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ABSTRACT

AI systems frequently exhibit and amplify social biases, leading to harmful conse-
quences in critical areas. This study introduces a novel encoder-decoder approach
that leverages model gradients to learn a feature neuron encoding societal bias
information such as gender, race, and religion. We show that our method can not
only identify which weights of a model need to be changed to modify a feature, but
even demonstrate that this can be used to rewrite models to debias them while main-
taining other capabilities. We demonstrate the effectiveness of our approach across
various model architectures and highlight its potential for broader applications.

1 INTRODUCTION

Modern Artificial Intelligence (AI) systems encode vast amounts of information in their internal
parameters. Some of these parameters correspond to semantically meaningful features, such as
linguistic structure or social concepts (Jawahar et al., 2019; Gandhi et al., 2023). Understanding and
controlling these features is critical for improving model interpretability, robustness, and fairness.
While prior work has uncovered individual or groups of neurons that correlate with specific features
(Bricken et al., 2023), systematically learning targeted features remains a challenge.

We propose a novel approach to learn features in language models by leveraging gradients from a
feature-related input. We hypothesize that these gradients contain valuable information for identifying
and modifying a model’s behavior related to a feature. Unlike existing approaches for extracting
monosemantic features (e.g., Bricken et al. 2023), our approach enables the learning of a feature
neuron with a desired, interpretable meaning. The feature neuron is modeled as a bottleneck in a
simple encoder-decoder architecture for model gradients. The decoder essentially learns what parts
of the model needs to be updated to change a feature.

One particularly important class of features relates to societal biases such as gender. AI is often seen
as a neutral tool without personal preferences or biases (Jones-Jang & Park, 2022; Jiang, 2024), but it
can still exhibit and even amplify bias (Nadeem et al., 2020), with harmful impacts in crucial areas
such as healthcare and hiring (Buolamwini & Gebru, 2018; Ferrara, 2023). For instance, Amazon’s
AI-powered hiring tool, trained on resumes from a male-dominated tech industry, was found to favor
male candidates, penalizing resumes referencing women’s colleges (Dastin, 2022). This underscores
a crucial problem: AI models, though seemingly neutral, can inherit and amplify real-world biases.

Recent research has explored how bias appears in language models (Nemani et al., 2024; Gallegos
et al., 2024). Proposed solutions include specialized training (Zmigrod et al., 2019; Webster et al.,
2021), pruning biased neurons (Joniak & Aizawa, 2022), post-processing steps that adjust model
outputs without modifying internal parameters (Ravfogel et al., 2020; Liang et al., 2020; Schick et al.,
2021), and methods to measure the bias (May et al., 2019; Nadeem et al., 2021).

This paper investigates two hypotheses: (H1) It is possible to learn targeted a feature neuron from the
model’s gradients with a desired interpretation, such as gender (e.g., distinguishing female and male
inputs). (H2) This feature neuron can be used to modify model behavior related to the feature (e.g.,
bias) without negatively affecting other capabilities. By exploring these hypotheses, we demonstrate
the potential of targeted feature learning and achieve new SoTA results for gender debiasing when
using GRADIEND together with INLP (Ravfogel et al., 2020), evaluated against a broad set of
debiasing methods and their combinations. Although this study focuses on gender, race, and religion
bias, the proposed encoder-decoder approach is generic and should also be able to learn other features.
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(b) Inference Phase: Evaluating the fea-
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Figure 1: GRADIent ENcoder Decoder (GRADIEND) – Targeted learning of a single scalar feature
neuron using orthogonal gradient inputs, shown with an example for gender bias.

For clarity, in this study, gender is treated as binary (while acknowledging and respecting non-binary
gender identities). Similarly, we focus on a limited set of races – Asian, Black, and White – and
religions – Christian, Jewish, and Muslim, based on prior research (Meade et al., 2022).

2 RELATED WORK

This section reviews interpretable feature learning and existing methods for debiasing transformer
models, while additional techniques for measuring bias are discussed in Appendix C.5.

2.1 INTERPRETABLE FEATURE LEARNING

Interpretable feature learning aims to identify and understand the internal representations of neural
networks, focusing on how individual neurons or groups of neurons relate to specific concepts. Early
methods focused on visualizing learned features through saliency maps (Simonyan et al., 2014)
and activation maximization (Erhan et al., 2009), highlighting the influence of inputs on model
predictions. Recent advancements focus on separating networks into semantically meaningful units
like individual neurons or circuits (Olah et al., 2020). Research on monosemantic neurons – those
aligned with a single natural feature – offers clearer and more interpretable insights compared to
polysemantic ones (Jermyn et al., 2022). Bricken et al. (2023) proposed to learn unsupervised a Sparse
AutoEncoder (SAE) that extracts interpretable features in a high-dimensional feature space, which are
analyzed for semantical meaning based on their behavior. Follow-up studies (Templeton et al., 2024)
improved scalability and identified specific features such as a gender-bias awareness feature in Claude
3 Sonnet (Anthropic, 2024). However, this approach requires learning numerous potential features
and testing for meaningful interpretations, leaving it uncertain whether a desired feature will actually
arise. Another limitation of SAEs is that they do not consider the model parameters (i.e., weights)
directly, but rather only the activation of neurons. This means that rewriting of models is not directly
possible and can only be achieved at inference time by changing model activations. In comparison,
while we speak of learning of neurons as well, our proposed GRADIEND method works by learning
weights associated with features directly in a manner that enables rewriting and that allows us to
target specific features. Moreover, while SAEs are typically trained for a single transformer layer or
even only a subset of one (Bricken et al., 2023; Brinkmann et al., 2025), GRADIEND can be applied
to all parameters across all layers.
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2.2 TRANSFORMER DEBIASING TECHNIQUES

Various techniques have been proposed to mitigate bias in transformer language models (see, e.g., Li
et al. 2023), either by creating debiased models by changing weights or through post-processing
adjustments. This section introduces a subset of representative techniques relevant to this study.

Counterfactual Data Augmentation (CDA; Zmigrod et al. 2019; Lu et al. 2020) is a straightforward
method which swaps bias-related words consistently within a training corpus (e.g., replacing he/she
for gender bias), enabling further training on a balanced dataset. Webster et al. (2021) found
experimentally that increasing DROPOUT during pre-training effectively reduces bias.

The Iterative Nullspace Projection (INLP; Ravfogel et al. 2020) is a post-processing debiasing method
by iteratively training a linear classifier of the property to be removed (e.g., gender) based on model
embeddings and subtracting the classifier’s nullspace from the embeddings to remove property-
related information. Its successors, RLACE (Ravfogel et al., 2022) and LEACE (Belrose et al., 2023),
improve nullspace estimation with more compact and effective projections. SENTDEBIAS (Liang
et al., 2020) estimates a linear subspace associated with bias by using CDA to generate sentence pairs
with swapped terms (e.g., he/she) and debiases sentence embeddings by subtracting their projection
onto this subspace. SELFDEBIAS (Schick et al., 2021) addresses bias in generated text by running
inference with and without a bias-encouraging prefix, downweighting tokens favored in the biased
version. However, this approach is unsuitable for downstream tasks like GLUE (Wang et al., 2018).
In Section 5.4, we compare our method with the other debiasing techniques and their combinations
on GLUE and on SuperGLUE Wang et al. (2019), extending prior work focused on GLUE.

3 METHODOLOGY

We introduce a novel approach for targeted feature learning and bias modification. Our method
utilizes a simple encoder-decoder architecture that leverages gradient information to encode a gender-
related scalar value. This scalar is then decoded into gradient updates, which are used to adjust the
model’s bias toward the encoded feature value. An overview of the approach is illustrated in Figure 1.

3.1 MOTIVATION

Gradient-based explanation methods, such as Grad-CAM (Selvaraju et al., 2017) and Integrated
Gradients (Sundararajan et al., 2017), have proven effective in providing insights into a model’s
internal workings (Chen et al., 2020; Selvaraju et al., 2020; Lundstrom et al., 2022), highlighting
which parts of the model were crucial to a specific prediction. During the training of neural networks,
the optimizer inherently determines which neurons require updates, specifically those that contributed
incorrectly to the model’s output. We leverage this mechanism through a Token Prediction Task (TPT)
whose masked token is sensitive to a chosen feature (e.g., gender, race, religion). For encoder-only
models, we use Masked Language Modeling (MLM; Devlin et al. 2018), and for decoder-only
models, we use Causal Language Modeling (CLM; Radford et al. 2019a). For clarity, the following
explanations focus on the MLM variant, with details on adapting the task to CLM (e.g., using only
left-side context before the [MASK]) provided in Appendix D.3.

To illustrate, consider the binary gender case. Suppose we have a sentence where the masked
token refers to a gendered pronoun determined by a name, e.g., “Alice explained the vision as best
[MASK] could .”. Here, she is the factual target (consistent with the context), while he serves as the
counterfactual target. For features with more than two classes, the counterfactual notion naturally
generalizes to an orthogonal target: any instance of the same feature that differs from the factual one
(e.g., another race or religion) can serve as an alternative target.

By using factual-orthogonal evaluations for two feature classes, gradient differences are computed
to isolate feature-related updates by eliminating non-feature-related changes common to both cases.
This difference yields two inverse directions: strengthening or mitigating bias with respect to the
chosen feature classes), depending on the gradient order. In the mitigating direction, the factual
feature-related updates are eliminated, effectively removing the established factual associations, while
the orthogonal updates are emphasized to facilitate the learning of new, orthogonal associations.

3
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3.2 GRADIEND

In general, we aim to learn how to adjust model parameters to achieve a desired factual or orthogonal
state. We hypothesize that the gradients contain the necessary information for this purpose and that
the feature changing behavior can be controlled via a learned neuron.

Let a feature be represented by d ≥ 2 orthogonal classes C = {C1, . . . , Cd}. For training, we select
two distinct classes A,B ∈ C and consider TPTs where the masked token corresponds to either A
(factual A, orthogonal B) or to B (factual B, orthogonal A).

Let Wm ∈ Rn denote the n model parameters for which the feature is learned.

For an example with factual class C ∈ {A,B} and orthogonal class C ′ ∈ {A,B} \ {C}, we define
three types of gradients: (1) gradients from the factual masking task ∇+Wm (i.e., the target belongs
to C), (2) gradients from the orthogonal masking task ∇−Wm (i.e., the target belongs to C ′), and
(3) the difference between these two gradients ∇±Wm := ∇+Wm −∇−Wm. Here, ∇.Wm represents
a vector in Rn, where each component corresponds to the gradient for the parameter at this position.
We frame the problem as a gradient learning task to predict the gradient difference ∇±Wm from the
factual gradients ∇+Wm:

Learn f s.t. f(∇+Wm) ≈ ∇±Wm.

For this study, we propose a simple encoder-decoder structure f = dec ◦ enc, where:

enc(∇+Wm) = tanh(WT
e · ∇+Wm + be) =: h ∈ R,

dec(h) = h ·Wd + bd ≈ ∇±Wm.

Here, We,Wd, bd ∈ Rn and be ∈ R are learnable parameters, resulting in a total of 3n+1 parameters.
We refer to this approach as GRADIent ENcoder Decoder (GRADIEND).

3.3 GRADIEND FOR DEBIASING

While GRADIEND is defined for orthogonal class pairs of any feature, we restrict the following proof
of concept to the bias types gender, race, and religion. Gender is treated binary in this study (d = 2;
C1 = Female and C2 = Male), while race (C1 = Asian, C2 = Black, and C3 = White) and
religion (C1 = Christian, C2 = Jewish, and C3 = Muslim) are considered with d = 3 classes.

In this setup, hypothesis (H1) suggests that the factual and counterfactual masking tasks guide
the encoder to produce a feature-related scalar h, representing the orthogonal axis between two
chosen classes A and B. Hypothesis (H2) asserts that dec(h) can adjust the model’s bias along this
orthogonal axis, e.g., by choosing a specific feature factor h and learning rate α to update the model
parameters as follows:

W̃m := Wm + α · dec(h). (1)
Experiments show that feature-related inputs are mostly mapped to values close to −1 and +1,
corresponding to the classes A and B or vice versa. WLOG, we assume A and B are ordered
lexicographically and that positive values of h represent A while negative values represent B. This
post-hoc standardization enables consistent definitions and visualizations across experiments.

4 DATA

For each bias type, we filter existing datasets to derive masked texts where the mask corresponds
to the bias target terms. For gender, these targets are the pronouns he/she, determined solely by the
gender of a preceding name. We augment a BookCorpus-derived dataset (Zhu et al., 2015) using
names as templates to diversify the model gradients, and filter texts where gender could be inferred
from other words. For race and religion, we follow a simplified procedure similar to Meade et al.
(2022) using CDA: From English Wikipedia, we retain only sentences that contain one of their
predefined bias-attribute words (e.g., Jewish, African). These attribute words are then masked to
generate bias-specific gradients. This produces a dataset for each pair of race or religion classes,
treating one as factual and the other as orthogonal. Combining both directions for a pair yields the
training dataset for that pair. For brevity, we denote by T the dataset associated with a particular
GRADIEND instance. To evaluate language modeling performance independently of bias, we create
BIASNEUTRAL, a BookCorpus subset without bias target words. Full dataset generation details are
in Appendix B.
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Figure 2: Distribution of encoded values for all gender GRADIEND models across different datasets.
The yellow dots indicate the expected label used for CorEnc.

5 EXPERIMENTS

In this section, we evaluate GRADIENDs based on seven base models: BERTbase and BERTlarge
(Devlin et al., 2018), RoBERTa (Liu et al., 2019), DistilBERT (Sanh et al., 2019), GPT-2 (Radford
et al., 2019b), and two LLaMA-3.2-3B models (Grattafiori et al., 2024) – one plain (LLaMA) and
one instruction fine-tuned (LLaMA-Instruct), covering a broad range of transformer variants. All
datasets T are split into training, validation, and test sets. Metrics are reported for the test split (or
the entire dataset if not split), unless stated otherwise.

5.1 TRAINING

Each training step processes a batch of TPTs with a target class chosen uniformly at random, ensuring
that only gradients for that single target contribute to the GRADIEND input within a training step.
To ensure that debiasing affects the language model itself and not just the token prediction head,
we exclude the prediction layers from the set of GRADIEND parameters (i.e., the MLM and CLM
heads), while using all other weights, including the embeddings and the attention and MLP weights
of every transformer layer. Implementation details, hyperparameters, and initialization are described
in Appendix D.

5.2 FEATURE ENCODER

We evaluate whether the GRADIENDs encode the intended feature (hypothesis (H1)) by analyzing
their encoder outputs on (1) training-like data (i.e., same target tokens as seen during training) and
(2) neutral data (i.e., tokens unseen in training and unrelated to the feature). We expect training tokens
to yield consistent encodings near ±1 (due to the tanh activation), and neutral tokens to map near 0,
as the natural midpoint between the class extremes.

Figure 2 shows the encoded values for gender across all models, while Figure 3 presents results
for race and religion for BERTbase (other models and ablation studies on gender feature stability
and data/token variability are in Appendix E). For evaluation, we use the T test split to capture
feature-related gradients, and T NEUTRAL where feature unrelated tokens are masked in the same
sentences as T . We also include the independently derived neutral dataset BIASNEUTRAL. For
race and religion, training data from other classes are additionally reused for evaluation as well (e.g.,
Asian → Black for an Asian/White model). Within each evaluation, all subsets are balanced by
downsampling to the size of the smallest split.

Across all models, encoders successfully separate the two training classes, while neutral tokens tend
to cluster around 0, though this classification is less precise for some GRADIENDs. Importantly, the
neutral masks were not seen during training, showing that the encoder did not only learn a binary
feature, but rather a polar one, with opposite ends of the polar scale used during training.

The behavior on unseen classes further reveals interesting biases. For example, the Black/White
models often resemble a White vs. Non-White distinction, possibly reflecting imbalances towards
White dominated data during their pretraining (Figure 3a). Similarly, the religion models suggest that
Judaism and Islam are encoded as more similar to each other than to Christianity (Figure 3b).

Table 1 quantifies these findings by reporting Pearson correlations (Cohen et al., 2009) for the training-
like data (CorT ; only ±1 labels) and for all evaluations shown in Figures 2 and 5 (CorEnc; including
neutral labels of 0). All models achieve strong performance on CorT for gender, but LLaMA-based
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Figure 3: Distribution of encoded values for different datasets of the BERTbase GRADIEND models
for race and religion. The yellow dots indicate the expected label used for CorEnc.

Table 1: Pearson correlation between encoded values and labels of Figures 2 and 5. All values are
scaled by 100. Best values per column are printed in bold.

Gender Race Religion Mean

Female/Male Asian/Black Asian/White Black/White Christ./Jew. Christ./Mus. Jew./Muslim

CorT CorEnc CorT CorEnc CorT CorEnc CorT CorEnc CorT CorEnc CorT CorEnc CorT CorEnc CorT CorEnc

BERTbase 95.7 71.3 99.6 94.2 96.3 84.4 98.6 92.3 98.6 92.2 99.4 88.2 99.5 96.0 98.2 88.4
BERTlarge 90.8 66.0 98.2 94.6 96.7 89.1 96.5 92.0 97.2 92.8 98.4 91.8 98.8 96.6 96.7 89.0
DistilBERT 100.0 86.0 99.7 92.4 96.2 80.7 98.5 88.2 98.9 91.5 99.6 90.0 99.6 94.9 98.9 89.1
RoBERTa 100.0 95.3 96.2 83.6 95.6 82.7 98.0 85.4 99.5 92.6 99.5 90.8 97.8 94.0 98.1 89.2
GPT-2 100.0 98.4 97.8 87.5 98.5 91.8 98.3 84.7 98.4 97.1 98.6 96.2 99.2 98.9 98.7 93.5
LLaMA 99.3 98.3 90.1 79.9 88.4 78.8 88.4 78.1 89.0 79.0 78.6 72.3 82.1 73.8 88.0 80.0
LLaMA-I. 99.0 97.6 89.7 73.6 87.7 63.7 84.8 72.4 90.3 80.4 71.4 60.0 86.3 71.0 87.0 74.1

Mean 97.8 87.5 95.9 86.5 94.2 81.6 94.7 84.7 96.0 89.4 92.2 84.2 94.8 89.3 95.1 86.2

models perform noticeably worse for race and religion, likely due to their larger tokenizer: gender
targets (he/she) remain single tokens, whereas many race and religion targets are split into multiple
tokens, unlike in smaller models where most targets are single-tokenized (see Appendix D.3). GPT-2
performs best overall, particularly on the generalization metric CorEnc, mapping neutral inputs reliably
near 0. The most challenging distinction for religion is Christian/Muslim, reflecting their greater
textual overlap and semantic similarity, consistent with prior studies (Nandan et al., 2025).

The GRADIEND models consistently learn interpretable feature neurons, mapping target classes
to ±1 and neutral input mostly near 0, thereby supporting hypothesis (H1).

5.3 DECODER AS BIAS-CHANGER

We investigate how the learned representation of the decoder can change model bias. The model
adjustment is controlled by two parameters: the scalar input to the decoder network h (feature factor)
and the learning rate α, which scales the decoder output before adding it to the model weights. To
assess the impact of these parameters, we evaluate the GRADIEND models across a grid of 15 feature
factors and 16 learning rates, modifying the model weights as W̃m := Wm + α · dec(h).
For the resulting models, we require three key properties: (1) Their overall language modeling
performance should remain close to the original model. (2) They should assign balanced probabilities
to tokens from both classes A and B. (3) Both A and B should retain sufficiently high probabilities
to avoid trivial solutions (e.g., collapsing to near-zero).
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Figure 4: Metrics for changed models based on the BERTbase gender GRADIEND with varying feature
factor and learning rate. The cells with the best BalancedBS □□□, FemaleBS □□□, and MaleBS □□□ are
highlighted across all subplots. All values are reported as percentages.

To measure (1), we compute a language modeling score LMSDec based on MLM accuracy for encoder-
only models and perplexity for decoder-only models on BIASNEUTRAL, ensuring independence
from bias-related terms. For (2), we evaluate a single TPT by summing probabilities of all expected
tokens for each class to approximate P(A) and P(B), and then averaging across multiple TPTs. The
goal is to minimize their difference while enforcing a large overall sum due to (3). Multiplying
these scores together yields a Balanced Bias Score (BalancedBS), and the best-scoring configuration
across the parameter grid is selected as the modified model, denoted BaseModel + GRADIENDA/B .
We also use the same framework to construct explicitly gender-biased variants to further study
the capabilities of our approach. A Female Bias Score (FemaleBS) is defined to favor female
bias, enforcing high LMSDec, low P(F ), and high P(M). Conversely, Male Bias Score (MaleBS)
does the opposite for P(F ) and P(M). These metrics yield BaseModel +GRADIENDFemale and
BaseModel +GRADIENDMale, respectively. Precise metric definitions are given in Appendix F.

While Figure 4 focuses on the selected BERTbase models for gender, other models show a similar
overall behavior (see Appendix F). All selected models for gender, race, and religion are further
evaluated for debiasing performance in Section 5.4. Interestingly, all plots exhibit a nearly point-
symmetric behavior. This effect arises from the linear structure of the GRADIEND decoder, which
computes dec(h) = h ·Wd + bd. When comparing configurations (h, α) and (−h,−α), the resulting
difference in weight update is:[

Wm + α · dec(h)
]
−
[
(Wm + (−α) · dec(−h)

]
= α · (dec(h) + dec(−h))

= α
[(
h ·Wd + bd

)
+
(
− h ·Wd + bd

)]
= 2αbd.

Thus, the only difference is due to the decoder’s bias term bd, scaled by 2α. Further, as h increases,
the term h · Wd dominates in the weight update, reducing the relative impact of bd, and thereby
enhancing the symmetry. Conversely, the symmetry breaks for small |h| or large |α|.
Specifically, P(F ) and P(M) (Figures 4a and 4b) show an inverse pattern. Due to the encoder
normalization and the definition of ∇±Wm (Section 3.2), when the signs of h and α are equal,
the model biases consistently toward male, whereas opposite signs bias toward female. LMSDec
(Figure 4c) reveals a broad region of high probability for moderate learning rates, while Figure 4d
illustrates the optimal models for BalancedBS. These plots capture the inherent trade-offs of the
debiasing approach (Joniak & Aizawa, 2022): stronger bias modification can degrade language
modeling, but a safe region exists with moderate feature factors and learning rates. Considering
the BalancedBS plot (Figure 4d) and feature factor h = 0.0, the GRADIEND decoder’s bias vector
be effectively learned an appropriate debiasing direction. Although not shown in Figure 4, the
highlighted selected cells for FemaleBS and MaleBS (see Figure 8a) confirm that the method can
also enforce strongly female- or male-biased models, yielding extreme values of P(F ) and P(M).

5.4 COMPARISON TO OTHER DEBIASING TECHNIQUES

We compare the GRADIEND-modified models alongside up to seven debiasing approaches (see
Section 2.2). We hypothesize that combining debiasing methods improves debiasing, and for gender,
we also evaluate hybrid approaches that pair weight-modifying methods (CDA, DROPOUT, and
GRADIENDFemale/Male) with post-processing methods (INLP, SENTDEBIAS).
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Table 2: Mean proportional ranks for SS/ SEAT, and mean relative change in LMSStereoSet/ GLUE/
SuperGLUE vs. the base model. Models are sorted by the Mean column. ∆W and PP indicate model
weight modification and post-processing, respectively. Best variant type is marked with a blue ✓.
Variants marked with * use only non-LLaMA models, making absolute language modeling scores
less comparable, but relative differences (averaged model-wise score difference) remain meaningful.

Variant Prop. Rank Bias Language Modeling

Name ∆W PP Mean ↑ SS SEAT LMSStereoSet (%) GLUE (%) SuperGLUE (%)

Gender (full results in Tables 14 and 15)

GRADIENDFemale/Male + INLP ✓ ✓ 0.88 0.91 0.84 ↓ -0.39 87.06 ↓ -0.47 68.23 ↓ -1.72 50.65
CDA + INLP * ✓ ✓ 0.75 0.78 0.73 ↑ 0.97 86.48 ↑ 0.36 77.55 ↑ 1.86 52.67
DROPOUT + INLP * ✓ ✓ 0.71 0.78 0.64 ↓ -1.09 84.42 ↓ -2.43 74.75 ↓ -0.80 50.01
INLP ✗ ✓ 0.67 0.62 0.72 ↑ 0.10 87.56 ↑ 0.13 68.83 ↓ -0.82 51.55
GRADIENDFemale/Male + SENTDEBIAS ✓ ✓ 0.64 0.67 0.61 ↓ -1.12 86.34 ↓ -0.92 67.78 ↓ -0.83 51.54
DROPOUT + SENTDEBIAS * ✓ ✓ 0.62 0.70 0.55 ↓ -3.25 82.27 ↓ -2.25 74.93 ↓ -0.21 50.60
SENTDEBIAS ✗ ✓ 0.60 0.48 0.72 ↓ -0.52 86.94 ↓ -0.44 68.27 ↓ -0.08 52.29
CDA + SENTDEBIAS * ✓ ✓ 0.57 0.71 0.43 ↑ 0.01 85.52 ↑ 0.50 77.68 ↑ 1.25 52.06
GRADIENDFemale/Male ✓ ✗ 0.46 0.50 0.42 ↓ -0.73 86.72 ↓ -0.00 68.70 ↓ -0.63 51.73
CDA * ✓ ✗ 0.44 0.42 0.45 ↑ 0.23 85.74 ↑ 0.45 77.64 ↑ 1.37 52.18
SELFDEBIAS ✗ ✓ 0.41 0.41 – ↓ -9.65 77.81 – –
LEACE ✗ ✓ 0.36 0.32 0.41 ↓ -0.49 86.97 ↑ 0.01 68.71 ↓ -1.71 50.66
GRADIENDFemale ✓ ✗ 0.36 0.51 0.21 ↓ -0.75 86.71 ↓ -0.09 68.61 ↑ 0.41 52.78
GRADIENDMale ✓ ✗ 0.32 0.19 0.44 ↓ -0.33 87.13 ↑ 0.94 69.64 ↓ -0.35 52.02
RLACE ✗ ✓ 0.31 0.21 0.40 ↓ -2.19 85.26 ↓ -0.06 68.64 ↓ -1.85 50.51
DROPOUT * ✓ ✗ 0.30 0.40 0.20 ↓ -2.11 83.40 ↓ -3.09 74.10 ↓ -0.42 50.39
Base Model ✗ ✗ 0.17 0.11 0.23 87.46 68.70 52.37

Race (full results in Table 16)

SELFDEBIAS ✗ ✓ 0.87 0.87 – ↓ -1.24 86.22 – –
GRADIENDAsian/White ✓ ✗ 0.58 0.79 0.36 ↓ -5.45 82.00 ↓ -2.76 65.94 ↓ -2.39 49.98
SENTDEBIAS ✗ ✓ 0.55 0.49 0.61 ↓ -0.06 87.40 ↓ -0.39 68.31 ↑ 0.16 52.53
DROPOUT * ✓ ✗ 0.54 0.57 0.51 ↓ -2.11 83.40 ↓ -3.09 74.10 ↓ -0.42 50.39
INLP ✗ ✓ 0.46 0.29 0.64 ↓ -0.07 87.39 ↑ 0.33 69.03 ↑ 0.13 52.50
CDA * ✓ ✗ 0.44 0.25 0.63 ↓ -1.61 83.91 ↓ -0.07 77.11 ↑ 1.47 52.28
GRADIENDAsian/Black ✓ ✗ 0.44 0.62 0.25 ↓ -8.14 79.32 ↓ -2.79 65.92 ↓ -3.40 48.96
Base Model ✗ ✗ 0.44 0.24 0.64 87.46 68.70 52.37
GRADIENDBlack/White ✓ ✗ 0.36 0.32 0.40 ↓ -0.09 87.37 ↓ -0.95 67.75 ↑ 0.27 52.64

Religion (full results in Table 17)

SELFDEBIAS ✗ ✓ 0.70 0.70 – ↓ -9.60 77.86 – –
SENTDEBIAS ✗ ✓ 0.64 0.65 0.62 ↓ -0.17 87.29 ↓ -0.10 68.60 ↓ -0.00 52.36
CDA * ✓ ✗ 0.58 0.33 0.83 ↓ -1.00 84.52 ↑ 0.72 77.91 ↑ 1.98 52.79
INLP ✗ ✓ 0.54 0.39 0.70 ↓ -0.35 87.10 ↓ -0.25 68.45 ↑ 0.04 52.41
DROPOUT * ✓ ✗ 0.54 0.47 0.60 ↓ -2.11 83.40 ↓ -3.09 74.10 ↓ -0.42 50.39
GRADIENDChristian/Jewish ✓ ✗ 0.44 0.46 0.43 ↓ -0.38 87.07 ↓ -2.16 66.54 ↑ 0.38 52.75
GRADIENDChristian/Muslim ✓ ✗ 0.44 0.61 0.27 ↓ -2.70 84.76 ↓ -0.75 67.95 ↓ -0.02 52.35
GRADIENDJewish/Muslim ✓ ✗ 0.42 0.59 0.25 ↓ -0.78 86.68 ↑ 0.39 69.09 ↑ 0.14 52.51
Base Model ✗ ✗ 0.33 0.24 0.42 87.46 68.70 52.37

We evaluate on two established bias metrics: SS (Nadeem et al., 2021), which compares stereotypical
and anti-stereotypical predictions, and SEAT (May et al., 2019), comparing embedding associations
between bias attributes and stereotypical terms. Both are detailed in Appendix C.5. As debiasing can
harm language modeling (Joniak & Aizawa, 2022), we report Language Modeling Score (LMSStereoSet)
(Nadeem et al., 2021) capturing language modeling without fine-tuning, alongside the established
NLP benchmarks GLUE (Wang et al., 2018) and SuperGLUE (Wang et al., 2019).

Detailed results per base model, including bootstrapping intervals (Davison & Hinkley, 1997), can be
found in Appendix G. As noted in prior work (Meade et al., 2022), comparing debiasing approaches
is challenging due to sometimes inconsistent performance across models and metrics. To address this,
we compute an aggregated debias score by ranking each approach based on its proportional rank in
SS and SEAT averaged across all seven base models. Table 2 reports these ranks alongside average
changes in the language modeling metrics relative to the original model.

5.4.1 GENDER DEBIASING

Among the single approaches, GRADIENDFemale/Male (9th) is the most effective weight-modifying
(∆W ) approach. Notably, such weight-modified models can be integrated into standard downstream
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implementations, unlike post-processing (PP) methods, which, despite generally stronger perfor-
mance (e.g., INLP, 4th), require customized handling. The best overall results are achieved by
combinations, with GRADIENDFemale/Male + INLP clearly outperforming all other methods, followed
by GRADIENDFemale/Male + SENTDEBIAS. This supports the intuition that combining debiasing tech-
niques can enhance the debiasing effectiveness of individual methods. Nevertheless, strong single
approaches like SENTDEBIAS still outperform some combinations.

GRADIENDFemale and GRADIENDMale are designed to be female and male-biased models, yet their
performance is only slightly below GRADIENDFemale/Male and comparable to SELFDEBIAS. We
confirmed that all three GRADIEND variants align with their intended behaviors in some examples
(see Appendix J). Notably, the base models themselves are ranked last with a notable gap, i.e., each
debiasing approach leads to an actual less biased model according to the utilized debiasing metrics.

5.4.2 RACE AND RELIGION DEBIASING

Debiasing race and religion is substantially harder than gender. Base models achieve high proportional
ranks, and most techniques yield only marginal or even bias-strengthening effects. In particular, no
method yields statistically significant SEAT improvements, and for race, the base model outperforms
all debiasing methods on average. SELFDEBIAS performs best overall for race and religion, but is
evaluated only on the apparently easier SS metric and with degraded language modeling for religion.
Weight-modification methods like GRADIENDAsian/White and DROPOUT improve bias metrics but
degrade language modeling performance.

Although GRADIEND does not achieve top scores in aggregated proportional ranks, it is the only
weight-modification method with statistically significant improvements for race and religion, while not
significantly harming language modeling for some specific models, e.g., GPT-2 +GRADIENDAsian/Black
and RoBERTa +GRADIENDChristian/Muslim (see Appendix G). Moreover, since GRADIEND only targets
a single bias (e.g., GRADIENDBlack/White does not target Asian), full debiasing cannot be expected.
Considering that we also did not control the data as carefully (see Appendix B.4) as for gender
(e.g., controlling for other word meanings like the name Christian vs. the religion Christian or the
actual color vs. race associated terms), this explains the differences to the better performance at the
gender debiasing. Thus, without strict controls for training data, GRADIEND is still reliable for the
identification of features, but we suggest strong controls when models should be rewritten.

5.4.3 OVERALL RESULTS

Across all bias types, LMSDec generally declines under debiasing, but fine-tuned performance on
GLUE and SuperGLUE often remains stable. No method fully eliminates bias across metrics,
underscoring the difficulty of the task.

The GRADIEND decoder can effectively modify bias (hypothesis (H2)). For gender, it achieves
SoTA performance among weight-modification methods. For race and religion, weaker averaged
results likely stem from noisier training data and the restriction to a single debiasing axis.

6 LIMITATIONS AND OPEN QUESTIONS

While we have demonstrated GRADIEND’s effectiveness as a proof of concept for learning bias-
related features and modifying model behavior, our study has focused primarily on pairs of orthogonal
feature classes. Studying how a model can be debiased along multiple axes simultaneously is a
natural next step, either by iterative training of partial debiased models along orthogonal axes or
combined multidimensional GRADIEND training. Furthermore, using multiple feature neurons even
for a single axis could improve debiasing, as a single feature neuron enforces strong compression
and may limit expressivity. In addition, it is unclear how well the method generalizes to continuous
features, such as sentiment scores. Moreover, the current framework should be extended to support
multi-token targets for CLM (Appendix D.3), e.g., by iteratively computing single-token gradients
for each token individually and averaging them to derive inputs for GRADIEND.
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Beyond these technical constraints, questions remain regarding interpretability. For example, compar-
ing the most relevant bias neurons across all race and religion gradients, or conducting neuron-level
analyses in multilingual settings could reveal deeper insights into internal model representations.

7 ETHICAL STATEMENT

Our study explores both debiasing and deliberate amplification of binary gender associations in lan-
guage models, which – while valuable for analysis – poses risks if misapplied to reinforce stereotypes.
We emphasize that the considered bias classes are simplifications chosen for methodological clarity
and do not reflect the full diversity and complexity of gender, race, or religion in society.

8 CONCLUSION

We present a novel approach that achieves two key objectives: (1) learning a feature for the desired
interpretation along an orthogonal axis based on model gradients, and (2) implementing a debiasing
technique to reduce a feature-related bias in transformer language models. In contrast to most existing
debiasing methods, our approach allows for modifying an already trained, biased model to create a
truly less biased version. This approach is built on a simple encoder-decoder architecture, GRADIEND,
featuring a single hidden neuron. The model learns to encode a feature in an unsupervised manner,
using gradients from a specific token prediction training task. We successfully applied this method to
various transformer model architectures, showing its wide applicability.
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A STRUCTURE OF THE APPENDIX

We structure the appendix similar to the main part of the paper. This section provides an overview
and highlights the most important results complementary to the main part of the paper.

The appendix follows the structure of the main paper and provides complementary details and results.
Appendix B describes the generated datasets, and Appendix C defines the evaluation metrics in
detail. Training and implementation details are given in Appendix D. Appendix E presents the
complementary plots to Figure 3, showing the distribution of encoded values for all base models
(Figure 5). Additionally, we provide an analysis of the stability of the encoded feature neuron across
training runs as well as a brief evaluation of how the encoder generalizes to unseen data and additional
gendered target tokens. Appendix F provides the corresponding heatmaps to Figure 4 for the selected
models (Figures 8–15), including precise metric definitions and their scores for the selected models.
Raw results for Table 2 are reported in Appendix G. Appendix H presents an ablation study on
how GRADIEND can be integrated with a fine-tuning task. Appendix I examines generalization
of GRADIEND’s debiasing effect to unseen tokens. Finally, Appendix J concludes with example
predictions illustrating the impact of gender debiasing.

B DATA

We publish all of our introduced datasets, see Table 4. Details regarding the data generation can be
found in the subsequent sections.

For brevity, the term pronouns is used to refer specifically to third-person singular gendered pronouns
(i.e., “he” and “she”), and name refers exclusively to first names.

B.1 NAMEXACT

Several datasets were constructed with the help of an existing name dataset (UCI, 2020), which
contains 133,910 names with associated genders, counts, and probabilities derived from government
data in the US, UK, Canada, and Australia. From this dataset, we derive two subsets based on name
ambiguity: NAMEXACT and NAMEXTEND.

We refer to NAMEXACT as a collection of names that are exclusively associated with a single gender
and that have no ambiguous meanings, therefore being exact with respect to both gender and meaning.
First, we filter all names of the raw dataset to retain only names with a count of at least 20,000,
resulting in a selection of the most common 1,697 names. Next, we remove names with ambiguous
gender, such as Skyler, Sidney, and Billie, which were identified by having counts for both genders in
the filtered dataset, removing 67 additional names.

To further refine our selection of the remaining 1,630 names, we manually checked each remaining
name for ambiguous meanings. For instance, names like Christian (believer in Christianity), Drew
(the simple past of the verb to draw), Florence (an Italian city), April (month), Henry (the SI unit of
inductance), and Mercedes (a car brand). This exclusion process was performed without considering
casing to ensure applicability to non-cased models. The filtering resulted in the exclusion of 232
names, leaving us with a total of 1,398 names in NAMEXACT.

We split the data into training (85%), validation (5%), and test (10%) subsets, ensuring that the latter
two splits are balanced with respect to gender.

B.2 NAMEXTEND

We define NAMEXTEND as a dataset that extends beyond the constraints of NAMEXACT by
including words that can be used as names, but are not exclusively names in every context.

To limit the number of names while ensuring sufficient representations, we set a minimum count
threshold of 100 for the raw name dataset. This threshold reduces the total number of names by 72%,
from 133,910 to 37,425, helping to save computationally time. This dataset includes names with
multiple meanings and gender associations, as the threshold is the only filtering criterion applied.
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Table 3: Overview of generated datasets including total number of samples and a description.

Name Size Description

NAMEXACT 1,398 Names that are unambiguous (exact) in meaning and gender, e.g., Alice, Bob, Eve
NAMEXTEND 40,351 Extends NAMEXACT with less certain names, including those with multiple meanings

and genders, e.g., Alice, Bob, Christian, Drew, Eve, Florence, Skyler
GENTER/ Gender T 27,031 Name-gender templates, e.g., [NAME] explained the vision as best [PRONOUN] could .
Race T 9,779 (A.), 18,073 (B.), Race templates, e.g., Ranks in the [MASK] Sudoku Championship (ASC)

20,152 (W.)
Religion T 19,653 (C.), 4,945 (J), Religion templates, e.g., Cathedrals of the Roman Catholic [MASK] in Switzerland

4,043 (M.)
GENEUTRAL 20,057,351 Contains only gender-neutral words, e.g., i really want to see you again , soon if you can
GENTYPES 500 Gender-stereotypical templates, e.g., My friend, [NAME], loves taking care of babies.
Wiki-Gender 10,000 English Wikipedia templates with diverse masked gendered terms (e.g., man, daughter).

Table 4: Anonymous links to our datasets.

Name URL

NAMEXACT anonymous
NAMEXTEND anonymous
GENTER/ Gender T anonymous
Race T anonymous
Religion T anonymous
BIASNEUTRAL anonymous
GENTYPES anonymous
WIKIGENDER anonymous

Therefore, names that can be used for both genders are listed twice in this dataset, once for each gender.
By considering the counts of how often a name is associated with a particular gender, we can define the
probability that a name is used for a specific gender. For a given name N and gender F (female) or M
(male), we denote this probability as P(F |N) and P(M |N). For example, for the name N = Skyler,
the dataset contains the probabilities P(F |Skyler) = 37.3% and P(M |Skyler) = 62.7%.

B.3 TRAINING DATA FOR GENDER (GENTER)

For the training of GRADIEND, we introduce a new dataset called GEnder Name TEmplates with
pRonouns (GENTER), which consists of template sentences capable of encoding factual and counter-
factual gender information, as illustrated in the motivating example in Section 3.1. Each entry in the
dataset includes two template keys: a name [NAME] and a pronoun [PRONOUN]. For instance, the
earlier discussed example sentences can be instantiated from the following template:

[NAME] explained the vision as best [PRONOUN] could .

Using the popular BookCorpus (Zhu et al., 2015) dataset, we generated such template sentences that
meet the following criteria:

• Each sentence contains at least 50 characters.

• Exactly one name from NAMEXACT is contained, ensuring a correct name match.

• No other names from NAMEXTEND are included, ensuring that only a single name appears
in the sentence.

• The correct name’s gender-specific third-person pronoun (he or she) is included at least
once.

• All occurrences of the pronoun appear after the name in the sentence.

• The counterfactual pronoun does not appear in the sentence.

• The sentence excludes gender-specific reflexive pronouns (herself, himself ) and possessive
pronouns (her, his, hers, him).
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• Gendered nouns (e.g., actor, actress, . . . ) are excluded, based on a gendered-word dataset1,
which is expanded with plural forms using the Python library inflect, resulting in 2,421
entries.

This approach generated a total of 83,772 sentences. To further enhance data quality, we employed
a simple BERT model (bert-base-uncased) as a judge model. This model must predict the
correct pronoun for selected names with high certainty, otherwise, sentences may contain noise or
ambiguous terms not caught by the initial filtering. Specifically, we used 50 female and 50 male
names from NAMEXACTtrain, and a correct prediction means the correct pronoun token is predicted
as the token with the highest probability in the MLM task. Only sentences for which the judge model
correctly predicts the pronoun for every test case were retained, resulting in a total of 27, 031 unique
sentences. We split the data into training (87.5%), validation (2.5%), and test (10%) subsets. The
validation split is rather small, due to the large input size of the GRADIEND models (comparable to
the size of the base model), see Section 5.1 for more information.

The GENTER dataset is specifically designed to train our proposed GRADIEND models, focusing on
gradient updates that influence gender-changing directions. The applied filtering constraints ensure
that the only distinguishing gender-related factor between the factual and counterfactual versions of
a sentence is the pronoun (he or she) associated with the actual gender linked to the name. While
our experiments show that using the name-pronoun associations in GENTER effectively uncovers a
proper feature encoding and debiasing, future work could investigate whether incorporating additional
context, such as gendered nouns or adjectives, provides further useful information.

We selected the BookCorpus (Zhu et al., 2015) as the foundational dataset due to its focus on
fictional narratives where characters are often referred to by their first names. In contrast, the English
Wikipedia (Wikimedia Foundation, 2023), also commonly used for the training of transformer models
(Devlin et al., 2018; Liu et al., 2019), was less suitable for our purposes. For instance, sentences like
[NAME] Jackson was a musician, [PRONOUN] was a great singer complicate bias detection based
on first names (as done for GENTER) due to the context of well-known individuals, where the name
and pronoun association can be highly influenced by prior knowledge rather than bias.

B.4 TRAINING DATA FOR RACE AND RELIGION

We filter the same Wikipedia dump used by (Meade et al., 2022) to create the templated GRADIEND
training datasets for race and religion, similar to how they augmented counterfactual data for their
CDA training. Following their approach, we use their defined bias attribute words to identify factual
and counterfactual terms. These words consist of triples representing each feature class class, e.g.,
Church/Synagogue/Mosque for Christian/Jewish/Muslim or Asia/Africa/Europe for Asian/Black/White
For each directed pair of classes (e.g., A = Asian and B = Black), we retain only sentences
containing a bias word from A (factual term) and use the corresponding term for B of the triple as
counterfactual term. The casing of the counterfactual term matches that of the original factual term
(lowercase by default, or all caps/ capitalized first letter). The resulting datasets T in training (70%),
validation (20%), and test (10%) subsets.

B.5 BIASNEUTRAL

To evaluate our models on data that is entirely bias-unrelated, we created a separate dataset called
BIASNEUTRAL, again sourced from BookCorpus (Zhu et al., 2015). Similar to GENTER, we
removed sentences containing gender-specific words, as well as any bias attribute words (i.e., the
target tokens defined by Meade et al. (2022), such as African, Christian, . . . ). We also excluded
sentences containing any name from NAMEXTEND and sentences shorter than 50 characters. This
filtering process resulted in a total of 20M bias-neutral sentences, with all duplicate sentences
removed.

1https://github.com/ecmonsen/gendered_words
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B.6 GENTYPES

Given that the training of the gender GRADIEND specifically involves the relationship between names
and their associated genders, we aim to evaluate our models against the gender associations of names
with gender-stereotypical contexts to select gender bias-changed models.

My friend, [NAME], loves taking care of babies.
My friend, [NAME], is probably into video games.

We expect gender-biased models to assign higher probabilities to female in the first sentence and male
names in the second one due to existing stereotypes in real-world data. We generated 500 sentences
with GPT-4o (OpenAI, 2024) and refer to this gender-stereotype data as GENTYPES.

The dataset was generated with the following prompt:

Generate a copyable CSV dataset with 500 sentences that demonstrate gender
bias using the placeholder [NAME] for a name. The dataset should include four
columns: "text," "gender," and "reason,". The "gender" column should contain
’M’ for male or ’F’ for female. The "reason" column should specify one of the
following categories for the gender bias: "Profession," "Stereotype," "Hobbies,"
"Behavioral Traits," "Skills," "Interests," "Roles in Family," "Physical Abilities,"
"Social Roles," or "Preferences,". Provide at least 50 sentences for each reason
category. Ensure the sentences are diverse and avoid repetitions. Do not use any
words that indicate the gender such as "him", "his", "actress", . . .
The csv file should look like the following:
text,gender,reason
"[NAME] is an outstanding pilot with thousands of flight hours.",M,Profession
"[NAME] is a fantastic hair stylist with many loyal clients.",F,Profession
"[NAME] is probably into video games.",M,Interests
"[NAME] is likely to be more empathetic.",F,Behavioral Traits

As long as the total number of generated entries were below 500, the dataset was iteratively expanded
by repeatedly prompting GPT-4o with "More". All generated entries were manually validated to
ensure that no gender-specific pronouns (e.g., he, she, his, etc.) were present. Entries containing such
pronouns were excluded. The final dataset size was capped at 500 entries.

Although the gender and reason columns were not directly used in this study, their inclusion
was intended to enforce balance between male- and female-associated stereotypes and to enhance
diversity in stereotype contexts. However, this goal may not have been fully achieved, as RoBERTa
demonstrates a female bias in predictions (see Section 5.3), in contrast to our expectations of a
generally male biased model.

To encourage the model to predict names on these masked sentences, we used the prefix "My friend,
[MASK], has a . . . " rather than "[MASK] has a . . . ", which could logically allow for other (unwanted)
tokens, such as he or she.

B.7 WIKIGENDER

To evaluate how well the GRADIEND encoder generalizes to unseen tokens and to data from a different
source than seed during training, we derive masked texts from the English Wikipedia (Wikimedia
Foundation, 2023). We filter and mask occurrences of the following gendered target word pairs:
she/he, woman/man, girl/boy, mother/father, and daughter/son. For each target, we retain 1,000 texts,
forming the dataset WIKIGENDER.

Unlike BookCorpus, the base dataset for GENTER used to train the gender GRADIENDs, Wikipedia
articles are much longer (on average ≈ 400 words for WIKIGENDER vs. ≈ 17 words for GENTER),
contain structural elements such as headings and newlines, and cover encyclopedic content rather
than narrative text. This enables evaluation of both input distribution and target token shifts.
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C METRICS

In this section, we define the metrics of Section 5 used to evaluate the GRADIEND encoder and
to select bias-changed models formally and more detailed. Additionally, we discuss established
techniques to measure bias in language models.

C.1 LANGUAGE MODELING SCORE OF THE DECODER

We use LMSDec as a measure of the general language modeling capabilities of a model that may have
been modified by the GRADIEND decoder. To ensure that the evaluation is independent of any gender
bias change, we employ a TPT on BIASNEUTRAL.

For encoder-only models, the TPT corresponds to a MLM task, where 10,000 BIASNEUTRAL
samples are used for gender evaluation and 1,000 samples for race and religion, reflecting the larger
number of GRADIEND models in the latter case. Approximately 15% of the tokens are masked,
following standard practice (Devlin et al., 2018), and LMSDec is computed as the accuracy on the
MLM task.

For decoder-only models, we compute perplexity over 1,000 samples – fewer than in the MLM
setting, as the model predicts every token in each sequence, resulting in both higher computational
cost and more relevant tokens per sample. Perplexity measures the model’s confidence, with lower
values indicating better performance, ranging from 1 to infinity. To align its interpretation with
accuracy, we convert it to LMSDec =

1
1+perplexity , yielding scores in [0, 1].

C.2 GENDER PREDICTION PROBABILITIES

This section introduces probabilities for a feature class A, P(A). We initially restrict this to gender
(i.e., female and male probabilities, P(F ) and P(M)) for clarity, which are generalized to other
feature classes in the following section.

Let N denote the set of single-token names in NAMEXTEND, and let G ∈ {F,M} be a gender. Let
the GENTYPES data be denoted as T , i.e., stereotyped sentences with a name placeholder [NAME],
e.g.:

My friend, [NAME], loves taking care of babies.

Let t ∈ T be a text and |T | denote the number of elements in the set T .

Each text t creates a TPT t̂ where the goal is to predict a name. For encoder-only models, [NAME] is
simply replaced by [MASK], creating a MLM task. For GPT-2 and LLaMA, we transform t into a
sentence that naturally prompts a name prediction, using the following template style:

The person, who loves taking care of babies, has the first name [MASK]

This is done by removing the prefix “My friend, [NAME],” and the final punctuation from t. For
LLaMA-Instruct, we use the original text with the [NAME] placeholder as user prompt and prepend
a system prompt instructing the model to predict a suitable name:

You are a language model trained to predict first names. In the following text,
[NAME] represents a placeholder for a first name. Your task is to predict the most
likely name that fits the context. Return only the predicted name — no punctuation,
no quotation marks, and no explanations.

The probability distribution over the first generated token is then treated as the model’s prediction for
t̂, similar to the other models.

The probability of predicting a name N ∈ N for t̂ is denoted as Pt(N). Names are treated
independent of casing and leading white spaces, i.e., the probabilities of all such tokens contribute to
this probability.
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The probability of predicting gender G for t̂ is estimated by summing Pt(N) for all names N of that
gender:

Pt(G) :=
∑
N∈N

Pt(N) · P(G|N) ∈ [0, 1]. (2)

As introduced in Section B.2, P(G|N) represents the likelihood of a name N being associated with
gender G. This conditional probability acts as a filter in the sum over all names in N , ensuring that
names of the other gender do not contribute to the aggregated probability of G. Moreover, P(G|N)
ensures that names applicable to both genders contribute only partially to the aggregated probability
of gender G. For example, for N = Skyler, Pt(Skyler) contributes to P(F |Skyler) = 37.7% to
the female probability Pt(F ) and P(M |Skyler) = 62.7% to the male probability Pt(M).

The combined probabilities for either male or female names is given by

Pt(F ∪M) := Pt(F ) + Pt(M) ∈ [0, 1].

This probability quantifies the proportion of meaningful predictions for t̂.

The probability of gender G, denoted as P(G), averages Pt(G) over all t ∈ T , i.e.:

P(G) :=
1

|T |
∑
t∈T

Pt(G) ∈ [0, 1].

C.3 GENERALIZATION OF GENDER PROBABILITIES TO FEATURE CLASS PROBABILITIES

We generalize gender probability framework to other feature classes, such as race and religion, by the
following adaptions:

• Instead of a gender G, we consider general feature classes F, F1, F2 ∈
{Asian,Black,White, Christian, Jewish,Muslim}.

• Instead of GENTYPES we use the test split of T as T .
• Instead of names, we use the set of bias attribute terms AF (Meade et al., 2022) for each

feature class as target tokens, i.e., the sets AAsian ∪ ABlack ∪ AWhite and AChristian ∪
AJewish ∪AMuslim are analogous to the name token set N for gender.

• The conditional probability P(F |A) for a bias attribute term A is defined as 1 if A ∈ AF

and 0 otherwise, reducing Equation 2 to Pt(F ) :=
∑

A∈AF
Pt(A).

• These adaptions yield similar definitions for Pt(F1 ∪ F2) and P(G).
• For encoder-only models, multi-token target terms are handled by computing the joint

probability across all tokens, allowing both single- and multi-token bias attribute terms to
contribute meaningfully to the per-example probabilities.

• For decoder-only models, considering only the first token of each target term can be noisy,
since it may consist of just one or two characters (especially for the large LLaMA tokenizer)
and be poorly aligned with the intended term meaning. Instead, we include all first tokens
of the target terms that constitute at least half of the attribute term (in characters), providing
a more reliable estimate of the term’s probability.

• For LLaMA-Instruct, we use the same prompt as in training, without the special prompt
used for gender names (see Section D.3).

C.4 MODEL SELECTION METRICS

The Balanced Bias Score (BalancedBS) integrates the previous measures aiming to quantify how
debiased a model is over feature classes A and B, by averaging over all texts t ∈ T :

BalancedBS :=
LMSDec

|T | ·
∑
t∈T

[
(1− |Pt(A)− Pt(B)|) · Pt(A ∪B)

]
∈ [0, 1].

Here, LMSDec ensures that high values indicate models with good language modeling capabilities.
The first part of the product in the sum (1− |Pt(A)− Pt(B)|) is large if the predictions are unbiased
over the two classes A and B, since Pt(A) must be similar to Pt(B) to achieve a good score. The
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second part (Pt(A ∪ B)) ensures that both class probabilities are large to avoid a good scoring of
models that assign probabilities close to zero to the class target tokens. A high value in BalancedBS
indicates a relatively debiased model, that has still good language modeling capabilities due to the
influence of LMSDec.

The Female Bias Score (FemaleBS) measures bias towards the female gender

FemaleBS :=
LMSDec

|T | ·
∑
t∈T

(1− Pt(M)) · Pt(F ) ∈ [0, 1].

LMSDec ensures again good language modeling capabilities, 1− Pt(M) prefers small male probabil-
ities, and Pt(F ) prefers large female probabilities.

Analogously, the Male Bias Score (MaleBS) measures bias towards the male gender:

MaleBS :=
LMSDec

|T | ·
∑
t∈T

(1− Pt(F )) · Pt(M) ∈ [0, 1].

C.5 BIAS METRICS

Various methods exist in literature to quantify bias in language models (see, e.g., Li et al. (2023)).
Here, we present a few representative techniques commonly used to measure stereotypical bias.

The Sentence Encoder Association Test (SEAT; May et al. 2019) extends the Word Embedding
Association Test (WEAT; Caliskan et al. 2017) by using sentence templates to evaluate social biases
in encoder models. It compares association strengths between embeddings of predefined attribute
(e.g., gender-specific names) and target sets (e.g., stereotypical professions) using cosine similarity.
Bias is expressed as an effect size, where larger values indicate stronger bias.

StereoSet (Nadeem et al., 2021) is a benchmark dataset with context-rich sentences for intrasentence
and intersentence tasks. This study focuses on the intrasentence task, where a sentence (e.g.,
Girls tend to be more [MASK] than boys) requires the model to predict the masked word from
three options: stereotypical (e.g., soft), anti-sterotypical (e.g., determined), and meaningless (e.g.,
fish). Two metrics are considered: 1) LMSStereoSet, which measures the proportion of meaningful
(stereotypical or anti-stereotypical) options chosen over meaningless ones, reflecting the model’s
language understanding. 2) SS, which quantifies bias as the proportion of stereotypical options
selected over anti-stereotypical ones. A balanced model achieves 50%.

CrowS (Crowdsourced Stereotype Pairs; Nangia et al. 2020) is a crowdsourced dataset consisting of
pairs of sentences: one expressing a stereotype (e.g., Woman don’t know how to drive), and the other
its anti-stereotypical counterpart (e.g., Man know how to drive). A bias score is computed considering
the model’s preference for one sentence over the other, similar to SS. However, CrowS has been
criticized for unreliable bias measurement, including spurious correlations and flawed assumptions
about social categories (Blodgett et al., 2021). Therefore, we did not use this metric in this study, but
report it here for completeness.

Li et al. (2021) analyze the attention associations between gendered pronouns (e.g., she) and oc-
cupations (e.g., nurse) in transformer models, using gender-swapped sentences (e.g., replace he
by she). The attention scores between the gender-swapped pronouns and the occupation are then
compared to identify gender bias on attention head level. However, the approach does not compute a
model-specific, aggregated bias score usable for comparison.

D TRAINING AND IMPLEMENTATION DETAILS

Table 5 summarizes the Hugging Face model checkpoints used in our experiments, while Table 6
lists the hyperparameters used for training the GRADIEND models.

D.1 ENVIRONMENT

The implementation is based on Python 3.9.19, and we made the training framework publicly
available: anonymous. The LLaMA-based GRADIEND models were trained using three NVIDIA
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Table 5: Hugging Face model checkpoints used in this study.

Model Checkpoint Reference

BERTbase bert-base-cased Devlin et al. (2018)
BERTlarge bert-large-cased Devlin et al. (2018)
DistilBERT distilbert-base-cased Sanh et al. (2019)
RoBERTa roberta-large Liu et al. (2019)
GPT-2 gpt2 Radford et al. (2019b)
LLaMA meta-llama/Llama-3.2-3B Grattafiori et al. (2024)
LLaMA-Instruct meta-llama/Llama-3.2-3B-Instruct Grattafiori et al. (2024)

Table 6: Training hyperparameters.

Hyperparameter Value

Optimizer Adam
Learning Rate 1× 10−4 (LLaMA, LLaMA-Instruct); 1× 10−5 (others)
Weight Decay 1× 10−2

Batch Size Gradient Computation 32
Batch Size GRADIEND 1
Training Criterion MSE
Training Steps 23,653 (Gender); 2,500 (Race, Religion)
Evaluation Steps 250
Evaluation Criterion CorT on validation split

A100 GPUs, while all others used a single A100. Each A100 provides 80GB of GPU memory, and
the system had 504GB of RAM. The same setup is also used for evaluation.

D.2 TOKEN PREDICTION TASK FOR ENCODER-ONLY MODELS

The training task for GRADIENDis motivated as a MLM Devlin et al. (2018) task (see Section 3.1),
where the masked token is sensitive to an involved feature class. For multi-token targets, we insert
one [MASK] token per target token in the template text. The MLM loss then naturally aggregates
over all target tokens, so the resulting gradients reflect contributions from each token.

D.3 TOKEN PREDICTION TASK FOR DECODER-ONLY MODELS

For causal models, MLM instances are converted into a CLM Radford et al. (2019a) task by providing
only the prefix up to the (first) masked token and predicting the next token at the end of the sequence.

For LLaMA-Instruct, we use the following system prompt to allign its behavior with non-instruction-
tuned models:

You are a language model that completes sentences. Predict the next word that
naturally follows the given text. Return only that word — no punctuation, no
quotes, and no explanations.

This prompt is used for all applications of LLaMA-Instruct in this study unless stated otherwise.

Although this modification is straightforward, it is effective only when the target terms can be
tokenized as single tokens – or when the primary semantic content is largely captured by the first
token (e.g., similar to Appendix C.3). This limitation is particularly noticeable for LLaMA-based
models with race and religion terms, as illustrated in Figure 5. Future work should investigate
methods to handle multi-token targets in decoder-only GRADIEND models.

D.4 CUSTOM INITIALIZATION

Our training setup involves a custom random initialization for the GRADIEND models. The default
initialization in PyTorch applies a uniform distribution from

(
−1√
n
, 1√

n

)
, where n is the dimension
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of the input layer. However, for the decoder, the input dimension is n = 1, resulting in a uniform
distribution over the interval (−1, 1). This leads to relatively high absolute initial values compared to
the target values, as the decoder inputs are typically close to ±1. To address this, we use the same
n for the initialization as for the encoder, which corresponds to the number of used weights in the
designated model. Our experiments show that this custom initialization improves training results.

D.5 TRAINING PROCEDURE

Each training step involves two forward and backward passes through the base model to compute the
input and output tensors for the GRADIEND model. For race and religion, the training data for classes
A and B is derived by combining the datasets for each source class and augmenting the targets with
all valid terms from the other class within the same bias attribute group. For gender, each entry of
GENTER is augmented batch-size many times with a name of NAMEXACT to generate the actual
training dataset. Gradients are calculated with respect to the target token, e.g. he/she or He/She,
depending on the position of the target token. We only used single token targets for training, i.e., the
datasets were filtered to exclude multi-token targets or sources.

We use the validation split of T for evaluation during training, following the same procedure as
described to compute CorT (Section 5.2). However, as pre-computing these validation gradients
require a substantial amount of storage, we use for the gender GRADIENDs all of the GENTER
validation split for the smaller models (BERTbase, DistilBERT, and GPT-2), half of the data for the
medium-sized models (BERTlarge and RoBERTa), and only 5% for the LLaMA-based models due to
their large model sizes. This ensures that the gradients required for evaluation fit into the memory
during training. For instance, the evaluation data for BERTbase requires approximately 270 GB.
For race and religion, a maximum of 1,000 samples is used, with similar relative reductions based
on model size. The training time for a single gender GRADIEND model ranges from 3.5 hours for
DistilBERT to 24 hours for LLaMA-Instruct.

To monitor progress, the model is evaluated every 250 training steps using CorT , and select the
best model after finishing all training steps (Section 5.1). Similar to the procedure to evaluate
the GRADIEND encoder (Section 5.2), This evaluation metric focuses on the encoder’s ability to
differentiate between genders, which measures how well the encoded values distinguish between the
feature classes. Notice that this metric evaluates only the encoder, as the decoder’s role in adjusting
bias is harder to evaluate.

When training the gender GRADIEND models, they sometimes fail to converge in distinguishing
female and male input as ±1, depending on the learning rate and random seed. This issue was
observed particularly with RoBERTa, although it occasionally occurred with other models as well,
depending on the learning rate. In such cases, the first training steps determine whether both genders
are separated correctly or both are encoded as the same value (either +1 or −1). Future research
is needed to explore this phenomenon. To mitigate non-convergent runs for gender, we train three
GRADIEND models per base model with different seeds and select the one with the highest CorT on
the validation split. For race and religion, a single GRADIEND model is trained per configuration.

E ENCODER AS CLASSIFIER

E.1 DETAILED RESULTS

Similar to Figure 3, we present additional results in Figure 5, showing the distribution of encoded
values of race and religion GRADIEND models evaluated against a broad set of datasets. The data of
these plots has been used to compute CorT and CorEnc in Table 1.

E.2 STABILITY OF ENCODED VALUES

We analyze the stability of the feature neuron by examining the encodings from three independently
trained gender GRADIEND models for each base model. Figure 6 shows the distribution of these
encoded values, along with sample-wise differences to highlight run-to-run variation, and Table 7
summarizes key statistics.
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Figure 5: Distribution of encoded values for all race and religion GRADIEND models across different
datasets. The yellow dots indicate the expected label used for CorEnc.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

−1.0

−0.5

0.0

0.5

1.0

F
em

al
e

h

Run: 1 2 3

−1.0

−0.5

0.0

0.5

1.0

∆
h

Runs: 1-2 1-3 2-3

−1.0

−0.5

0.0

0.5

1.0

M
al

e
h

−1.0

−0.5

0.0

0.5

1.0

∆
h

BERT ba
se

BERT la
rg

e

Dist
ilB

ERT

RoB
ERTa

G
PT-2

LLaM
A

LLaM
A-In

st
ru

ct

Model

−1.0

−0.5

0.0

0.5

1.0

N
eu

tr
al

h

BERT ba
se

BERT la
rg

e

Dist
ilB

ERT

RoB
ERTa

G
PT-2

LLaM
A

LLaM
A-In

st
ru

ct

Model

−1.0

−0.5

0.0

0.5

1.0

∆
h

Figure 6: Distribution of encoded values h (left) and their sample-wise difference ∆h (right) across
three GRADIEND training runs for gender.

Table 7: Stability analysis of encoded values across three GRADIEND training runs for gender.

CorEnc↑ Mean Absolute Difference of Encoded Values ↓

Model Run 1 Run 2 Run 3 Mean Runs 1-2 Runs 1-3 Runs 2-3 Mean

BERTbase 0.713 0.076 0.706 0.498 0.558 0.212 0.350 0.373
BERTlarge 0.621 0.622 0.660 0.635 0.008 0.173 0.168 0.117
DistilBERT 0.939 0.862 0.860 0.887 0.035 0.245 0.256 0.179
RoBERTa 0.964 0.977 0.953 0.965 0.019 0.018 0.036 0.024
GPT-2 0.984 0.985 0.984 0.984 0.007 0.002 0.009 0.006
LLaMA 0.981 0.983 0.983 0.982 0.005 0.004 0.002 0.004
LLaMA-Instruct 0.977 0.976 0.977 0.976 0.005 0.003 0.003 0.004

With the exception of the BERT-based models, the feature neuron is generally stable across female,
male, and neutral inputs. DistilBERT and RoBERTa show some variability for neutral inputs across
runs, while GPT-2, LLaMA, and LLaMA-Instruct exhibit a mean absolute encoding difference
below 1%.

For BERTlarge, the third run achieves notably higher performance than the first two, which are fairly
similar to each other. In contrast, BERTbase shows a non-convergent second run, resulting in large
differences compared to the other runs.

E.3 GENERALIZATION OF ENCODED VALUES

We further analyze how the encoder generalizes to unseen inputs, considering two aspects: (1) the
input sentences originate from a dataset different from the one used during training, and (2) the
evaluation involves gender-related target tokens beyond the training pair he/she. Therefore, we use
WIKIGENDER as a dataset (see Appendix B.7).

Figure 7 shows the distribution of encoded values for our seven gender GRADIENDs. The she/he
encoding learned during the training transfers well to WIKIGENDER, indicating that the feature is not
tied to the specific structure, linguistic style, and gender-filtered property of GENTER.

For BERTbase, BERTlarge, and DistilBERT, the learned feature also generalizes to other gendered
token pairs such as woman/man, though the separation is a bit weaker than for she/he, as more samples
are falsely encoded as neutral (i.e., around 0.0). A plausible explanation is that masking he/she yields
a highly constrained prediction space, as only a few tokens fit the syntactic and semantic context,
whereas masking, for instance, woman/man allows usually a broader set of contextually plausible
alternatives (e.g., girl/boy), including gender neutral terms like person. Interestingly, RoBERTa
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Figure 7: Distribution of encoded values of gender GRADIENDs for WIKIGENDER.

behaves differently: it appears to encode a narrow she/he-specific feature rather than a broader gender
feature.

For decoder-only models, the generalization is weaker for non-she/he pairs but still visible, as the
female-associated tokens tend to encode to larger values than their male counterparts. This less
extreme encoding is expected because these models can only use the left context of the target term.
Considering the non-she/he token pairs for GPT-2 and LLaMA, they show a mostly symmetric
distribution around zero with smaller magnitude than for she/he, indicating weaker separation. In
contrast, LLaMA-Instruct still shows a female-male distinction, but the distributions are shifted
toward the male side (i.e., toward −1).

Overall, the results indicate that the features learned by GRADIEND generalize, but that future work
should explore training GRADIENDs using multiple facets, i.e., not only a single type of counterfactual
(e.g., she/he), but also other in parallel, like woman/man to possibly find a more general feature
representation.
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Figure 8: Metrics for changed models based on the gender GRADIENDs with varying feature factor
and learning rate. The cells with the best BalancedBS □□□, FemaleBS □□□, and MaleBS □□□ are highlighted
across all subplots. All values are reported as percentages.

F DECODER AS BIAS-CHANGER

Similar to Figure 4, we present the results for all gender models in Figure 8. We further report the
selected race and religion models in Figures 9-15.

Overall, a similar point-symmetric pattern can be recognized across all figures. However, the model
selection is different compared to BERTbase, where FemaleBS and MaleBS exhibit negated feature
factors along with negative learning rates, while BalancedBS features a zero feature factor and a
positive learning rate. Similar configurations exist across most models that outperform the base model
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(b) Asian/White
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Figure 9: Metrics for changed models based on the BERTbase race and religion GRADIENDs with
varying feature factor and learning rate. The cells with the best BalancedBS □□□ are highlighted across
all subplots. All values are reported as percentages.
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(a) Black/Asian
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(b) Asian/White
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Figure 10: Metrics for changed models based on the BERTlarge race and religion GRADIENDs with
varying feature factor and learning rate. The cells with the best BalancedBS □□□ are highlighted across
all subplots. All values are reported as percentages.
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Figure 11: Metrics for changed models based on the DistilBERT race and religion GRADIENDs with
varying feature factor and learning rate. The cells with the best BalancedBS □□□ are highlighted across
all subplots. All values are reported as percentages.
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(f) Jew./Muslim

Figure 12: Metrics for changed models based on the RoBERTa race and religion GRADIENDs with
varying feature factor and learning rate. The cells with the best BalancedBS □□□ are highlighted across
all subplots. All values are reported as percentages.
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(b) Asian/White
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(d) Chr./Jew.
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Figure 13: Metrics for changed models based on the GPT-2 race and religion GRADIENDs with
varying feature factor and learning rate. The cells with the best BalancedBS □□□ are highlighted across
all subplots. All values are reported as percentages.
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Figure 14: Metrics for changed models based on the LLaMA race and religion GRADIENDs with
varying feature factor and learning rate. The cells with the best BalancedBS □□□ are highlighted across
all subplots. All values are reported as percentages.
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(a) Black/Asian
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(c) Black/White
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(e) Chr./Muslim
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(f) Jew./Muslim

Figure 15: Metrics for changed models based on the LLaMA-Instruct race and religion GRADIENDs
with varying feature factor and learning rate. The cells with the best BalancedBS □□□ are highlighted
across all subplots. All values are reported as percentages.

Table 8: Selected gender-debiased, female-biased and male-biased models based on BalancedBS,
FemaleBS and MaleBS.

Model FF h LR α P(F ) P(M) LMSDec BalancedBS FemaleBS MaleBS

BERTbase 0.0 0.0 0.413 0.538 0.496 0.322 0.110 0.172
+ GRADIENDFemale/Male 0.0 1e-02 0.424 0.494 0.491 0.363 0.111 0.145
+ GRADIENDFemale 1.0 -1e-02 0.948 0.034 0.490 0.041 0.449 0.001
+ GRADIENDMale -1.0 -1e-02 0.031 0.940 0.490 0.043 0.001 0.446

BERTlarge 0.0 0.0 0.432 0.534 0.511 0.280 0.132 0.184
+ GRADIENDFemale/Male -0.2 5e-02 0.461 0.434 0.486 0.397 0.128 0.115
+ GRADIENDFemale 0.6 -5e-02 0.960 0.031 0.508 0.036 0.473 0.001
+ GRADIENDMale -0.4 -5e-02 0.024 0.963 0.511 0.031 0.000 0.480

DistilBERT 0.0 0.0 0.307 0.361 0.392 0.230 0.075 0.096
+ GRADIENDFemale/Male -1.0 5e-04 0.358 0.320 0.386 0.231 0.092 0.078
+ GRADIENDFemale 0.8 -1e-02 0.724 0.045 0.350 0.080 0.241 0.004
+ GRADIENDMale 0.0 -5e-02 0.036 0.599 0.384 0.092 0.005 0.221

RoBERTa 0.0 0.0 0.555 0.404 0.573 0.208 0.249 0.162
+ GRADIENDFemale/Male 0.4 1e-01 0.402 0.499 0.560 0.354 0.127 0.181
+ GRADIENDFemale 0.4 -5e-01 0.980 0.016 0.539 0.019 0.520 0.000
+ GRADIENDMale -1.0 -1e-01 0.023 0.966 0.568 0.032 0.001 0.535

GPT-2 0.0 0.0 0.028 0.089 0.107 0.012 0.003 0.009
+ GRADIENDFemale/Male -0.6 1e-01 0.172 0.130 0.106 0.031 0.016 0.011
+ GRADIENDFemale 10.0 -1e-02 0.270 0.061 0.099 0.025 0.025 0.004
+ GRADIENDMale -0.4 1e-01 0.123 0.130 0.108 0.027 0.012 0.012

LLaMA 0.0 0.0 0.111 0.162 0.095 0.022 0.009 0.014
+ GRADIENDFemale/Male 0.2 5e-01 0.109 0.174 0.104 0.027 0.009 0.016
+ GRADIENDFemale -2.0 1e-01 0.194 0.050 0.091 0.019 0.017 0.004
+ GRADIENDMale 2.0 1e-01 0.042 0.271 0.101 0.024 0.003 0.026

LLaMA-Instruct 0.0 0.0 0.397 0.399 0.073 0.021 0.025 0.025
+ GRADIENDFemale/Male 0.4 5e-01 0.147 0.587 0.086 0.035 0.005 0.043
+ GRADIENDFemale -10.0 1e-02 0.594 0.257 0.070 0.024 0.036 0.013
+ GRADIENDMale -2.0 -1e-01 0.116 0.569 0.084 0.028 0.006 0.044
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Table 9: Selected debiased models based on BalancedBS for race and religion. Classes A and B refer
to the classes of the GRADIENDA/B .

Model FF h LR α Base P(A) P(A) Base P(B) P(B) LMSDec BalancedBS

GRADIENDAsian/Black

BERTbase -0.0 -0.5 8.6e-8 8.6e-8 8.1e-4 8.1e-4 0.587 2.2e-7
BERTlarge 1.0 -0.5 3.8e-9 3.8e-9 1.8e-3 1.8e-3 0.635 3.8e-8
DistilBERT -0.6 0.1 1.2e-5 1.2e-5 1.1e-3 1.1e-3 0.429 2.7e-6
RoBERTa -0.0 -0.5 9.6e-7 9.6e-7 1.5e-6 1.5e-6 0.591 7.5e-7
GPT-2 1.0 -0.5 5.7e-7 5.7e-7 1.2e-5 1.2e-5 0.095 2.0e-7
LLaMA -0.8 -0.5 3.9e-5 3.9e-5 2.4e-5 2.4e-5 0.089 4.5e-5
LLaMA-Instruct -10.0 0.5 7.6e-5 7.6e-5 3.6e-4 3.6e-4 0.068 1.0e-5

GRADIENDAsian/White

BERTbase -0.2 -0.5 4.7e-8 4.7e-8 3.8e-4 3.8e-4 0.570 7.8e-7
BERTlarge 2.0 -0.5 3.3e-9 3.3e-9 2.2e-4 2.2e-4 0.627 3.0e-8
DistilBERT 0.4 -0.1 8.4e-6 8.4e-6 3.7e-4 3.7e-4 0.421 5.0e-6
RoBERTa -0.0 -0.5 1.7e-6 1.7e-6 2.5e-6 2.5e-6 0.649 1.4e-6
GPT-2 0.2 0.5 6.1e-7 6.1e-7 1.3e-5 1.3e-5 0.089 2.4e-7
LLaMA -1.0 -0.5 3.0e-5 3.0e-5 2.2e-5 2.2e-5 0.092 4.7e-5
LLaMA-Instruct -2.0 0.5 8.0e-5 8.0e-5 1.2e-3 1.2e-3 0.077 7.6e-6

GRADIENDBlack/White

BERTbase -1.0 -0.1 9.8e-3 9.8e-3 9.8e-3 9.8e-3 0.604 4.2e-3
BERTlarge 0.4 -0.5 1.2e-2 1.2e-2 1.2e-2 1.2e-2 0.627 4.1e-3
DistilBERT -0.2 0.1 5.4e-3 5.4e-3 5.4e-3 5.4e-3 0.441 1.7e-3
RoBERTa 0.8 -0.5 5.8e-6 5.8e-6 5.8e-6 5.8e-6 0.710 7.7e-6
GPT-2 -0.0 -0.5 1.4e-5 1.4e-5 1.4e-5 1.4e-5 0.090 1.1e-6
LLaMA -0.2 -0.5 3.0e-5 3.0e-5 3.0e-5 3.0e-5 0.082 3.1e-6
LLaMA-Instruct 1.0 0.5 1.1e-3 1.1e-3 1.1e-3 1.1e-3 0.067 2.7e-5

GRADIENDChristian/Jewish

BERTbase 0.8 0.1 1.5e-2 1.5e-2 2.2e-3 2.2e-3 0.592 3.7e-3
BERTlarge 1.0 0.5 1.8e-2 1.8e-2 2.6e-3 2.6e-3 0.607 5.0e-3
DistilBERT -0.2 0.1 8.4e-3 8.4e-3 6.2e-3 6.2e-3 0.416 1.7e-3
RoBERTa -0.0 0.5 3.0e-7 3.0e-7 5.7e-10 5.7e-10 0.665 1.4e-9
GPT-2 -0.8 0.5 5.4e-6 5.4e-6 3.4e-6 3.4e-6 0.091 4.8e-7
LLaMA -10.0 -0.1 7.9e-5 7.9e-5 1.4e-5 1.4e-5 0.085 5.4e-5
LLaMA-Instruct -2.0 0.0 4.3e-3 4.3e-3 1.5e-4 1.5e-4 0.075 3.6e-6

GRADIENDChristian/Muslim

BERTbase -2.0 0.1 1.1e-2 1.1e-2 1.5e-3 1.5e-3 0.585 3.3e-3
BERTlarge -0.8 0.5 1.2e-2 1.2e-2 2.0e-3 2.0e-3 0.611 3.6e-3
DistilBERT -0.0 0.1 7.6e-3 7.6e-3 3.0e-3 3.0e-3 0.430 1.5e-3
RoBERTa 0.8 0.1 4.0e-8 4.0e-8 1.9e-8 1.9e-8 0.664 4.5e-9
GPT-2 -0.8 -0.5 5.4e-6 5.4e-6 2.6e-5 2.6e-5 0.090 8.2e-7
LLaMA -0.6 -0.5 7.4e-5 7.4e-5 3.5e-5 3.5e-5 0.072 3.1e-5
LLaMA-Instruct -0.4 0.5 3.9e-3 3.9e-3 1.5e-3 1.5e-3 0.094 9.3e-6

GRADIENDJewish/Muslim

BERTbase 0.8 -0.1 1.7e-3 1.7e-3 1.7e-3 1.7e-3 0.589 6.4e-4
BERTlarge 0.6 0.5 1.4e-3 1.4e-3 1.4e-3 1.4e-3 0.592 5.7e-4
DistilBERT -0.4 -0.1 5.2e-3 5.2e-3 5.2e-3 5.2e-3 0.433 5.7e-4
RoBERTa -0.2 -0.5 3.4e-10 3.4e-10 3.4e-10 3.4e-10 0.706 4.5e-10
GPT-2 1.0 -0.5 3.4e-6 3.4e-6 3.4e-6 3.4e-6 0.093 1.0e-6
LLaMA 10.0 -0.1 1.3e-5 1.3e-5 1.3e-5 1.3e-5 0.086 1.0e-5
LLaMA-Instruct 0.4 0.5 3.5e-4 3.5e-4 3.5e-4 3.5e-4 0.066 1.0e-5
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Table 10: Published gender debiased models on Hugging Face.

Model Identifier

BERTbase + GRADIENDFemale/Male anonymous
BERTlarge + GRADIENDFemale/Male anonymous
DistilBERT + GRADIENDFemale/Male anonymous
RoBERTa + GRADIENDFemale/Male anonymous
GPT-2 + GRADIENDFemale/Male anonymous
LLaMA + GRADIENDFemale/Male anonymous
LLaMA-Instruct + GRADIENDFemale/Male anonymous

with respect to BalancedBS, FemaleBS, and MaleBS. The final selected models, however, perform
even better with respect to our metrics, though they do not adhere to the expected pattern. Future
research should explore the stability of these parameter choices without relying on a larger search
grid.

The statistics for all selected gender models are reported in Table 8. Interestingly, the difference
in BalancedBS between GRADIENDFemale/Male and its base model is relatively small, whereas the
corresponding differences for FemaleBS and MaleBS are much larger, respectively. This obser-
vation suggests that biasing a model (in either direction) is easier than debiasing it. Notably, Fe-
maleBS approaches nearly zero for GRADIENDMale models, and MaleBS similarly is close to zero
for GRADIENDFemale models. Surprisingly, for the RoBERTa base model, P(F ) > P(M) holds
true, unlike all other base models. This indicates a female bias in the given task, contradicting our
expectation that language models typically exhibit male bias (although this bias direction is not
captured by SS and SEAT).

The statistics for the selected race and religion models are reported in Table 9.

G COMPARISON TO OTHER DEBIASING TECHNIQUES

This section provides supplementary details for Section 5.4, which compares our method to existing
debiasing techniques. To facilitate future comparisons with our approach, we release our gender-
debiased models on Hugging Face (Table 10), where they achieve SoTA debiasing performance.

G.1 IMPLEMENTATION DETAILS

For the evaluation of our gender-changed models on GLUE, SuperGLUE, SEAT, SS, and LMSStereoSet,
we primarily rely on the bias-bench implementation by Meade et al. (2022), which we also use to
compute and evaluate the baseline debiasing techniques: CDA, DROPOUT, INLP, SENTDEBIAS,
and SELFDEBIAS. For implementation specifics and metric definitions, we refer the reader to the
original work.

Since the original implementation did not include the DistilBERT model, we applied the same
hyperparameters for DistilBERT as for BERT and RoBERTa. This includes parameters like the
dropout rate for DROPOUT (hidden layer dropout 0.20 and attention dropout 0.15), and the number of
iterations for INLP (n = 80). We also adapt this INLP configuration for the LLaMA-based models.
In addition, we integrated RLACE (Ravfogel et al., 2022) and LEACE (Belrose et al., 2023) into
bias-bench in analogy to INLP, using their original implementations. For RLACE, we use a rank of
1. We release our modified version of bias-bench on GitHub2.

For evaluating the LLaMA-based models on GLUE and SuperGLUE, we use a zero-shot setting
based on a gender-bias adapted version of the Python library lm-evaluation-harness3 (Gao et al.,
2024). Since STS-B is a regression task, we omit it from the evaluation. For LLaMA-Instruct, we use
no system prompt for all of these evaluations. For all non-LLaMA models, we follow the standard
bias-bench settings and fine-tune them on all nine GLUE and all eight SuperGLUE tasks prior to
evaluation.

2anonymous
3anonymous
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We exclude GRADIENDFemale and GRADIENDMale from combinations as they are not designed for
debiasing, and we also exclude RLACE, LEACE, and SELFDEBIAS due to their generally weaker
performance. CDA and DROPOUT variants are also excluded for LLaMA-based models due to the
high cost of additional pretraining for these methods.

G.2 DETAILED RESULTS

We report the raw results for SS, SEAT, LMSStereoSet, GLUE, and SuperGLUE in Tables 14 to 17,
covering BERTbase, BERTlarge, DistilBERT, RoBERTa, GPT-2, LLaMA, and LLaMA-Instruct. The
proportional rank-based comparison in Table 2 is derived from these values. Additional sub-results
and further information on GLUE and SEAT are provided in the following sections.

The proportional rank (Table 2) for a metric m (SS or SEAT) is derived from Tables 14 to 17 by
first ranking the debiasing approaches for each base model. These integers are then converted to
proportional ranks by dividing by the number of variants minus one, yielding scores in [0, 1]. This
naturally accounts for differences in the number of variants across models. The mean proportional
rank for m is obtained by averaging over all base models, and the Mean column in Table 2 reports
the average of the mean proportional ranks for SS and SEAT.

The difference values for the language modeling metrics in Table 2 (LMSStereoSet, GLUE, SuperGLUE)
are computed by first taking the score difference for each base model and then averaging these
differences across all base models used by a variant. Some debiasing variants cannot be applied to all
models (all DROPOUT- and CDA-based variants and both LLaMA-based models), so the number
of scores entering the average differs across variants. This makes the absolute mean scores not
directly comparable for these cases. A reader might expect the reported change to be the difference
of averaged scores, but this would not correctly reflect situations where variants use different sets
of base models. Reporting the average of model-wise differences ensures that the reported relative
changes remain meaningful for assessing whether a variant negatively affects language modeling
performance, which is the main concern for this study.

Unlike previous studies, we report all metric scores with a 95% confidence interval, computed via
bootstrapping (Davison & Hinkley, 1997) from the raw prediction values, providing a more robust
comparison of model performances. For each score, we generate 1,000 bootstrap samples and report
both the bootstrap mean and the corresponding 95% confidence interval. We have verified that all
actual scores fall within their respective bootstrap confidence intervals.

Statistically significant improvements (i.e., non-overlapping confidence intervals compared to the
baseline) are indicated in italics, while the best score for each base model is highlighted in bold.
In general, the comparison of debiasing approaches is challenging due to the high uncertainty and
variance across different gender-bias metrics. Therefore, we reported the rank-based aggregated
score in Table 2 to enable more robust comparisons. Notably, with confidence intervals as context,
the effectiveness of existing debiasing methods appears less clear than suggested by prior research
(Meade et al., 2022).

G.3 GLUE

For GLUE (Wang et al., 2018), the reported score in Tables 14 and 17 is an aggregate of its subscores,
which are detailed in Tables 18 and 21. Due to space constraints, the confidence intervals for individual
sub-tasks are not shown per model; however, Table 11 presents the confidence margin ranges for
each sub-task across all GLUE evaluations of this study. We report the Matthew’s correlation for
CoLA, the F1 score for MRPC, the Spearman correlation for STS-B, and accuracy otherwise. For
aggregating the subscores, the MNLI-M and MNLI-MM scores are first averaged, and then this
intermediate result is combined with the other GLUE subscores.

We follow the same training configurations as Meade et al. (2022) though we evaluate twice per
epoch and select the best performing model based on loss at the end of the three-epoch training.

The reported scores are bootstrapped means over three runs with different random seeds. In the
bootstrapping procedure, the same data sampling is applied across all seeds to ensure consistency.
The final aggregated scores are then calculated based on this consistent sampling.
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Table 11: Minimal and maximal confidence margin of error (in percentages) for GLUE and its
subscores, based on the results of Table 18 to 21, sorted by number of validation samples.

Task Min (%) Max (%) # Samples

GLUE 1.02 2.00 69,711

QQP 0.23 0.47 40,430
MNLI-MM 0.48 1.02 9,832
MNLI-M 0.46 1.02 9,815
QNLI 0.53 1.40 5,463
STSB 0.80 1.63 1,500
CoLA 0.00 6.27 1,043
SST-2 1.21 3.36 872
MRPC 1.39 5.96 408
RTE 3.18 6.25 277
WNLI 4.52 11.94 71

Table 12: Minimal and maximal confidence margin of error (in percentages) for SuperGLUE and its
subscores, based on the results of Table 22 to 25, sorted by number of validation samples.

Task Min (%) Max (%) # Samples

SuperGLUE 1.18 2.37 19,293

ReCoRD 0.01 1.03 10,000
MultiRC 0.14 1.63 4,848
BoolQ 1.03 1.64 3,270
WiC 2.00 3.98 638
RTE 3.55 6.04 277
WSC 3.08 9.48 104
COPA 4.36 8.89 100
CB 5.80 14.63 56

Table 11 highlights the relationship between the number of validation samples and the confidence of
a computed score: tasks with fewer validation samples generally exhibit wider confidence intervals,
reflecting greater variability and reduced reliability in their reported scores.

G.4 SUPERGLUE

We compute SuperGLUE (Wang et al., 2019) scores following the same settings as for GLUE.
Crucially, the ReCoRD task is modeled as a span-selection problem and MultiRC as a binary sequence-
classification problem by pairing each candidate answer with its question. For bootstrapping for these
two tasks, examples are always added along with all their associated candidate answers to preserve
the task structure..

Sub-scores for SuperGLUE are reported in Tables 22 to 25. As with GLUE, Table 12 summarizes
confidence intervals across all evaluated models in this study.

G.5 SEAT

Similar to GLUE, the reported SEAT score in Tables 14 and 15 is an aggregated score derived from
multiple subscores. We utilize the same sets as Meade et al. (2022):

• Gender: SEAT-6, SEAT-6b, SEAT-7, SEAT-7b, SEAT-8, and SEAT-8b.

• Race: ABW-1, ABW-2, SEAT-3, SEAT-3b, SEAT-4, SEAT-5, SEAT-5b.

• Religion: Religion-1, Religion-1b, Religion-2, Religion-2b.

We report the full sub-metric results in Tables 26 to 29. The final SEAT score is the average of their
absolute subscore values.
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Table 13: Ablation study of GRADIEND applied at different stages relative to fine-tuning. The Model
column indicates the sequence of fine-tuning and GRADIEND application. Task accuracy (WSC) and
debiasing metrics (SS, SEAT) are reported for each configuration.

Model SS (%) ↓
↑50 SEAT ↓ (%) WSC (%) ↑

BERTbase 61.23 68.61 –
BERTbase→ GRADIENDFemale/Male ↓ -0.75 60.48 ↓ -14.60 54.01 –
BERTbase→ WSC ↓ -9.80 48.57 ↓ -6.64 61.97 62.50
BERTbase→ WSC → GRADIENDFemale/Male ↓ -7.39 46.16 ↓ -4.20 64.41 ↓ -25.96 36.54
BERTbase→ GRADIENDFemale/Male→ WSC ↓ -10.23 49.00 ↓ -12.19 56.42 ↑ 0.96 63.46
BERTbase→ GRADIENDFemale/Male→ WSC → GRADIENDFemale/Male ↓ -8.13 46.90 ↓ -9.67 58.94 62.50

BERTlarge 61.23 59.08 –
BERTlarge→ GRADIENDFemale/Male ↓ -5.58 55.64 ↓ -2.22 56.86 –
BERTlarge→ WSC ↓ -7.83 46.60 ↓ -1.60 57.48 63.46
BERTlarge→ WSC → GRADIENDFemale/Male ↓ -9.95 51.28 ↑ 3.69 62.76 63.46
BERTlarge→ GRADIENDFemale/Male→ WSC ↓ -10.43 50.79 ↓ -0.04 59.04 63.46
BERTlarge→ GRADIENDFemale/Male→ WSC → GRADIENDFemale/Male ↓ -10.57 49.34 ↑ 4.84 63.92 63.46

DistilBERT 84.32 59.25 –
DistilBERT→ GRADIENDFemale/Male ↓ -0.05 84.27 ↓ -0.40 58.85 –
DistilBERT→ WSC ↑ 1.15 85.48 ↓ -8.72 50.53 63.46
DistilBERT→ WSC → GRADIENDFemale/Male ↓ -32.00 52.32 ↓ -6.86 47.60 63.46
DistilBERT→ GRADIENDFemale/Male→ WSC ↑ 0.98 85.31 ↓ -6.05 46.80 63.46
DistilBERT→ GRADIENDFemale/Male→ WSC → GRADIENDFemale/Male ↓ -30.02 54.31 ↓ -6.90 47.65 63.46

RoBERTa 66.82 62.80 –
RoBERTa→ GRADIENDFemale/Male ↓ -2.90 63.92 ↓ -12.03 50.77 –
RoBERTa→ WSC ↓ -16.50 50.33 ↓ -53.30 9.50 63.46
RoBERTa→ WSC → GRADIENDFemale/Male ↓ -14.87 48.05 ↓ -9.97 52.83 63.46
RoBERTa→ GRADIENDFemale/Male→ WSC ↓ -13.25 46.43 ↓ -25.86 36.94 63.46
RoBERTa→ GRADIENDFemale/Male→ WSC → GRADIENDFemale/Male ↓ -16.69 50.13 ↓ -53.14 9.66 ↓ -26.92 36.54

GPT-2 62.65 11.28 –
GPT-2→ GRADIENDFemale/Male ↓ -3.54 59.11 ↑ 3.43 14.72 –
GPT-2→ WSC ↓ -0.14 62.50 ↑ 5.56 16.84 56.73
GPT-2→ WSC → GRADIENDFemale/Male ↓ -3.32 59.33 ↑ 19.13 30.42 ↓ -9.62 47.12
GPT-2→ GRADIENDFemale/Male→ WSC ↓ -4.71 57.93 ↑ 25.55 36.84 ↑ 6.73 63.46
GPT-2→ GRADIENDFemale/Male→ WSC → GRADIENDFemale/Male ↓ -4.14 58.51 ↑ 32.67 43.96 ↑ 6.73 63.46

H GRADIEND IN COMBINATION WITH FINE-TUNING

Table 13 presents an ablation study combining GRADIEND with a fine-tuning task: Winograd
Schema Challenge (WSC; Levesque et al. 2012) from SuperGLUE (Wang et al., 2019). We report
task accuracy alongside debiasing metrics SS (Nadeem et al., 2021) and SEAT (May et al., 2019).
LLaMA-based models are excluded from this analysis, as we only perform zero-shot evaluation for
SuperGLUE and do not fine-tune these models.

The results show that fine-tuning on WSC alone generally provides a debiasing effect, except for
DistilBERT and GPT-2. For most other models, applying GRADIEND before and/or after fine-tuning
produces only minor additional debiasing. In contrast, DistilBERT and GPT-2 exhibit consistent
debiasing effects when GRADIEND is applied before and/or after fine-tuning, although GPT-2
demonstrates losing the debiasing effect when fine-tuning follows GRADIEND. Task performance
remains unaffected in seven out of ten cases where GRADIEND is the last step.

In summary, applying GRADIEND after fine-tuning ensures the debiasing effect is not overwritten by
the fine-tuning process, but can sometimes slightly reduce task performance. Applying GRADIEND
before fine-tuning has the advantage that the debiased model can be reused across multiple fine-tuning
tasks, requiring only a single GRADIEND training and application.

I OVERFITTING ANALYSIS OF GRADIEND

We further investigate whether our approach is prone to overfitting, especially regarding the names
used (or not used) during the training of the gender GRADIEND models. The previous name-based
analysis in Section 5.3 establishes metrics that are independent of the data split due to the definition
of female and male probabilities.

We consider two MLM tasks with opposite orders.
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(b) Is [NAME] a "man" or a "woman"? [NAME] is a "[MASK]".

Figure 16: Average probabilities for predicting man and woman in "Is [NAME] a "woman" or a
"man"? [NAME] is a "[MASK]"." for the names of NAMEXACT depending on the split across
different models. The dashed line represents the identity function.

Is [NAME] a "woman" or a "man"? [NAME] is a "[MASK]".
Is [NAME] a "man" or a "woman"? [NAME] is a "[MASK]".

These tasks are similar to the training task where a gendered pronoun (she/he) needs to be predicted
based on a given name. However, here we introduce gender nouns (woman/man) to test the model’s
ability to generalize beyond pronouns to other gender-related concepts. We test both orders of woman
and man to account for the effect of order.

We compute the mean male and female probabilities for the names from NAMEXACT depending on
the split. Specifically, P(woman) represents the average probability of predicting woman across all
names (not just single-token names as for P(F ) and P(M)) of the considered split, and P(man) is
defined analogously.

We present the results for both masked texts across all trained encoder-only GRADIEND models
in Figure 16. The task could not be successfully adapted to generative models, as no stable and
interpretable probabilities could be produced as in the MLM setting. Hence, we limit our analysis to
encoder-only models. For the different data splits, the results typically cluster closely together for the
same model type. No specific pattern is observed, such as names from the training split being more
biased than those from the test split. This suggests that GRADIEND generalizes well to unseen data,
particularly names.

Based on the task, models above the dashed identity line are considered female-biased, while
models below are male-biased. Models near the identity line can be considered unbiased. For
BERTbase, BERTlarge, and RoBERTa, the GRADIENDFemale and GRADIENDMale models are positioned
as expected, above or below the identity, respectively. For RoBERTa, the opposite probability (i.e.,
P(M) for GRADIENDFemale) has a probability of less than 10%, indicating high certainty in their bias.
DistilBERT behaves differently with low scores for the base model and GRADIENDFemale/Male, and
GRADIENDMale being misplaced in the female area.

The GRADIENDFemale/Male aims to debias the model and, in most cases, indeed lies close to the identity
for BERT-based models. However, for RoBERTa, this debiasing effect works for one order but is too
strong for the other. For DistilBERT, the GRADIENDFemale/Male is near the identity, but probabilities
are close to 0.0, making interpretation less meaningful. However, this is not due to debiasing but
because the base model already has probabilities near 0.0.
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Interestingly, for BERTlarge, the base model is biased towards the last mentioned gender, but
GRADIENDFemale/Male consistently positions itself at the identity, regardless of this starting bias.

This evaluation further suggests that, at least for BERTbase, BERTlarge, and RoBERTa, GRADIEND
generalizes the concept of gender from she/he to other gender-related contexts, such as woman/man
in this example.

J EXAMPLE PREDICTIONS

We present example predictions for the gender GRADIEND models in Tables 30 to 34. The top
10 predicted tokens, along with their probabilities, are shown for four sentences that involve a
profession-related gender-specific TPT:

The woman worked as a [MASK].
The man worked as a [MASK].
Alice worked as a [MASK].
Bob worked as a [MASK].

For decoder-only models, a CLM task is derived by predicting the next token given the text up to the
[MASK].

All base models predict gender-specific professions based on predicted token. While there are some
differences across the models, typical female-associated professions include nurse, waitress, and
secretary, while lawyer, mechanic, and farmer are more commonly associated with males. Some
professions, such as teacher, appear to be linked to both genders. Decoder-only models sometimes
generate non-profession tokens (e.g., professional, senior, and full) that likely precede a profession,
reflecting their unrestricted next-token objective, whereas encoder-only models are constrained to a
single-token completion given the masked sentence context.

The GRADIEND models typically introduce new professions (not present in the base model’s top 10
predictions) within their own top 10 list. However, for DistilBERT + GRADIENDFemale/Male, there is
almost no notable difference. In most cases, the newly predicted professions align with the model’s
expected bias. However, there are exceptions; for example, GPT-2,+GRADIENDMale occasionally
generates female-associated professions despite being intended to favor male bias. Overall, while the
debiasing effect does not fully eliminate gendered predictions, GRADIENDFemale/Male demonstrates a
clear debiasing impact.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 14: Gender: Comparison of bootstrapped bias metrics (SS and SEAT)) and language modeling
metrics (LMSStereoSet, GLUE, and SuperGLUE) for encoder-only models across different gender
debiasing techniques. Statistically significant improvements are indicated in italics, while the best
score for each base model is highlighted in bold.

Model SS (%) ↓
↑50 SEAT ↓ LMSStereoSet (%) ↑ GLUE (%) ↑ SuperGLUE (%) ↑

BERTbase 61.24±1.89 0.61±0.29 82.50±0.81 78.09±1.59 51.82±1.67

+ GRADIENDFemale/Male ↓0.75 60.49±1.93 ↓0.10 0.51±0.19 ↓0.41 82.09±0.81 ↑0.28 78.37±1.55 ↑0.56 52.38±1.88

+ GRADIENDFemale ↓2.29 58.95±1.96 ↑0.19 0.79±0.24 ↓0.22 82.28±0.81 ↑0.33 78.42±1.59 ↑0.82 52.65±1.88

+ GRADIENDMale ↓1.38 59.86±1.94 ↓0.18 0.43±0.16 ↑0.39 82.89±0.80 ↑0.18 78.28±1.58 ↑0.44 52.27±1.88

+ CDA ↓2.10 59.14±1.96 ↓0.21 0.40±0.20 ↑0.58 83.07±0.81 ↑0.80 78.90±1.55 ↑1.33 53.16±1.80

+ DROPOUT ↓1.49 59.75±1.93 ↓0.16 0.45±0.25 ↓ 1.75 80 .75±0.83 ↓1.40 76.69±1.44 ↓0.34 51.48±1.72

+ INLP ↓ 6.24 55 .00±1.99 ↓0.24 0.37±0.19 ↑1.18 83.68±0.80 ↑0.02 78.11±1.55 ↓0.80 51.02±1.55

+ RLACE ↑0.27 61.51±1.88 ↓0.00 0.61±0.29 ↓0.07 82.42±0.81 ↓0.10 77.99±1.59 ↓0.88 50.95±1.54

+ LEACE ↓0.11 61.13±1.90 ↓0.00 0.61±0.29 ↓0.02 82.48±0.81 ↓0.10 78.00±1.58 ↓0.86 50.96±1.55

+ SELFDEBIAS ↓1.19 60.05±1.94 – ↓0.02 82.47±0.83 – –
+ SENTDEBIAS ↓1.06 60.18±1.91 ↓0.27 0.34±0.13 ↓0.01 82.49±0.81 ↓0.41 77.68±1.02 ↓0.83 50.99±1.55

+ GRADIENDFemale/Male + INLP ↓ 6.17 55 .07±1.97 ↓0.31 0.30±0.12 ↑0.81 83.31±0.79 ↑0.41 78.50±1.42 ↑1.51 53.33±1.82

+ GRADIENDFemale/Male + SENTDEBIAS ↓1.59 59.65±1.95 ↓0.18 0.43±0.14 ↓0.44 82.06±0.82 ↑0.34 78.43±1.55 ↑0.56 52.39±1.88

+ CDA + INLP ↓ 6.47 54 .77±1.99 ↓0.30 0.30±0.14 ↑ 2.06 84 .55±0.80 ↑0.09 78.19±1.42 ↑0.82 52.64±1.78

+ DROPOUT + SENTDEBIAS ↓3.07 58.17±1.94 ↓0.25 0.36±0.14 ↓ 1.86 80 .64±0.84 ↓1.31 76.78±1.44 ↓0.41 51.42±1.71

+ CDA + SENTDEBIAS ↓3.54 57.69±1.97 ↓0.22 0.38±0.17 ↑0.50 83.00±0.81 ↑0.79 78.88±1.55 ↑1.41 53.24±1.79

+ DROPOUT + INLP ↓ 5.58 55 .66±2.01 ↓0.34 0.27±0.12 ↓0.35 82.15±0.83 ↓1.56 76.53±1.40 ↓1.10 50.73±1.70

BERTlarge 61.26±1.89 0.52±0.26 82.89±0.80 79.98±1.31 53.74±1.62

+ GRADIENDFemale/Male ↓ 5.61 55 .65±1.97 ↑0.03 0.55±0.13 ↓1.31 81.58±0.83 ↑0.26 80.24±1.14 ↑0.46 54.20±1.88

+ GRADIENDFemale ↓1.11 60.15±1.89 ↑ 0.58 1 .10±0.13 ↓0.82 82.06±0.79 ↑0.31 80.29±1.55 ↑0.10 53.84±1.86

+ GRADIENDMale ↓1.59 59.67±1.91 ↓0.14 0.38±0.16 ↓0.38 82.50±0.80 ↑0.34 80.32±1.55 ↓0.10 53.64±1.87

+ CDA ↓2.00 59.26±1.96 ↑0.11 0.63±0.24 ↑0.69 83.57±0.79 ↓1.36 78.63±1.41 ↑0.28 54.02±1.81

+ DROPOUT ↓2.44 58.82±1.94 ↑0.17 0.69±0.22 ↓ 2.57 80 .32±0.82 ↓0.55 79.43±1.46 ↓0.52 53.22±1.68

+ INLP ↓1.93 59.33±1.93 ↓0.23 0.29±0.15 ↑0.52 83.41±0.79 ↑0.30 80.28±1.39 ↓1.60 52.14±1.58

+ RLACE ↓0.17 61.09±1.89 ↑0.00 0.52±0.26 ↑0.04 82.93±0.80 ↓0.20 79.78±1.38 ↓1.69 52.05±1.62

+ LEACE ↓0.26 61.00±1.89 ↑0.01 0.53±0.26 ↑0.05 82.94±0.80 ↑0.28 80.26±1.24 ↑0.09 53.84±1.67

+ SELFDEBIAS ↓1.24 60.02±1.91 – ↓0.31 82.58±0.81 – –
+ SENTDEBIAS ↓1.41 59.85±1.91 ↓0.29 0.23±0.14 ↓0.09 82.80±0.81 ↑0.75 80.73±1.49 ↑0.03 53.77±1.66

+ GRADIENDFemale/Male + INLP ↓ 5.74 55 .52±1.97 ↓0.21 0.31±0.13 ↑0.19 83.07±0.80 ↑0.21 80.19±1.25 ↑0.56 54.30±1.93

+ GRADIENDFemale/Male + SENTDEBIAS↓ 5.29 55 .97±1.98 ↓0.04 0.48±0.13 ↓1.17 81.72±0.83 ↑0.02 80.00±1.05 ↑0.64 54.38±1.87

+ CDA + INLP ↓ 4.93 56 .33±1.98 ↓0.14 0.38±0.16 ↑1.40 84.28±0.78 ↓1.64 78.34±1.10 ↑0.12 53.87±1.81

+ DROPOUT + SENTDEBIAS ↓3.50 57.76±1.94 ↓0.05 0.48±0.15 ↓ 2.68 80 .20±0.82 ↓ 6.53 73 .45±1.39 ↓0.39 53.36±1.74

+ CDA + SENTDEBIAS ↓2.09 59.17±1.94 ↑0.03 0.55±0.23 ↑0.72 83.60±0.79 ↓0.91 79.07±1.38 ↑0.26 54.00±1.80

+ DROPOUT + INLP ↓ 4.73 56 .53±1.95 ↓0.00 0.52±0.15 ↓1.17 81.72±0.81 ↓ 3.69 76 .29±1.16 ↓0.41 53.33±1.74

DistilBERT 59.24±1.95 0.80±0.24 82.06±0.80 74.47±1.59 49.69±1.65

+ GRADIENDFemale/Male ↓0.40 58.84±1.97 ↓0.00 0.80±0.24 ↓0.06 82.01±0.80 ↓0.02 74.45±1.59 ↑0.21 49.90±1.67

+ GRADIENDFemale ↓3.20 56.05±1.96 ↓0.01 0.80±0.22 ↓0.98 81.08±0.81 ↓0.12 74.35±1.61 ↑0.63 50.32±1.63

+ GRADIENDMale ↑2.58 61.82±1.90 ↑0.27 1.07±0.25 ↓0.28 81.79±0.83 ↓0.01 74.45±1.54 ↓0.05 49.64±1.69

+ CDA ↓1.95 57.29±2.03 ↓0.06 0.74±0.21 ↑0.23 82.29±0.80 ↑0.18 74.64±1.46 ↑1.06 50.75±1.76

+ DROPOUT ↑3.17 62.41±1.97 ↓0.02 0.78±0.26 ↓ 1.82 80 .24±0.85 ↑0.70 75.17±1.50 ↑0.58 50.27±1.75

+ INLP ↓ 4.03 55 .21±2.03 ↓0.18 0.62±0.13 ↓0.52 81.55±0.79 ↑0.02 74.49±1.59 ↑0.21 49.90±1.56

+ RLACE ↓1.39 57.85±1.99 ↓0.20 0.60±0.14 ↓0.07 81.99±0.81 ↑0.04 74.51±1.59 ↑0.03 49.72±1.66

+ LEACE ↓ 4.33 54 .91±2.01 ↓0.23 0.57±0.12 ↓1.45 80.62±0.81 ↓0.24 74.22±1.54 ↑0.09 49.78±1.63

+ SELFDEBIAS ↑0.89 60.13±1.92 – ↓0.40 81.67±0.82 – –
+ SENTDEBIAS ↓2.32 56.92±1.99 ↓0.22 0.58±0.12 ↓0.06 82.01±0.80 ↑0.08 74.54±1.59 ↑0.06 49.75±1.64

+ GRADIENDFemale/Male + INLP ↓ 5.17 54 .07±2.03 ↓0.18 0.62±0.13 ↓0.61 81.46±0.79 ↓0.03 74.44±1.59 ↑0.16 49.85±1.57

+ GRADIENDFemale/Male + SENTDEBIAS ↓3.08 56.16±2.01 ↓0.22 0.58±0.12 ↓0.13 81.93±0.80 ↓0.21 74.26±1.60 ↑0.25 49.94±1.66

+ CDA + INLP ↓3.41 55.83±2.04 ↓0.23 0.57±0.16 ↑0.33 82.40±0.80 ↑0.25 74.71±1.33 ↑1.40 51.09±1.72

+ DROPOUT + SENTDEBIAS ↓0.16 59.08±1.98 ↓0.30 0.50±0.15 ↓ 1.88 80 .18±0.85 ↑0.80 75.27±1.51 ↑0.76 50.45±1.76

+ CDA + SENTDEBIAS ↓3.65 55.59±2.05 ↓0.18 0.63±0.14 ↑0.17 82.23±0.81 ↑0.33 74.79±1.43 ↑0.83 50.52±1.77

+ DROPOUT + INLP ↓ 4.31 54 .93±2.01 ↓ 0.38 0 .42±0.13 ↓0.25 81.82±0.82 ↑0.96 75.42±1.48 ↑1.50 51.19±1.72

RoBERTa 66.80±1.88 0.58±0.17 89.09±0.64 81.65±1.44 53.31±1.48

+ GRADIENDFemale/Male ↓2.91 63.89±1.90 ↓0.10 0.48±0.13 ↓0.27 88.82±0.66 ↑0.82 82.47±1.53 ↑2.03 55.34±1.47

+ GRADIENDFemale ↓ 4.16 62 .64±1.91 ↑ 0.28 0 .86±0.10 ↓ 2.58 86 .51±0.71 ↓1.04 80.61±1.55 ↓0.49 52.82±1.65

+ GRADIENDMale ↓0.64 66.16±1.85 ↓0.17 0.41±0.15 ↓0.13 88.95±0.64 ↓1.37 80.28±1.50 ↑0.48 53.79±1.47

+ CDA ↓2.85 63.94±1.92 ↓0.13 0.45±0.14 ↑0.02 89.11±0.65 ↑1.16 82.81±1.41 ↑2.89 56.20±1.44

+ DROPOUT ↓ 6.46 60 .33±1.92 ↓0.08 0.49±0.12 ↓ 3.74 85 .34±0.72 ↓ 14.16 67 .49±1.47 ↓2.25 51.05±1.62

+ INLP ↓ 4.09 62 .71±1.94 ↓0.14 0.44±0.14 ↓0.01 89.08±0.63 ↑1.62 83.27±1.51 ↑1.75 55.06±1.66

+ RLACE ↓0.42 66.38±1.89 ↓0.00 0.58±0.17 ↑0.06 89.15±0.63 ↓1.06 80.59±1.53 ↑0.67 53.98±1.50

+ LEACE ↓2.59 64.21±1.91 ↑0.00 0.58±0.17 ↓ 2.05 87 .04±0.69 ↓0.01 81.64±1.23 ↑0.16 53.47±1.35

+ SELFDEBIAS ↓1.79 65.00±1.90 – ↓0.47 88.62±0.65 – –
+ SENTDEBIAS ↓1.92 64.88±1.89 ↓0.09 0.49±0.14 ↑0.05 89.14±0.63 ↓ 4.47 77 .18±1.23 ↑1.22 54.53±1.51

+ GRADIENDFemale/Male + INLP ↓ 6.29 60 .51±1.85 ↓0.25 0.33±0.13 ↑0.10 89.19±0.63 ↓2.02 79.63±1.53 ↑1.86 55.17±1.63

+ GRADIENDFemale/Male + SENTDEBIAS↓ 4.24 62 .55±1.89 ↓0.14 0.44±0.11 ↓0.52 88.57±0.67 ↓ 6.39 75 .26±1.44 ↑1.41 54.72±1.49

+ CDA + INLP ↓ 4.66 62 .13±1.83 ↓0.09 0.49±0.15 ↑0.27 89.36±0.64 ↑1.73 83.38±1.53 ↑ 5.58 58 .89±1.63

+ DROPOUT + SENTDEBIAS ↓ 7.74 59 .06±1.93 ↓0.04 0.54±0.12 ↓ 3.82 85 .26±0.72 ↓ 4.76 76 .89±1.32 ↓2.29 51.01±1.59

+ CDA + SENTDEBIAS ↓ 4.94 61 .86±1.91 ↓0.13 0.45±0.14 ↓0.14 88.95±0.65 ↑0.99 82.64±1.32 ↑ 2.97 56 .28±1.42

+ DROPOUT + INLP ↓ 7.21 59 .58±1.94 ↓0.12 0.45±0.11 ↓ 3.66 85 .43±0.74 ↓ 7.85 73 .80±1.45 ↓ 5.10 48 .21±1.78
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Table 15: Gender: Comparison of bootstrapped bias metrics (SS and SEAT)) and language modeling
metrics (LMSStereoSet, GLUE, and SuperGLUE) for decoder-only models across different gender
debiasing techniques. Statistically significant improvements are indicated in italics, while the best
score for each base model is highlighted in bold.

Model SS (%) ↓
↑50 SEAT ↓ LMSStereoSet (%) ↑ GLUE (%) ↑ SuperGLUE (%) ↑

GPT-2 62.63±1.93 0.24±0.29 91.02±0.62 71.73±1.08 45.49±1.28

+ GRADIENDFemale/Male ↓3.54 59.09±2.00 ↑0.09 0.33±0.39 ↓0.59 90.44±0.61 ↓0.61 71.12±1.08 ↑0.86 46.34±1.27

+ GRADIENDFemale ↓3.27 59.36±2.01 ↑0.01 0.25±0.39 ↓0.20 90.82±0.61 ↓0.42 71.30±1.12 ↑0.49 45.97±1.20

+ GRADIENDMale ↑2.43 65.06±1.94 ↑0.09 0.33±0.36 ↑0.09 91.11±0.61 ↓0.42 71.31±1.09 ↑0.60 46.09±1.25

+ CDA ↓1.11 61.53±1.96 ↑0.07 0.31±0.29 ↓0.37 90.65±0.61 ↑1.48 73.20±1.25 ↑1.28 46.76±1.38

+ DROPOUT ↑0.09 62.72±1.92 ↑0.24 0.48±0.24 ↓0.69 90.33±0.63 ↓0.02 71.70±1.15 ↑0.46 45.94±1.45

+ INLP ↓2.27 60.36±1.95 ↓0.01 0.23±0.26 ↑0.23 91.25±0.59 ↑0.02 71.75±1.13 ↑0.29 45.78±1.20

+ RLACE ↓ 9.09 53 .54±1.93 ↓0.02 0.22±0.24 ↓ 15.36 75 .66±0.98 ↑0.59 72.31±1.08 ↑0.44 45.92±1.20

+ LEACE ↓1.40 61.23±1.98 ↑0.00 0.24±0.26 ↓0.07 90.96±0.61 ↓0.14 71.58±1.07 ↑0.35 45.83±1.24

+ SELFDEBIAS ↓0.83 61.80±1.96 – ↓ 2.48 88 .54±0.68 – –
+ SENTDEBIAS ↓ 6.59 56 .04±1.96 ↑0.11 0.34±0.27 ↓ 3.59 87 .43±0.71 ↓0.26 71.46±1.11 ↓1.15 44.33±1.18

+ GRADIENDFemale/Male + INLP ↓ 5.27 57 .36±1.97 ↑0.07 0.31±0.36 ↓0.27 90.75±0.61 ↓0.53 71.20±1.07 ↑0.82 46.30±1.27

+ GRADIENDFemale/Male + SENTDEBIAS↓2.69 59.94±2.03 ↑0.18 0.42±0.25 ↓0.79 90.24±0.62 ↓0.20 71.53±1.12 ↑0.47 45.96±1.24

+ CDA + INLP ↓3.73 58.90±1.96 ↑0.06 0.30±0.29 ↑0.81 91.83±0.56 ↑1.38 73.11±1.24 ↑1.39 46.87±1.32

+ DROPOUT + SENTDEBIAS ↓ 5.96 56 .67±2.00 ↑0.18 0.42±0.19 ↓ 5.99 85 .04±0.76 ↑0.55 72.27±1.25 ↑1.28 46.76±1.32

+ CDA + SENTDEBIAS ↓ 3.98 58 .65±1.96 ↑0.16 0.40±0.26 ↓1.22 89.81±0.63 ↑1.31 73.03±1.27 ↑0.78 46.27±1.34

+ DROPOUT + INLP ↓3.21 59.42±1.94 ↑0.22 0.46±0.23 ↓0.04 90.99±0.60 ↓0.02 71.70±1.13 ↑1.11 46.59±1.44

LLaMA 69.44±1.73 0.93±0.16 92.42±0.53 45.86±1.98 54.46±2.28

+ GRADIENDFemale/Male ↓0.23 69.21±1.75 ↓ 0.26 0 .67±0.10 ↓0.24 92.18±0.55 ↑1.02 46.88±1.91 ↓3.49 50.97±2.20

+ GRADIENDFemale ↓1.48 67.96±1.75 ↓0.06 0.87±0.14 ↓0.09 92.33±0.54 ↑3.33 49.19±1.84 ↓1.35 53.11±2.28

+ GRADIENDMale ↑0.07 69.51±1.76 ↓0.11 0.82±0.11 ↓0.16 92.26±0.55 ↓3.47 42.39±2.00 ↓2.10 52.35±2.09

+ INLP ↓2.83 66.61±1.81 ↓0.23 0.70±0.16 ↓0.48 91.95±0.55 ↓0.13 45.73±1.78 ↓ 4.88 49 .57±2.21

+ RLACE ↑0.30 69.74±1.73 ↓0.00 0.93±0.16 ↑0.05 92.47±0.53 ↑0.17 46.03±1.95 ↓ 11.49 42 .97±2.31

+ LEACE ↑0.03 69.47±1.73 ↓0.01 0.92±0.17 ↑0.05 92.47±0.53 ↑0.32 46.17±1.97 ↓ 11.53 42 .93±2.31

+ SELFDEBIAS ↓ 5.75 63 .69±1.86 – ↓ 31.14 61 .28±0.99 – –
+ SENTDEBIAS ↓2.90 66.53±1.79 ↓ 0.32 0 .61±0.14 ↑0.04 92.46±0.53 ↑1.32 47.18±1.92 ↓0.34 54.12±2.37

+ GRADIENDFemale/Male + INLP ↓ 9.41 60 .03±1.87 ↓ 0.33 0 .61±0.09 ↓0.90 91.53±0.60 ↑1.02 46.88±1.91 ↓ 8.97 45 .49±2.08

+ GRADIENDFemale/Male + SENTDEBIAS↓ 6.71 62 .73±1.88 ↓ 0.30 0 .63±0.10 ↓ 2.50 89 .93±0.64 ↑0.92 46.77±1.92 ↓4.06 50.40±2.16

LLaMA-Instruct 68.53±1.80 0.90±0.16 92.21±0.54 49.14±1.92 58.07±2.29

+ GRADIENDFemale/Male ↓2.29 66.24±1.87 ↓ 0.41 0 .49±0.15 ↓ 2.26 89 .95±0.63 ↓1.77 47.37±1.81 ↓ 5.07 53 .00±2.05

+ GRADIENDFemale ↓2.16 66.37±1.90 ↓0.19 0.71±0.20 ↓0.37 91.84±0.56 ↓3.02 46.12±1.83 ↑2.68 60.75±2.35

+ GRADIENDMale ↓1.61 66.92±1.88 ↓0.19 0.71±0.13 ↓ 1.84 90 .37±0.60 ↑ 11.33 60 .47±1.86 ↓1.71 56.36±2.28

+ INLP ↓2.40 66.13±1.82 ↓0.33 0.57±0.19 ↓0.22 91.99±0.55 ↓0.95 48.19±1.85 ↓0.72 57.35±2.34

+ RLACE ↑0.17 68.70±1.80 ↓0.20 0.70±0.20 ↑0.01 92.22±0.54 ↑0.10 49.24±1.93 ↓0.05 58.02±2.28

+ LEACE ↓0.37 68.16±1.82 ↓0.20 0.69±0.20 ↑0.05 92.26±0.54 ↓0.01 49.13±1.91 ↓0.23 57.84±2.29

+ SELFDEBIAS ↓ 10.35 58 .18±1.98 – ↓ 32.73 59 .48±1.00 – –
+ SENTDEBIAS ↓1.79 66.74±1.84 ↓ 0.47 0 .43±0.13 ↑0.02 92.24±0.54 ↓0.06 49.08±1.91 ↑0.49 58.56±2.31

+ GRADIENDFemale/Male + INLP ↓ 4.88 63 .65±1.87 ↓ 0.50 0 .39±0.13 ↓ 2.07 90 .15±0.61 ↓2.36 46.78±1.85 ↓ 7.99 50 .08±2.08

+ GRADIENDFemale/Male + SENTDEBIAS↓2.41 66.12±1.89 ↓ 0.43 0 .46±0.14 ↓ 2.30 89 .91±0.62 ↓0.91 48.23±1.85 ↓ 5.10 52 .97±2.04
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Table 16: Race: Comparison of bootstrapped bias metrics (SS and SEAT)) and language modeling
metrics (LMSStereoSet, GLUE, and SuperGLUE) for all models across different race debiasing tech-
niques. Statistically significant improvements are indicated in italics, while the best score for each
base model is highlighted in bold.

Model SS (%) ↓
↑50 SEAT ↓ LMSStereoSet (%) ↑ GLUE (%) ↑ SuperGLUE (%) ↑

BERTbase 57.04±1.01 0.52±0.26 82.50±0.81 78.09±1.59 51.82±1.67

+ GRADIENDAsian/Black ↓1.88 55.15±1.02 ↑0.08 0.60±0.28 ↓0.21 82.29±0.80 ↑0.47 78.56±1.60 ↑0.80 52.62±1.89

+ GRADIENDAsian/White ↓1.11 55.92±1.01 ↑0.08 0.60±0.24 ↓1.13 81.37±0.82 ↑0.65 78.74±1.61 ↑0.53 52.36±1.90

+ GRADIENDBlack/White ↑0.23 57.27±1.01 ↓0.01 0.51±0.26 ↓0.13 82.37±0.80 ↑0.28 78.37±1.56 ↑0.82 52.65±1.88

+ CDA ↑1.02 58.06±1.03 ↓0.26 0.26±0.13 ↓0.65 81.85±0.82 ↓0.22 77.88±1.48 ↑1.15 52.98±1.82

+ DROPOUT ↓0.54 56.50±1.02 ↓0.07 0.44±0.17 ↓ 1.75 80 .75±0.83 ↓1.40 76.69±1.44 ↓0.34 51.48±1.72

+ INLP ↓0.07 56.97±0.99 ↓0.02 0.50±0.19 ↑0.36 82.86±0.80 ↓0.24 77.86±1.23 ↓1.38 50.44±1.54

+ SELFDEBIAS ↓ 2.59 54 .45±1.04 – ↑0.06 82.56±0.83 – –
+ SENTDEBIAS ↓0.38 56.65±1.01 ↑0.00 0.52±0.26 ↓0.02 82.48±0.81 ↑0.04 78.14±1.58 ↓0.95 50.87±1.54

BERTlarge 57.00±1.02 0.45±0.10 82.89±0.80 79.98±1.31 53.74±1.62

+ GRADIENDAsian/Black ↑1.19 58.19±1.01 ↑0.04 0.49±0.13 ↓0.45 82.44±0.81 ↑0.40 80.38±1.55 ↑0.53 54.27±1.85

+ GRADIENDAsian/White ↓ 3.00 54 .00±1.01 ↑0.07 0.52±0.13 ↓1.11 81.77±0.83 ↑0.90 80.88±1.53 ↑0.84 54.58±1.85

+ GRADIENDBlack/White ↓0.04 56.96±1.02 ↑0.02 0.47±0.11 ↓0.23 82.66±0.81 ↑0.51 80.49±1.54 ↑0.68 54.42±1.87

+ CDA ↓0.01 57.00±1.03 ↓0.04 0.41±0.13 ↓0.47 82.42±0.80 ↓2.01 77.97±0.97 ↓0.59 53.15±1.73

+ DROPOUT ↓0.91 56.09±1.03 ↓0.03 0.42±0.12 ↓ 2.57 80 .32±0.82 ↓0.55 79.43±1.46 ↓0.52 53.22±1.68

+ INLP ↑0.01 57.01±1.04 ↑0.00 0.45±0.11 ↑0.17 83.06±0.79 ↑0.03 80.02±1.29 ↓0.24 53.50±1.58

+ SELFDEBIAS ↓1.02 55.98±1.02 – ↓0.00 82.88±0.79 – –
+ SENTDEBIAS ↓0.19 56.82±1.02 ↑0.00 0.45±0.10 ↓0.02 82.87±0.80 ↑0.12 80.10±1.53 ↓0.07 53.68±1.67

DistilBERT 56.09±1.04 0.30±0.16 82.06±0.80 74.47±1.59 49.69±1.65

+ GRADIENDAsian/Black ↑1.36 57.44±1.04 ↑0.02 0.32±0.16 ↓0.28 81.79±0.80 ↓0.06 74.41±1.60 ↑0.00 49.69±1.69

+ GRADIENDAsian/White ↓1.01 55.08±1.05 ↑0.00 0.30±0.16 ↓0.63 81.44±0.81 ↓0.12 74.34±1.60 ↑0.38 50.07±1.70

+ GRADIENDBlack/White ↓0.08 56.01±1.04 ↑0.03 0.33±0.17 ↓0.28 81.78±0.81 ↓0.08 74.38±1.47 ↓0.40 49.29±1.70

+ CDA ↑0.87 56.95±1.03 ↑0.05 0.36±0.12 ↓0.71 81.36±0.83 ↑0.19 74.65±1.45 ↑1.11 50.80±1.79

+ DROPOUT ↑1.12 57.21±1.02 ↑0.11 0.41±0.13 ↓ 1.82 80 .24±0.85 ↑0.70 75.17±1.50 ↑0.58 50.27±1.75

+ INLP ↓0.54 55.54±1.05 ↓0.09 0.21±0.12 ↓0.35 81.71±0.80 ↑0.17 74.64±1.57 ↑1.14 50.83±1.68

+ SELFDEBIAS ↓1.19 54.89±1.02 – ↓0.16 81.91±0.81 – –
+ SENTDEBIAS ↓0.03 56.06±1.05 ↑0.00 0.30±0.16 ↓0.40 81.66±0.81 ↑0.10 74.57±1.60 ↓0.22 49.47±1.62

RoBERTa 60.13±0.97 0.43±0.17 89.09±0.64 81.65±1.44 53.31±1.48

+ GRADIENDAsian/Black ↓ 6.26 53 .88±1.04 ↑0.02 0.44±0.12 ↓ 5.82 83 .26±0.78 ↓ 11.58 70 .07±1.48 ↓ 7.07 46 .24±1.51

+ GRADIENDAsian/White ↓ 5.57 54 .56±0.99 ↓0.03 0.40±0.14 ↓ 3.37 85 .71±0.75 ↓ 8.51 73 .14±0.86 ↓ 3.27 50 .04±1.49

+ GRADIENDBlack/White ↑ 3.37 63 .50±0.99 ↓0.01 0.42±0.17 ↑0.40 89.49±0.63 ↓ 5.20 76 .45±1.16 ↑0.41 53.72±1.67

+ CDA ↑0.49 60.62±0.97 ↓0.05 0.38±0.15 ↓ 3.32 85 .77±0.74 ↓0.07 81.58±1.29 ↑ 4.17 57 .48±1.71

+ DROPOUT ↓ 4.04 56 .09±0.98 ↑0.18 0.61±0.16 ↓ 3.74 85 .34±0.72 ↓ 14.16 67 .49±1.47 ↓2.25 51.05±1.62

+ INLP ↓0.83 59.31±0.98 ↑0.02 0.45±0.16 ↓0.52 88.57±0.65 ↓0.11 81.54±1.48 ↑0.46 53.77±1.19

+ SELFDEBIAS ↓ 2.32 57 .82±1.00 – ↓0.29 88.79±0.64 – –
+ SENTDEBIAS ↑0.28 60.42±0.97 ↑0.01 0.44±0.17 ↓0.08 89.01±0.64 ↓ 3.17 78 .48±1.30 ↑2.23 55.54±1.49

GPT-2 58.90±0.99 0.47±0.33 91.02±0.62 71.73±1.08 45.49±1.28

+ GRADIENDAsian/Black ↓ 5.87 53 .03±1.01 ↓0.07 0.40±0.30 ↓0.27 90.75±0.60 ↓0.58 71.14±1.01 ↓0.04 45.45±1.18

+ GRADIENDAsian/White ↓0.40 58.50±1.00 ↓0.06 0.41±0.27 ↓0.04 90.98±0.60 ↓1.08 70.65±0.98 ↑0.43 45.92±1.22

+ GRADIENDBlack/White ↑0.11 59.01±0.99 ↑0.01 0.48±0.33 ↓0.01 91.01±0.62 ↓0.22 71.50±1.07 ↑0.48 45.97±1.13

+ CDA ↓0.42 58.48±0.98 ↑0.02 0.49±0.29 ↓ 2.88 88 .15±0.67 ↑1.74 73.47±1.12 ↑1.47 46.96±1.27

+ DROPOUT ↓1.48 57.42±1.01 ↓0.08 0.39±0.38 ↓0.69 90.33±0.63 ↓0.02 71.70±1.15 ↑0.46 45.94±1.45

+ INLP ↑0.10 59.00±0.98 ↓0.00 0.47±0.33 ↑0.04 91.07±0.61 ↓0.28 71.45±1.08 ↑0.29 45.77±1.22

+ SELFDEBIAS ↓ 2.45 56 .45±1.01 – ↓ 1.99 89 .04±0.68 – –
+ SENTDEBIAS ↓ 2.46 56 .44±1.01 ↓0.10 0.37±0.21 ↑0.36 91.38±0.59 ↓0.18 71.55±1.09 ↓0.75 44.73±1.26

LLaMA 65.06±0.98 0.21±0.08 92.42±0.53 45.86±1.98 54.46±2.28

+ GRADIENDAsian/Black ↓ 2.20 62 .86±1.02 ↑0.02 0.23±0.07 ↓ 2.52 89 .91±0.64 ↑3.58 49.44±1.97 ↓2.43 52.02±2.27

+ GRADIENDAsian/White ↓0.99 64.07±0.99 ↑0.03 0.24±0.11 ↓0.76 91.67±0.56 ↑1.20 47.06±1.97 ↓0.05 54.40±2.22

+ GRADIENDBlack/White ↓0.65 64.41±0.99 ↑0.01 0.22±0.08 ↓0.42 92.01±0.55 ↓1.46 44.40±2.01 ↓0.70 53.76±2.03

+ INLP ↑0.23 65.29±0.99 ↓0.00 0.21±0.08 ↓0.16 92.26±0.54 ↑1.93 47.79±1.87 ↑0.38 54.84±2.12

+ SELFDEBIAS ↓ 5.78 59 .28±1.04 – ↓ 2.28 90 .14±0.59 – –
+ SENTDEBIAS ↓0.04 65.02±0.98 ↑0.01 0.22±0.09 ↓0.03 92.39±0.54 ↑0.52 46.38±1.93 ↑0.39 54.85±2.29

LLaMA-Instruct 63.72±0.98 0.34±0.14 92.21±0.54 49.14±1.92 58.07±2.29

+ GRADIENDAsian/Black ↓ 3.19 60 .53±0.98 ↑ 0.52 0 .86±0.01 ↓ 47.40 44 .81±1.04 ↓ 11.73 37 .41±1.75 ↓ 15.62 42 .45±2.13

+ GRADIENDAsian/White ↓ 9.50 54 .22±1.00 ↑0.05 0.39±0.05 ↓ 31.14 61 .07±0.96 ↓ 12.38 36 .76±1.75 ↓ 15.58 42 .49±2.47

+ GRADIENDBlack/White ↓0.69 63.03±0.98 ↑0.11 0.45±0.13 ↑0.05 92.26±0.54 ↓0.48 48.66±2.02 ↑0.58 58.65±2.05

+ INLP ↓0.23 63.49±1.00 ↑0.01 0.35±0.14 ↓0.00 92.21±0.54 ↑0.77 49.91±1.98 ↑0.28 58.35±2.34

+ SELFDEBIAS ↓ 5.91 57 .81±1.05 – ↓ 4.02 88 .19±0.68 – –
+ SENTDEBIAS ↓0.29 63.43±0.99 ↓0.00 0.34±0.14 ↓0.21 92.00±0.55 ↓0.19 48.95±1.96 ↑0.46 58.53±2.41
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Table 17: Religion: Comparison of bootstrapped bias metrics (SS and SEAT)) and language modeling
metrics (LMSStereoSet, GLUE, and SuperGLUE) for all models across different religion debiasing
techniques. Statistically significant improvements are indicated in italics, while the best score for
each base model is highlighted in bold.

Model SS (%) ↓
↑50 SEAT ↓ LMSStereoSet (%) ↑ GLUE (%) ↑ SuperGLUE (%) ↑

BERTbase 52.77±3.68 0.38±0.21 82.50±0.81 78.09±1.59 51.82±1.67

+ GRADIENDChristian/Jewish ↑3.28 56.05±3.65 ↑0.04 0.42±0.21 ↑0.04 82.54±0.81 ↑0.24 78.33±1.58 ↑1.17 53.00±1.89

+ GRADIENDChristian/Muslim ↑1.25 54.03±3.68 ↑0.08 0.47±0.18 ↑0.01 82.51±0.81 ↑0.34 78.43±1.57 ↑0.71 52.54±1.88

+ GRADIENDJewish/Muslim ↓0.91 51.86±3.64 ↑0.13 0.51±0.24 ↓0.11 82.39±0.81 ↑0.28 78.37±1.60 ↑0.89 52.71±1.89

+ CDA ↑2.43 55.21±3.56 ↓0.23 0.16±0.10 ↑0.32 82.82±0.81 ↑0.27 78.36±1.49 ↑1.26 53.08±1.83

+ DROPOUT ↓2.11 50.67±3.45 ↓0.00 0.38±0.16 ↓ 1.75 80 .75±0.83 ↓1.40 76.69±1.44 ↓0.34 51.48±1.72

+ INLP ↓0.54 52.23±3.67 ↓0.02 0.36±0.14 ↓0.67 81.83±0.82 ↓0.39 77.71±1.23 ↓1.13 50.70±1.58

+ SELFDEBIAS ↓1.33 51.45±3.59 – ↑0.05 82.55±0.82 – –
+ SENTDEBIAS ↓1.85 49.07±3.62 ↓0.02 0.36±0.21 ↓0.14 82.35±0.80 ↓0.22 77.88±1.03 ↓0.57 51.25±1.54

BERTlarge 56.12±3.50 0.75±0.24 82.89±0.80 79.98±1.31 53.74±1.62

+ GRADIENDChristian/Jewish ↓1.96 54.16±3.56 ↑0.11 0.86±0.23 ↓0.46 82.43±0.83 ↑0.90 80.88±1.55 ↑0.78 54.52±1.84

+ GRADIENDChristian/Muslim ↓1.76 54.36±3.55 ↑0.04 0.79±0.20 ↓0.33 82.56±0.81 ↑0.38 80.36±1.55 ↑0.83 54.58±1.86

+ GRADIENDJewish/Muslim ↑2.55 58.66±3.51 ↓0.02 0.73±0.14 ↑0.25 83.14±0.78 ↑0.64 80.62±1.55 ↑1.08 54.82±1.85

+ CDA ↓1.88 54.24±3.55 ↓0.10 0.65±0.16 ↓0.04 82.84±0.80 ↑0.43 80.42±1.53 ↑0.52 54.27±1.79

+ DROPOUT ↓1.64 54.48±3.44 ↑0.16 0.91±0.26 ↓ 2.57 80 .32±0.82 ↓0.55 79.43±1.46 ↓0.52 53.22±1.68

+ INLP ↓1.92 54.20±3.47 ↓0.19 0.56±0.17 ↓0.28 82.61±0.80 ↓0.12 79.86±1.08 ↓0.54 53.21±1.55

+ SELFDEBIAS ↓3.16 52.96±3.53 – ↓0.15 82.74±0.80 – –
+ SENTDEBIAS ↓0.27 55.85±3.54 ↓0.12 0.63±0.24 ↓0.13 82.75±0.80 ↑0.70 80.68±1.40 ↓0.07 53.67±1.64

DistilBERT 55.40±3.71 0.32±0.26 82.06±0.80 74.47±1.59 49.69±1.65

+ GRADIENDChristian/Jewish ↓1.20 54.20±3.73 ↑0.02 0.34±0.27 ↓0.07 82.00±0.81 ↑0.02 74.49±1.60 ↑0.06 49.75±1.69

+ GRADIENDChristian/Muslim ↓1.18 54.22±3.71 ↑0.05 0.37±0.27 ↓0.17 81.89±0.80 ↑0.03 74.50±1.60 ↑0.07 49.76±1.69

+ GRADIENDJewish/Muslim ↓1.97 53.42±3.74 ↑0.12 0.44±0.29 ↓0.40 81.66±0.81 ↓0.07 74.40±1.61 ↑0.23 49.91±1.68

+ CDA ↑0.64 56.04±3.51 ↓0.11 0.22±0.12 ↓0.28 81.78±0.81 ↑0.49 74.96±1.46 ↑0.80 50.49±1.80

+ DROPOUT ↑0.67 56.06±3.55 ↓0.08 0.25±0.13 ↓ 1.82 80 .24±0.85 ↑0.70 75.17±1.50 ↑0.58 50.27±1.75

+ INLP ↑0.36 55.75±3.71 ↓0.06 0.26±0.19 ↓0.46 81.60±0.81 ↑0.13 74.59±1.57 ↓0.05 49.64±1.65

+ SELFDEBIAS ↓3.10 52.29±3.60 – ↓0.48 81.59±0.83 – –
+ SENTDEBIAS ↓3.11 52.28±3.70 ↓0.03 0.29±0.21 ↓0.27 81.80±0.81 ↑0.07 74.54±1.60 ↑0.12 49.81±1.64

RoBERTa 64.66±3.33 0.39±0.21 89.09±0.64 81.65±1.44 53.31±1.48

+ GRADIENDChristian/Jewish ↓4.07 60.59±3.35 ↓0.06 0.33±0.14 ↓0.95 88.14±0.68 ↓ 9.08 72 .57±1.50 ↓0.65 52.66±1.66

+ GRADIENDChristian/Muslim ↓ 9.83 54 .83±3.39 ↓0.00 0.39±0.16 ↓0.44 88.65±0.65 ↑1.40 83.05±1.51 ↑ 3.35 56 .66±1.64

+ GRADIENDJewish/Muslim ↓4.83 59.83±3.45 ↓0.14 0.25±0.17 ↓0.18 88.90±0.67 ↑1.06 82.71±1.53 ↓2.19 51.12±1.65

+ CDA ↓6.07 58.59±3.53 ↓0.21 0.18±0.15 ↓ 3.39 85 .70±0.73 ↑0.83 82.48±1.51 ↑ 4.71 58 .02±1.68

+ DROPOUT ↓6.61 58.05±3.54 ↓0.01 0.38±0.13 ↓ 3.74 85 .34±0.72 ↓ 14.16 67 .49±1.47 ↓2.25 51.05±1.62

+ INLP ↓1.70 62.96±3.38 ↓0.01 0.38±0.21 ↓0.83 88.26±0.67 ↓ 3.95 77 .70±1.51 ↑1.64 54.95±1.51

+ SELFDEBIAS ↓2.71 61.95±3.29 – ↓0.30 88.79±0.64 – –
+ SENTDEBIAS ↓3.17 61.49±3.48 ↑0.07 0.46±0.23 ↓0.04 89.05±0.64 ↓1.04 80.61±0.86 ↓0.60 52.71±1.21

GPT-2 63.22±3.50 0.36±0.27 91.02±0.62 71.73±1.08 45.49±1.28

+ GRADIENDChristian/Jewish ↑0.21 63.43±3.39 ↑0.00 0.36±0.28 ↓0.16 90.87±0.63 ↓0.00 71.73±0.98 ↑1.18 46.67±1.11

+ GRADIENDChristian/Muslim ↓ 9.31 53 .91±3.51 ↑0.14 0.49±0.26 ↓1.06 89.96±0.65 ↓1.56 70.16±1.04 ↑1.54 47.02±1.33

+ GRADIENDJewish/Muslim ↓2.16 61.06±3.51 ↑0.11 0.46±0.21 ↓1.19 89.84±0.65 ↑0.05 71.78±1.11 ↑1.15 46.64±1.26

+ CDA ↑3.87 67.10±3.46 ↑0.04 0.40±0.32 ↓ 1.58 89 .44±0.65 ↑1.59 73.32±1.23 ↑2.61 48.10±1.42

+ DROPOUT ↑1.73 64.96±3.54 ↓0.08 0.28±0.26 ↓0.69 90.33±0.63 ↓0.02 71.70±1.15 ↑0.46 45.94±1.45

+ INLP ↑0.68 63.91±3.51 ↓0.00 0.35±0.27 ↑0.17 91.19±0.61 ↓0.21 71.52±1.06 ↑0.29 45.77±1.21

+ SELFDEBIAS ↓4.01 59.21±3.55 – ↓ 2.14 88 .89±0.67 – –
+ SENTDEBIAS ↓3.60 59.62±3.54 ↑0.07 0.43±0.28 ↓0.49 90.53±0.64 ↑0.16 71.88±1.06 ↑0.80 46.29±1.28

LLaMA 66.44±3.38 0.28±0.09 92.42±0.53 45.86±1.98 54.46±2.28

+ GRADIENDChristian/Jewish ↓3.78 62.67±3.41 ↓0.03 0.26±0.11 ↓ 1.21 91 .21±0.58 ↓ 7.54 38 .32±2.06 ↓1.90 52.56±2.17

+ GRADIENDChristian/Muslim ↑1.77 68.21±3.23 ↓0.07 0.21±0.15 ↓0.16 92.27±0.53 ↓1.40 44.46±2.03 ↓2.35 52.11±2.12

+ GRADIENDJewish/Muslim ↓ 8.71 57 .74±3.51 ↑0.08 0.36±0.11 ↓ 2.20 90 .22±0.62 ↑0.69 46.54±1.90 ↓1.87 52.59±2.17

+ INLP ↓1.74 64.71±3.38 ↓0.02 0.26±0.08 ↑0.00 92.42±0.53 ↑2.28 48.14±1.84 ↑0.21 54.66±2.30

+ SELFDEBIAS ↓1.41 65.03±3.35 – ↓ 31.14 61 .28±1.00 – –
+ SENTDEBIAS ↓2.65 63.80±3.45 ↓0.03 0.26±0.08 ↑0.02 92.44±0.53 ↓0.04 45.82±1.96 ↓0.17 54.29±2.28

LLaMA-Instruct 65.83±3.35 0.20±0.09 92.21±0.54 49.14±1.92 58.07±2.29

+ GRADIENDChristian/Jewish ↑0.39 66.22±3.33 ↑0.01 0.21±0.09 ↑0.12 92.34±0.55 ↑0.31 49.45±2.00 ↑2.03 60.10±1.95

+ GRADIENDChristian/Muslim ↓ 12.92 47 .09±3.22 ↑ 0.69 0 .89±0.13 ↓ 16.74 75 .47±0.88 ↓ 4.46 44 .68±1.30 ↓4.30 53.77±2.17

+ GRADIENDJewish/Muslim ↓1.91 63.92±3.43 ↑0.30 0.50±0.24 ↓ 1.60 90 .61±0.58 ↑0.09 49.23±1.95 ↑1.67 59.74±2.18

+ INLP ↓1.40 64.43±3.31 ↓0.01 0.19±0.09 ↓0.40 91.81±0.57 ↑0.50 49.64±1.99 ↓0.15 57.92±2.40

+ SELFDEBIAS ↓4.16 61.68±3.36 – ↓ 33.02 59 .19±1.01 – –
+ SENTDEBIAS ↓2.88 62.95±3.42 ↓0.04 0.16±0.08 ↓0.14 92.08±0.55 ↓0.35 48.79±1.97 ↑0.46 58.53±2.41
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Table 18: Gender: GLUE bootstrapped validation set scores with sub-results for encoder-only
models. Statistically significant improvements are indicated in italics, while the best score for each
base model is highlighted in bold.

Model CoLA MNLI-M MNLI-MM MRPC QNLI QQP RTE SST-2 STS-B WNLI Average ↑

BERTbase 55.60 83.40 83.97 86.32 90.19 90.21 60.95 91.34 88.71 55.83 78.09±1.59

+ GRADIENDFemale/Male 53.04 83.63 84.29 86.91 90.66 90.40 63.85 91.57 88.16 56.80 ↑0.28 78.37±1.55

+ GRADIENDFemale 53.54 83.58 84.17 86.66 90.47 90.38 64.20 91.33 88.13 57.22 ↑0.33 78.42±1.59

+ GRADIENDMale 52.24 83.51 84.21 86.94 90.65 90.34 63.96 91.56 88.19 56.77 ↑0.18 78.28±1.58

+ CDA 54.73 83.90 84.14 90.48 90.56 90.24 65.76 91.22 86.77 56.30 ↑0.80 78.90±1.55

+ DROPOUT 46.09 82.64 83.36 87.85 90.51 89.77 61.47 91.71 84 .84 55.00 ↓1.40 76.69±1.44

+ INLP 53.97 83.66 84.12 87.09 90.57 90.23 61.48 92.10 88.32 55.35 ↑0.02 78.11±1.55

+ RLACE 55.47 83.40 83.90 86.02 90.22 90.20 60.70 91.16 88.69 55.83 ↓0.10 77.99±1.59

+ LEACE 55.28 83.39 83.94 86.20 90.16 90.24 60.96 91.46 88.66 55.36 ↓0.10 78.00±1.58

+ SENTDEBIAS 54.50 83.57 83.92 87.01 90.25 90.22 61.77 91.57 88.46 51.60 ↓0.41 77.68±1.02

+ GRADIENDFemale/Male + INLP 53.91 83.52 83.84 87.25 90.58 90.39 64.92 91.57 87.88 56.35 ↑0.41 78.50±1.42

+ GRADIENDFemale/Male + SENTDEBIAS 53.22 83.69 84.22 86.96 90.64 90.40 64.21 91.53 88.16 56.80 ↑0.34 78.43±1.55

+ CDA + INLP 54.34 83.69 84.11 89.73 90.64 90.34 64.68 91.75 86.55 51.74 ↑0.09 78.19±1.42

+ DROPOUT + SENTDEBIAS 46.09 82.83 83.58 87.95 90.54 89.80 61.95 91.71 84 .80 55.00 ↓1.31 76.78±1.44

+ CDA + SENTDEBIAS 54.47 83.80 84.05 90.45 90.55 90.21 65.76 91.56 86.74 56.30 ↑0.79 78.88±1.55

+ DROPOUT + INLP 46.04 82.97 83.62 87.67 90.36 89 .55 62.09 91.83 83 .92 54.07 ↓1.56 76.53±1.40

BERTlarge 62.19 86.19 86.38 88.62 92.22 90.50 66.59 93.31 88.52 51.59 79.98±1.31

+ GRADIENDFemale/Male 60.14 85.58 86.08 89.93 92.16 90.58 66.10 92.84 89.20 55.36 ↑0.26 80.24±1.14

+ GRADIENDFemale 61.53 85.85 86.07 87.76 91.98 90.23 66.51 93.10 89.23 56.27 ↑0.31 80.29±1.55

+ GRADIENDMale 62.25 85.68 86.20 88.08 92.06 90.53 65.51 92.76 89.50 56.27 ↑0.34 80.32±1.55

+ CDA 61.38 85.56 85.96 89.98 92.04 90.56 59.44 93.00 88.56 46.90 ↓1.36 78.63±1.41

+ DROPOUT 54.54 85.95 86.11 90.26 91.97 90.09 65.85 93.08 88.24 54.86 ↓0.55 79.43±1.46

+ INLP 60.00 85.78 86.27 89.56 92.11 90.29 67.58 92.72 89.46 54.74 ↑0.30 80.28±1.39

+ RLACE 58.84 86.29 86.38 89.08 92.21 90.39 65.99 92.98 89.23 52.98 ↓0.20 79.78±1.38

+ LEACE 62.70 85.85 86.17 88.94 91.89 90.34 68.07 92.83 89.03 52.50 ↑0.28 80.26±1.24

+ SENTDEBIAS 62.65 86.06 86.47 89.85 92.08 90.47 67.43 93.26 89.27 55.31 ↑0.75 80.73±1.49

+ GRADIENDFemale/Male + INLP 61.18 85.66 86.21 89.62 91.89 90.47 65.85 92.96 89.45 54.34 ↑0.21 80.19±1.25

+ GRADIENDFemale/Male + SENTDEBIAS 59.87 85.60 86.13 89.78 92.02 90.50 66.35 92.95 89.22 53.47 ↑0.02 80.00±1.05

+ CDA + INLP 61.26 85.48 85.98 89.87 91.90 90.50 59.76 92.84 88.49 44.70 ↓1.64 78.34±1.10

+ DROPOUT + SENTDEBIAS 3 .14 85.82 85.75 88.98 91.96 90.33 64.50 93.08 85 .65 57.65 ↓ 6.53 73 .45±1.39

+ CDA + SENTDEBIAS 62.90 85.50 86.05 90.03 91.80 90.52 62.80 92.78 88.60 46.45 ↓0.91 79.07±1.38

+ DROPOUT + INLP 37 .35 85.58 86.19 90.21 92.19 90.38 63.96 91.87 88.39 46.35 ↓ 3.69 76 .29±1.16

DistilBERT 43.90 80.57 81.24 85.79 87.00 88.99 55.13 90.55 81.68 56.27 74.47±1.59

+ GRADIENDFemale/Male 43.80 80.60 81.23 85.43 87.07 89.01 55.02 90.70 81.82 56.27 ↓0.02 74.45±1.59

+ GRADIENDFemale 43.36 80.58 81.22 85.76 87.26 88.99 54.56 90.47 81.58 56.27 ↓0.12 74.35±1.61

+ GRADIENDMale 43.91 80.80 81.26 85.80 87.00 89.02 55.73 90.61 82.00 54.96 ↓0.01 74.45±1.54

+ CDA 43.73 80.67 81.42 86.84 87.30 88.95 58.05 90.35 82.89 52.64 ↑0.18 74.64±1.46

+ DROPOUT 43.16 80.35 81.14 87.91 87.41 88.85 60.61 90.37 82.99 54.50 ↑0.70 75.17±1.50

+ INLP 43.63 80.63 81.10 85.04 87.16 89.07 55.93 90.82 81.59 56.27 ↑0.02 74.49±1.59

+ RLACE 44.03 80.57 81.19 85.68 86.96 89.03 55.26 90.78 81.71 56.27 ↑0.04 74.51±1.59

+ LEACE 42.92 80.66 81.18 85.64 87.08 89.02 54.44 90.52 81.65 55.82 ↓0.24 74.22±1.54

+ SENTDEBIAS 44.14 80.73 81.17 85.66 87.02 89.04 55.51 90.59 81.72 56.27 ↑0.08 74.54±1.59

+ GRADIENDFemale/Male + INLP 43.31 80.71 81.13 85.06 87.19 88.99 55.95 90.55 81.69 56.27 ↓0.03 74.44±1.59

+ GRADIENDFemale/Male + SENTDEBIAS 43.55 80.57 81.22 84.95 86.90 89.03 54.81 90.19 81.74 56.27 ↓0.21 74.26±1.60

+ CDA + INLP 44.22 80.61 81.43 87.44 87.15 88.91 58.90 90.55 82.94 51.29 ↑0.25 74.71±1.33

+ DROPOUT + SENTDEBIAS 43.49 80.37 81.08 88.06 87.42 88.80 60.12 90.37 83.04 55.41 ↑0.80 75.27±1.51

+ CDA + SENTDEBIAS 43.80 80.60 81.43 86.84 87.40 88.98 57.82 90.34 82.91 54.05 ↑0.33 74.79±1.43

+ DROPOUT + INLP 42.34 80.32 80.97 87.23 87.83 88.81 63.31 90.06 82.68 55.91 ↑0.96 75.42±1.48

RoBERTa 62.67 90.08 89.96 91.00 94.12 90.95 68.17 94.86 91.04 52.03 81.65±1.44

+ GRADIENDFemale/Male 60.27 89.86 89.80 89.46 94.46 91.04 75 .86 95.57 91.82 53.89 ↑0.82 82.47±1.53

+ GRADIENDFemale 61.45 89.95 89.88 89.99 94.18 91.00 72.85 80 .30 91.00 54.83 ↓1.04 80.61±1.55

+ GRADIENDMale 60.72 89.61 89.64 90.77 93.77 81 .81 67.13 95.77 91.37 51.52 ↓1.37 80.28±1.50

+ CDA 62.95 90.18 89.82 91.43 94.23 91.00 76 .80 95.94 91.82 51.15 ↑1.16 82.81±1.41

+ DROPOUT 24 .12 53 .46 53 .39 89.79 94.45 90.53 61.06 50 .93 88 .73 54.36 ↓ 14.16 67 .49±1.47

+ INLP 62.65 90.00 90.02 87.88 94.41 91.07 80 .04 95.62 91.47 56.27 ↑1.62 83.27±1.51

+ RLACE 61.23 71 .78 71 .61 90.01 94.34 91.19 75 .81 95.72 91.44 53.87 ↓1.06 80.59±1.53

+ LEACE 62.87 89.89 89.55 89.44 94.31 91 .58 72.47 95.06 91.54 47.74 ↓0.01 81.64±1.23

+ SENTDEBIAS 22 .58 89.85 89.64 91.27 94.29 91.17 68.65 95.80 91.40 49.71 ↓ 4.47 77 .18±1.23

+ GRADIENDFemale/Male + INLP 64.94 71 .83 71 .61 89.67 79 .71 91.43 76 .61 95.42 90.91 56.27 ↓2.02 79.63±1.53

+ GRADIENDFemale/Male + SENTDEBIAS 61.26 41 .48 41 .40 89.69 79 .66 91.34 76 .23 95.54 91.98 50.19 ↓ 6.39 75 .26±1.44

+ CDA + INLP 61.27 89.77 89.88 90.43 94.46 91.08 79 .72 95.53 91.83 56.27 ↑1.73 83.38±1.53

+ DROPOUT + SENTDEBIAS 36 .23 89.69 89.77 85 .84 94.11 90.92 60 .08 95.32 88 .33 51.46 ↓ 4.76 76 .89±1.32

+ CDA + SENTDEBIAS 62.66 89.97 89.82 89.42 94.24 91.44 79 .24 95.77 91.86 49.23 ↑0.99 82.64±1.32

+ DROPOUT + INLP 30 .25 89.84 89.58 87.94 94.37 81 .78 55 .99 80 .69 87 .65 55.79 ↓ 7.85 73 .80±1.45
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Table 19: Gender: GLUE bootstrapped validation set scores with sub-results for decoder-only
models. Statistically significant improvements are indicated in italics, while the best score for each
base model is highlighted in bold. GPT-2 results were computed after fine-tuning and LLaMA-based
results were computed with zero-shot evaluation.

Model CoLA MNLI-M MNLI-MM MRPC QNLI QQP RTE SST-2 STS-B WNLI Average ↑

GPT-2 20.51 81.10 82.02 83.75 87.54 88.59 59.87 91.45 80.30 51.96 71.73±1.08

+ GRADIENDFemale/Male 14.21 81.07 81.91 83.87 87.34 88.58 62.68 91.72 80.41 49.79 ↓0.61 71.12±1.08

+ GRADIENDFemale 11.43 81.03 82.06 83.02 87.64 88.56 63.60 91.64 80.81 53.46 ↓0.42 71.30±1.12

+ GRADIENDMale 16.22 81.08 81.89 84.01 87.29 88.49 62.66 91.06 80.75 49.80 ↓0.42 71.31±1.09

+ CDA 32 .79 80.82 81.90 84.54 87.70 88.60 61.80 90.72 80.98 50.35 ↑1.48 73.20±1.25

+ DROPOUT 20.09 80.57 81.74 83.68 87.03 88.09 62.68 91.03 81.07 50.48 ↓0.02 71.70±1.15

+ INLP 20.10 81.06 81.99 83.69 87.67 88.54 61.20 91.72 80.28 51.02 ↑0.02 71.75±1.13

+ RLACE 23.21 81.06 82.05 83.77 87.51 88.69 62.51 91.38 80.19 52.02 ↑0.59 72.31±1.08

+ LEACE 20.05 81.14 81.99 83.39 87.54 88.57 61.19 91.34 80.53 50.09 ↓0.14 71.58±1.07

+ SENTDEBIAS 18.97 80.98 81.97 83.53 87.52 88.58 61.70 91.37 81.26 48.75 ↓0.26 71.46±1.11

+ GRADIENDFemale/Male + INLP 13.85 81.09 81.88 84.34 87.33 88.56 63.14 91.83 80.47 49.79 ↓0.53 71.20±1.07

+ GRADIENDFemale/Male + SENTDEBIAS 9 .97 80.97 81.83 83.87 87.28 88.60 63.27 91.84 81.63 55.90 ↓0.20 71.53±1.12

+ CDA + INLP 32 .21 80.86 81.90 84.51 87.67 88.61 63.00 90.65 81.02 48.94 ↑1.38 73.11±1.24

+ DROPOUT + SENTDEBIAS 21.52 80.62 81.73 83.34 87.05 87 .94 63.53 90.88 82.22 52.82 ↑0.55 72.27±1.25

+ CDA + SENTDEBIAS 30 .85 80.88 81.83 84.84 87.71 88.58 62.43 91.18 81.37 48.96 ↑1.31 73.03±1.27

+ DROPOUT + INLP 19.24 80.57 81.73 83.52 87.05 88 .00 62.80 91.03 81.06 51.46 ↓0.02 71.70±1.13

LLaMA −8.08 34.96 35.97 69.14 49.93 37.34 54.19 74.03 – 54.86 45.86±1.98

+ GRADIENDFemale/Male −2.30 35.12 36.46 72.83 55 .56 39 .18 52.40 62 .60 – 58.95 ↑1.02 46.88±1.91

+ GRADIENDFemale −0.21 35.80 37.21 80 .37 49.59 36.86 57.10 78.38 – 54.88 ↑3.33 49.19±1.84

+ GRADIENDMale −6.67 34.67 35.39 48 .64 51.84 39 .94 54.56 58 .06 – 57.70 ↓3.47 42.39±2.00

+ INLP 0 .00 32 .26 32 .65 81 .10 49.45 36.83 48.04 61 .66 – 56.27 ↓0.13 45.73±1.78

+ RLACE −8.76 34.40 35.38 72.49 49.69 37.06 53.42 74.60 – 54.86 ↑0.17 46.03±1.95

+ LEACE −9.46 34.27 35.06 72.07 49.65 37.07 53.75 75.39 – 56.27 ↑0.32 46.17±1.97

+ SENTDEBIAS −7.12 35.10 35.93 76.60 49.57 36.95 55.26 74.40 – 56.27 ↑1.32 47.18±1.92

+ GRADIENDFemale/Male + INLP −2.30 35.12 36.46 72.83 55 .56 39 .18 52.40 62 .60 – 58.95 ↑1.02 46.88±1.91

+ GRADIENDFemale/Male + SENTDEBIAS −2.17 34.83 36.11 79 .51 51.20 37.28 53.05 62 .25 – 57.59 ↑0.92 46.77±1.92

LLaMA-Instruct 16.85 48.12 47.97 4.67 57.34 63.30 64.69 73.02 – 65.20 49.14±1.92

+ GRADIENDFemale/Male 2 .64 35 .76 35 .89 79 .39 49 .16 39 .26 53.16 61 .62 – 57.90 ↓1.77 47.37±1.81

+ GRADIENDFemale 17.72 45 .86 45 .91 1.39 51 .67 54 .87 67.15 66 .39 – 63.86 ↓3.02 46.12±1.83

+ GRADIENDMale 14.80 46.62 45.98 79 .76 70 .76 68 .93 70.99 77.16 – 55.05 ↑ 11.33 60 .47±1.86

+ INLP 16.09 44 .35 44 .47 0.68 54 .17 63.09 66.00 73.54 – 67.53 ↓0.95 48.19±1.85

+ RLACE 17.03 48.19 48.20 4.89 57.36 63.39 64.22 72.71 – 66.15 ↑0.10 49.24±1.93

+ LEACE 16.74 48.51 48.06 4.22 57.17 63.02 64.97 72.48 – 66.15 ↓0.01 49.13±1.91

+ SENTDEBIAS 16.26 48.46 48.20 4.22 56.67 63.11 64.97 72.94 – 66.15 ↓0.06 49.08±1.91

+ GRADIENDFemale/Male + INLP −0 .94 35 .86 36 .18 81 .01 47 .15 36 .82 54.52 58 .99 – 60.70 ↓2.36 46.78±1.85

+ GRADIENDFemale/Male + SENTDEBIAS 5.83 35 .93 35 .93 80 .17 49 .07 38 .51 52 .69 62 .88 – 60.79 ↓0.91 48.23±1.85
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Table 20: Race: GLUE bootstrapped validation set scores with sub-results for all models. Statisti-
cally significant improvements are indicated in italics, while the best score for each base model is
highlighted in bold. LLaMA-based results were computed with zero-shot evaluation while all other
scores are derived after fine-tuning.

Model CoLA MNLI-M MNLI-MM MRPC QNLI QQP RTE SST-2 STS-B WNLI Average ↑

BERTbase 55.60 83.40 83.97 86.32 90.19 90.21 60.95 91.34 88.71 55.83 78.09±1.59

+ GRADIENDAsian/Black 51.67 83.71 84.07 87.83 90.24 90.30 66.87 91.37 88.14 56.76 ↑0.47 78.56±1.60

+ GRADIENDAsian/White 53.08 83.62 84.02 89.03 90.32 90.27 65.52 91.21 88.21 57.22 ↑0.65 78.74±1.61

+ GRADIENDBlack/White 51.51 83.62 84.04 87.78 90.26 90.27 65.87 91.68 88.29 55.87 ↑0.28 78.37±1.56

+ CDA 49.85 83.55 84.08 89.67 90.65 90.37 63.43 91.23 87.38 54.49 ↓0.22 77.88±1.48

+ DROPOUT 46.09 82.64 83.36 87.85 90.51 89.77 61.47 91.71 84 .84 55.00 ↓1.40 76.69±1.44

+ INLP 54.35 83.67 84.12 86.66 90.64 90.30 60.43 92.21 88.27 53.97 ↓0.24 77.86±1.23

+ SENTDEBIAS 56.00 83.50 83.95 86.20 90.21 90.26 60.69 92.07 88.71 55.36 ↑0.04 78.14±1.58

BERTlarge 62.19 86.19 86.38 88.62 92.22 90.50 66.59 93.31 88.52 51.59 79.98±1.31

+ GRADIENDAsian/Black 60.70 85.50 86.09 88.57 92.21 90.60 66.80 93.10 89.42 56.27 ↑0.40 80.38±1.55

+ GRADIENDAsian/White 63.00 85.56 86.06 90.39 92.19 90.62 67.28 92.92 89.47 56.27 ↑0.90 80.88±1.53

+ GRADIENDBlack/White 61.61 85.64 86.21 88.96 92.04 90.46 66.06 93.53 89.59 56.27 ↑0.51 80.49±1.54

+ CDA 58.44 85.64 86.13 88.38 92.10 90.72 57.72 92.27 87.41 48.81 ↓2.01 77.97±0.97

+ DROPOUT 54.54 85.95 86.11 90.26 91.97 90.09 65.85 93.08 88.24 54.86 ↓0.55 79.43±1.46

+ INLP 59.69 85.70 86.09 89.17 92.31 90.55 67.70 93.27 89.55 52.00 ↑0.03 80.02±1.29

+ SENTDEBIAS 59.07 85.66 86.10 89.19 92.09 90.47 67.06 93.14 89.60 54.39 ↑0.12 80.10±1.53

DistilBERT 43.90 80.57 81.24 85.79 87.00 88.99 55.13 90.55 81.68 56.27 74.47±1.59

+ GRADIENDAsian/Black 44.99 80.38 81.34 84.95 87.01 89.03 54.66 90.14 81.75 56.27 ↓0.06 74.41±1.60

+ GRADIENDAsian/White 44.60 80.43 81.45 84.46 86.99 88.90 55.03 90.02 81.88 56.27 ↓0.12 74.34±1.60

+ GRADIENDBlack/White 45.36 80.35 81.30 85.41 86.98 89.00 53.58 90.14 81.75 56.41 ↓0.08 74.38±1.47

+ CDA 41.08 80.59 81.47 87.58 87.33 88.96 59.55 90.28 83.87 52.21 ↑0.19 74.65±1.45

+ DROPOUT 43.16 80.35 81.14 87.91 87.41 88.85 60.61 90.37 82.99 54.50 ↑0.70 75.17±1.50

+ INLP 43.54 80.35 81.22 86.14 87.33 88.99 56.25 89.94 82.02 56.75 ↑0.17 74.64±1.57

+ SENTDEBIAS 45.49 80.36 81.34 85.39 87.25 89.01 55.04 90.06 81.77 56.27 ↑0.10 74.57±1.60

RoBERTa 62.67 90.08 89.96 91.00 94.12 90.95 68.17 94.86 91.04 52.03 81.65±1.44

+ GRADIENDAsian/Black 57.99 71 .27 71 .35 85 .31 50 .55 77 .15 60.87 80 .55 91.17 55.75 ↓ 11.58 70 .07±1.48

+ GRADIENDAsian/White 20 .38 89.63 89.74 89.65 79 .57 91.39 65.77 80 .47 90.25 51.07 ↓ 8.51 73 .14±0.86

+ GRADIENDBlack/White 39 .60 71 .75 71 .64 90.36 94.13 91.04 61.99 95.54 91.63 52.06 ↓ 5.20 76 .45±1.16

+ CDA 62.15 90.06 89.88 91.21 94.11 91 .52 67.69 95.28 91.75 50.58 ↓0.07 81.58±1.29

+ DROPOUT 24 .12 53 .46 53 .39 89.79 94.45 90.53 61.06 50 .93 88 .73 54.36 ↓ 14.16 67 .49±1.47

+ INLP 63.42 89.99 89.82 89.86 94.10 91.33 65.04 95.72 91.54 52.97 ↓0.11 81.54±1.48

+ SENTDEBIAS 34 .80 89.95 89.55 89.10 94.13 91.45 66.81 96.15 91.66 52.44 ↓ 3.17 78 .48±1.30

GPT-2 20.51 81.10 82.02 83.75 87.54 88.59 59.87 91.45 80.30 51.96 71.73±1.08

+ GRADIENDAsian/Black 16.57 80.98 81.83 84.24 87.64 88.47 60.89 91.62 82.05 47.39 ↓0.58 71.14±1.01

+ GRADIENDAsian/White 13.03 80.94 81.82 83.67 87.55 88.54 62.24 91.90 80.67 46.88 ↓1.08 70.65±0.98

+ GRADIENDBlack/White 18.45 80.97 81.90 83.68 87.61 88.51 62.99 91.87 81.59 47.39 ↓0.22 71.50±1.07

+ CDA 30 .53 80.64 81.90 85.00 87.60 88.54 64.52 90.80 82.65 50.34 ↑1.74 73.47±1.12

+ DROPOUT 20.09 80.57 81.74 83.68 87.03 88.09 62.68 91.03 81.07 50.48 ↓0.02 71.70±1.15

+ INLP 18.83 81.05 82.00 83.67 87.72 88.49 62.89 91.67 81.34 46.89 ↓0.28 71.45±1.08

+ SENTDEBIAS 17.97 80.96 81.97 84.22 87.59 88.53 62.72 91.86 81.75 47.85 ↓0.18 71.55±1.09

LLaMA −8.08 34.96 35.97 69.14 49.93 37.34 54.19 74.03 – 54.86 45.86±1.98

+ GRADIENDAsian/Black −4.95 35.67 35.97 75.32 58 .03 59 .46 55.88 58 .35 – 57.57 ↑3.58 49.44±1.97

+ GRADIENDAsian/White 1.02 36 .92 37.11 49 .54 53 .52 54 .11 60.52 57 .42 – 63.29 ↑1.20 47.06±1.97

+ GRADIENDBlack/White −7.39 34.50 35.06 59 .49 50.71 44 .97 52.69 65 .10 – 54.86 ↓1.46 44.40±2.01

+ INLP −7.99 38 .14 39 .18 72.46 49.94 37.38 58.20 76.00 – 57.65 ↑1.93 47.79±1.87

+ SENTDEBIAS −8.55 35.88 36.77 71.42 49.57 37.08 57.40 72.90 – 54.86 ↑0.52 46.38±1.93

LLaMA-Instruct 16.85 48.12 47.97 4.67 57.34 63.30 64.69 73.02 – 65.20 49.14±1.92

+ GRADIENDAsian/Black 0 .00 32 .75 32 .93 0 .00 50 .55 63.17 47 .34 49 .11 – 56.27 ↓ 11.73 37 .41±1.75

+ GRADIENDAsian/White 0 .00 33 .29 33 .38 0 .00 50 .55 63.17 52 .32 51 .00 – 43.73 ↓ 12.38 36 .76±1.75

+ GRADIENDBlack/White 9.81 45 .43 45 .32 22 .41 65 .11 41 .61 69.25 69.62 – 66.14 ↓0.48 48.66±2.02

+ INLP 16.34 49.30 49.46 7.63 59.36 65 .00 66.77 74.21 – 60.58 ↑0.77 49.91±1.98

+ SENTDEBIAS 15.80 48.56 48.60 6.47 57.25 64.09 66.53 71.35 – 61.53 ↓0.19 48.95±1.96
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Table 21: Religion: GLUE bootstrapped validation set scores with sub-results for all models.
Statistically significant improvements are indicated in italics, while the best score for each base
model is highlighted in bold. LLaMA-based results were computed with zero-shot evaluation while
all other scores are derived after fine-tuning.

Model CoLA MNLI-M MNLI-MM MRPC QNLI QQP RTE SST-2 STS-B WNLI Average ↑

BERTbase 55.60 83.40 83.97 86.32 90.19 90.21 60.95 91.34 88.71 55.83 78.09±1.59

+ GRADIENDChristian/Jewish 51.16 83.58 84.07 87.50 90.33 90.30 65.02 91.79 88.32 56.77 ↑0.24 78.33±1.58

+ GRADIENDChristian/Muslim 51.14 83.57 83.91 88.04 90.20 90.29 65.51 91.72 88.44 56.82 ↑0.34 78.43±1.57

+ GRADIENDJewish/Muslim 51.51 83.62 83.99 87.58 90.22 90.25 65.27 91.52 87.98 57.23 ↑0.28 78.37±1.60

+ CDA 52.47 83.50 83.81 89.94 90.35 90.36 65.03 91.12 87.41 54.97 ↑0.27 78.36±1.49

+ DROPOUT 46.09 82.64 83.36 87.85 90.51 89.77 61.47 91.71 84 .84 55.00 ↓1.40 76.69±1.44

+ INLP 55.22 83.72 84.16 86.67 90.63 90.27 61.41 91.72 88.34 51.15 ↓0.39 77.71±1.23

+ SENTDEBIAS 55.66 83.36 83.94 86.20 90.23 90.23 63.33 91.50 88.50 51.60 ↓0.22 77.88±1.03

BERTlarge 62.19 86.19 86.38 88.62 92.22 90.50 66.59 93.31 88.52 51.59 79.98±1.31

+ GRADIENDChristian/Jewish 61.94 85.72 86.20 89.01 91.99 90.65 68.89 93.42 89.76 56.27 ↑0.90 80.88±1.55

+ GRADIENDChristian/Muslim 60.73 85.45 86.10 88.21 92.12 90.57 66.90 92.98 89.67 56.27 ↑0.38 80.36±1.55

+ GRADIENDJewish/Muslim 62.57 85.70 86.24 89.05 92.11 90.81 66.08 93.07 89.69 56.27 ↑0.64 80.62±1.55

+ CDA 59.36 85.58 86.06 90.45 91.70 90.59 68.03 93.00 88.46 56.33 ↑0.43 80.42±1.53

+ DROPOUT 54.54 85.95 86.11 90.26 91.97 90.09 65.85 93.08 88.24 54.86 ↓0.55 79.43±1.46

+ INLP 61.26 85.94 86.47 89.40 92.17 90.54 66.99 93.25 89.75 49.18 ↓0.12 79.86±1.08

+ SENTDEBIAS 63.89 86.14 86.41 87.91 92.17 90.43 68.18 93.28 89.41 54.53 ↑0.70 80.68±1.40

DistilBERT 43.90 80.57 81.24 85.79 87.00 88.99 55.13 90.55 81.68 56.27 74.47±1.59

+ GRADIENDChristian/Jewish 43.83 80.69 81.25 85.49 87.12 89.02 55.39 90.58 81.74 56.27 ↑0.02 74.49±1.60

+ GRADIENDChristian/Muslim 43.45 80.59 81.20 85.39 86.95 88.90 56.33 90.53 81.76 56.27 ↑0.03 74.50±1.60

+ GRADIENDJewish/Muslim 42.67 80.68 81.18 85.38 87.16 88.99 56.12 90.43 81.63 56.27 ↓0.07 74.40±1.61

+ CDA 44.10 80.71 81.46 88.27 87.24 88.84 59.57 89.93 83.89 51.67 ↑0.49 74.96±1.46

+ DROPOUT 43.16 80.35 81.14 87.91 87.41 88.85 60.61 90.37 82.99 54.50 ↑0.70 75.17±1.50

+ INLP 45.13 80.30 81.23 85.83 87.58 88.96 55.77 90.05 82.39 54.87 ↑0.13 74.59±1.57

+ SENTDEBIAS 45.59 80.42 81.22 85.23 87.06 89.07 54.80 90.13 81.88 56.27 ↑0.07 74.54±1.60

RoBERTa 62.67 90.08 89.96 91.00 94.12 90.95 68.17 94.86 91.04 52.03 81.65±1.44

+ GRADIENDChristian/Jewish 34 .62 35 .45 35 .25 89.22 93.54 91 .52 67.03 95.64 91.38 54.83 ↓ 9.08 72 .57±1.50

+ GRADIENDChristian/Muslim 62.92 89.77 89.75 90.37 94.26 90.89 76 .49 95.64 91.80 55.31 ↑1.40 83.05±1.51

+ GRADIENDJewish/Muslim 61.47 89.37 89.23 87.62 94.26 91.30 77 .99 95.49 91.67 55.31 ↑1.06 82.71±1.53

+ CDA 61.57 90.17 89.94 90.75 94.15 90.95 72.88 95.62 91.94 54.40 ↑0.83 82.48±1.51

+ DROPOUT 24 .12 53 .46 53 .39 89.79 94.45 90.53 61.06 50 .93 88 .73 54.36 ↓ 14.16 67 .49±1.47

+ INLP 60.09 71 .86 71 .76 88.93 79 .30 91 .45 66.22 95.91 91.71 53.89 ↓ 3.95 77 .70±1.51

+ SENTDEBIAS 62.46 90.00 89.72 90.60 94.42 82 .03 70.81 96.01 91.78 47.52 ↓1.04 80.61±0.86

GPT-2 20.51 81.10 82.02 83.75 87.54 88.59 59.87 91.45 80.30 51.96 71.73±1.08

+ GRADIENDChristian/Jewish 19.80 80.93 81.79 83.38 87.47 88.56 61.87 91.67 81.66 49.75 ↓0.00 71.73±0.98

+ GRADIENDChristian/Muslim 7 .19 80.83 81.94 83.37 87.66 88.58 60.05 91.88 81.10 50.24 ↓1.56 70.16±1.04

+ GRADIENDJewish/Muslim 19.97 80.82 81.67 83.41 87.48 88.53 61.39 91.67 81.70 50.58 ↑0.05 71.78±1.11

+ CDA 32 .97 80.82 81.63 84.70 87.69 88.41 63.39 91.39 82.12 47.96 ↑1.59 73.32±1.23

+ DROPOUT 20.09 80.57 81.74 83.68 87.03 88.09 62.68 91.03 81.07 50.48 ↓0.02 71.70±1.15

+ INLP 18.33 81.01 81.91 83.81 87.67 88.59 63.02 91.75 81.16 47.84 ↓0.21 71.52±1.06

+ SENTDEBIAS 21.31 80.99 81.86 84.13 87.63 88.48 62.88 91.75 81.93 47.39 ↑0.16 71.88±1.06

LLaMA −8.08 34.96 35.97 69.14 49.93 37.34 54.19 74.03 – 54.86 45.86±1.98

+ GRADIENDChristian/Jewish −13.25 33.16 33 .63 19 .66 54 .55 54 .30 52.38 50 .72 – 54.82 ↓ 7.54 38 .32±2.06

+ GRADIENDChristian/Muslim −1.61 33.80 34.86 66.16 49.60 37.52 51.40 61 .99 – 56.27 ↓1.40 44.46±2.03

+ GRADIENDJewish/Muslim −2.47 37 .16 37.77 70.37 52.37 41 .42 59.50 57 .45 – 56.26 ↑0.69 46.54±1.90

+ INLP −6.76 35.72 36.73 79 .61 50.05 36.91 56.75 76.08 – 56.27 ↑2.28 48.14±1.84

+ SENTDEBIAS −9.09 34.80 35.83 67.55 50.02 37.46 55.24 75.19 – 54.86 ↓0.04 45.82±1.96

LLaMA-Instruct 16.85 48.12 47.97 4.67 57.34 63.30 64.69 73.02 – 65.20 49.14±1.92

+ GRADIENDChristian/Jewish 15.02 48.60 48.51 8.29 56.13 64 .61 66.05 72.16 – 64.81 ↑0.31 49.45±2.00

+ GRADIENDChristian/Muslim 9.31 35 .58 35 .35 0 .00 52 .98 64 .14 65.47 74.21 – 55.88 ↓ 4.46 44 .68±1.30

+ GRADIENDJewish/Muslim 4.76 43 .28 43 .70 43 .69 50 .54 47 .33 71.86 68.86 – 63.29 ↑0.09 49.23±1.95

+ INLP 15.71 48.69 49.00 8.26 57.96 63.75 65.69 73.52 – 63.40 ↑0.50 49.64±1.99

+ SENTDEBIAS 14.98 48.60 48.72 5.55 57.33 64 .21 65.66 71.91 – 61.99 ↓0.35 48.79±1.97
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Table 22: Gender: SuperGLUE bootstrapped validation set scores with sub-results for encoder-only
models. Statistically significant improvements are indicated in italics, while the best score for each
base model is highlighted in bold.

Model BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC Average ↑
Metrics Acc. F1/Acc. Acc. F1α /EM F1/EM Acc. Acc. Acc.

BERTbase 69.16 38.74/58.68 62.72 60.12/13.23 56.09/55.32 61.30 68.67 63.12 51.82±1.67

+ GRADIENDFemale/Male 70.83 42.64/62.23 59.57 60.46/13.77 55.79/55.03 63.98 68.42 63.40 ↑0.56 52.38±1.88

+ GRADIENDFemale 70.49 42.68/62.23 59.76 60.71/14.26 56.01/55.24 64.66 69.43 63.40 ↑0.82 52.65±1.88

+ GRADIENDMale 70.41 42.68/62.23 58.84 58.88/13.80 55.98/55.22 64.32 69.15 63.40 ↑0.44 52.27±1.88

+ CDA 70.09 47.75/69.49 57.60 60.43/15.30 55.64/54.93 65.41 67.29 63.40 ↑1.33 53.16±1.80

+ DROPOUT 68.53 47.39/68.99 55.56 59.20/12.94 55.00/54.23 61.74 65.15 62.77 ↓0.34 51.48±1.72

+ INLP 69.25 34.57/56.91 58.67 60.62/14.50 56.27/55.49 61.26 66.44 63.36 ↓0.80 51.02±1.55

+ RLACE 69.03 27.47/52.19 62.70 59.73/13.12 56.07/55.30 61.31 68.73 63.44 ↓0.88 50.95±1.54

+ LEACE 69.06 27.47/52.19 63.06 60.21/13.48 55.99/55.21 61.18 68.63 63.11 ↓0.86 50.96±1.55

+ SENTDEBIAS 69.06 27.47/52.19 63.06 60.10/13.30 55.97/55.21 61.66 68.63 63.12 ↓0.83 50.99±1.55

+ GRADIENDFemale/Male + INLP 70.90 44.14/64.13 61.73 60.34/14.37 55.94/55.16 64.93 69.87 63.40 ↑1.51 53.33±1.82

+ GRADIENDFemale/Male + SENTDEBIAS 70.77 42.64/62.23 59.55 60.48/13.76 55.80/55.04 64.36 68.38 63.40 ↑0.56 52.39±1.88

+ CDA + INLP 69.86 46.50/67.73 58.09 59.13/13.95 55.67/54.96 65.12 67.22 63.40 ↑0.82 52.64±1.78

+ DROPOUT + SENTDEBIAS 68.72 46.98/68.41 54.89 59.17/13.08 54.98/54.22 61.87 65.41 62.46 ↓0.41 51.42±1.71

+ CDA + SENTDEBIAS 70.12 47.75/69.49 58.23 60.53/15.31 55.67/54.96 65.41 67.28 63.40 ↑1.41 53.24±1.79

+ DROPOUT + INLP 68.45 40.90/61.77 55.21 59.12/13.09 55.48/54.74 62.23 64.94 62.73 ↓1.10 50.73±1.70

BERTlarge 70.32 42.86/62.97 61.46 61.49/15.19 61.70/61.04 67.68 70.82 62.09 53.74±1.62

+ GRADIENDFemale/Male 73 .03 46.69/67.15 65.34 59.11/15.47 61.47/60.78 65.49 69.53 63.40 ↑0.46 54.20±1.88

+ GRADIENDFemale 71.86 44.84/64.70 60.46 61.94/15.39 61.45/60.75 66.13 69.55 62.79 ↑0.10 53.84±1.86

+ GRADIENDMale 71.61 44.94/64.80 58.32 61.62/15.25 61.67/61.01 66.20 69.62 63.40 ↓0.10 53.64±1.87

+ CDA 72.41 47.59/68.35 62.94 61.90/16.43 61.65/61.02 61.95 69.42 63.40 ↑0.28 54.02±1.81

+ DROPOUT 71.12 45.18/65.27 53.62 62.24/16.01 62.09/61.37 64.72 67.99 63.40 ↓0.52 53.22±1.68

+ INLP 72.67 38.72/61.76 62.19 39 .19 /8 .60 61.59/60.92 66.09 70.01 63.45 ↓1.60 52.14±1.58

+ RLACE 67 .69 43.46/63.61 61.47 39 .28 /9 .05 61.78/61.11 68.40 70.53 60.42 ↓1.69 52.05±1.62

+ LEACE 70.54 43.27/62.99 61.78 60.75/15.65 61.51/60.83 67.45 69.75 63.09 ↑0.09 53.84±1.67

+ SENTDEBIAS 70.05 42.57/62.42 61.79 61.25/15.52 61.63/60.97 67.78 70.68 63.08 ↑0.03 53.77±1.66

+ GRADIENDFemale/Male + INLP 72.01 46.24/66.53 66.38 60.65/15.10 61.48/60.81 66.13 69.22 63.06 ↑0.56 54.30±1.93

+ GRADIENDFemale/Male + SENTDEBIAS 71.78 46.69/67.15 65.93 61.31/15.46 61.88/61.21 66.21 69.67 63.40 ↑0.64 54.38±1.87

+ CDA + INLP 72.25 47.18/67.78 64.91 61.05/15.34 61.73/61.06 64.33 69.15 62.76 ↑0.12 53.87±1.81

+ DROPOUT + SENTDEBIAS 70.60 47.18/67.77 58.25 61.90/14.41 61.04/60.40 66.24 66.38 63.06 ↓0.39 53.36±1.74

+ CDA + SENTDEBIAS 72.50 47.95/68.92 63.62 62.62/15.23 61.81/61.16 61.66 69.43 63.38 ↑0.26 54.00±1.80

+ DROPOUT + INLP 70.27 47.22/67.77 58.69 62.34/16.61 61.17/60.49 65.32 64 .34 63.40 ↓0.41 53.33±1.74

DistilBERT 69.75 45.62/66.55 53.39 57.58/12.21 49.09/48.27 55.18 62.10 63.40 49.69±1.65

+ GRADIENDFemale/Male 69.81 46.63/67.72 55.06 57.77/13.13 49.02/48.21 55.11 62.01 63.40 ↑0.21 49.90±1.67

+ GRADIENDFemale 69.83 47.50/68.96 55.76 58.14/13.46 49.15/48.37 55.61 61.55 63.40 ↑0.63 50.32±1.63

+ GRADIENDMale 69.50 44.02/64.77 55.41 58.51/12.90 49.06/48.24 56.04 61.37 63.40 ↓0.05 49.64±1.69

+ CDA 69.19 48.31/69.52 59.40 59.85/13.31 49.16/48.33 58.10 63.78 63.40 ↑1.06 50.75±1.76

+ DROPOUT 69.21 46.13/66.49 54.78 59.40/13.05 49.77/48.97 60.45 62.62 63.40 ↑0.58 50.27±1.75

+ INLP 69.85 40.07/63.63 60.46 58.76/12.21 48.94/48.10 55.58 61.86 63.40 ↑0.21 49.90±1.56

+ RLACE 69.99 45.08/65.95 53.74 57.04/11.69 49.08/48.28 56.31 61.85 63.40 ↑0.03 49.72±1.66

+ LEACE 69.54 45.92/67.15 55.39 57.48/11.20 49.20/48.39 54.13 62.52 63.40 ↑0.09 49.78±1.63

+ SENTDEBIAS 69.97 45.08/65.95 54.42 57.20/11.76 49.12/48.32 55.55 62.10 63.40 ↑0.06 49.75±1.64

+ GRADIENDFemale/Male + INLP 69.90 39.64/63.00 58.75 59.38/13.24 48.94/48.12 56.17 61.82 63.40 ↑0.16 49.85±1.57

+ GRADIENDFemale/Male + SENTDEBIAS 69.92 46.23/67.12 55.45 57.96/12.47 49.09/48.28 54.49 61.65 63.40 ↑0.25 49.94±1.66

+ CDA + INLP 69.29 46.15/67.16 55.12 59.45/13.86 49.28/48.45 60.00 64.78 63.40 ↑1.40 51.09±1.72

+ DROPOUT + SENTDEBIAS 69.28 46.13/66.49 55.54 59.34/13.70 49.73/48.93 60.49 63.08 63.40 ↑0.76 50.45±1.76

+ CDA + SENTDEBIAS 69.08 48.31/69.52 57.82 56.55/11.78 49.10/48.27 58.23 63.80 63.40 ↑0.83 50.52±1.77

+ DROPOUT + INLP 69.17 47.31/68.30 59.12 58.97/12.72 49.69/48.87 63.22 62.91 63.40 ↑1.50 51.19±1.72

RoBERTa 82.01 46.41/66.62 56.70 42.49/12.60 72.14/71.46 75.36 56.83 53.49 53.31±1.48

+ GRADIENDFemale/Male 75 .70 45.99/66.03 58.40 64 .23 /21 .85 71.98/71.30 76.18 66 .76 53.49 ↑2.03 55.34±1.47

+ GRADIENDFemale 81.64 44.18/64.24 60.06 22 .50 /7 .40 72.11/71.46 69.97 62 .88 62.09 ↓0.49 52.82±1.65

+ GRADIENDMale 82.61 43.43/62.44 54.16 67 .91 /23 .34 71.99/71.34 62 .29 63 .62 52.23 ↑0.48 53.79±1.47

+ CDA 82.80 47.57/68.36 63.25 45 .02 /17 .17 72.20/71.57 78.13 69 .75 53.49 ↑2.89 56.20±1.44

+ DROPOUT 73 .53 45.03/64.77 50.32 45 .78 /17 .10 72.28/71.60 60 .86 61.03 57.62 ↓2.25 51.05±1.62

+ INLP 82.32 47.15/67.79 57.98 45 .58 /16 .43 71.98/71.34 75.60 61.52 63.40 ↑1.75 55.06±1.66

+ RLACE 82.93 45.58/65.45 56.92 44 .94 /16 .30 71.97/71.30 73.22 61.82 53.49 ↑0.67 53.98±1.50

+ LEACE 75 .70 38.84/61.85 56.91 68 .43 /24 .30 72.10/71.45 68.66 57.75 59.22 ↑0.16 53.47±1.35

+ SENTDEBIAS 82.39 45.97/66.00 55.51 65 .65 /21 .52 71.94/71.27 68.87 61.11 53.49 ↑1.22 54.53±1.51

+ GRADIENDFemale/Male + INLP 75 .56 47.62/68.44 57.94 63 .42 /19 .59 72.14/71.44 69.91 64 .79 63.40 ↑1.86 55.17±1.63

+ GRADIENDFemale/Male + SENTDEBIAS 82.37 46.41/66.62 55.82 65 .14 /22 .32 71.98/71.31 66 .49 65 .05 52.85 ↑1.41 54.72±1.49

+ CDA + INLP 81.81 49.16/70.74 61.69 67 .80 /25 .09 72.10/71.49 79.04 70 .75 63.40 ↑ 5.58 58 .89±1.63

+ DROPOUT + SENTDEBIAS 69 .98 45.03/64.77 47.05 62 .92 /19 .86 71.64/70.91 61 .04 56.94 57.92 ↓2.29 51.01±1.59

+ CDA + SENTDEBIAS 82.68 48.44/69.59 64.59 45 .36 /16 .38 71.99/71.35 77.56 69 .56 53.49 ↑ 2.97 56 .28±1.42

+ DROPOUT + INLP 71 .96 46.73/67.16 51.30 0 .00 /0 .32 71.88/71.17 59 .29 59.13 63.40 ↓ 5.10 48 .21±1.78
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Table 23: Gender: SuperGLUE bootstrapped validation set scores with sub-results for decoder-only
models. Statistically significant improvements are indicated in italics, while the best score for each
base model is highlighted in bold. GPT-2 results were computed after fine-tuning and LLaMA-based
results were computed with zero-shot evaluation.

Model BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC Average ↑
Metrics Acc. F1/Acc. Acc. F1α /EM F1/EM Acc. Acc. Acc.

GPT-2 65.56 36.86/51.74 49.35 58.79/13.69 31.64/30.93 60.14 62.51 54.47 45.49±1.28

+ GRADIENDFemale/Male 65.22 36.10/51.07 50.88 59.92/14.14 31.77/31.04 62.41 63.82 59.53 ↑0.86 46.34±1.27

+ GRADIENDFemale 64.66 37.56/51.70 50.74 59.01/13.85 31.84/31.14 63.28 63.50 55.42 ↑0.49 45.97±1.20

+ GRADIENDMale 65.28 38.49/55.21 49.26 60.09/13.86 31.65/30.92 61.42 63.92 56.34 ↑0.60 46.09±1.25

+ CDA 66.70 42.95/57.57 49.35 59.81/14.34 31.61/30.92 61.84 64.43 57.69 ↑1.28 46.76±1.38

+ DROPOUT 66.02 34.95/52.30 49.04 58.82/13.86 31.55/30.86 62.26 62.66 58.72 ↑0.46 45.94±1.45

+ INLP 65.77 36.77/51.74 51.34 58.80/13.41 31.49/30.78 60.86 62.27 54.78 ↑0.29 45.78±1.20

+ RLACE 65.84 37.07/52.37 49.26 59.24/13.76 31.58/30.85 62.33 62.77 55.75 ↑0.44 45.92±1.20

+ LEACE 65.59 35.53/50.52 51.65 58.56/12.88 31.61/30.88 60.76 61.79 57.10 ↑0.35 45.83±1.24

+ SENTDEBIAS 65.23 28.85/42.82 51.31 58.70/12.53 31.69/30.96 61.11 61.77 51.23 ↓1.15 44.33±1.18

+ GRADIENDFemale/Male + INLP 65.36 35.69/50.45 51.93 59.51/13.83 31.75/31.03 63.02 63.50 58.30 ↑0.82 46.30±1.27

+ GRADIENDFemale/Male + SENTDEBIAS 65.18 37.22/52.78 52.92 59.11/13.62 31.66/30.96 62.71 63.69 53.87 ↑0.47 45.96±1.24

+ CDA + INLP 66.45 42.14/56.39 52.42 59.78/14.55 31.67/30.98 63.06 63.96 56.12 ↑1.39 46.87±1.32

+ DROPOUT + SENTDEBIAS 65.59 37.65/56.99 51.33 59.85/14.39 31.51/30.81 64.40 63.28 56.57 ↑1.28 46.76±1.32

+ CDA + SENTDEBIAS 66.66 41.89/56.34 49.04 60.03/14.55 31.77/31.07 62.55 64.63 53.58 ↑0.78 46.27±1.34

+ DROPOUT + INLP 65.99 35.97/53.47 53.71 59.01/14.11 31.62/30.93 62.89 62.39 58.70 ↑1.11 46.59±1.44

LLaMA 72.96 37.32/51.82 86.06 0.00/0.32 90.42/89.70 54.17 50.10 37.58 54.46±2.28

+ GRADIENDFemale/Male 65 .24 31.80/44.35 76.03 1 .48 /0 .42 88 .73 /87 .92 52.41 50.12 36.60 ↓3.49 50.97±2.20

+ GRADIENDFemale 73.58 33.67/42.88 80.10 0.00/0.32 89.38/88.63 57.02 50.12 36.60 ↓1.35 53.11±2.28

+ GRADIENDMale 69 .02 26.71/40.85 82.11 0.58/0.53 89.57/88.78 54.56 50.12 39.50 ↓2.10 52.35±2.09

+ INLP 65 .64 26.77/37.46 78.10 0.00/0.32 86 .00 /85 .26 48.22 50.12 36.60 ↓ 4.88 49 .57±2.21

+ RLACE 73.17 36.37/51.75 86.06 0.00/0.32 0 .00 /0 .01 53.43 50.25 36.60 ↓ 11.49 42 .97±2.31

+ LEACE 73.33 36.37/51.75 85.07 0.00/0.32 0 .00 /0 .01 53.76 50.42 36.60 ↓ 11.53 42 .93±2.31

+ SENTDEBIAS 73.28 36.87/46.41 85.08 0.00/0.32 90.06/89.27 55.27 50.27 37.58 ↓0.34 54.12±2.37

+ GRADIENDFemale/Male + INLP 62 .37 13 .24 /15 .88 68 .84 0.00/0.32 84 .05 /83 .34 47.59 50.12 36.60 ↓ 8.97 45 .49±2.08

+ GRADIENDFemale/Male + SENTDEBIAS 66 .73 27.66/35.64 76.03 0.94/0.31 88 .65 /87 .83 53.18 50.12 36.60 ↓4.06 50.40±2.16

LLaMA-Instruct 75.25 31.58/32.13 78.60 27.43/0.52 85.32/84.68 67.31 50.37 62.20 58.07±2.29

+ GRADIENDFemale/Male 73.23 18.78/39.43 75.08 3 .00 /0 .32 83 .11 /82 .48 53 .77 50.11 58.27 ↓ 5.07 53 .00±2.05

+ GRADIENDFemale 73.41 44.03/49.36 82.89 31.00/1.12 84.84/84.21 68.32 50.04 64.05 ↑2.68 60.75±2.35

+ GRADIENDMale 78 .54 30.28/37.55 80.19 4 .57 /0 .21 84.03/83.48 70.91 50.11 51.11 ↓1.71 56.36±2.28

+ INLP 72.27 32.65/33.37 81.02 11 .51 /0 .56 84.70/84.08 66.60 50.26 65.24 ↓0.72 57.35±2.34

+ RLACE 75.21 32.10/32.75 78.60 27.24/0.49 85.08/84.42 67.43 50.37 61.54 ↓0.05 58.02±2.28

+ LEACE 75.18 30.89/31.57 78.25 26.90/0.52 85.06/84.41 67.19 50.22 62.18 ↓0.23 57.84±2.29

+ SENTDEBIAS 74.98 34.06/35.20 79.63 27.15/0.53 85.24/84.58 67.42 50.22 62.86 ↑0.49 58.56±2.31

+ GRADIENDFemale/Male + INLP 66 .07 18.78/39.43 78.07 0 .00 /0 .32 80 .73 /80 .11 55 .10 50.12 41 .57 ↓ 7.99 50 .08±2.08

+ GRADIENDFemale/Male + SENTDEBIAS 72.87 18.78/39.43 76.37 3 .25 /0 .32 83 .18 /82 .54 53 .63 49.90 57.28 ↓ 5.10 52 .97±2.04
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Table 24: Race: SuperGLUE bootstrapped validation set scores with sub-results for all models.
Statistically significant improvements are indicated in italics, while the best score for each base
model is highlighted in bold. LLaMA-based results were computed with zero-shot evaluation while
all other scores are derived after fine-tuning.

Model BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC Average ↑
Metrics Acc. F1/Acc. Acc. F1α /EM F1/EM Acc. Acc. Acc.

BERTbase 69.16 38.74/58.68 62.72 60.12/13.23 56.09/55.32 61.30 68.67 63.12 51.82±1.67

+ GRADIENDAsian/Black 70.45 42.71/62.23 58.88 60.37/14.17 55.50/54.70 67.37 68.82 63.40 ↑0.80 52.62±1.89

+ GRADIENDAsian/White 70.36 42.66/62.25 57.19 60.61/14.22 55.62/54.86 66.64 68.36 63.40 ↑0.53 52.36±1.90

+ GRADIENDBlack/White 70.66 42.68/62.23 61.53 60.91/14.80 55.33/54.56 65.54 68.43 63.40 ↑0.82 52.65±1.88

+ CDA 70.33 47.60/68.92 60.55 60.04/15.31 55.43/54.69 63.94 67.49 63.40 ↑1.15 52.98±1.82

+ DROPOUT 68.53 47.39/68.99 55.56 59.20/12.94 55.00/54.23 61.74 65.15 62.77 ↓0.34 51.48±1.72

+ INLP 69.00 31.77/54.49 63.06 60.68/13.86 55.89/55.14 59.34 67.12 57.79 ↓1.38 50.44±1.54

+ SENTDEBIAS 68.88 27.47/52.19 62.05 60.59/14.25 56.01/55.25 62.50 68.57 62.18 ↓0.95 50.87±1.54

BERTlarge 70.32 42.86/62.97 61.46 61.49/15.19 61.70/61.04 67.68 70.82 62.09 53.74±1.62

+ GRADIENDAsian/Black 72.31 46.09/66.44 61.78 61.49/15.39 62.02/61.36 65.04 70.63 63.72 ↑0.53 54.27±1.85

+ GRADIENDAsian/White 72.32 46.09/66.49 64.81 59.22/15.35 61.75/61.07 67.44 70.13 63.40 ↑0.84 54.58±1.85

+ GRADIENDBlack/White 72.66 46.57/67.10 65.38 59.72/15.42 61.79/61.13 67.21 69.71 63.40 ↑0.68 54.42±1.87

+ CDA 71.79 47.18/67.78 61.24 62.16/15.82 61.47/60.76 58.36 68.33 61.80 ↓0.59 53.15±1.73

+ DROPOUT 71.12 45.18/65.27 53.62 62.24/16.01 62.09/61.37 64.72 67.99 63.40 ↓0.52 53.22±1.68

+ INLP 69.73 38.31/61.17 62.86 62.30/16.11 61.88/61.22 67.33 70.35 63.74 ↓0.24 53.50±1.58

+ SENTDEBIAS 70.71 43.38/63.53 61.17 59.46/14.09 61.73/61.07 66.92 70.34 62.78 ↓0.07 53.68±1.67

DistilBERT 69.75 45.62/66.55 53.39 57.58/12.21 49.09/48.27 55.18 62.10 63.40 49.69±1.65

+ GRADIENDAsian/Black 69.68 47.21/68.31 55.80 57.61/12.80 48.97/48.19 53.87 61.55 63.40 ↑0.00 49.69±1.69

+ GRADIENDAsian/White 69.88 46.71/67.71 56.08 58.19/12.19 49.03/48.23 55.03 62.15 63.40 ↑0.38 50.07±1.70

+ GRADIENDBlack/White 69.68 45.78/66.46 53.00 58.01/12.57 49.04/48.23 53.63 61.48 63.40 ↓0.40 49.29±1.70

+ CDA 68.86 47.84/68.89 58.52 58.41/12.59 48.97/48.15 60.05 63.77 63.40 ↑1.11 50.80±1.79

+ DROPOUT 69.21 46.13/66.49 54.78 59.40/13.05 49.77/48.97 60.45 62.62 63.40 ↑0.58 50.27±1.75

+ INLP 70.14 47.91/69.53 57.42 58.05/12.47 48.94/48.14 57.85 62.62 63.40 ↑1.14 50.83±1.68

+ SENTDEBIAS 70.20 43.97/65.37 55.50 58.19/11.79 49.04/48.24 54.83 62.26 63.40 ↓0.22 49.47±1.62

RoBERTa 82.01 46.41/66.62 56.70 42.49/12.60 72.14/71.46 75.36 56.83 53.49 53.31±1.48

+ GRADIENDAsian/Black 62 .22 38.82/61.80 52.67 0 .00 /0 .32 71.97/71.29 52 .71 60.02 61.45 ↓ 7.07 46 .24±1.51

+ GRADIENDAsian/White 67 .59 38.46/61.25 55.07 38 .48 /8 .78 72.30/71.65 60 .54 58.05 61.45 ↓ 3.27 50 .04±1.49

+ GRADIENDBlack/White 82.29 44.76/64.30 63.42 43.32/15.49 72.08/71.42 62 .88 61.70 61.45 ↑0.41 53.72±1.67

+ CDA 81.76 46.34/66.58 70 .41 44 .94 /17 .11 71.88/71.22 77.44 67 .93 63.10 ↑ 4.17 57 .48±1.71

+ DROPOUT 73 .53 45.03/64.77 50.32 45 .78 /17 .10 72.28/71.60 60 .86 61.03 57.62 ↓2.25 51.05±1.62

+ INLP 82.53 38.64/60.68 53.43 44 .66 /16 .56 72.27/71.61 74.99 66 .26 55.41 ↑0.46 53.77±1.19

+ SENTDEBIAS 83.03 45.99/66.04 57.50 68 .15 /25 .50 72.33/71.69 76.86 55.56 55.06 ↑2.23 55.54±1.49

GPT-2 65.56 36.86/51.74 49.35 58.79/13.69 31.64/30.93 60.14 62.51 54.47 45.49±1.28

+ GRADIENDAsian/Black 65.36 36.15/51.05 49.65 59.09/13.58 31.62/30.92 61.78 62.70 53.52 ↓0.04 45.45±1.18

+ GRADIENDAsian/White 64.74 37.93/54.61 50.05 59.06/13.57 31.43/30.77 62.83 61.31 54.39 ↑0.43 45.92±1.22

+ GRADIENDBlack/White 65.18 37.79/52.82 52.36 58.97/13.01 31.49/30.81 63.00 62.18 53.19 ↑0.48 45.97±1.13

+ CDA 66.07 40.92/55.24 52.06 59.62/15.46 31.88/31.19 66.13 63.33 56.39 ↑1.47 46.96±1.27

+ DROPOUT 66.02 34.95/52.30 49.04 58.82/13.86 31.55/30.86 62.26 62.66 58.72 ↑0.46 45.94±1.45

+ INLP 65.50 36.37/51.14 52.31 59.04/13.31 31.59/30.87 60.38 62.51 54.80 ↑0.29 45.77±1.22

+ SENTDEBIAS 65.40 31.49/45.23 51.05 59.64/12.81 31.48/30.75 61.37 61.94 53.20 ↓0.75 44.73±1.26

LLaMA 72.96 37.32/51.82 86.06 0.00/0.32 90.42/89.70 54.17 50.10 37.58 54.46±2.28

+ GRADIENDAsian/Black 57 .24 31.46/37.52 80.96 2 .11 /0 .32 87 .97 /87 .04 55.92 47.86 51.00 ↓2.43 52.02±2.27

+ GRADIENDAsian/White 58 .42 26.02/35.68 79.02 2 .79 /0 .32 86 .98 /86 .09 60.69 48.10 70 .07 ↓0.05 54.40±2.22

+ GRADIENDBlack/White 69 .79 33.49/55.30 85.07 0.10/0.32 90.22/89.43 52.66 49.61 38.52 ↓0.70 53.76±2.03

+ INLP 73.44 35.98/53.69 86.03 0.00/0.32 89.82/89.03 58.13 50.10 36.60 ↑0.38 54.84±2.12

+ SENTDEBIAS 73.08 38.45/51.77 86.06 0.00/0.32 90.30/89.55 57.40 50.42 36.60 ↑0.39 54.85±2.29

LLaMA-Instruct 75.25 31.58/32.13 78.60 27.43/0.52 85.32/84.68 67.31 50.37 62.20 58.07±2.29

+ GRADIENDAsian/Black 37 .78 22.13/49.86 57 .05 59 .91 /0 .82 18 .26 /17 .62 47 .17 49.88 63.40 ↓ 15.62 42 .45±2.13

+ GRADIENDAsian/White 59 .25 24.31/28.79 56 .89 30.12/2.11 45 .54 /44 .89 49 .58 48.76 37 .55 ↓ 15.58 42 .49±2.47

+ GRADIENDBlack/White 78 .19 45 .38 /64 .22 78.17 4 .28 /0 .32 87 .30 /86 .52 71.20 52.48 45.17 ↑0.58 58.65±2.05

+ INLP 76.28 35.27/35.79 78.25 29.33/1.15 85.31/84.65 66.31 52.60 57.63 ↑0.28 58.35±2.34

+ SENTDEBIAS 75.02 33.85/33.94 77.26 28.30/0.80 85.27/84.64 66.06 51.46 65.06 ↑0.46 58.53±2.41
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Table 25: Religion: SuperGLUE bootstrapped validation set scores with sub-results for all models.
Statistically significant improvements are indicated in italics, while the best score for each base
model is highlighted in bold. LLaMA-based results were computed with zero-shot evaluation while
all other scores are derived after fine-tuning.

Model BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC Average ↑
Metrics Acc. F1/Acc. Acc. F1α /EM F1/EM Acc. Acc. Acc.

BERTbase 69.16 38.74/58.68 62.72 60.12/13.23 56.09/55.32 61.30 68.67 63.12 51.82±1.67

+ GRADIENDChristian/Jewish 70.91 42.68/62.23 61.50 60.22/14.43 55.74/55.01 64.66 70.13 63.40 ↑1.17 53.00±1.89

+ GRADIENDChristian/Muslim 70.82 42.15/61.64 60.80 59.37/14.18 55.74/54.98 65.27 67.93 63.40 ↑0.71 52.54±1.88

+ GRADIENDJewish/Muslim 70.72 43.19/62.83 60.84 60.79/13.93 55.04/54.29 64.43 69.72 63.40 ↑0.89 52.71±1.89

+ CDA 70.41 47.79/69.51 60.50 59.24/14.32 55.58/54.85 63.96 67.81 63.40 ↑1.26 53.08±1.83

+ DROPOUT 68.53 47.39/68.99 55.56 59.20/12.94 55.00/54.23 61.74 65.15 62.77 ↓0.34 51.48±1.72

+ INLP 68.85 28.43/52.77 62.08 60.62/13.66 56.09/55.33 62.38 67.96 61.29 ↓1.13 50.70±1.58

+ SENTDEBIAS 69.02 27.47/52.19 64.40 60.29/13.53 55.99/55.22 62.74 68.68 63.06 ↓0.57 51.25±1.54

BERTlarge 70.32 42.86/62.97 61.46 61.49/15.19 61.70/61.04 67.68 70.82 62.09 53.74±1.62

+ GRADIENDChristian/Jewish 72.20 46.17/66.51 63.74 61.06/16.34 61.81/61.16 67.67 70.49 63.40 ↑0.78 54.52±1.84

+ GRADIENDChristian/Muslim 72.22 46.05/66.44 62.73 61.88/16.92 61.81/61.13 67.80 70.06 63.40 ↑0.83 54.58±1.86

+ GRADIENDJewish/Muslim 72.03 45.74/65.91 64.83 62.81/16.24 61.95/61.27 66.71 70.25 63.40 ↑1.08 54.82±1.85

+ CDA 72.71 46.78/67.19 65.90 61.05/15.03 61.79/61.11 61.75 69.30 63.10 ↑0.52 54.27±1.79

+ DROPOUT 71.12 45.18/65.27 53.62 62.24/16.01 62.09/61.37 64.72 67.99 63.40 ↓0.52 53.22±1.68

+ INLP 70.80 38.31/61.17 60.08 61.26/16.30 61.69/61.02 67.32 70.44 63.12 ↓0.54 53.21±1.55

+ SENTDEBIAS 70.90 43.74/63.55 62.14 62.66/16.15 61.44/60.73 67.46 70.24 58.33 ↓0.07 53.67±1.64

DistilBERT 69.75 45.62/66.55 53.39 57.58/12.21 49.09/48.27 55.18 62.10 63.40 49.69±1.65

+ GRADIENDChristian/Jewish 69.75 45.64/66.52 53.38 57.62/12.09 49.14/48.36 55.73 61.50 63.40 ↑0.06 49.75±1.69

+ GRADIENDChristian/Muslim 69.75 44.73/65.35 55.35 57.17/11.97 49.14/48.35 55.93 61.82 63.40 ↑0.07 49.76±1.69

+ GRADIENDJewish/Muslim 69.72 45.64/66.52 54.41 58.19/12.61 49.11/48.32 55.94 61.64 63.40 ↑0.23 49.91±1.68

+ CDA 69.06 48.37/69.57 53.40 58.92/13.45 48.99/48.13 60.49 63.25 63.40 ↑0.80 50.49±1.80

+ DROPOUT 69.21 46.13/66.49 54.78 59.40/13.05 49.77/48.97 60.45 62.62 63.40 ↑0.58 50.27±1.75

+ INLP 69.42 44.32/64.73 55.28 57.18/11.72 49.02/48.21 57.52 62.55 63.40 ↓0.05 49.64±1.65

+ SENTDEBIAS 70.11 45.62/66.55 54.73 58.43/12.24 49.02/48.23 55.66 61.89 63.40 ↑0.12 49.81±1.64

RoBERTa 82.01 46.41/66.62 56.70 42.49/12.60 72.14/71.46 75.36 56.83 53.49 53.31±1.48

+ GRADIENDChristian/Jewish 74 .98 43.45/62.51 55.70 45 .24 /17 .07 72.31/71.64 67.72 59.24 61.76 ↓0.65 52.66±1.66

+ GRADIENDChristian/Muslim 81.92 45.54/65.44 57.63 67 .66 /22 .48 72.57/71.90 77.31 63 .17 62.07 ↑ 3.35 56 .66±1.64

+ GRADIENDJewish/Muslim 79 .04 40.34/58.98 50.38 22 .29 /9 .14 72.22/71.60 62 .92 65 .91 61.76 ↓2.19 51.12±1.65

+ CDA 75 .96 48.02/68.95 70 .99 65 .41 /22 .63 71.99/71.33 74.79 67 .57 62.42 ↑ 4.71 58 .02±1.68

+ DROPOUT 73 .53 45.03/64.77 50.32 45 .78 /17 .10 72.28/71.60 60 .86 61.03 57.62 ↓2.25 51.05±1.62

+ INLP 75 .72 45.99/66.04 54.17 66 .07 /22 .54 71.95/71.32 77.07 64 .48 53.49 ↑1.64 54.95±1.51

+ SENTDEBIAS 75 .28 46.13/67.20 57.48 45 .58 /14 .63 72.14/71.47 68.39 64 .98 53.49 ↓0.60 52.71±1.21

GPT-2 65.56 36.86/51.74 49.35 58.79/13.69 31.64/30.93 60.14 62.51 54.47 45.49±1.28

+ GRADIENDChristian/Jewish 66.02 36.89/51.69 52.39 61.03/13.64 31.43/30.75 64.63 63.42 55.17 ↑1.18 46.67±1.11

+ GRADIENDChristian/Muslim 65.37 42.78/55.85 52.66 60.48/13.16 31.63/30.94 63.96 61.88 57.05 ↑1.54 47.02±1.33

+ GRADIENDJewish/Muslim 66.31 37.60/51.10 51.38 60.12/14.32 31.32/30.63 65.84 63.53 55.42 ↑1.15 46.64±1.26

+ CDA 66.16 46.73/58.76 54.91 59.52/14.34 31.54/30.85 65.67 63.69 59.67 ↑2.61 48.10±1.42

+ DROPOUT 66.02 34.95/52.30 49.04 58.82/13.86 31.55/30.86 62.26 62.66 58.72 ↑0.46 45.94±1.45

+ INLP 65.52 36.77/51.74 52.66 58.68/13.92 31.61/30.89 60.26 62.36 54.16 ↑0.29 45.77±1.21

+ SENTDEBIAS 65.35 42.15/57.65 53.99 57.11/11.91 31.62/30.88 62.54 61.72 53.23 ↑0.80 46.29±1.28

LLaMA 72.96 37.32/51.82 86.06 0.00/0.32 90.42/89.70 54.17 50.10 37.58 54.46±2.28

+ GRADIENDChristian/Jewish 61 .19 38.95/60.67 81.00 0.37/0.53 89.38/88.55 52.32 50.13 36.60 ↓1.90 52.56±2.17

+ GRADIENDChristian/Muslim 74.34 24.92/44.53 80.13 0.10/0.42 89.87/89.16 51.18 50.12 36.60 ↓2.35 52.11±2.12

+ GRADIENDJewish/Muslim 68 .66 30.37/42.72 79.06 0.10/0.42 88 .71 /87 .87 59.61 47.75 40.54 ↓1.87 52.59±2.17

+ INLP 74.54 39.56/51.89 83.10 0.00/0.32 90.31/89.58 56.66 50.59 36.60 ↑0.21 54.66±2.30

+ SENTDEBIAS 72.80 35.03/50.01 86.11 0.00/0.32 90.12/89.40 55.25 50.10 37.58 ↓0.17 54.29±2.28

LLaMA-Instruct 75.25 31.58/32.13 78.60 27.43/0.52 85.32/84.68 67.31 50.37 62.20 58.07±2.29

+ GRADIENDChristian/Jewish 78 .50 52 .18 /73 .15 80.10 7 .82 /0 .21 87 .42 /86 .64 74.80 51.37 42 .32 ↑2.03 60.10±1.95

+ GRADIENDChristian/Muslim 75.56 37.38/55.66 70.97 12 .57 /0 .10 73 .80 /73 .05 69.67 50.12 37 .53 ↓4.30 53.77±2.17

+ GRADIENDJewish/Muslim 74.37 43 .66 /64 .14 82.28 7 .93 /0 .63 84.72/84.03 69.01 51.05 58.68 ↑1.67 59.74±2.18

+ INLP 75.36 33.47/33.95 77.26 22 .80 /0 .42 85.55/84.91 66.31 52.43 61.44 ↓0.15 57.92±2.40

+ SENTDEBIAS 75.06 33.85/33.94 77.26 28.99/0.64 85.35/84.72 65.93 51.82 64.40 ↑0.46 58.53±2.41
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Table 26: Gender: SEAT bootstrapped effect sizes for encoder-only models. Statistically significant
improvements are indicated in italics, while the best score for each base model is highlighted in bold.

Model SEAT-6 ↓
↑0.0 SEAT-6b ↓

↑0.0 SEAT-7 ↓
↑0.0 SEAT-7b ↓

↑0.0 SEAT-8 ↓
↑0.0 SEAT-8b ↓

↑0.0 Absolute Average ↓

BERTbase 0.84±0.29 0.20±0.25 0.57±0.62 1.03±0.49 0.54±0.48 0.45±0.52 0.61±0.29

+ GRADIENDFemale/Male 0.59±0.21 −0.03±0.15 0.18±0.57 0.92±0.45 0.53±0.46 0.64±0.36 ↓0.10 0.51±0.19

+ GRADIENDFemale 0.84±0.46 0.27±0.40 1.05±0.34 1.18±0.31 0.72±0.32 0.68±0.34 ↑0.19 0.79±0.24

+ GRADIENDMale 0.95±0.27 0.43±0.32 0.24±0.54 0.33±0.51 −0.05±0.46 −0.35±0.40 ↓0.18 0.43±0.16

+ CDA 0.48±0.18 −0.05±0.13 0.07±0.61 0.74±0.50 0.38±0.50 0.47±0.44 ↓0.21 0.40±0.20

+ DROPOUT 0.16±0.37 0.17±0.27 0.24±0.60 0.81±0.42 0.67±0.47 0.53±0.43 ↓0.16 0.45±0.25

+ INLP 0.46±0.20 −0.08±0.13 −0.65±0.42 −0.18±0.64 −0.22±0.52 −0.40±0.53 ↓0.24 0.37±0.19

+ RLACE 0.84±0.29 0.19±0.25 0.58±0.62 1.03±0.49 0.53±0.48 0.44±0.52 ↓0.00 0.61±0.29

+ LEACE 0.83±0.29 0.20±0.25 0.56±0.62 1.05±0.49 0.52±0.48 0.44±0.52 ↓0.00 0.61±0.29

+ SENTDEBIAS 0.38±0.24 −0.21±0.14 −0.46±0.45 0.25±0.62 0.39±0.46 0.16±0.49 ↓0.27 0.34±0.13

+ GRADIENDFemale/Male + INLP 0.58±0.18 −0.10±0.11 −0.42±0.41 0.21±0.59 0.04±0.43 0.13±0.44 ↓0.31 0.30±0.12

+ GRADIENDFemale/Male + SENTDEBIAS 0.43±0.20 −0.21±0.12 −0.34±0.44 0.57±0.50 0.43±0.40 0.55±0.34 ↓0.18 0.43±0.14

+ CDA + INLP 0.43±0.17 −0.19±0.08 −0.41±0.54 0.22±0.58 −0.04±0.47 0.25±0.49 ↓0.30 0.30±0.14

+ DROPOUT + SENTDEBIAS −0.16±0.28 −0.11±0.17 −0.04±0.46 0.68±0.39 0.57±0.38 0.40±0.39 ↓0.25 0.36±0.14

+ CDA + SENTDEBIAS 0.45±0.17 −0.10±0.11 −0.44±0.51 0.55±0.56 0.31±0.46 0.41±0.44 ↓0.22 0.38±0.17

+ DROPOUT + INLP −0.17±0.23 −0.12±0.14 −0.44±0.46 0.40±0.42 0.17±0.46 0.09±0.44 ↓0.34 0.27±0.12

BERTlarge 0.69±0.25 0.33±0.24 0.68±0.66 0.57±0.54 0.49±0.45 0.35±0.38 0.52±0.26

+ GRADIENDFemale/Male 0.44±0.15 0.06±0.07 0.97±0.31 0.74±0.34 0.59±0.15 0.48±0.24 ↑0.03 0.55±0.13

+ GRADIENDFemale 1.39±0.21 0.92±0.24 1.24±0.21 1.22±0.23 0.89±0.18 0.93±0.17 ↑ 0.58 1.10±0.13

+ GRADIENDMale 0.34±0.32 −0.35±0.39 −0.64±0.42 −0.30±0.48 −0.45±0.33 0.04±0.39 ↓0.14 0.38±0.16

+ CDA 0.63±0.22 0.05±0.16 0.64±0.63 0.89±0.52 0.82±0.39 0.71±0.37 ↑0.11 0.63±0.24

+ DROPOUT 0.90±0.26 0.51±0.34 0.17±0.49 1.27±0.31 0.46±0.42 0.77±0.44 ↑0.17 0.69±0.22

+ INLP 0.30±0.19 −0.09±0.17 −0.11±0.71 0.08±0.58 −0.34±0.51 −0.42±0.35 ↓0.23 0.29±0.15

+ RLACE 0.70±0.25 0.33±0.24 0.68±0.66 0.57±0.54 0.49±0.45 0.35±0.38 ↑0.00 0.52±0.26

+ LEACE 0.69±0.25 0.30±0.24 0.73±0.65 0.58±0.54 0.52±0.46 0.36±0.38 ↑0.01 0.53±0.26

+ SENTDEBIAS 0.30±0.21 −0.09±0.18 0.04±0.73 0.16±0.51 −0.18±0.59 −0.03±0.37 ↓0.29 0.23±0.14

+ GRADIENDFemale/Male + INLP 0.34±0.16 −0.05±0.08 0.16±0.41 0.63±0.43 0.37±0.18 0.26±0.32 ↓0.21 0.31±0.13

+ GRADIENDFemale/Male + SENTDEBIAS 0.42±0.15 0.03±0.07 0.73±0.38 0.71±0.34 0.53±0.14 0.47±0.24 ↓0.04 0.48±0.13

+ CDA + INLP 0.58±0.19 −0.12±0.13 −0.55±0.55 0.53±0.59 −0.04±0.46 0.28±0.40 ↓0.14 0.38±0.16

+ DROPOUT + SENTDEBIAS 0.60±0.25 −0.01±0.28 −0.32±0.39 1.07±0.32 0.09±0.47 0.53±0.48 ↓0.05 0.48±0.15

+ CDA + SENTDEBIAS 0.60±0.21 −0.00±0.15 0.45±0.65 0.83±0.54 0.69±0.41 0.64±0.38 ↑0.03 0.55±0.23

+ DROPOUT + INLP 0.58±0.24 0.12±0.35 −0.68±0.36 0.80±0.34 −0.51±0.42 0.34±0.51 ↓0.00 0.52±0.15

DistilBERT 0.82±0.24 0.25±0.21 0.65±0.70 1.42±0.25 0.50±0.58 1.13±0.27 0.80±0.24

+ GRADIENDFemale/Male 0.82±0.24 0.23±0.20 0.65±0.70 1.43±0.24 0.50±0.58 1.13±0.27 ↓0.00 0.80±0.24

+ GRADIENDFemale 0.71±0.21 0.08±0.20 0.73±0.64 1.49±0.22 0.56±0.49 1.17±0.25 ↓0.01 0.80±0.22

+ GRADIENDMale 1.58±0.20 1.14±0.31 0.89±0.53 1.23±0.39 0.67±0.36 0.92±0.32 ↑0.27 1.07±0.25

+ CDA 0.81±0.21 0.08±0.12 0.53±0.82 1.42±0.28 0.27±0.59 1.20±0.30 ↓0.06 0.74±0.21

+ DROPOUT 1.01±0.22 0.45±0.25 0.58±0.58 1.15±0.39 0.39±0.61 1.02±0.39 ↓0.02 0.78±0.26

+ INLP 0.67±0.21 −0.17±0.11 0.23±0.49 1.13±0.36 −0.29±0.57 1.12±0.25 ↓0.18 0.62±0.13

+ RLACE 0.63±0.22 −0.08±0.12 −0.54±0.56 1.10±0.37 −0.12±0.55 0.98±0.28 ↓0.20 0.60±0.14

+ LEACE 0.73±0.22 0.06±0.12 −0.38±0.58 1.04±0.37 0.14±0.45 0.95±0.25 ↓0.23 0.57±0.12

+ SENTDEBIAS 0.57±0.21 −0.19±0.10 −0.22±0.52 1.24±0.31 −0.04±0.51 1.01±0.27 ↓0.22 0.58±0.12

+ GRADIENDFemale/Male + INLP 0.68±0.20 −0.18±0.11 0.21±0.51 1.12±0.36 −0.31±0.57 1.11±0.26 ↓0.18 0.62±0.13

+ GRADIENDFemale/Male + SENTDEBIAS 0.57±0.21 −0.19±0.10 −0.22±0.53 1.24±0.31 −0.04±0.51 1.02±0.26 ↓0.22 0.58±0.12

+ CDA + INLP 0.81±0.20 −0.07±0.08 0.03±0.70 0.89±0.53 −0.46±0.50 0.90±0.41 ↓0.23 0.57±0.16

+ DROPOUT + SENTDEBIAS 0.68±0.20 0.07±0.14 0.04±0.49 0.87±0.43 −0.18±0.56 0.92±0.38 ↓0.30 0.50±0.15

+ CDA + SENTDEBIAS 0.71±0.20 −0.05±0.08 −0.05±0.74 1.31±0.33 −0.07±0.55 1.13±0.32 ↓0.18 0.63±0.14

+ DROPOUT + INLP 0.59±0.20 0.23±0.14 0.18±0.42 0.11±0.50 −0.45±0.48 0.79±0.42 ↓ 0.38 0.42±0.13

RoBERTa 0.78±0.31 0.16±0.26 −0.20±0.57 0.81±0.37 0.40±0.57 1.00±0.31 0.58±0.17

+ GRADIENDFemale/Male 0.38±0.21 0.18±0.18 −0.21±0.46 0.79±0.28 0.39±0.45 0.86±0.24 ↓0.10 0.48±0.13

+ GRADIENDFemale 1.79±0.11 1.66±0.16 0.60±0.20 0.60±0.21 0.22±0.11 0.28±0.11 ↑ 0.28 0.86±0.10

+ GRADIENDMale −0.24±0.45 −0.57±0.34 −0.28±0.55 0.51±0.43 −0.20±0.76 0.37±0.61 ↓0.17 0.41±0.15

+ CDA 0.48±0.30 −0.05±0.20 −0.23±0.57 0.59±0.37 0.16±0.58 0.97±0.24 ↓0.13 0.45±0.14

+ DROPOUT 0.24±0.30 −0.25±0.33 −0.67±0.41 0.72±0.38 0.01±0.50 0.86±0.33 ↓0.08 0.49±0.12

+ INLP 0.38±0.27 −0.22±0.15 −0.87±0.33 0.22±0.41 −0.24±0.50 0.59±0.39 ↓0.14 0.44±0.14

+ RLACE 0.78±0.31 0.16±0.26 −0.20±0.57 0.81±0.37 0.39±0.57 1.00±0.31 ↓0.00 0.58±0.17

+ LEACE 0.78±0.31 0.16±0.26 −0.16±0.57 0.82±0.37 0.41±0.56 1.01±0.31 ↑0.00 0.58±0.17

+ SENTDEBIAS 0.53±0.26 −0.11±0.16 −0.62±0.43 0.66±0.31 −0.04±0.55 0.80±0.28 ↓0.09 0.49±0.14

+ GRADIENDFemale/Male + INLP 0.15±0.22 0.01±0.14 −0.46±0.40 0.43±0.31 0.05±0.39 0.68±0.32 ↓0.25 0.33±0.13

+ GRADIENDFemale/Male + SENTDEBIAS 0.31±0.20 0.05±0.16 −0.38±0.41 0.71±0.27 0.36±0.41 0.82±0.23 ↓0.14 0.44±0.11

+ CDA + INLP 0.41±0.24 −0.23±0.11 −0.74±0.42 0.38±0.42 −0.19±0.49 0.92±0.31 ↓0.09 0.49±0.15

+ DROPOUT + SENTDEBIAS 0.16±0.23 −0.34±0.24 −0.93±0.32 0.68±0.29 −0.15±0.47 0.87±0.27 ↓0.04 0.54±0.12

+ CDA + SENTDEBIAS 0.51±0.28 0.00±0.14 −0.17±0.59 0.64±0.37 −0.05±0.54 1.00±0.24 ↓0.13 0.45±0.14

+ DROPOUT + INLP 0.07±0.24 −0.41±0.19 −0.80±0.36 0.49±0.30 −0.14±0.43 0.70±0.27 ↓0.12 0.45±0.11
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Table 27: Gender: SEAT bootstrapped effect sizes for decoder-only models. Statistically significant
improvements are indicated in italics, while the best score for each base model is highlighted in bold.

Model SEAT-6 ↓
↑0.0 SEAT-6b ↓

↑0.0 SEAT-7 ↓
↑0.0 SEAT-7b ↓

↑0.0 SEAT-8 ↓
↑0.0 SEAT-8b ↓

↑0.0 Absolute Average ↓

GPT-2 0.27±0.61 0.03±0.47 0.03±0.39 0.14±0.61 −0.07±0.76 −0.14±0.72 0.24±0.29

+ GRADIENDFemale/Male 0.34±0.56 0.02±0.50 0.42±0.61 0.51±0.63 −0.05±0.63 0.18±0.71 ↑0.09 0.33±0.39

+ GRADIENDFemale 0.20±0.57 0.00±0.41 0.14±0.54 0.39±0.81 0.05±0.67 0.19±0.65 ↑0.01 0.25±0.39

+ GRADIENDMale 0.31±0.60 −0.02±0.55 0.42±0.59 0.48±0.60 −0.09±0.65 0.11±0.69 ↑0.09 0.33±0.36

+ CDA 0.34±0.45 0.03±0.28 0.14±0.55 0.43±0.70 0.28±0.90 0.02±0.77 ↑0.07 0.31±0.29

+ DROPOUT 0.33±0.47 0.03±0.34 0.66±0.73 0.85±0.59 0.45±0.61 0.22±0.79 ↑0.24 0.48±0.24

+ INLP 0.23±0.58 −0.01±0.46 0.00±0.36 0.12±0.59 −0.09±0.76 −0.16±0.73 ↓0.01 0.23±0.26

+ RLACE 0.26±0.65 0.03±0.49 0.02±0.31 0.11±0.43 −0.08±0.69 −0.20±0.56 ↓0.02 0.22±0.24

+ LEACE 0.33±0.63 0.11±0.48 0.06±0.37 0.14±0.57 −0.01±0.67 −0.10±0.70 ↑0.00 0.24±0.26

+ SENTDEBIAS 0.26±0.55 −0.06±0.21 −0.26±0.52 0.12±1.01 0.17±0.84 −0.22±1.19 ↑0.11 0.34±0.27

+ GRADIENDFemale/Male + INLP 0.29±0.54 −0.02±0.49 0.38±0.56 0.46±0.56 −0.06±0.62 0.17±0.70 ↑0.07 0.31±0.36

+ GRADIENDFemale/Male + SENTDEBIAS 0.35±0.46 −0.04±0.25 −0.02±0.77 0.61±0.93 −0.54±0.42 0.10±1.10 ↑0.18 0.42±0.25

+ CDA + INLP 0.32±0.45 0.01±0.29 0.10±0.57 0.38±0.71 0.26±0.90 −0.00±0.77 ↑0.06 0.30±0.29

+ DROPOUT + SENTDEBIAS 0.40±0.46 0.11±0.35 0.43±0.66 0.83±0.63 −0.18±0.61 −0.08±0.73 ↑0.18 0.42±0.19

+ CDA + SENTDEBIAS 0.39±0.39 0.02±0.23 −0.05±0.58 0.45±1.12 0.44±1.07 −0.04±1.14 ↑0.16 0.40±0.26

+ DROPOUT + INLP 0.31±0.46 0.00±0.34 0.62±0.76 0.82±0.60 0.43±0.63 0.20±0.80 ↑0.22 0.46±0.23

LLaMA 1.29±0.19 0.37±0.12 0.41±0.45 1.40±0.25 0.82±0.35 1.30±0.23 0.93±0.16

+ GRADIENDFemale/Male 0.99±0.19 0.20±0.09 −0.20±0.32 1.27±0.23 0.22±0.34 1.09±0.22 ↓ 0.26 0.67±0.10

+ GRADIENDFemale 0.95±0.22 0.25±0.10 0.79±0.35 1.39±0.24 0.89±0.32 0.94±0.30 ↓0.06 0.87±0.14

+ GRADIENDMale 1.19±0.17 0.28±0.12 −0.39±0.46 1.35±0.25 0.41±0.42 1.29±0.19 ↓0.11 0.82±0.11

+ INLP 0.89±0.20 0.11±0.10 0.40±0.44 1.03±0.32 0.78±0.41 1.00±0.28 ↓0.23 0.70±0.16

+ RLACE 1.30±0.19 0.37±0.12 0.41±0.45 1.39±0.25 0.82±0.35 1.29±0.23 ↓0.00 0.93±0.16

+ LEACE 1.29±0.19 0.36±0.12 0.39±0.46 1.39±0.25 0.79±0.37 1.29±0.23 ↓0.01 0.92±0.17

+ SENTDEBIAS 1.04±0.21 0.14±0.11 0.16±0.34 1.06±0.28 0.29±0.32 0.95±0.24 ↓ 0.32 0.61±0.14

+ GRADIENDFemale/Male + INLP 0.96±0.19 0.08±0.07 −0.16±0.27 1.17±0.20 0.17±0.31 1.07±0.19 ↓ 0.33 0.61±0.09

+ GRADIENDFemale/Male + SENTDEBIAS 0.95±0.19 0.15±0.08 −0.17±0.31 1.24±0.23 0.12±0.30 1.08±0.21 ↓ 0.30 0.63±0.10

LLaMA-Instruct 0.88±0.26 0.21±0.14 1.11±0.37 1.45±0.22 0.63±0.28 1.11±0.26 0.90±0.16

+ GRADIENDFemale/Male 0.40±0.26 0.32±0.12 0.57±0.39 0.70±0.40 0.16±0.29 0.76±0.25 ↓ 0.41 0.49±0.15

+ GRADIENDFemale 0.81±0.26 0.25±0.13 0.85±0.43 1.06±0.36 0.51±0.31 0.75±0.31 ↓0.19 0.71±0.20

+ GRADIENDMale 1.17±0.34 0.05±0.17 −0.41±0.67 1.13±0.39 0.13±0.41 1.24±0.29 ↓0.19 0.71±0.13

+ INLP 0.70±0.26 −0.04±0.10 0.42±0.50 1.01±0.37 0.36±0.39 0.86±0.35 ↓0.33 0.57±0.19

+ RLACE 0.83±0.26 0.14±0.13 0.62±0.53 1.19±0.31 0.45±0.33 0.94±0.27 ↓0.20 0.70±0.20

+ LEACE 0.82±0.26 0.13±0.13 0.62±0.54 1.15±0.31 0.49±0.32 0.95±0.27 ↓0.20 0.69±0.20

+ SENTDEBIAS 0.68±0.28 −0.01±0.12 0.14±0.32 0.73±0.32 0.19±0.24 0.72±0.22 ↓ 0.47 0.43±0.13

+ GRADIENDFemale/Male + INLP 0.36±0.26 0.17±0.10 0.27±0.38 0.69±0.39 −0.07±0.32 0.72±0.28 ↓ 0.50 0.39±0.13

+ GRADIENDFemale/Male + SENTDEBIAS 0.34±0.26 0.23±0.11 0.59±0.38 0.72±0.40 0.05±0.30 0.78±0.26 ↓ 0.43 0.46±0.14
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Table 28: Race: SEAT bootstrapped effect sizes for all models. Statistically significant improvements
are indicated in italics, while the best score for each base model is highlighted in bold.

Model ABW1 ↓
↑0.0 ABW2 ↓

↑0.0 SEAT-3 ↓
↑0.0 SEAT-3b ↓

↑0.0 SEAT-4 ↓
↑0.0 SEAT-5 ↓

↑0.0 SEAT-5b ↓
↑0.0 Absolute Average ↓

↑0.0

BERTbase 0.53±0.78 0.50±0.23 0.72±0.36 −0.15±0.48 0.68±0.48 0.77±0.56 0.04±0.33 51.64±25.85

+ GRADIENDAsian/Black 0.82±0.65 0.40±0.28 0.83±0.37 0.02±0.49 0.85±0.54 0.97±0.53 0.06±0.29 ↑8.31 59.96±27.62

+ GRADIENDAsian/White 1.08±0.44 0.29±0.28 0.76±0.40 −0.09±0.50 0.74±0.56 0.97±0.50 0.06±0.32 ↑8.29 59.94±24.04

+ GRADIENDBlack/White 0.56±0.73 0.47±0.23 0.70±0.37 −0.20±0.49 0.65±0.49 0.75±0.55 0.01±0.34 ↓0.62 51.02±25.56

+ CDA 0.44±0.46 0.35±0.16 0.13±0.46 −0.19±0.34 −0.04±0.51 0.22±0.39 0.03±0.30 ↓25.74 25.90±12.84

+ DROPOUT 0.38±0.48 0.64±0.24 0.64±0.35 −0.18±0.46 0.74±0.41 0.32±0.44 0.02±0.25 ↓7.36 44.29±17.45

+ INLP 0.37±0.65 0.57±0.21 0.68±0.31 −0.16±0.43 0.63±0.38 0.81±0.38 −0.03±0.33 ↓2.10 49.55±18.90

+ SENTDEBIAS 0.55±0.78 0.50±0.23 0.72±0.36 −0.13±0.48 0.68±0.48 0.78±0.56 0.05±0.34 ↑0.46 52.11±26.04

BERTlarge −0.45±0.38 1.05±0.16 0.59±0.18 −0.03±0.41 0.43±0.22 0.28±0.38 −0.12±0.34 45.00±10.23

+ GRADIENDAsian/Black 0.08±0.43 0.95±0.19 0.77±0.16 0.28±0.36 0.67±0.18 0.46±0.38 0.01±0.30 ↑4.37 49.37±12.55

+ GRADIENDAsian/White 0.12±0.48 0.89±0.20 0.84±0.15 0.16±0.34 0 .85±0.17 0.50±0.41 0.06±0.29 ↑6.82 51.83±12.79

+ GRADIENDBlack/White −0.24±0.43 1.03±0.18 0.68±0.18 0.12±0.41 0.56±0.22 0.39±0.41 −0.05±0.33 ↑1.68 46.69±11.31

+ CDA 0.10±0.42 0.81±0.14 0.49±0.19 0.12±0.31 0.39±0.25 0.69±0.26 0.12±0.25 ↓3.94 41.06±12.97

+ DROPOUT 0.06±0.31 0.81±0.25 0.62±0.16 0.10±0.27 0.55±0.22 0.49±0.20 0.19±0.22 ↓3.07 41.94±11.52

+ INLP −0.76±0.36 0.96±0.16 0.57±0.22 −0.07±0.37 0.34±0.30 0.21±0.35 −0.11±0.29 ↑0.40 45.40±10.74

+ SENTDEBIAS −0.42±0.39 1.02±0.16 0.59±0.18 −0.06±0.36 0.43±0.22 0.27±0.38 −0.27±0.32 ↑0.43 45.43±9.88

DistilBERT 0.70±0.49 0.23±0.20 0.04±0.54 −0.22±0.45 −0.04±0.72 0.03±0.50 −0.09±0.35 30.04±16.11

+ GRADIENDAsian/Black 0.69±0.50 0.22±0.20 0.03±0.52 −0.37±0.48 −0.04±0.71 0.10±0.51 −0.08±0.40 ↑1.72 31.76±15.95

+ GRADIENDAsian/White 0.79±0.42 0.19±0.21 0.00±0.56 −0.12±0.45 −0.14±0.73 −0.09±0.46 −0.13±0.30 ↑0.12 30.16±16.30

+ GRADIENDBlack/White 0.66±0.54 0.24±0.20 −0.02±0.51 −0.42±0.49 −0.15±0.69−0.02±0.50 −0.13±0.41 ↑2.54 32.58±16.58

+ CDA 0.73±0.43 0.33±0.17 −0.16±0.39 −0.37±0.43 −0.41±0.46 0.09±0.38 0.24±0.30 ↑5.50 35.54±11.69

+ DROPOUT 0.99±0.35 0.38±0.25 0.19±0.32 −0.55±0.35 0.02±0.45 0.23±0.40 0.26±0.29 ↑10.53 40.57±12.83

+ INLP 0.22±0.47 0.32±0.19 −0.07±0.40 −0.11±0.31 −0.20±0.52 0.14±0.37−0.03±0.27 ↓8.85 21.19±12.04

+ SENTDEBIAS 0.72±0.48 0.23±0.20 0.06±0.54 −0.21±0.46 0.04±0.73 0.04±0.50 −0.09±0.35 ↑0.12 30.16±16.30

RoBERTa −0.04±0.32 0.28±0.40 0.72±0.37 0.01±0.55 0.79±0.47 0.69±0.34 0.07±0.30 42.72±16.70

+ GRADIENDAsian/Black 0 .64±0.17 0.11±0.28 0.87±0.27 0.10±0.24 0.67±0.31 0.52±0.26 0.11±0.17 ↑1.54 44.26±11.86

+ GRADIENDAsian/White 0.52±0.25 0.13±0.38 0.78±0.33 −0.18±0.28 0.49±0.48 0.48±0.32 −0.12±0.16 ↓3.04 39.67±13.78

+ GRADIENDBlack/White −0.02±0.31 0.43±0.36 0.63±0.39 −0.01±0.55 0.72±0.51 0.67±0.34 0.09±0.30 ↓0.55 42.17±17.46

+ CDA 0.10±0.34 0.15±0.28 0.43±0.36 −0.31±0.42 0.58±0.43 0.65±0.28 −0.33±0.29 ↓4.81 37.91±14.66

+ DROPOUT 0.30±0.29 0.59±0.30 0.66±0.31 0.24±0.36 0.93±0.32 1.14±0.23 0.38±0.19 ↑18.00 60.72±15.59

+ INLP 0.10±0.39 0.04±0.50 0.75±0.35 −0.02±0.54 0.95±0.40 0.71±0.33 0.09±0.29 ↑2.23 44.94±15.92

+ SENTDEBIAS −0.05±0.32 0.25±0.39 0.72±0.37 0.00±0.53 0.78±0.47 0.75±0.33 0.18±0.30 ↑1.01 43.73±16.81

GPT-2 0.82±0.67 −0.14±0.36 0.33±1.11 0.26±0.49 0.13±1.10 0.39±1.11 0.25±0.49 46.92±32.61

+ GRADIENDAsian/Black 0.24±0.85 0.05±0.39 −0.41±0.98 −0.03±0.47 −0.52±0.88 −0.60±0.66 −0.21±0.48 ↓6.51 40.41±29.60

+ GRADIENDAsian/White 0.60±0.86 −0.06±0.41 0.13±1.04 0.24±0.41 −0.07±1.02 0.33±1.14 0.22±0.48 ↓5.99 40.93±27.33

+ GRADIENDBlack/White 0.83±0.66 −0.15±0.35 0.36±1.13 0.27±0.49 0.15±1.11 0.40±1.11 0.25±0.49 ↑1.03 47.95±33.43

+ CDA −0.30±1.49 −0.07±0.46 −0.26±1.10 0.07±0.60 −0.49±0.96 0.65±1.23 0.17±0.41 ↑1.83 48.75±28.71

+ DROPOUT 0.65±0.79 −0.06±0.30 0.32±1.22 0.15±0.45 0.21±1.29 0.08±1.00 0.06±0.33 ↓8.29 38.63±37.73

+ INLP 0.82±0.67 −0.14±0.36 0.33±1.12 0.26±0.49 0.13±1.10 0.39±1.11 0.24±0.49 ↓0.02 46.90±32.59

+ SENTDEBIAS 0.28±0.65 0.01±0.33 0.69±0.73 0.37±0.40 0.47±0.74 0.22±0.38 0.17±0.40 ↓9.65 37.27±20.70

LLaMA 0.57±0.21 0.21±0.17 0.18±0.25 0.04±0.32 −0.01±0.31 0.10±0.24 −0.12±0.23 21.33±8.25

+ GRADIENDAsian/Black 0.71±0.12 −0 .21±0.19 0.12±0.23 −0.12±0.27 −0.08±0.21 0.22±0.23 −0.02±0.17 ↑1.61 22.95±6.53

+ GRADIENDAsian/White 0.66±0.13 0.16±0.17 0.27±0.26 0.21±0.24 0.08±0.27 0.18±0.29−0.01±0.19 ↑3.01 24.35±10.56

+ GRADIENDBlack/White 0.56±0.16 0.13±0.18 0.22±0.27 0.11±0.28 0.03±0.30 0.14±0.28 −0.17±0.20 ↑0.55 21.88±8.50

+ INLP 0.57±0.21 0.21±0.17 0.13±0.24 0.13±0.30 −0.03±0.30 0.09±0.23 −0.11±0.24 ↓0.32 21.01±7.88

+ SENTDEBIAS 0.61±0.20 0.19±0.18 0.20±0.26 0.03±0.32 0.03±0.31 0.14±0.24 −0.13±0.24 ↑1.01 22.34±8.75

LLaMA-Instruct 0.70±0.21 0.14±0.37 0.22±0.30 0.40±0.26 0.38±0.35 0.31±0.21 0.15±0.25 33.95±14.26

+ GRADIENDAsian/Black 1 .02±0.01 −0 .31±0.01 −1 .17±0.01 −0 .47±0.02 −1 .26±0.01 1 .20±0.01 0 .56±0.01 ↑ 51.68 85 .64±0.59

+ GRADIENDAsian/White 0.94±0.13 0.05±0.29 0.03±0.21 0.48±0.13 −0.16±0.20 0.52±0.14 0.44±0.13 ↑5.47 39.42±5.47

+ GRADIENDBlack/White 0.69±0.23 0.24±0.42 0.45±0.22 0.51±0.22 0.63±0.25 0.44±0.19 0.17±0.19 ↑11.13 45.09±12.77

+ INLP 0.70±0.21 0.17±0.37 0.15±0.31 0.51±0.25 0.34±0.36 0.30±0.21 0.21±0.25 ↑1.14 35.09±14.39

+ SENTDEBIAS 0.69±0.21 0.16±0.38 0.21±0.30 0.40±0.26 0.37±0.35 0.32±0.21 0.15±0.25 ↓0.04 33.91±14.22
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Table 29: Religion: SEAT bootstrapped effect sizes for all models. Statistically significant improve-
ments are indicated in italics, while the best score for each base model is highlighted in bold.

Model SEAT-REL1 ↓
↑0.0 SEAT-REL1b ↓

↑0.0 SEAT-REL2 ↓
↑0.0 SEAT-REL2b ↓

↑0.0 Absolute Average ↓
↑0.0

BERTbase 0.18±0.40 −0.10±0.31 0.73±0.40 0.43±0.40 38.29±21.39

+ GRADIENDChristian/Jewish 0.22±0.41 −0.15±0.32 0.81±0.38 0.44±0.40 ↑3.79 42.07±20.57

+ GRADIENDChristian/Muslim −0.29±0.42 −0.46±0.28 0.72±0.41 0.37±0.42 ↑8.48 46.77±17.84

+ GRADIENDJewish/Muslim 0.61±0.31 0.12±0.30 0.82±0.35 0.45±0.37 ↑12.74 51.03±23.95

+ CDA −0.16±0.25 −0.08±0.22 0.21±0.35 −0.00±0.27 ↓22.76 15.53±9.86

+ DROPOUT −0.21±0.43 −0.20±0.34 0.66±0.36 0.39±0.37 ↓0.10 38.18±15.73

+ INLP −0.05±0.40 −0.32±0.29 0.61±0.32 0.36±0.35 ↓1.86 36.43±14.46

+ SENTDEBIAS 0.37±0.28 0.01±0.27 0.62±0.36 0.34±0.36 ↓2.18 36.11±20.86

BERTlarge 0.42±0.40 0.18±0.32 1.34±0.25 1.03±0.36 74.96±24.49

+ GRADIENDChristian/Jewish 0.56±0.35 0.42±0.31 1.30±0.23 1.14±0.28 ↑10.61 85.57±22.90

+ GRADIENDChristian/Muslim 0.36±0.34 0.35±0.29 1.33±0.19 1.13±0.26 ↑4.46 79.42±20.39

+ GRADIENDJewish/Muslim −0.12±0.36 −0.19±0.24 1.40±0.20 1.14±0.32 ↓2.18 72.79±13.50

+ CDA 0.14±0.22 0.24±0.16 1.20±0.25 1.01±0.24 ↓9.86 65.10±16.24

+ DROPOUT 0.94±0.32 0 .89±0.37 1.15±0.22 0.67±0.37 ↑16.40 91.36±26.14

+ INLP 0.03±0.43 −0.11±0.31 1.07±0.30 0.82±0.39 ↓19.35 55.61±16.95

+ SENTDEBIAS 0.16±0.34 0.16±0.32 1.13±0.31 1.01±0.38 ↓12.20 62.76±24.05

DistilBERT 0.12±0.36 0.17±0.28 0.58±0.43 0.32±0.44 32.25±26.27

+ GRADIENDChristian/Jewish 0.18±0.34 0.20±0.27 0.61±0.41 0.34±0.42 ↑2.05 34.30±26.77

+ GRADIENDChristian/Muslim 0.30±0.31 0.30±0.26 0.56±0.39 0.30±0.41 ↑4.83 37.08±26.80

+ GRADIENDJewish/Muslim 0.39±0.31 0.35±0.27 0.62±0.40 0.40±0.43 ↑12.02 44.27±28.66

+ CDA −0.30±0.22 0.11±0.17 0.25±0.40 0.10±0.35 ↓10.65 21.60±12.08

+ DROPOUT −0.38±0.32 −0.04±0.27 0.25±0.37 0.21±0.33 ↓7.54 24.71±13.09

+ INLP −0.11±0.37 0.05±0.30 0.45±0.41 0.25±0.46 ↓5.99 26.26±18.59

+ SENTDEBIAS 0.28±0.22 0.26±0.24 0.40±0.32 0.20±0.38 ↓2.82 29.43±21.31

RoBERTa −0.17±0.48 −0.66±0.39 −0.09±0.41 −0.48±0.43 39.31±21.41

+ GRADIENDChristian/Jewish 0.13±0.36 −0.15±0.47 0.28±0.27 0 .62±0.23 ↓6.45 32.86±14.36

+ GRADIENDChristian/Muslim −0.58±0.37 −0.77±0.32 0.04±0.21 0.05±0.28 ↓0.47 38.84±16.29

+ GRADIENDJewish/Muslim −0.17±0.36 −0.50±0.33 −0.14±0.28 −0.08±0.30 ↓14.02 25.29±16.52

+ CDA 0.03±0.30 −0.19±0.28 −0.13±0.33 −0.21±0.38 ↓20.92 18.39±15.12

+ DROPOUT 0.36±0.37 −0.10±0.35 0.52±0.38 −0.47±0.41 ↓1.09 38.22±13.42

+ INLP −0.16±0.50 −0.69±0.41 −0.07±0.34 −0.44±0.43 ↓0.97 38.34±21.20

+ SENTDEBIAS −0.41±0.36 −0.71±0.39 −0.20±0.28 −0.51±0.42 ↑7.00 46.31±23.32

GPT-2 −0.25±0.54 −0.22±0.48 0.43±0.80 0.20±0.61 35.58±27.48

+ GRADIENDChristian/Jewish −0.21±0.57 −0.22±0.43 0.49±0.79 0.21±0.58 ↑0.21 35.79±27.66

+ GRADIENDChristian/Muslim −0.45±0.56 −0.29±0.63 0.58±0.71 0.38±0.73 ↑13.83 49.41±26.02

+ GRADIENDJewish/Muslim −0.30±0.60 −0.26±0.53 0.66±0.51 0.41±0.54 ↑10.69 46.27±20.78

+ CDA −0.41±0.51 −0.36±0.46 −0.33±0.54 −0.41±0.31 ↑4.43 40.01±32.24

+ DROPOUT −0.05±0.57 −0.16±0.54 0.42±0.65 −0.06±0.46 ↓7.59 27.99±25.97

+ INLP −0.25±0.54 −0.22±0.47 0.43±0.80 0.20±0.61 ↓0.14 35.44±27.45

+ SENTDEBIAS −0.38±0.55 −0.37±0.50 0.48±0.83 0.22±0.64 ↑7.11 42.69±27.86

LLaMA 0.01±0.19 −0.43±0.16 0.47±0.26 −0.12±0.30 28.39±8.54

+ GRADIENDChristian/Jewish −0.01±0.18 −0.30±0.18 0.10±0.26 −0.52±0.33 ↓2.65 25.73±10.59

+ GRADIENDChristian/Muslim 0.03±0.20 −0.25±0.16 −0 .24±0.34 −0.25±0.32 ↓7.28 21.10±14.68

+ GRADIENDJewish/Muslim −0.14±0.21 −0.43±0.21 0.46±0.26 −0.42±0.32 ↑8.06 36.45±11.37

+ INLP −0.01±0.19 −0.44±0.16 0.36±0.24 −0.16±0.27 ↓2.06 26.32±8.22

+ SENTDEBIAS −0.02±0.16 −0.43±0.16 0.38±0.22 −0.12±0.30 ↓2.74 25.65±7.80

LLaMA-Instruct 0.10±0.27 −0.17±0.28 0.27±0.18 −0.21±0.17 20.07±8.89

+ GRADIENDChristian/Jewish 0.11±0.27 −0.18±0.29 0.28±0.18 −0.21±0.17 ↑0.69 20.76±8.85

+ GRADIENDChristian/Muslim 1 .10±0.19 1 .02±0.13 0 .97±0.16 0 .47±0.19 ↑ 68.84 88 .91±13.20

+ GRADIENDJewish/Muslim −0.52±0.44 −0.37±0.36 −0 .86±0.33 −0.19±0.37 ↑29.56 49.63±23.52

+ INLP 0.11±0.27 −0.17±0.29 0.24±0.17 −0.20±0.17 ↓0.68 19.39±8.76

+ SENTDEBIAS 0.05±0.23 −0.17±0.28 0.16±0.15 −0.19±0.17 ↓4.33 15.74±7.80
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Table 30: Example predictions for BERTbase and its gender GRADIEND models. Predictions of
the GRADIEND models that were not retrieved by the base model as one of the top 10 results, are
highlighted in bold.

Index BERTbase + GRADIENDFemale/Male + GRADIENDFemale + GRADIENDMale

The woman worked as a [MASK].

1 nurse (16.9%) nurse (10.2%) waitress (34.4%) nurse (13.6%)
2 waitress (15.0%) waitress (7.1%) nurse (22.0%) waitress (9.5%)
3 maid (5.6%) waiter (3.6%) maid (9.4%) maid (4.6%)
4 housekeeper (4.8%) maid (3.2%) housekeeper (9.0%) housekeeper (4.5%)
5 cook (3.0%) doctor (2.4%) model (3.5%) cook (3.3%)
6 secretary (2.9%) cook (2.3%) secretary (2.8%) secretary (3.1%)
7 model (2.6%) bartender (2.2%) cook (2.7%) detective (2.8%)
8 bartender (2.3%) servant (2.1%) teacher (1.3%) lawyer (2.7%)
9 servant (2.1%) housekeeper (2.1%) prostitute (1.1%) waiter (2.6%)

10 teacher (2.1%) lawyer (2.1%) hostess (1.0%) bartender (2.5%)

The man worked as a [MASK].

1 lawyer (4.8%) lawyer (3.4%) nurse (4.8%) lawyer (6.2%)
2 waiter (3.7%) cop (3.2%) lawyer (4.7%) carpenter (5.7%)
3 cop (3.6%) nurse (3.1%) cook (3.4%) waiter (4.4%)
4 detective (3.1%) waiter (3.1%) model (3.4%) salesman (4.3%)
5 doctor (2.7%) doctor (2.5%) detective (3.3%) detective (3.9%)
6 mechanic (2.5%) model (2.2%) waitress (3.1%) mechanic (3.6%)
7 carpenter (2.4%) detective (2.2%) mechanic (2.9%) cop (3.3%)
8 bartender (2.3%) waitress (2.2%) bartender (2.9%) contractor (2.7%)
9 salesman (2.0%) bartender (1.6%) doctor (2.8%) bodyguard (2.5%)

10 model (1.9%) cook (1.6%) waiter (2.7%) bartender (2.4%)

Alice worked as a [MASK].

1 nurse (13.5%) teacher (8.2%) waitress (46.6%) waitress (13.7%)
2 waitress (11.1%) nurse (6.2%) nurse (17.3%) nurse (10.4%)
3 teacher (8.1%) journalist (3.6%) maid (6.1%) teacher (5.8%)
4 model (4.6%) lawyer (3.2%) model (4.4%) waiter (4.8%)
5 cook (3.7%) waitress (3.2%) housekeeper (3.7%) carpenter (3.8%)
6 maid (3.4%) model (3.1%) secretary (3.3%) maid (3.7%)
7 secretary (2.6%) painter (3.1%) teacher (2.8%) cook (3.6%)
8 journalist (2.4%) waiter (2.7%) cook (2.6%) secretary (3.1%)
9 waiter (2.2%) cook (2.4%) cleaner (1.3%) lawyer (2.7%)

10 lawyer (2.1%) photographer (2.1%) librarian (1.1%) housekeeper (2.5%)

Bob worked as a [MASK].

1 carpenter (8.0%) teacher (7.2%) waitress (12.4%) carpenter (20.2%)
2 teacher (6.6%) lawyer (4.0%) nurse (10.8%) farmer (6.7%)
3 lawyer (4.5%) carpenter (3.0%) cook (6.3%) lawyer (5.0%)
4 farmer (4.3%) farmer (3.0%) teacher (5.2%) waiter (5.0%)
5 waiter (3.5%) nurse (3.0%) carpenter (4.6%) salesman (4.9%)
6 cook (2.6%) journalist (2.8%) bartender (3.0%) teacher (3.2%)
7 salesman (2.4%) waiter (2.4%) lawyer (3.0%) mechanic (2.6%)
8 journalist (2.2%) cook (2.4%) secretary (2.6%) bartender (2.4%)
9 mechanic (1.8%) painter (1.9%) maid (2.5%) policeman (2.3%)

10 painter (1.8%) photographer (1.6%) model (2.4%) blacksmith (2.0%)
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Table 31: Example predictions for BERTlarge and its gender GRADIEND models. Predictions of
the GRADIEND models that were not retrieved by the base model as one of the top 10 results, are
highlighted in bold.

Index BERTlarge + GRADIENDFemale/Male + GRADIENDFemale + GRADIENDMale

The woman worked as a [MASK].

1 nurse (25.7%) nurse (5.0%) nurse (41.6%) nurse (34.4%)
2 waitress (16.7%) teacher (4.4%) waitress (19.7%) waitress (24.5%)
3 teacher (4.6%) doctor (3.5%) secretary (11.8%) secretary (10.3%)
4 secretary (3.6%) cop (2.5%) librarian (5.8%) librarian (3.8%)
5 maid (3.3%) waitress (2.1%) cleaner (2.8%) maid (3.1%)
6 prostitute (3.0%) model (1.6%) maid (2.3%) housekeeper (2.6%)
7 housekeeper (2.9%) cook (1.4%) housekeeper (2.0%) cleaner (2.3%)
8 bartender (2.8%) prostitute (1.3%) prostitute (1.8%) prostitute (2.3%)
9 doctor (2.8%) lawyer (1.3%) bartender (1.6%) bartender (1.9%)

10 librarian (2.2%) bartender (1.1%) teacher (1.4%) teacher (1.5%)

The man worked as a [MASK].

1 doctor (6.5%) doctor (3.3%) nurse (7.0%) mechanic (18.7%)
2 cop (5.7%) teacher (3.2%) bartender (6.7%) cop (5.7%)
3 mechanic (4.4%) nurse (2.6%) mechanic (5.7%) doctor (5.7%)
4 waiter (3.8%) cop (2.4%) doctor (5.7%) carpenter (5.4%)
5 teacher (3.5%) killer (1.3%) cleaner (5.6%) bodyguard (5.0%)
6 bartender (3.2%) lawyer (1.2%) secretary (4.6%) guard (4.6%)
7 bodyguard (3.1%) model (1.1%) cop (3.5%) bartender (3.6%)
8 lawyer (3.1%) ghost (1.0%) bodyguard (3.4%) lawyer (3.3%)
9 nurse (3.0%) waitress (1.0%) waitress (3.0%) waiter (3.3%)

10 guard (2.6%) cook (1.0%) lawyer (2.7%) mercenary (3.0%)
Alice worked as a [MASK].

1 waitress (15.3%) teacher (8.5%) librarian (32.4%) librarian (26.3%)
2 nurse (13.7%) nurse (4.1%) waitress (16.7%) waitress (23.9%)
3 teacher (10.7%) model (3.8%) secretary (14.1%) secretary (7.7%)
4 secretary (6.6%) doctor (2.3%) nurse (7.8%) teacher (5.2%)
5 maid (4.9%) photographer (2.0%) teacher (5.4%) housekeeper (3.7%)
6 model (4.1%) cook (1.8%) housekeeper (4.6%) nurse (3.2%)
7 cook (3.3%) lawyer (1.7%) model (2.9%) clerk (3.2%)
8 housekeeper (3.0%) journalist (1.7%) cleaner (2.3%) cleaner (2.6%)
9 librarian (3.0%) painter (1.5%) maid (2.3%) maid (2.4%)

10 cleaner (1.9%) dancer (1.5%) cook (1.3%) journalist (2.0%)
Bob worked as a [MASK].

1 carpenter (6.9%) teacher (7.0%) mechanic (27.6%) mechanic (33.1%)
2 mechanic (5.6%) model (4.4%) carpenter (18.5%) carpenter (18.0%)
3 lawyer (5.4%) nurse (3.5%) salesman (10.3%) salesman (9.6%)
4 teacher (5.3%) doctor (2.3%) bartender (5.1%) farmer (5.4%)
5 bartender (5.0%) photographer (2.1%) farmer (4.7%) lawyer (4.1%)
6 waiter (4.9%) lawyer (2.0%) lawyer (4.4%) bartender (3.5%)
7 farmer (4.4%) waitress (2.0%) waiter (2.7%) contractor (3.0%)
8 salesman (4.2%) journalist (1.7%) contractor (2.5%) waiter (1.9%)
9 doctor (3.2%) cook (1.3%) clerk (2.1%) butcher (1.8%)

10 photographer (2.8%) dancer (1.3%) butcher (1.7%) policeman (1.3%)
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Table 32: Example predictions for DistilBERT and its gender GRADIEND models. Predictions of
the GRADIEND models that were not retrieved by the base model as one of the top 10 results, are
highlighted in bold.

Index DistilBERT + GRADIENDFemale/Male + GRADIENDFemale + GRADIENDMale

The woman worked as a [MASK].

1 nurse (25.0%) nurse (25.8%) nurse (40.8%) nurse (40.7%)
2 maid (8.1%) maid (8.5%) maid (21.5%) maid (18.5%)
3 prostitute (7.5%) prostitute (7.7%) waitress (13.9%) waitress (11.7%)
4 waitress (7.0%) waitress (7.4%) prostitute (6.3%) prostitute (7.7%)
5 teacher (5.5%) teacher (5.3%) housekeeper (4.3%) housekeeper (4.9%)
6 housekeeper (4.4%) housekeeper (4.6%) woman (3.1%) woman (2.2%)
7 lawyer (2.0%) lawyer (1.9%) hostess (1.6%) teacher (1.5%)
8 carpenter (1.7%) cook (1.6%) model (1.2%) hostess (1.3%)
9 cook (1.7%) carpenter (1.5%) librarian (0.7%) librarian (0.9%)

10 librarian (1.5%) librarian (1.5%) teacher (0.6%) cook (0.9%)

The man worked as a [MASK].

1 carpenter (8.2%) carpenter (8.0%) carpenter (11.2%) carpenter (10.6%)
2 farmer (6.1%) farmer (5.8%) policeman (6.5%) policeman (8.0%)
3 blacksmith (4.9%) blacksmith (4.8%) farmer (6.0%) farmer (7.6%)
4 lawyer (4.7%) lawyer (4.8%) blacksmith (5.4%) blacksmith (5.7%)
5 policeman (3.8%) policeman (3.7%) bartender (5.2%) mechanic (5.1%)
6 butcher (3.8%) butcher (3.6%) mechanic (5.1%) butcher (5.0%)
7 teacher (3.4%) teacher (3.6%) waiter (4.0%) salesman (3.8%)
8 waiter (3.3%) waiter (3.4%) butcher (3.9%) lawyer (3.4%)
9 mechanic (3.1%) mechanic (3.0%) lawyer (3.8%) builder (3.4%)

10 salesman (2.4%) salesman (2.3%) salesman (3.2%) waiter (2.9%)

Alice worked as a [MASK].

1 teacher (11.2%) teacher (11.4%) nurse (34.4%) nurse (35.3%)
2 lawyer (5.9%) nurse (7.4%) waitress (18.3%) waitress (15.8%)
3 nurse (5.6%) lawyer (5.5%) maid (12.8%) maid (12.7%)
4 journalist (5.4%) journalist (5.3%) model (8.0%) prostitute (5.6%)
5 carpenter (3.2%) waitress (3.2%) prostitute (5.3%) librarian (3.6%)
6 librarian (2.7%) librarian (3.0%) housekeeper (3.0%) teacher (3.6%)
7 painter (2.5%) carpenter (2.8%) librarian (2.5%) model (3.3%)
8 waitress (2.3%) painter (2.3%) hostess (2.1%) housekeeper (3.2%)
9 photographer (2.3%) photographer (2.2%) teacher (1.9%) hostess (1.4%)

10 farmer (1.6%) translator (1.5%) woman (1.2%) journalist (0.8%)

Bob worked as a [MASK].

1 teacher (8.9%) teacher (9.4%) nurse (27.5%) carpenter (14.9%)
2 lawyer (6.8%) lawyer (6.6%) waitress (27.3%) salesman (7.4%)
3 journalist (5.1%) journalist (5.1%) maid (6.4%) lawyer (5.4%)
4 carpenter (4.2%) carpenter (3.8%) prostitute (4.3%) mechanic (4.0%)
5 photographer (2.6%) photographer (2.6%) teacher (3.3%) farmer (3.5%)
6 painter (2.5%) painter (2.5%) housekeeper (2.4%) builder (2.9%)
7 farmer (2.2%) nurse (2.2%) librarian (2.3%) butcher (2.8%)
8 salesman (1.9%) farmer (1.9%) model (2.0%) policeman (2.8%)
9 waiter (1.9%) waiter (1.8%) bartender (1.5%) waiter (2.7%)

10 nurse (1.6%) salesman (1.7%) lawyer (1.0%) bartender (2.5%)
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Table 33: Example predictions for RoBERTa and its gender GRADIEND models. Predictions of
the GRADIEND models that were not retrieved by the base model as one of the top 10 results, are
highlighted in bold.

Index RoBERTa + GRADIENDFemale/Male + GRADIENDFemale + GRADIENDMale

The woman worked as a [MASK].

1 nurse (28.2%) nurse (19.9%) waitress (90.9%) nurse (31.2%)
2 waitress (10.9%) teacher (13.2%) secretary (3.1%) waitress (15.4%)
3 teacher (10.4%) waitress (4.9%) bartender (2.0%) secretary (14.6%)
4 cleaner (5.9%) cleaner (3.3%) nurse (1.1%) cleaner (7.7%)
5 secretary (5.8%) secretary (2.7%) clerk (0.6%) teacher (6.3%)
6 bartender (3.0%) bartender (2.0%) server (0.3%) cook (3.2%)
7 maid (2.7%) maid (1.9%) cook (0.3%) maid (2.0%)
8 cook (2.2%) driver (1.9%) prostitute (0.2%) bartender (1.9%)
9 driver (1.5%) therapist (1.8%) cleaner (0.2%) prostitute (1.5%)

10 therapist (1.4%) chef (1.6%) maid (0.1%) driver (1.0%)

The man worked as a [MASK].

1 mechanic (8.7%) teacher (7.5%) bartender (16.3%) mechanic (18.5%)
2 driver (6.1%) nurse (4.4%) driver (13.3%) driver (9.7%)
3 teacher (5.1%) mechanic (4.0%) contractor (13.1%) logger (5.4%)
4 bartender (4.2%) driver (3.1%) clerk (9.8%) farmer (5.2%)
5 waiter (3.8%) doctor (2.7%) courier (7.4%) salesman (4.9%)
6 salesman (3.8%) firefighter (2.3%) butcher (7.1%) butcher (3.6%)
7 chef (3.0%) chef (2.3%) waiter (4.4%) firefighter (3.6%)
8 baker (2.9%) waiter (2.3%) cook (2.9%) teacher (3.4%)
9 firefighter (2.9%) lawyer (2.2%) baker (2.8%) waiter (2.8%)

10 nurse (2.1%) bartender (2.1%) logger (2.7%) contractor (2.4%)

Alice worked as a [MASK].

1 waitress (19.4%) teacher (6.1%) waitress (91.4%) waitress (32.0%)
2 nurse (13.0%) nurse (5.6%) secretary (4.8%) nurse (14.6%)
3 secretary (9.6%) waitress (3.9%) bartender (0.9%) secretary (13.5%)
4 teacher (8.1%) bartender (2.2%) nurse (0.8%) teacher (7.5%)
5 cleaner (3.8%) secretary (2.2%) clerk (0.6%) cleaner (3.9%)
6 bartender (3.7%) lawyer (2.1%) server (0.1%) journalist (3.6%)
7 journalist (2.5%) journalist (2.1%) baker (0.1%) bartender (2.3%)
8 baker (1.7%) waiter (2.0%) cleaner (0.1%) prostitute (1.5%)
9 maid (1.7%) reporter (1.9%) consultant (0.1%) cook (1.3%)

10 reporter (1.5%) chef (1.8%) teacher (0.1%) model (1.2%)

Bob worked as a [MASK].

1 mechanic (5.8%) teacher (6.2%) contractor (27.0%) mechanic (22.5%)
2 teacher (5.3%) nurse (3.4%) clerk (14.0%) salesman (9.6%)
3 salesman (5.0%) lawyer (2.3%) salesman (13.6%) logger (6.7%)
4 bartender (3.3%) mechanic (2.2%) dispatcher (10.2%) contractor (4.8%)
5 photographer (2.8%) reporter (2.1%) temp (8.6%) teacher (4.1%)
6 waiter (2.7%) manager (2.0%) logger (4.7%) firefighter (4.1%)
7 firefighter (2.2%) writer (1.6%) supervisor (2.7%) driver (2.4%)
8 nurse (2.2%) journalist (1.6%) courier (2.1%) farmer (2.0%)
9 lawyer (2.1%) photographer (1.6%) technician (2.0%) painter (1.8%)

10 manager (2.0%) contractor (1.5%) mechanic (1.7%) lineman (1.7%)
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Table 34: Example predictions for GPT-2 and its gender GRADIEND models. Predictions of the
GRADIEND models that were not retrieved by the base model as one of the top 10 results, are
highlighted in bold.

Index GPT-2 + GRADIENDFemale/Male + GRADIENDFemale + GRADIENDMale

The woman worked as a [MASK]

1 waitress (29.2%) waitress (28.8%) waitress (39.8%) waitress (27.9%)
2 maid (15.6%) nurse (19.1%) nurse (18.9%) prostitute (18.5%)
3 nurse (13.9%) prostitute (18.6%) maid (8.7%) nurse (17.5%)
4 reception (8.0%) maid (9.8%) reception (8.5%) maid (10.8%)
5 security (7.1%) babys (5.2%) prostitute (6.4%) bartender (5.0%)
6 prostitute (6.2%) model (4.6%) babys (4.2%) babys (4.5%)
7 cook (5.6%) bartender (4.0%) makeup (4.1%) security (4.4%)
8 sales (5.2%) reception (3.6%) model (3.4%) model (4.1%)
9 bartender (4.9%) teacher (3.2%) sales (3.1%) teacher (3.7%)

10 house (4.4%) security (3.2%) bartender (2.9%) reception (3.7%)

The man worked as a [MASK]

1 security (25.3%) waitress (28.7%) waitress (42.3%) waitress (25.1%)
2 waiter (11.4%) prostitute (23.7%) nurse (16.7%) prostitute (23.3%)
3 car (9.8%) nurse (15.2%) maid (11.3%) nurse (13.9%)
4 clerk (9.4%) maid (9.8%) prostitute (7.5%) maid (10.0%)
5 bartender (8.1%) bartender (5.0%) reception (6.1%) security (6.8%)
6 mechanic (8.1%) babys (4.5%) sales (4.5%) bartender (6.4%)
7 police (7.7%) security (4.4%) bartender (4.4%) " (4.0%)
8 jan (7.1%) model (3.1%) babys (3.2%) jan (3.7%)
9 " (6.7%) substitute (2.9%) cook (2.0%) babys (3.6%)

10 truck (6.5%) " (2.8%) house (1.9%) teacher (3.1%)
Alice worked as a [MASK]

1 security (12.7%) waitress (21.5%) waitress (47.9%) waitress (19.8%)
2 reporter (11.2%) nurse (21.3%) nurse (15.3%) nurse (19.1%)
3 lawyer (11.1%) prostitute (18.4%) prostitute (8.2%) prostitute (17.8%)
4 waitress (10.6%) model (8.0%) maid (6.7%) maid (7.3%)
5 nurse (9.8%) maid (7.5%) makeup (6.2%) teacher (6.9%)
6 writer (9.6%) teacher (5.7%) model (5.1%) model (6.9%)
7 bartender (9.2%) substitute (5.3%) reception (3.1%) lawyer (6.0%)
8 journalist (9.1%) " (4.9%) bartender (3.1%) " (6.0%)
9 consultant (8.4%) lawyer (3.8%) counselor (2.5%) reporter (5.3%)

10 teacher (8.2%) reporter (3.7%) babys (2.1%) substitute (4.9%)
Bob worked as a [MASK]

1 security (15.4%) waitress (24.7%) waitress (40.8%) waitress (20.5%)
2 reporter (14.3%) nurse (18.2%) nurse (20.4%) nurse (15.4%)
3 consultant (10.9%) prostitute (14.2%) reception (6.9%) prostitute (12.4%)
4 writer (10.0%) reporter (7.6%) makeup (5.4%) reporter (10.1%)
5 bartender (9.7%) lawyer (6.9%) prostitute (5.3%) lawyer (9.0%)
6 lawyer (8.7%) teacher (6.3%) maid (5.0%) teacher (7.5%)
7 journalist (8.6%) model (6.2%) bartender (4.4%) bartender (7.2%)
8 manager (8.3%) bartender (6.0%) consultant (4.1%) " (6.7%)
9 sales (7.2%) maid (5.1%) counselor (4.1%) model (5.8%)

10 waiter (6.8%) " (4.9%) sales (3.6%) consultant (5.3%)
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Table 35: Example predictions for LLaMA and its gender GRADIEND models. Predictions of the
GRADIEND models that were not retrieved by the base model as one of the top 10 results, are
highlighted in bold.

Index LLaMA + GRADIENDFemale/Male + GRADIENDFemale + GRADIENDMale

The woman worked as a [MASK]

1 waitress (16.7%) waitress (16.2%) nurse (17.7%) waitress (15.5%)
2 nurse (16.4%) nurse (16.2%) waitress (14.8%) nurse (15.4%)
3 reception (12.2%) teacher (13.0%) cashier (13.7%) teacher (11.7%)
4 secretary (10.8%) secretary (8.7%) nanny (9.5%) reception (10.5%)
5 nanny (8.0%) bartender (8.5%) caregiver (9.3%) secretary (10.2%)
6 teacher (8.0%) prostitute (8.3%) reception (8.2%) prostitute (9.2%)
7 cashier (7.8%) cashier (7.8%) sales (7.0%) cleaner (7.4%)
8 cleaner (7.2%) model (7.4%) house (6.7%) flight (7.0%)
9 house (6.7%) waiter (7.0%) cleaner (6.7%) house (6.9%)

10 sales (6.3%) reception (6.8%) bartender (6.4%) sales (6.2%)

The man worked as a [MASK]

1 security (19.0%) teacher (16.0%) security (20.5%) teacher (15.4%)
2 taxi (11.0%) nurse (13.1%) driver (12.7%) waiter (14.3%)
3 waiter (10.5%) waitress (11.3%) nurse (12.3%) security (11.4%)
4 mechanic (10.3%) waiter (10.2%) bartender (10.1%) salesman (10.1%)
5 driver (9.5%) lawyer (9.9%) taxi (9.1%) professional (8.7%)
6 teacher (8.5%) secretary (9.1%) consultant (7.6%) police (8.6%)
7 bus (8.4%) model (8.2%) volunteer (7.4%) taxi (8.2%)
8 jan (8.1%) driver (7.8%) cashier (6.9%) mechanic (8.1%)
9 cook (7.4%) bartender (7.4%) cook (6.9%) jan (7.6%)

10 chef (7.3%) member (6.9%) jan (6.6%) driver (7.6%)

Alice worked as a [MASK]

1 waitress (26.7%) waitress (17.3%) waitress (25.3%) teacher (18.4%)
2 nurse (17.2%) teacher (15.8%) nurse (19.1%) nurse (16.3%)
3 secretary (11.6%) nurse (12.4%) teacher (7.7%) waitress (14.1%)
4 teacher (9.4%) model (11.6%) journalist (7.5%) secretary (9.6%)
5 reception (9.0%) secretary (8.1%) cashier (7.3%) waiter (7.8%)
6 journalist (5.6%) journalist (8.1%) reception (7.0%) journalist (7.6%)
7 volunteer (5.4%) writer (7.4%) freelance (6.9%) clerk (7.5%)
8 nanny (5.1%) professional (6.6%) secretary (6.8%) professional (7.2%)
9 research (5.1%) lawyer (6.4%) researcher (6.2%) reception (5.8%)

10 sales (5.0%) waiter (6.3%) nanny (6.1%) research (5.7%)

Bob worked as a [MASK]

1 carp (14.7%) teacher (16.3%) nurse (24.6%) professional (20.7%)
2 journalist (13.2%) waitress (13.1%) waitress (14.5%) teacher (16.6%)
3 teacher (12.6%) journalist (10.7%) freelance (10.3%) journalist (13.4%)
4 professional (12.5%) nurse (10.7%) teacher (10.2%) carp (9.6%)
5 freelance (8.9%) model (9.9%) journalist (9.5%) senior (8.0%)
6 reporter (8.3%) professional (9.2%) reporter (7.9%) freelance (7.0%)
7 consultant (8.1%) lawyer (7.8%) volunteer (5.9%) reporter (6.9%)
8 police (7.8%) consultant (7.7%) reception (5.8%) full (6.3%)
9 computer (7.2%) senior (7.4%) consultant (5.7%) consultant (6.0%)

10 senior (6.8%) writer (7.2%) secretary (5.6%) police (5.5%)
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Table 36: Example predictions for LLaMA-Instruct and its gender GRADIEND models. Predictions
of the GRADIEND models that were not retrieved by the base model as one of the top 10 results, are
highlighted in bold.

Index LLaMA-Instruct + GRADIENDFemale/Male + GRADIENDFemale + GRADIENDMale

The woman worked as a [MASK]

1 nurse (28.9%) waitress (31.3%) nurse (29.9%) nurse (22.7%)
2 waitress (24.0%) nurse (19.2%) waitress (24.0%) waitress (16.7%)
3 librarian (8.6%) bartender (7.5%) secretary (8.2%) librarian (13.8%)
4 secretary (8.2%) model (7.4%) librarian (7.9%) bartender (10.6%)
5 reception (6.4%) server (7.1%) freelance (5.8%) secretary (10.5%)
6 bartender (6.0%) flight (6.4%) reception (5.6%) reception (8.1%)
7 freelance (5.5%) teacher (6.4%) researcher (5.4%) teacher (6.4%)
8 teacher (5.4%) maid (6.4%) teacher (4.6%) flight (4.1%)
9 part (3.6%) secretary (4.2%) bartender (4.5%) maid (3.6%)

10 journalist (3.3%) prostitute (4.1%) journalist (4.0%) server (3.5%)

The man worked as a [MASK]

1 mechanic (14.3%) waiter (15.8%) salesman (13.7%) bartender (18.1%)
2 chef (13.2%) bartender (15.0%) mechanic (12.4%) mechanic (12.7%)
3 salesman (11.7%) teacher (12.0%) chef (11.7%) librarian (12.1%)
4 gard (11.5%) mechanic (11.8%) gard (10.8%) waiter (9.6%)
5 bartender (10.0%) truck (9.2%) researcher (9.7%) baker (9.0%)
6 waiter (9.5%) professional (8.6%) clerk (9.5%) carp (8.4%)
7 carp (8.8%) police (8.2%) security (9.5%) gard (8.2%)
8 librarian (7.2%) labor (6.9%) waiter (8.1%) chef (7.9%)
9 manager (6.9%) security (6.4%) bartender (7.4%) teacher (7.1%)

10 security (6.8%) photographer (6.3%) manager (7.2%) jan (6.9%)

Alice worked as a [MASK]

1 waitress (42.0%) nurse (18.3%) waitress (31.2%) bartender (20.1%)
2 nurse (14.6%) waitress (17.0%) nurse (16.4%) librarian (14.5%)
3 librarian (8.7%) bartender (13.6%) researcher (8.8%) waitress (11.0%)
4 data (6.7%) waiter (13.4%) librarian (8.6%) bar (10.9%)
5 freelance (4.9%) teacher (10.5%) data (8.6%) nurse (10.1%)
6 bar (4.9%) server (9.4%) part (5.9%) baker (7.7%)
7 part (4.6%) mail (5.1%) freelance (5.6%) flor (7.3%)
8 researcher (4.5%) flight (4.4%) software (5.3%) waiter (6.8%)
9 bartender (4.5%) freelance (4.4%) research (5.0%) server (6.2%)

10 flor (4.5%) mechanic (3.8%) journalist (4.5%) teacher (5.4%)

Bob worked as a [MASK]

1 waiter (15.2%) waiter (24.8%) software (14.7%) bartender (18.7%)
2 bartender (11.3%) mechanic (13.0%) chef (12.9%) baker (15.6%)
3 chef (11.1%) carp (11.4%) freelance (10.9%) waiter (12.7%)
4 freelance (10.8%) teacher (10.9%) researcher (10.3%) carp (12.4%)
5 carp (10.7%) bartender (8.7%) waiter (9.5%) mechanic (9.4%)
6 baker (10.6%) mail (8.1%) data (9.5%) librarian (7.1%)
7 gard (8.0%) truck (6.5%) librarian (8.9%) mail (6.6%)
8 mechanic (7.7%) manager (5.8%) security (8.4%) chef (6.1%)
9 software (7.7%) freelance (5.5%) gard (7.5%) teacher (5.8%)

10 librarian (6.8%) labor (5.3%) nurse (7.4%) gard (5.7%)
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