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Abstract

Discovering scientific laws or interpretable equations from data rapidly is important
in many setting, such as decision-making in time-sensitive high-stake scenarios or
applications involving interactive or iterative experimentation such as in scientific
or machine learning workflows. However, existing methods typically require long
computational time to achieve good performance and have to run from scratch
for each dataset. Recent methods that use pre-trained foundation models for
faster inference also suffer from performance limitations and require large training
datasets. In this work, we propose README, a framework for rapid equation
discovery that can generate performant, interpretable equations from limited, noisy
data in just a few seconds, and requires significantly less training data compared to
past foundation model approaches. We achieve this by being the first to (1) work
with image representations of datasets to efficiently capture their key properties,
(2) combine the capabilities of open-sourced pre-trained text and image encoders
to produce an informative SR embedding space, and (3) develop a novel Grey Wolf
Optimizer with Bayesian Optimization (GWOBO) algorithm to rapidly optimize for
the best symbolic expression within seconds. We empirically show that README
outperforms benchmarks on a wide range of realistic datasets, including real
experimental data from various domains and noisy video-extracted dynamics.

1 Introduction

In many scientific and industrial settings, obtaining interpretable symbolic expressions that describe
systems accurately is a critical objective. For example, symbolic representation of physical phe-
nomena in areas such as climate science [[16, 2], material science [50,[51]], and robotics [52}133]] are
important in building scientific understanding, and interpretable symbolic expressions describing
industrial processes and systems can help in high-stakes decision-making scenarios [39] and applica-
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tions in aerospace engineering [7], electrical systems [4] and healthcare [49 [12], where verifiability
and human oversight are often required.

Symbolic regression (SR) methods aim to achieve automated discovery of the symbolic expressions
that best approximate a given dataset, which is a challenging problem given the large search space
of possible expressions [48]. However, while existing methods such as genetic programming-based
algorithms [29] can generate good approximations, they are typically computationally intensive and
slow to converge [5], and suffer from high sensitivity to hyperparameters and the basis function
choices [35]. To address these issues, some works have proposed pre-training transformer-based SR
models on large corpora of data, so as to amortize computational cost and enable faster inference
[46, 21]. These include approaches using CLIP-based [37] multi-modal architectures trained on
symbolic expressions and numerical data that could be used for candidate generation with genetic
programming-based SR methods [31} 28| 42]. However, they require large datasets and computational
time to train the models from scratch.

Importantly, most of the past works have not emphasized low-latency requirements where the time
constraint for accurate symbolic expression is in seconds, not minutes or hours. The few methods
for fast SR [30] tend to have their performance degrade for more realistic, noisy data. Hence, SR
remains challenging in interactive, real-time or iterative scenarios, potentially limiting its utility in
applications such as adaptive scientific experimentation and close to real-time decision making in
high-stakes environment.

In this work, we have identified three insights to achieve performant rapid equation discovery. First,
rather than working with raw numerical data, image representations of numerical data can aid
SR. Humans use plots to quickly extract key trends and identify candidate equations. A similar
approach might be adapted for multi-modal large language models. Images, even complex human-
uninterpretable plots, can efficiently summarize mathematical trends with many variables while
remaining readable to well-trained models, enabling better candidate equations generation.

Second, existing pre-trained image and text encoders can be leveraged to efficiently build foundation
models for SR, given plots and symbolic equations. Building on rapidly improving open-sourced
image and text encoders rather than separately training SR-specific models from scratch, can produce
better models with less data and computational resources. These encoders may have been pre-trained
to extract relevant features that are useful for SR (e.g., shape features in plots for the image encoder
or math operator relationships for the text encoder), and hence only require fine-tuning with a small
amount of data to become effective.

Third, to rapidly optimize for the symbolic equation that best approximates a dataset with desired
properties (e.g., complexity), we consider whether query-efficient approaches such as Bayesian
Optimization (BO) could be used to significantly speed up the search process, when used with SR
foundation models. BO methods [[14] allows for reduced calls to expensive fit procedures, which is a
natural combination with population-based algorithms such as Grey Wolf Optimizer (GWO) [32] to
enable rapid equation discovery.

Combining these insights, we propose README (Rapid Equation Discovery with Multimodal
Encoders), a framework for SR that uses (1) an informative, compressed image representation of
numerical data (Sec.[3.1); (2) an efficiently-trained transformer-based model built on top of pre-
trained image and text encoders (~ 60x less training data compared to past works) (Sec.[3.2)); and
(3) a novel combination of BO and GWO for a rapid, effective optimization process (Sec. [3.3)), to (4)
achieve state-of-the-art and robust SR results for challenging settings with realistic, noisy settings
and tight time constraints (< 10s) (Sec. ).

2 Problem formulation

SR inference phase. Consider a target system that is governed by an underlying equation y = f(x),
where y € R, z € R™, and f(z) is a function that can be symbolically expressed as a composition of
math operators. Given an inference dataset D consisting of a set of noisy m observations {(x;, ;) }™
where §; = y; + €;, the SR task is to obtain a symbolic expression for the underlying function f(x)
that is the most accurate while prioritizing parsimonious expressions. Specifically, our accuracy goal
is to find a symbolic expression G* € G, where G is the space of all valid symbolic expressions
consisting of symbolic representations of input variables and math operators for the task under



consideration, that represents a function g(x) with the maximum R? value E] over a test dataset D;
generated from the same underlying phenomenon as D.

In practice, during the inference phase we aim to achieve the best SR expression subjected to two
additional desiderata. First, we prefer equations that are more parsimonious (i.e., G that is less
complex as evaluated by the number of nodes in its expression tree, details in Sec. as they
tend to be more interpretable, but there is typically a trade-off between the achievable accuracy and
parsimony of the expression GG. Hence, we will evaluate methods on the parsimony of their proposed
expressions, and use accuracy-parsimony Pareto plots to analyze how well the methods balance this
trade-off. Second, the SR methods should have low inference runtime, as many practical scenarios
may have strict time budgets. We evaluate the methods based on fixed, short time budgets (e.g.,
10 — 30s) in our experiments (Sec. Ef[)

Training phase for foundation models. We consider the realistic setting where we can generate
synthetic training datasets independently from inference phase data (i.e., {D;, F;}; where F; are
ground truth expressions of datasets D;) to train SR foundation models. Given the cost of high-quality
data generation, another desiderata is for methods that require foundation model training to use as
little training data as possible to achieve good performance (Table|[T)).

3 Method Overview

README framework consists of three key components:

1. Data processing. [Sec.[3.T]] For both inference and training, we have a data processing step P
that converts each dataset D; from raw numerical data to a single image I, i.e., P(D;) — I;. As
explained later, the image representation has several key benefits over raw numerical data.

2. Model architecture. [Sec. The processed data will then pass through the README model,
which consists of a pair of pre-trained image Z and text 7 encoders as well as a text decoder W
that has been fine-tuned by a set of labeled training data {D;, F; }; during the training phase. The
README training process combines the feature extraction capabilities of the image encoder
with the mathematical knowledge embedded in a pre-trained math text encoder, to obtain an
informative embedding space S that the image encoder maps datasets to (i.e., I(D;) — s;, where
s; € S) for inference optimization.

3. Inference optimization. [Sec. Given a dataset D, we will use the trained README model to
generate an initial candidate set, followed by our README optimization process to search for the
best point s* € S that can be decoded to obtain the best symbolic expression W(s*) — G* to fit on
D. The base optimizer used is the Grey Wolf Optimizer (GWO), though for ultra-rapid scenarios
(< 10s) we employ the novel Grey Wolf Optimizer with Bayesian Optimization (GWOBO).

3.1 Data processing: Working with images

Unlike existing SR methods, README works by first converting raw numerical data to images.
This is inspired by humans’ capabilities to more rapidly infer patterns and guess candidate symbolic
expression skeletons (i.e., expression forms without specific numerical constants) for data by visualiz-
ing it, rather than just going through raw numerical data (e.g., the oscillatory curves of a 1D sin wave
are clearly recognizable when visualized), though visualization and interpretation quickly become
challenging for high dimensions.

However, the growing capabilities of Multi-modal Large Language Models (MLLMs) suggests that
their image encoders may have powerful feature extraction capabilities developed from large-scale
training on diverse image datasets that may also be useful in capturing relevant patterns from data
plots. If so, it may still be viable to use images to summarize relevant information from high-
dimensional data, and use them for SR. Such images may even not appear human-interpretable, but
could possibly be effectively used by fine-tuned image encoders and customized decoders. Hence,
in README, for both model training and inference, we map every dataset D; to a corresponding
image plot I; through a standardized data processing step P.

Note that G* is not unique if only the accuracy desiderata is considered (e.g., superfluous terms could be
added to any expression to represent the same function g(x)), but the parsimony desiderata will mitigate this.
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Figure 1: An overview of the README architecture. See Sec. and Sec. for details.

To demonstrate this, we propose to start with the most basic plotting approach: in a single graph, we
generate and overlay line plots for each dimension of the data. Fig. [T|shows an example plot. While
the plots may not seem directly interpretable by humans and may also not uniquely represent a single
symbolic expression (i.e., several expressions may correspond to the same plot), the general shape
and features of the aggregated line plots, including information such as the axis magnitudes, provide
sufficient details to significantly reduce the candidate search space and inform the optimization
process for SR. This is similar to how humans can guess the expression skeleton but not necessarily
the exact expression with its constants. In the README framework, the image is used only to
narrow the search space for a more efficient optimization process to perform SR, as we will elaborate
in Sec.3.2land Sec.3.3

Furthermore, this approach also helps to standardize the input format (i.e. 1 image) across datasets
with varying number of datapoints and dimensions. In contrast, such variations in numerical data
would lead to very different token lengths, leading to problems such as context length issues for past
SR foundation model works [31] that constraints their applicability to datasets with larger sizes or
dimensionality.

3.2 Model architecture and training process

A key innovation in our README model architecture component is our combination of the feature
recognition capabilities of pre-trained image encoders with the mathematical knowledge contained
in text encoders to generate an informative embedding space for SR. Note that the naive approach
of directly using MLLMs for SR do not perform well (see App.[F), hence past works [21} [31], have
largely resorted to training transformers from scratch. Our approach allow us to obtain significantly
better performance in SR with less training data. The README model architecture is adapted from
the basic CLIP MLLM architecture [38]]:

1. Image encoder. The image encoder Z : I — S; maps each image plot I; = P(D;) € T toits
embedding vector representation s; € S. Any general-purpose pre-trained encoder can be used,
such as open-sourced ViT models [[11]] which are trained on diverse image data. These models
have powerful image feature recognition capabilities (e.g., earlier model layers), and although their
original embedding space S; would not have the right structure for our SR tasks (see Sec.[d.2),
they could be efficiently fine-tuned on our type of images from the data generation step.

2. Text encoder. The text encoder 7 : G — Sy maps symbolic equations to its continuous
embedding space Sp. Crucially, we propose to use a text encoder pre-trained on math such as
MathBERT [41] as it would contain inductive biases regarding symbolic expressions and have a
relevant, well-structured embedding space St for SR that can guide the training of S; for SR.

3. Aligned embedding space. The embedding spaces S; and St are then aligned through joint
contrastive learning, similar to the approach in CLIP [37]. We are primarily aiming for S
to inherit the relevant SR structure from S7 and the training data, while preserving the image
encoder’s feature extraction capabilities. In Sec.[d.2] we provide illustrations that this happens in
our experiments. Additional training and architecture details are in App. [B]

4. Text decoder. The final component is a text decoder W : S; — G that maps points in the aligned
embedding space S to symbolic expressions. To improve decoding performance for symbolic
regression, we adopt an expression decoder [21]], which overlays a Transformer atop the numeric
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Figure 2: README Inference Optimization process. See Sec.|3.3|for details.

encoder to translate encodings into symbolic expressions. Similar to prior work [31}137], we first
train the decoder with both encoders frozen, and then fine-tune all components jointly.

Leveraging the inductive biases of pretrained encoders, along with the more efficient image format,
reduces data requirements while improving symbolic regression performance. As shown in Table[I]
README, trained on far fewer synthetic pairs, still outperforms SNIP [31]], which relies on numerical
encoders. Ablation studies (Section further confirm the effectiveness of image encoders over
numeric ones, demonstrating the value of inductive biases from graphs.

3.3 Inference optimization

In README, inference consists of two processes (Fig. [2)).

Inference decoding process. We first convert the numerical dataset D into a plot image (Sec. [3.1),
before mapping it through the image encoder to its embedding space representation § = Z(P(D)). In
some cases, direct decoding using our text decoder W(5) would already achieve a sufficiently good

symbolic expression G for the dataset. However, README is designed to have the decoder just find
the right symbolic expression skeleton, before doing ‘constants optimization” via BFGS [13] similar
to past works [21] where numerical constants in the expression may possibly be refined based on
some metric (e.g., R?) evaluated over D. The decoding process is summarized in Algorithm

Inference optimization process. The optimiza- Taple |; Comparison between README and SNIP
tion process involves searching in the image 1 odels pretrained on different volumes of syn-
embedding space S; for the best point 5* that  ¢hetic data. Mean R? Test Score shown is for real-
would be decoded to the best symbolic expres-  yqr]d Physics-Informed dataset. Results for other
sion G For most settings, we do this by gagasets are in Appendix [C23.1] with further dis-

first generating a candidate population within . ¢gion on evaluation and metrics in Section4.3]
a region around s*, and using the Grey Wolf

Optimizer (GWO) [32] to find s*. Given the Model

_ Pretraining Data ~ Mean R%
advantages from README’s data processing

and model, applying a vanilla GWO optimizer =~ README  ~1 mil.liqn pair_s 0.984 & 0.004
would typically already give SOTA performance ~ SNIP ~060 million pairs  0.883 & 0.091

(see Sec. [ for details). However, under very
tight time constraints, e.g., < 10s where none except one of our benchmark methods manage to
finish running, we need a faster optimization process. The bottleneck for GWO lies in the evaluation
of entire population’s fitness score, which requires running the decoding process to get a symbolic
expression and compute its R2.

Hence, we propose a hybrid GWO algorithm (GWOBO), that employs Bayesian Optimization (BO)
as a supporting subroutine for GWO to (1) train and provide a Gaussian Process (GP) surrogate
model to model the fitness value (R?) given any s, and (2) pick the top three wolfs («, 3, ) that will
influence the exploration of the rest of the population (see Algorithm [2). Specifically, we iteratively
run GWO and BO: after each iteration of GWO, we train the GP with past decoded points and run BO
with an Upper Confidence Bound (UCB) acquisition function (see App.[D]for details) to pick the top
three wolfs for the next GWO iteration. The top three wolfs will have their fitness score evaluated by
the decoding process, while the rest of the population will have their fitness scores estimated using the
GP trained from the BO process. In high-resource settings, the decoder can also be parallelized across
multiple GPUs, which allows a larger candidate pool to be explored and improves performance.



4 Experimental results

4.1 Experimental setup

Datasets. We evaluate README on three datasets with varying characteristics: the Strogatz
dataset consisting of synthetic data of 2-state dynamic models [44] 25]], the CP3-Bench astrophysical
dataset [45]] of synthetic data based on cosmological equations with added noise and varying precision,
and the Physics Informed dataset (PIED) from physics-informed experimental design [18] consisting
of collated real-world, noisy experimental data. These datasets cuamulatively provide 61 real-world
regression problems (see App.[C|for details).
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® periodic_exp @ periodic_polynomial ® exp_polynomial

Figure 3: Image encoder attention roll- (a) Text (Math- (b) ViT (pre-train)  (c) ViT (trained)

out before (left) and after (right) train- BERT)
ing. Red indicates higher attention. Figure 4: t-SNE plots of text and image embeddings.

Models. We primarily used ViT-Base ([11]]) as the image encoder and MathBERT as the text
encoder for our experiments, but also observed strong results with encoders from other model families
(see App. [B.2]for ablation results). The ViT-Base model as been pre-trained on large-scale image
datasets for strong pattern recognition, while MathBERT has been trained on math texts, allowing it
to better capture the structure and semantics of symbolic expressions.

Benchmarks. README is benchmarked against 9 algorithms, including Operon [9]], Interaction-
Transformation Evolutionary Algorithm (ITEA) [3], Genetic Programming Gene-pool Optimal
Mixing Evolutionary Algorithm for Genetic Programming (GPGOMEA) [47], and Fast Function
Extraction (FFX) [30] from SRBench [25], and Meidani et al.’s Symbolic-Numeric Integrated
Pretraining (SNIP). The selected algorithms are efficient and effective, and represent a diverse range
of SR approaches.

Evaluation. We evaluate algorithms over three metrics, as described in Sec. @ First, we evaluate
the accuracy of the generated expression G and its associated function g(x) by computing its R?
over test data points. Secondly, expression complexity or parsimony is evaluated as the number of
nodes in its associated expression tree. A smaller expression complexity, or a more parsimonious
expression, is better. Lastly, wall-clock time is used a measure of the speed of the SR algorithm.
This is measured as the time taken to train the algorithm. A smaller wall-clock time is better. All
experiments are repeated with five random seeds.

4.2 TImage encoder and embedding space structure

Attention visualization. We first analyze how the image encoder processes the input image plots,
by visualizing the attention via attention rollout in Fig.[3] Attention rollout involves recursively
multiplying attention weights across all layers [1]], where we selected the minimum attention weight
over all heads at each layer. We observed that the trained image encoder correctly focuses on
important areas of the image plot, such as the graph, axes and legend, compared to the pre-trained
ViT which misses portions of the graph and focuses on irrelevant blank spaces.

Families of equations. The t-SNE visualization of MathBERT’s embeddings in Fig. fa] shows a
well-structured embedding space, where different families of equations are separately clustered.
Combinations of different families also result in embeddings being close to the original family cluster,
where the ‘periodic_polynomial” and ‘exp_polynomial’ clusters are close to the ‘polynomial’ cluster.

Transferring pre-trained math structure. The well-structured embedding space of MathBERT also
transfers to the image encoder after training. While initial pre-trained ViT’s embeddings do not have
meaningful structures (Fig. [AD), a clearer separation between equation families emerges after training
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Figure 5: Pareto plots for all algorithms.

(Fig.[Ac). For example, the image embeddings of ‘inv’ equations become distinctly clustered, and
‘periodic’ and ‘periodic_exp’ equations are grouped together. Interestingly, ‘periodic_polynomial’
embeddings seem to be interpolated between ‘periodic’ and ‘polynomial’ embeddings, indicating the
image encoder has recognized relationships between equation families.

4.3 Performance evaluation

We consider two experimental settings. First, the rapid setting, where algorithms have to be trained
within a 30-second cut-off. Second, the ultra rapid setting, where algorithms have to be trained within
a 10-second cut-off. Experimental details are in App.|[C.3]

4.3.1 Results for rapid setting

To evaluate both both accuracy and parsimony of the symbolic equations produced by each method,
we plot Pareto plots for each dataset where the y-axis represents accuracy measured by mean B2,
(larger is better) and the x-axis represents parsimony measured by mean equation length (smaller
is better). The x-axis is plotted in descending order so that along both axes, points furthest from
the origin are the best. We indicate Pareto frontiers in different colors. Points within the same
front are non-dominated with respect to each other, meaning no method in the frontier outperforms
another on both accuracy and parsimony. A higher Pareto frontier contains at least one model that
Pareto-dominates a model on a lower frontier.

As shown in Fig.[5} README and ITEA are consistently in the top Pareto frontier. However, ITEA
is in the top frontier mainly as it heavily biases towards shorter expressions — its accuracy values tend
to be among the lowest, especially for the Physics Informed dataset. In contrast, README identifies
parsimonious and accurate equations rapidly (< 30s) and consistently lies on the first Pareto frontier.
It achieves the highest mean R%est among all algorithms, demonstrating strong overall accuracy.

A particularly informative comparison is that between README and SNIP, as both share similarities
in being SR foundation model methods that uses GWO during inference, but with SNIP relying on
numerical encoders trained from scratch with ~ 60x more data while README uses the novel
image plots data processing, image/text encoders and training strategy described in Sec.[3] Despite
using less training data (see Table[T), README was able to consistently outperform SNIP across all
datasets in both accuracy and parsimony (i.e., README Pareto-dominates SNIP), demonstrating its
advantages of the README framework.

App. shows the detailed results on accuracy and parsimony for all methods across the three
datasets. Among the methods, GPGOMEA, DSR, and EPLEX Regressor had actually exceeded the
30-second limit, but we still reported their results for analysis —- GPGOMEA for the Strogatz dataset,
and DSR and EPLEX across all three, sometimes taking up to 4 x the time budget to produce a result.
However, despite taking longer time, these methods still underperform README which ran within
the 30-second time budget. Running configurations for all algorithms are provided in App.[C.4.1]

4.3.2 Evaluation results for ultra rapid setting

Next, we analyze the ultra-rapid setting that requires methods to complete inference within 10 seconds.
This setting is motivated by applications requiring low-latency predictions of physical movement,



such as physics checking in synthetic video generation or real-time decision support, where inference
must be done within a matter of seconds. We evaluate methods on the Physics Informed dataset
(PIED), which is from real-world experiments and hence serves as a test of method robustness in
practical, noisy environment.

To achieve ultra-rapid inference, we use our
GWOBO optimization process when running 10
README as described in Sec. which T3 FFXRegressor
speeds up inference while still achieving 0s README
good results. Among the benchmarks, only
README with GWOBO and FFXRegressor
are able to consistently return symbolic expres-
sions under the ultra-rapid setting time limit of
10 seconds. In this setting, README contin- 02
ues to outperform FFXRegressor in both par- o o " o5 v o
simony and accuracy. README achieved an Noise Level

RZ_., of 0.958 with average equation length of ~ Figure 6: Mean R%,, vs. target noise for FFXRe-
18 terms, while FFXRegressor only achieved gressor (orange) and README (blue) in the ultra-
R% . of 0.930 with significantly worse average rapid setting (< 10s).

equation length of 219 terms.

R? Test Score vs. Noise Level

Mean R? Test Score

In addition, we tested the methods’ sensitivity to noise by adding Gaussian noise to data observations
9 and evaluating their performance. Fig. E] shows how the accuracy (R3,.,) of both methods changes
over increasing noise level (i.e., the Gaussian noise standard deviation is varied from 0.1 to 0.5 times
the root mean square of the observation values). Note that README demonstrates greater robustness
to noise with less performance degradation as noise is increased, e.g., README ’s accuracy only
decreased from 0.958 to 0.857 when noise of 0.1 noise level is added, but FFXRegressor’s accuracy
had a much larger drop from 0.930 to 0.350.

4.4 Demonstration of Equation Prediction for Noisy Real Experimental Data

To demonstrate the practicality of our framework for an ultra-rapid setting, we analyze two real-world
videos where object motion must obey physical laws. The task is for the methods to use the first
75% of the time-sequenced video data to generate an interpretable symbolic equation that can predict
the final 25% of the video. This tests the methods’ extrapolation capability on real-world noisy
and limited data and showcasing its potential for applications in motion prediction. Note that the
data would include not just physical noise (e.g. air resistance), but noise during both the filming (e.g.
camera motion) and video processing (e.g. object detection and trajectory extraction) stages, making
this a very challenging problem. We adopt a 10s runtime constraint to reflect real-time applications
such as physics validation in synthetic video generation and decision-making systems that require
relatively low latency and physically accurate predictions.

We developed two pipelines to extract object coordinates over time and apply symbolic regression to
model their trajectories. For the Pendulum Swinging video, we used Tracker software [6] with basic
techniques such as template matching to estimate and track the pendulum bob across 311 frames. For
the Ping Pong Ball Bouncing video, we used a YOLOv8n model [[19] to detect the ball in each frame,
extracted the center of its bounding box, and obtained 85 position points. Details are in App.

. Pendulum Swinging Ping Pong Ball Bouncing
Algorithm R? Equation Length R? Equation Length
README 0.686 1 0.263 15.80 £ 1.79 0.862 4+ 0.204 24.90 £+ 6.92
FFX 0.012 +0.016 81.10 £+ 59.31 0.000* £ 0.000 103.00 £ 0.00

Table 2: Performance of README and FFX on two real-world videos under a 10-second time
constraint. “Negative R? values were clipped to zero as they indicate performance worse than
predicting the mean.

For these experiments, only README, FFX and ITEA managed to complete within 10s for both
videos, while GPGOMEA and Operon only managed one (see Table[2)). Note that README was
the only method that could perform the task well, while the other benchmarks could barely fit the
final 25% of the video with very low R? scores, which underscores how challenging the task is due



to the very limited, noisy data and short inference time. Allowing for more time budget will have
README achieve R? > (.9 while continuing to outperform benchmarks.

5 Conclusion

We introduced README, a framework for rapid equation discovery that uses (1) an informative,
compressed image representation of numerical data; (2) an efficiently-trained transformer-based
model built on top of pre-trained image and text encoders (~ 60x less training data compared to past
works); and (3) a novel combination of BO and GWO for a rapid, effective optimization process to
achieve state-of-the-art and robust SR results for challenging settings with realistic, noisy settings
and tight time constraints (<10s).

This work represents a first step toward quick and reliable symbolic regression that can be used as a
module within real-world tasks. Potential applications include computer vision and robotics, where
real-time, interpretable physics validation and decision-making are essential. This approach also
holds promise for domains such as video analytics and synthetic video generation, where low-latency
fast symbolic regression is crucial.
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A Related works

Regression-based models Regression-based approaches, as their name suggests, use regression on a
fixed basis to find an accurate representation of the input and output data of a system. Regression-
based approaches tend to focus on using regularization to find a parsimonious basis [8, [10]. However,
they predefine the structure of the equation they aim to find, reducing the SR problem into one solving
a system of linear equations [29]]. This makes regression-based approaches very fast, but limits the
generalizability of regression-based approaches. For example, McConaghy’s Fast Function Extrac-
tion [30] uses regularization to prune the search space of functions, and is a fast and deterministic
algorithm for solving symbolic regression algorithms.

Genetic programming-based models These include seminal works by Koza [22 24, 23], which
represent each approximation of an unknown equation as a genetic program with a tree-like data
structure, with traits (or nodes in the tree) representing functions or operations and variables rep-
resenting real numbers. The fitness of each genetic program is its prediction error. Fitter genetic
programs undergo a set of transition rules comprising selection, crossover, and mutation to find the
optimal equation form iteratively. Genetic programming algorithms perform well in SR tasks as the
transition rules allow for large variations in the population to adequately explore the search space.

Recent SR algorithms that use genetic programming to tackle common issues such as coefficient
optimization include for example, de Franca and Aldeia’s Interaction-Transformation Evolutionary
Algorithm (ITEA) [3]] which uses a search space which contains only mathematical expressions
described as an affine combination of nonlinear transformations of different interactions between the
original variables. ITEA then uses a mutation-based evolutionary algorithm to search for the optimal
coefficients to express a linear relationship between the nonlinear transformations and the target
variable. Likewise, Virgolin et al.’s GP-GOMEA [47] searches for optimal values of coefficients by
estimating interdependencies between model components and using this information to cross-over
interdependent components en block, to preserve their concerted action improving mutation in genetic
programming, and La Cava et al’'s EPLEXRegressor [26] uses lexicase selection as a parent selection
method that considers training cases individually, rather than in aggregate, to select elite parents for
mutation.

Genetic programs may greedily mimic nuances of the unknown equation [43]], limiting generalisability.
David Goldberg [[15]] therefore proposed to use Pareto optimization to balance the objectives of fit
and parsimony in SR. At each iteration, the fittest genetic programmes lie on the non-dominated
Pareto-frontier. Other works that use the Pareto frontier to evolve a population include Schmidt and
Lipson’s age-fitness Pareto (AFP) optimization regressor [40]].

Lastly, some genetic algorithms explicitly minimize a target. For example, Burlacu et al.’s Operon [9]],
a genetic programming symbolic regression algorithm written in C++, minimizes speed, while La
Cava et al.’s epigenetic hill climbing symbolic regression algorithm (EHC) [27]] minimize complexity
of the equation and computational cost.

However, the transition rules of genetic programming algorithms mean that they are by design highly
sensitive to hyperparameters and do not scale well to high-dimensional data [36]. This motivates the
study of other types of symbolic regression algorithms.

Foundation model-based models. Deep learning algorithms are a recent advancement in the field
of symbolic regression. An early example of a deep learning approach to symbolic regression is
Petersen’s Deep Symbolic Regression [36] which uses a recurrent neural network to emit a distribution
over tractable mathematical expressions and employ a novel risk-seeking policy gradient to train the
network to generate better-fitting expressions. Deep learning approaches have evolved following the
progress in the field. Likewise, a few works [17] have also looked into adopting a Bayesian approach
to symbolic regression, where a prior can be established based on a pool of past expressions which
incorporates some domain knowledge, as well as naturally encode some balance between model
complexity represented by the prior and data fit. Radford et al. [37]], in 2021, proposed multimodal
architectures trained on symbolic expressions and numerical data to speed up genetic programming-
based symbolic regression methods, while Kamienny et al. [21]] introduced the use of transformers
for symbolic regression to directly predict symbolic equations and Biggio et al. [5] popularized the
use of pre-trained transformers for symbolic regression. As the proposed architectures have grown
bigger, the amount of data required to train these models has also grown. Pre-trained transformers
start with a robust understanding of general symbolic patterns and syntax, and can be fine tuned
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to specific tasks such as for SR with less task-specific data. Since the model has already learned
generic features of mathematical equations, the optimization process during fine-tuning focuses on
symbolic regression-specific nuances. This significantly reduces training time and computational
costs, and the pre-trained transformers converge faster during evaluation as they were trained on
richer datasets. Meidani et al.’s SNIP [31]] proposed training numeric and symbolic encoders jointly
to produce a structured latent space that could be used for cross-domain tasks such as symbolic
regression. Our framework README builds on all these foundational works by (1) introducing
an informative, compressed image representation of numerical data that can be efficiently used in
our framework for symbolic regression, (2) using pre-trained image and text encoders along with
customized components to significantly reduce the training data and resources needed, (3) a novel
method GWOBO that enables symbolic regression at the ultra-rapid setting (< 10s) that have not
been explored before in past works, and (4) achieving significantly performance improvements over
past methods.

B Additional training and architecture details

B.1 Model Training Details

Training Data To train our model, we generated synthetic pairs of numeric and symbolic data using
the publicly available codebase in [21], following the data generation settings used by SNIP [31]].
This includes operator downsampling and restricting expressions to at most 10 input dimensions. The
only difference is that we generated a total of ~1 million (image, equation) pairs for training, whereas
SNIP used ~60 million pairs to pretrain their numeric and symbolic encoders.

Numeric Data Visualization For each equation, input data x with dimensionality n < 10 was
generated, comprising 200 data points represented as 200 x n matrices. Each input dimension was
paired with targets y, represented as a 200 x 1 vector. Each input dimension was plotted individually
against the target y using Matplotlib, assigning different colors for clarity. Each graph includes the
dimensionality information in its title. Figure|/|shows a sample graph from our dataset, illustrating
how patterns are captured across different dimensions.

Equation Representation Expression trees were converted into their equivalent infix notation,
providing readable symbolic equations. Each visual plot and corresponding symbolic equation formed
a training pair.

B.1.1 Image Encoder

We employed a pre-trained Vision Transformer model google/vit-base-patch16-224-in21k
[L1]. This model, trained extensively on diverse image data, excels in pattern recognition.

This approach offers two primary advantages:

1. Pattern Recognition: The model swiftly identifies patterns within numeric data visualiza-
tions, leveraging robust feature extraction capabilities from its pre-training.

2. Regularization Effect: By plotting each input dimension against the target in the same
visualization, the model is naturally regularized, treating all dimensions uniformly. This
method helps prevent overfitting to any specific dimension.

We also experimented with the larger google/vit-huge-patch14-224-in21k model and ob-
served improved results, as expected due to the increased model capacity. However, for the purpose of
balancing performance and computational efficiency in our experiments, we chose to use the smaller
base Vision Transformer for performance evaluation.

B.1.2 Text Encoder

The symbolic equations were encoded using tbs17/MathBERT [41], a model specifically pre-trained
on mathematical text, enabling effective interpretation and encoding of symbolic equations. Equations
were provided directly in infix notation, aligning well with MathBERT’s pre-training on mathemat-
ical textbooks and notations. Utilizing plain text inputs avoids constraints typical of tree-based
representations, offering greater flexibility and leveraging the inductive biases inherent to MathBERT.
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Figure 7: Sample visualization of numeric data with multiple dimensions plotted against the target.
Patterns across dimensions are captured effectively.

B.1.3 Aligned Embedding Space

The README model aligns numeric and symbolic representations in a shared latent space. Inspired
by the joint training approach used in CLIP [37], README optimizes a symmetric cross-entropy
loss over similarity scores. A contrastive loss based on the InfoNCE objective [34] effectively aligns
embeddings of matching numeric-symbolic pairs while pushing apart non-matching pairs.

The loss function is defined as:

L= — Z [logNCE(st Zy) + log NCE(Zy, ZS)} M
(v,8)€EB

where B represents a batch of (symbolic, numeric) data pairs, and NCE(Zg, Zy ) and NCE(Zy, Zs)
are the symbolic-to-numeric and numeric-to-symbolic contrastive losses, respectively. The symbolic-
to-numeric contrastive loss is computed as:

exp (ZS . Z‘f/T)
ZZG{Z:;,Z;} exp (Zs - Z/T)

NCE(Zs, Zy) =

where 7 is a temperature parameter, Z{ﬁ represents positive numeric embeddings that correspond to

the symbolic embedding Zs, and Z;, are negative embeddings from other batch data. This symmetric
contrastive loss encourages alignment of numeric and symbolic pairs while separating unrelated pairs.

B.1.4 Text Decoder

For decoding symbolic equations, we also adopted the decoder architecture detailed in [21]], consisting
of 16 transformer decoder layers. This architecture effectively leverages attention mechanisms to
autoregressively generate equations from the aligned embedding representations, benefiting from its
deep, layered structure which facilitates complex symbolic regression tasks.
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Following prior work [31]], training is conducted in two stages. First, the decoder is trained with
the image and text encoders frozen, allowing it to learn how to decode from the latent space. Next,
the encoders and decoder are fine-tuned together, so the representations become better suited for
decoding symbolic equations. The decoder is supervised using cross-entropy loss over the target
symbolic sequence, encouraging accurate reconstruction of symbolic expressions from the shared
representation.

B.2 Ablation Studies

For the ultra-rapid setting, where the models are expected output an expression within 10 seconds, we
introduce a key contribution: a novel hybrid algorithm that combines the Grey Wolf Optimizer with
Bayesian Optimization (GWOBO) to efficiently identify high-quality symbolic expressions under
tight runtime constraints.

As shown in Section4.3.2] our model is also more robust to noise compared to FEXRegressor across
varying noise levels. Note that in the section we showed GWOBO results with a candidate set size of
70.

We show that increasing the number of wolf candidates leads to substantial gains in performance
while maintaining the same setup described in Section f.3.2] Specifically, we continue to select
the top 3 candidates based on Upper Confidence Bound (UCB) scores, computed using a Gaussian
Process with an RBF kernel as detailed in[D} Only these top 3 are decoded using Algorithm I] while
the remaining candidates are evaluated using surrogate scores from the GP.

These combined real and surrogate scores are then used to update the population via GWO. As shown
in Table 3] GWOBO consistently outperforms pure GWO across all candidate configurations.

Candidates GWO GWOBO
R? Equation Length R? Equation Length
10 0.865 £ 0.058 18.34 £ 1.35 0.880 + 0.037 16.54 £ 2.36
30 0.903 £ 0.046 19.27 £0.76 0.934 + 0.044 17.05 + 1.43
50 0.924 £ 0.037 18.24 £ 1.43 0.937 £ 0.026 17.26 £ 1.33
70 0.946 £ 0.029 17.29 £ 1.50 0.958 + 0.027 16.67 + 1.57

Table 3: Comparison of GWO and GWOBO at different candidate counts under ultra rapid setting
(10 seconds). Each entry reports mean * standard deviation. Best values are bolded.

We also ablated the impact of the encoder modality on the SRBench Strogatz (synthetic) and Blackbox
(real-world) datasets. We compared using an image encoder against a numeric encoder, both paired
with the symbolic encoder. As shown below, the image encoder yields significantly better performance,
highlighting that inductive biases captured from graphs provide a more effective representation for
symbolic regression.

Table 4: Image Encoder + Symbolic Encoder

Dataset  R%,, Parsimony

Strogatz ~ 0.9425 31.14
Blackbox  0.6092 44.19

Table 5: Numeric Encoder + Symbolic Encoder

Dataset  R3,, Parsimony

Strogatz ~ 0.8575 30.36
Blackbox  0.4577 44.96

We further compared different encoder architectures, using encoders trained on a smaller set of
512,000 pairs for quick evaluation on the same datasets. As shown in Table [6] ViT-base with
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MathBERT outperforms CLIP with T5. This is likely due to MathBERT’s strong inductive bias
for mathematical structure based on its pretraining [41l]. While ViT is not specifically trained on
math-related content [11], it performed better than CLIP in this setting. We also evaluated ViT-huge
and observed marginal gains, but selected ViT-base to ensure efficiency during timed experiments.

Algorithm Mean R? Test Score Mean Equation Length
vit-huge-with-mathbert 0.767 £ 0.016 14.69 + 1.60
vit-base-with-mathbert 0.765 £ 0.012 18.56 + 0.82
clip-with-t5 0.738 +0.018 15.13 £0.75

Table 6: Comparison of ViT-based and multimodal models on symbolic regression. Best R? and
smallest Equation Length are bolded. Higher is better for R?, lower is better for Equation Length.

C Additional Experimental Details

C.1 Algorithms for Inference Decoding and Optimization

Algorithm 1 README inference decode algorithm

Input: Image encoder Z, Inference dataset D

Output: Symbolic expression é, Associated MSE loss on inference dataset L

I = P(D) //Process dataset to image plot

§ = Z(I) //Pass image through image encoder

G = W(S) //Decode to symbolic expression

Run BFGS(G, D) [13]] to optimize for MSE loss L evaluated over D to obtain G and final loss L
Return G and L

AN AN

Algorithm 2 README inference optimization process

1: Input: Image encoder Z, Inference dataset D, Target loss L, Max iterations T, GWO Pop size
M
2: Output: Best-fit symbolic expression and loss r* = (G*, L*)
3: Init GWO pop P = {s5}M | (see App. and GP
4: Decode P via Algl|(lines 5-6) to get (G, Ly,)Vsy, € P
5:fort=1,2,...,T do
6: Select top three wolves from P, (s¢, sf , 57 ), based on UCB criterion
7 Perform GP regression with {{(s¢, R*(s¥))}ac[a,8,4] i
8 Decode ¢ with Alg[1](lines 5-6) to obtain ¢ = (G, L), a € [a, 8,7]
9: Obtain corresponding R? score R?(s¢) for the expression G
10:  Store r* € {r;}!_, with the lowest L*.
11: Exitif L* < L
12: Run GWO to update P, with decoded loss (line 8) for top 3 wolves, and GP estimated loss
for other wolves.
13: end for
14: Return r*

C.2 Dataset Details

To comprehensively evaluate our symbolic regression framework, we curated a diverse set of 61
problems drawn from publicly available data sources in multiple scientific domains. These datasets
were selected to balance a range of characteristics, including equation complexity, noise levels, and
real-world relevance. They span both simulated and experimentally grounded physical systems,
allowing us to assess model performance in controlled and practical scenarios.
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C.2.1 Strogatz Dataset

This dataset comprises 14 canonical equations modeling nonlinear dynamical systems, originally
drawn from the textbook Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry, and Engineering by Steven H. Strogatz [44, [25]]. These systems describe a range of
physical and biological processes such as population dynamics, chemical oscillators, and mechanical
systems, and are commonly used in the literature to benchmark symbolic regression algorithms due
to their compact closed-form representations and interpretable dynamics.

C.2.2 CP3-Bench

This dataset consists of 28 equations derived from a diverse collection of real-world and simulated
problems across physics, engineering, and environmental science. These problems were introduced
as part of the CP3-Bench benchmark [45]], which was designed to evaluate the capability of scientific
equation learning models in recovering compact symbolic expressions from noisy data. The dataset
includes systems such as gas solubility estimation, diffusion, and biochemical rate equations, and
reflects varying levels of complexity and noise, making it a rigorous testbed for symbolic regression.

C.2.3 Physics Informed Dataset

To evaluate the effectiveness of our model on physics-informed problems, we curated a dataset
comprising 19 equations. These equations span simulated, experimentally validated, and real-world
scenarios, as detailed below:

* Groundwater Flow (11 equations):
These equations model steady-state unconfined groundwater flow and are sourced from the
paper “Investigating Steady Unconfined Groundwater Flow using Physics Informed Neural
Networks” by Mohammad Afzal Shadab, Dingcheng Luo, Yiran Shen, Eric Hiatt, and Marc
Andre Hesse.
GitHub: https://github.com/dc-1luo/seepagePINN/tree/main

Chromatography (4 equations):

These equations originate from the experimental validation study “Can a Computer ‘Learn’
Nonlinear Chromatography?: Experimental Validation of Physics-Based Deep Neural
Networks for the Simulation of Chromatographic Processes” by Sai Gokul Subraveti, Zukui
Li, Vinay Prasad, and Arvind Rajendran. The equations simulate nonlinear solute transport
in chromatographic columns.

* Fluid Dynamics (2 equations):
We include the nikuradse_1 and nikuradse_2 equations, which describe the friction factor
for turbulent flow in rough pipes based on experimental studies by Johann Nikuradse. These
expressions capture the nonlinear relationship between the Darcy friction factor, Reynolds
number, and relative roughness in turbulent pipe flow.

Pendulum Motion (2 equations):

These equations are derived from video recordings of a swinging pendulum captured using
the Tracker software. The motion was tracked using a fixed camera setup, and position-time
data was extracted to recover the underlying physical relationship governing the pendulum’s
oscillatory dynamics.

C.3 Experiment Settings

All experiments in section £.3] were conducted on 2x AMD EPYC 7763 64-Core CPUs and 1x
NVIDIA L40 GPUs (CUDA 12.1, Driver 545.23.06), and running Ubuntu 22.04.3 LTS. All software
was implemented in Python 3.11.2 using PyTorch 2.0.0, Transformers 4.44.2, and BoTorch 0.11.3.

For each problem described in each dataset (see Appendix [C.2.1)), we applied a 75%—25% train-test
split. To ensure consistent computational constraints across problems, if a problem contained more
than 200 training points, the training set was randomly subsampled to retain only 200 points. In
experiments involving noise, Gaussian noise with the specified standard deviation was added to the
target values of the training set. All experiments were repeated across five random seeds: 23654,
15795, 860, 5390, and 16850. These seeds controlled both the train-test split and the noise sampling,
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ensuring that our model was evaluated on different subsets of the data in each problem and that its
performance was robust to variation in data sampling.

For our experiments under the rapid and ultra-rapid settings, we initialized both GWO and GWOBO
with 71 wolf candidates: 70 perturbations around the base latent encoding plus the original encoding.

C.4 Evaluation Details

C.4.1 Other benchmarks configurations

The benchmarks used were McConaghy’s FFX Regressor [30]], de Franca and Aldeia’s ITEA [3],
Virgolin et al.’s GP-GOMEA [47], La Cava et al.’s EPLEX [26], Schmidt and Lipson’s AFP re-
gressor [40], La Cava et al.’s EHC regressor [27]], Burlacu et al.’s Operon [9]], and Meidani et al.’s
SNIP [31]. The benchmarks were run using their default settings in SRBench. Hyperparameter tuning
was skipped. This section clarifies these configurations.

McConaghy’s FFX Regressor [30] has no tunable parameters. de Franca and Aldeia’s ITEA [3] has a
default population size of 1000 and 5000 generations. The minimum and maximum exponents of the
interactions are —1 and +1. The minimum and maximum number of terms in an expression is 2. The
number of non-zero exponents in each term of the initial population is 1. The transformation functions
supported are the identity function, the hyperbolic tangent function, the sine function, the cosine
function, the logarithmic function, the exponential function, and the square root function. Virgolin et
al.’s GP-GOMEA [47] sets a budget of 500000 evaluations over a single run (as opposed to interleaved
multiple runs). It uses the default functions for addition, subtraction, multiplication and division. The
initialized maximum tree height is 4. La Cava et al.’s EPLEX [26] uses a selection mechanism called
epsilon_lexicase. It uses 500 generations, with 500 individuals in the genetic programming
population. The genetic programming algorithm also forces survival of the best individual in the
population. The maximum number of nodes at the initialization of the genetic program is 20, and
increases to 64 for the rest of the program. Schmidt and Lipson’s AFP regressor [40] uses the
parametric hill climber algorithm. It uses 250 generations, with 1000 individuals in the genetic
programming population. The genetic programming algorithm also forces survival of the best
individual in the population. The maximum number of nodes at the initialization of the genetic
program is 20, and increases to 64 for the rest of the program. La Cava et al.’s EHC regressor [27]]
uses an epigenetic hill climbing algorithm. It uses 100 generations, with 1000 individuals in the
genetic programming population. The genetic programming algorithm also forces the survival of
the best individual in the population. The maximum number of nodes at the initialization of the
genetic program is 20, and increases to 64 for the rest of the program. Burlacu et al.’s Operon [9]
uses five local iterations with 10000 generations. It sets a maximum evaluation budget of 5 x 10°.
The population size is 500. The default allowed symbols are addition, subtraction, multiplication,
and division. These benchmarks were run from the SRBench github, maintained by Cava Lab, at
https://github.com/cavalab/srbench. The number of trials and number of jobs are set to 1.
The code is run locally as opposed to on LPC. The time limit is set depending on the time budget of
the experiment. The skip_tuning hyperparameter is used to skip tuning. Meidani et al.’s SNIP [31]
uses the grey wolf optimizer with a population of 50. It uses a beam search size of 2 with a stopping
criterion of R? = 0.9998. The maximum iteration budget is changed from 80 to a time budget
depending on the experiment.

C.4.2 README configurations

In the rapid setting, each algorithm was allocated a runtime of 30 seconds to improve the R? training
fit. For README, we used the Grey Wolf Optimizer (GWO) to explore the neighborhood around a
base latent encoding. A total of 70 additional candidates were generated by adding scaled Gaussian
noise to the base encoding, resulting in 71 latent vectors (1 original + 70 perturbed). In each
iteration, all 71 candidates were decoded into symbolic expressions and evaluated on the test set (see
Algorithm|[T)). Their scores were then used to perform a population update using the GWO algorithm.
This full decoding strategy was feasible due to the relatively generous runtime budget.

In the ultra rapid setting, each algorithm was given a strict time limit of 10 seconds to maximize the
R? training fit. We enabled README to operate effectively within this constraint by introducing a
novel GWOBO algorithm, detailed in Appendix D} GWOBO combines Grey Wolf Optimization with
Bayesian optimization by scoring candidate embeddings using a Gaussian Process with an Upper
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Confidence Bound (UCB) acquisition function. Only the top 3 candidates are selected for decoding,
significantly reducing computational cost compared to decoding all candidates with pure GWO. As
shown in Appendix [B.2Z] GWOBO achieves higher accuracy than the standard GWO within the tight
time budget.

C.5 Detailed Evaluation of Accuracy, Parsimony, and Runtime

C.5.1 Extended Results for Table[I]

Table[T]compares README and SNIP on the Physics-Informed dataset. Here, we provide similar
comparisons on the Strogatz and CP3-Bench datasets. Despite using 60 times less pretraining data,
README consistently outperforms SNIP across all three datasets, highlighting the effectiveness of
our README framework.

Model Pretraining Data Mean R3.;
README  ~1 million pairs 0.880 £ 0.018
SNIP ~60 million pairs  0.791 £ 0.069

Table 7: Comparison on the Strogatz dataset.

Model Pretraining Data Mean R?..;
README  ~1 million pairs 0.933 £0.018
SNIP ~60 million pairs  0.923 +0.017

Table 8: Comparison on the CP3-Bench dataset.

C.5.2 Detailed Results for the Rapid Setting (Section 4.3.1)

We provide a detailed explanation of the evaluation metrics used—Mean R%,, for accuracy, Mean
Equation Length for parsimony, and Mean Time for runtime—for all algorithms referenced in

Figure[5]

To compute the R%_, score, we follow the standard SRBench setup: each dataset is first split into
75% training and 25% testing. From the training split, we randomly subsample 200 points for training,
and the fitted equation is evaluated on the held-out 25% to compute R2, . The R? score measures
the proportion of variance in the dependent variable that is predictable from the independent variables,
with a score of 1.0 indicating perfect fit and lower values reflecting greater error.

Parsimony is measured by Equation Length, defined as the number of nodes in the expression tree.
Each constant, variable, and operator (e.g., "3.5", "x_2", and "mul") counts as a single node.
Shorter equations are considered more parsimonious and are generally easier to interpret and more
robust to noise.

Time refers to the duration each algorithm takes to produce a final equation, excluding all data
preprocessing and splitting steps. It reflects the computational efficiency of the symbolic regression
process itself.

The term "Mean" in all metrics indicates that values are averaged across all problems and five random
seeds for each dataset. The random seed affects both the subsampling of 200 training points and the
train-test split. The error bars shown represent the standard deviation across these five seeds.

As shown in Figure[5| README consistently lies on the first Pareto frontier across all three datasets,
achieving the highest accuracy while remaining reasonably parsimonious. ITEA is also Pareto-
optimal as it achieves lower accuracy but with smaller equation length, making it non-dominated in
the accuracy-parsimony space. Tables 9} and[TT|report the detailed results for these metrics.
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Algorithm Mean R? Test Score Mean Equation Length Mean Time (s)
README 0.880 £+ 0.018 20.99 £1.19 24.95 £ 1.77
OperonRegressor 0.849 £+ 0.053 60.46 £ 2.25 10.56 = 0.11
GPGOMEARegressor 0.849 £ 0.054 29.27 £ 3.46 39.63 £ 2.66
FFXRegressor 0.822 + 0.063 198.43 £+ 37.82 6.65 £9.41
SNIP 0.791 £ 0.069 22.97+1.08 26.42 +0.44
AFPRegressor 0.742 £ 0.043 38.00 £ 6.08 20.02 £0.77
ITEARegressor 0.736 £ 0.052 12.83 +0.27 15.67 £0.34
DSRRegressor 0.693 £ 0.067 19.16 + 3.49 138.12 + 3.58
EHCRegressor 0.644 + 0.042 19.13 £ 1.57 12.44 £ 0.30
EPLEXRegressor 0.591 £ 0.076 45.09 £ 3.69 60.74 £1.18

Table 9: Performance comparison on the Strogatz Dataset. Bolded entries indicate the best R? score
and the most parsimonious model.

Algorithm Mean R? Test Score Mean Equation Length Mean Time (s)
README 0.933 +0.018 23.34+£0.11 23.04 £ 1.07
FFXRegressor 0.930 £ 0.006 172.45 +15.37 2.78 £0.16
ITEARegressor 0.918 £ 0.002 16.08 £+ 0.56 16.14 £ 0.29
GPGOMEARegressor 0.910 £ 0.004 29.51 £0.83 17.35 +£5.20
AFPRegressor 0.887 £ 0.003 39.63 £ 3.76 25.13 £0.63
EPLEXRegressor 0.885 £ 0.021 51.96 £ 1.45 68.70 £ 3.07
SNIP 0.883 £ 0.091 27.25£0.92 29.19 £ 0.26
OperonRegressor 0.882 +0.013 77.19+1.12 11.15 £ 0.06
EHCRegressor 0.862 £ 0.006 21.31+£1.14 13.73 £ 0.30
DSRRegressor 0.803 £ 0.005 17.07 £ 1.61 136.84 + 0.59

Table 10: Performance comparison on the CP3-Bench Dataset. Bolded entries indicate the best R?
score and the most parsimonious model.

Algorithm Mean R? Test Score Mean Equation Length Mean Time (s)
README 0.984 + 0.004 23.76 + 2.35 28.91 £0.12
GPGOMEARegressor 0.930 £ 0.003 29.85 £ 0.38 21.26 £+ 3.54
SNIP 0.923 £0.017 24.52 £0.45 28.08 £0.24
FFXRegressor 0.930 £ 0.007 198.41 + 15.47 3.09 +0.07
AFPRegressor 0.912 + 0.007 42.67 £ 2.84 26.06 £1.48
DSRRegressor 0.891 £0.041 30.00 £ 0.00 135.32 +1.61
EPLEXRegressor 0.869 £ 0.026 47.40 £ 3.53 74.29 £0.32
EHCRegressor 0.818 = 0.033 25.53 £ 1.75 13.94 + 0.23
OperonRegressor 0.806 & 0.082 80.98 +1.36 14.47+£0.15
ITEARegressor 0.777 £0.017 11.67 +£0.40 16.77 £ 0.46

Table 11: Performance comparison on the Physics Informed Dataset. Bolded entries indicate the best
R? score and the most parsimonious model.

C.6 Latent Space Analysis
For Sec. the equations are classified into the following family types.

* periodic: contains sin and/or cos, and is periodic. E.g. sin(z1) + cos(xz), cos(z1) cos(zz).
* exp: contains exp only. E.g. exp(z1) + exp(x2).
* polynomial: contains +, x, and/or the power function. E.g. 22 + 5.

« inv: contains the inverse function. E.g. 27 .
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* periodic_exp: contains sin, cos and/or exp. E.g. sin(z1) + exp(z2).
* periodic_polynomial: contains sin, cos, +, x, and/or power. E.g. sin(2?) x xo.

* exp_polynomial: contains exp, +, X, and/or power. E.g. exp(z; + ) + 23.

Examples provided are for a 2-dimensional input, where x = [z1, 2] "

In Fig. @] the t-SNE plots were generated with 512 equations and the t-SNE perplexity parameter
was set as 30. We noted that ‘periodic_polynomial’ embeddings seem to be interpolated between
‘periodic’ and ‘polynomial’ embeddings for trained image embeddings, while this characteristic was
not obvious for text embeddings from MathBERT. Thus, we hypothesize that some relationships
between equation families may be more learnable when visualized in plots, as they may appear
different symbolically but can be more easily captured by the image encoder through visual patterns.

C.7 Video Analytics Pipeline

To evaluate our framework in ultra-rapid, real-world settings, we test it on two videos where object
motion follows physical laws. Each method receives the first 75% of frames to derive an interpretable
symbolic equation and is then tasked to extrapolate and predict the remaining 25

We implemented two pipelines to extract the position of objects from video frames: one based on
template matching and the other using YOLOVS for object detection. While these methods are
applicable to any video source, we demonstrate their effectiveness using two specific examples.
Template matching using the Tracker Software is showcased on a video of a pendulum swinging, and
bounding box identification with YOLOVS is demonstrated on a video of a ping pong ball dropping.
If the object of interest is not supported by YOLOvVS8’s predefined classes, template matching offers a
flexible alternative for tracking custom objects.

C.7.1 Tracker Software

To extract motion data from real-world footage, we utilized the Tracker software [6], which is based
on template matching. In our experiment, we used a publicly available video of a simple pendulum
in motion to demonstrate the effectiveness of this pipeline}’| Template matching works by selecting
a region of interest and then scanning each subsequent frame to find the region that most closely
resembles the original template. By identifying the best match in each frame, the software tracks the
object’s position over time.

Using this method, we tracked the pendulum bob across frames and extracted a total of 311 data
points representing its x and y coordinates over time. The resulting (z, y, time) coordinates were
exported to a CSV file and used as input to our README model for symbolic regression.

C.7.2 YOLOvS8

For automated tracking in a separate experiment, we used the pre-trained YOLOv8n model [19] to
detect and track the trajectory of a falling ping pong ball from a publicly available YouTube Videoﬂ
The video was trimmed to a 10-second segment from 348 to 358 seconds (5 minutes and 48 seconds
to 5 minutes and 58 seconds). YOLOVS identified the object of interest, classified as a sports ball,
and recorded the center coordinates of its bounding box in each frame. In total, 85 data points were
extracted.

We used the yolov8n.pt model with the detection class set to sports ball over the specified time
window. The resulting (z, y, time) coordinates were exported to a CSV file and used as input to our
README model for symbolic regression.

D GWOBO: Grey Wolf Optimizer with Bayesian Optimization

For our novel GWOBO algorithm, we begin by generating an initial population of latent encodings
by perturbing a base encoding with scaled Gaussian noise, similar to the initialization used in the

3Video source: https://www.youtube . com/watch?v=02w91Sii_Hs
*Video source: https://www.youtube.com/watch?v=pZ1Y10121Fs
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standard Grey Wolf Optimizer (GWO). Each candidate in this set is decoded using Algorithm|[I]to
obtain its symbolic expression and corresponding score.

To select the next embeddings to perform decoding on, we attempt to construct a Gaussian process
(GP) surrogate to predict the score for an embedding. For each latent embedding in the original
512-dimensional space that we have already decoded, we compute its difference from the base
encoding, then perform a Johnson-Lindenstrauss transformation [20]] to project the difference down
to a smaller 20-dimensional space. Given the transformed lower-dimensional vectors and their
corresponding actual scores, we fit a GP with radial basis function (RBF) kernel with automatic
relevance determination (ARD) and appropriate input and output normalization. The GP surrogate
can then be used to compute the upper confidence bound (UCB) score for each latent embedding,
which can be seen as an optimistic estimate of the actual score.

To reduce the high cost of decoding, in subsequent iterations only the top 3 candidates as ranked by
UCB scores are decoded using Algorithm|[I} Their actual scores are then used to update the GP model,
while the remaining candidates are assigned surrogate scores predicted by the GP. These updated
scores are then used by the GWO algorithm to perform a population update, guiding the search
toward more promising regions. This allows reduction in the running time since the UCB scores can
be computed much more rapidly compared to the true score while being reasonably accurate.

This loop continues until either the runtime exceeds the 10-second time budget or a sufficiently good
score (R? train > 0.9998) is achieved. This hybrid approach, combining population-based candidate
generation and optimization with GP-based surrogate modeling, enables strong performance while
ensuring the entire inference process completes within the ultra-rapid 10-second runtime constraint.

We also conducted an ablation study on the number of initial candidates used to fit the GP, which is
detailed in Appendix[B.2]

E Limitations and Broader Impacts

We introduced README, a framework for symbolic regression that leverages image representations
of numerical and pre-trained multimodel foundation models for efficient learning. Compared to
other foundation-model-based approaches, README requires significantly less training data and
time, and can benefit from capability advancement of open-sourced text and image encoders. While
a foundation model approach may allow for faster inference time and better performance, and is
also capable of making full use of modern hardware such as GPUs, there are settings where this
approach is less suitable, e.g., in Internet of Things (IoT) deployment settings where the hardware is
constrained to lightweight devices/CPUs. As most works on symbolic regression do not consider very
high-dimensional datasets, we have similarly only considered up to 10-dimensional problems. We
leave it to future works to examine the performance of README in higher-dimensional problems.

As README allows users to rapidly identify equations to describe data, it has the potential to
support applications such as interactive/iterative scenarios such as adaptive scientific experimental
and close to real-time decision making. README might also be used as components in Al/machine
learning systems where interpretability in terms of symbolic equations would be useful. While we
expect that the majority of such applications will lead to societal benefits, there may be malicious
actors who might come up with applications that are to the detriment of society — general regulations
and efforts to prevent such abuse of Al/machine learning tools are needed.

F Directly using multi-modal large language models for symbolic regression

To demonstrate that our approach is effective and necessary for symbolic regression, we used GPT-40
out of the box for a naive comparison. On the physics-informed dataset with real-world measurements,
our README model achieved a Mean R? Test score of 0.958 under the ultra rapid 10 second setting
with 71 candidates as detailed in[B.2] while GPT-40 achieved only 0.015. This highlights that GPT-4o,
used out of the box, is unable to perform symbolic regression meaningfully.

For GPT-4o, we followed the same 5-seed train-test splits described in Appendix [C.3] We provided
200 subsampled data points and explicitly informed GPT-40 of the number of input dimensions,
instructing it to return a valid NumPy expression that fits the data. Notably, GPT-40 was given an
advantage by being explicitly told to produce equations with the correct number of input dimensions,
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a constraint that was not enforced for README. Table[T3]shows the prompt and example outputs
from GPT-40 on the Physics Informed Dataset (seed 23654), illustrating that although the expressions
are syntactically valid, they fail to fit the data well.

Algorithm Mean R? Test Score Mean Equation Length
README (71 initial candidates) 0.958 + 0.027 16.67 £ 1.57
GPT-40 0.015 £+ 0.023 10.46 4+ 0.67

Table 12: Comparison between README and GPT-40 on Physics Informed dataset for ultra-rapid
setting (10 seconds). Bold indicates the better score per metric.

Prompt GPT-40 Discovered Equations for seed 23654

0.05 * np.sin(2 * np.pi * x[:, 0]) + 0.1

0.5 * np.sin(x[:, 0]) + 0.1

0.5 * np.cos(x[:, 0]) + 0.5

0.5 * np.cos(x[:, 0]) + 0.5

0.5 * np.tanh(x[:, 0]) + 0.3 * np.tanh(x[:, 1]) + 0.5
You are given training data with | 0.5 * np.cos(x[:, 0]) + 0.1
input dimension = {num_dim}. | 0.05 + 0.03 * np.tanh(2 * x[:, 0])

The X array contains input
points, and the Y array contains
the corresponding target values.
X ={X_to_fit}

Y ={Y_to_fit}

Provide a single NumPy
compatible expression £ (x)
that takes an (n, {num_dim})
array x and returns an (n,) array
of predictions.

np.where(x[:, 1] > 0, 0.001, np.exp(x[:, 0]) / (1 + np.exp(x[:, 01)))
1.75 - 0.1 * np.tanh(x[:, 0])

-0.1 * np.tanh(x[:, 0]) - 0.05

0.5 * np.sin(x[:, 0]) - 0.5 * x[:, 0] - 0.5

np.where(x[:, 1] > 0, 0.00005, np.exp(-x[:, 0I*x2))

0.05 + 0.02 * np.sin(2 * np.pi * x[:, 0])

0.05 * np.sin(2 * np.pi * x[:, 0]) + 0.1 * np.cos(np.pi * x[:, 0]) + 0.1
np.where(x[:, 1] > 0, 0.001, np.exp(-x[:, 0J**2))

np.where(x[:, 1] > 0, 0.5 * (x[:, 0] + 1.5)**2, np.exp(-x[:, 0]*%*2))

Reply with only the expression
itself (e.g., np.sin(x[:,0])
+ 0.5*x[:,1]), without any

0.05 * np.sin(2 * np.pi

* x[:, 0]) + 0.1 * np.cos(np.pi * x[:, 0]) + 0.1

-100 * x[:, 0] + 700

0.5 * np.cos(x[:, 0]) +

0.5

explanation or quotes. np.exp(-x[:,0]**2)
Table 13: Prompt and discovered expressions for 19 symbolic regression problems in the Physics

Informed dataset.
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