 \alpha_{t_{\text{src}}}^2$.

The result can be further simplified into a new GM:

$$q(\mathbf{x}_0 | \mathbf{x}_t) = \sum_{k=1}^K A'_k \mathcal{N}(\mathbf{x}_0; \boldsymbol{\mu}'_k, s'^2 \mathbf{I}), \tag{23}$$

with the following parameters:

$$s'^2 = \frac{s_x^2 \sigma_{t_{\text{src}}}^2 \sigma_t^2}{s_x^2 \zeta + \sigma_{t_{\text{src}}}^2 \sigma_t^2} \tag{24}$$

$$\boldsymbol{\mu}'_k = \frac{s_x^2 \boldsymbol{\nu} + \sigma_{t_{\text{src}}}^2 \sigma_t^2 \boldsymbol{\mu}_{x_k}}{s_x^2 \zeta + \sigma_{t_{\text{src}}}^2 \sigma_t^2} \tag{25}$$

$$A'_k = \frac{\exp a'_k}{\sum_{k=1}^K \exp a'_k}, \tag{26}$$

1296 where the new logit a'_k is given by:
 1297

$$1298 \quad a'_k = \log A_k - \frac{1}{2} \frac{\|\boldsymbol{\nu} - \zeta \boldsymbol{\mu}_{x_k}\|^2}{\zeta (s_x^2 \zeta + \sigma_{t_{\text{src}}}^2 \sigma_t^2)}. \quad (27)$$

1300 Finally, the closed-form GMFlow velocity at (\mathbf{x}_t, t) is given by function π :
 1301

$$1302 \quad \pi: \mathbb{R}^C \times \mathbb{R} \rightarrow \mathbb{R}^C, \quad \pi(\mathbf{x}_t, t) = \frac{\mathbf{x}_t - \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0 | \mathbf{x}_t)}[\mathbf{x}_0]}{t} \\ 1303 \quad = \frac{\mathbf{x}_t - \sum_{k=1}^K A'_k \boldsymbol{\mu}'_k}{t}. \quad (28)$$

1307 **Extension to discrete support.** The closed-form GMFlow velocity can also be generalized to discrete support by taking $\lim_{s_x \rightarrow 0} \pi(\mathbf{x}_t, t)$, which yields the simplified parameters:
 1308

$$1309 \quad \boldsymbol{\mu}'_k = \boldsymbol{\mu}_{x_k} \quad (29)$$

$$1311 \quad a'_k = \log A_k - \frac{1}{2} \frac{\|\boldsymbol{\nu} - \zeta \boldsymbol{\mu}_{x_k}\|^2}{\zeta \sigma_{t_{\text{src}}}^2 \sigma_t^2}. \quad (30)$$

1314 G ADDITIONAL QUALITATIVE RESULTS.

1316 We show additional uncurated results of FLUX-based models in Fig. 12 and 13.
 1317

1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

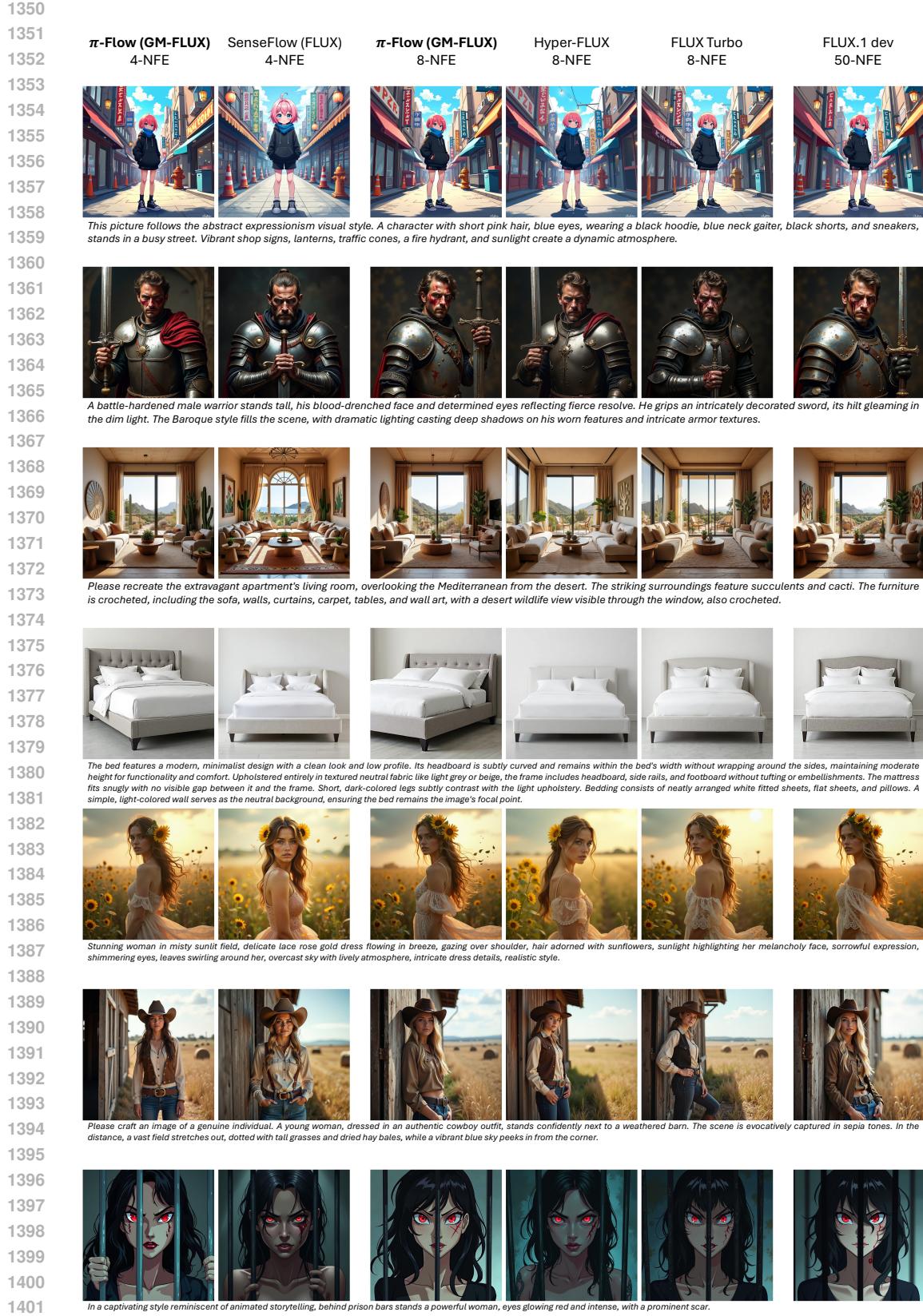


Figure 12: An uncurated random batch from the OneIG-Bench prompt set, part A.

