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Abstract

Data-driven modeling of complex physical systems is receiving a growing amount of atten-
tion in the simulation and machine learning communities. Since most physical simulations
are based on compute-intensive, iterative implementations of differential equation systems,
a (partial) replacement with learned, 1-step inference models has the potential for signif-
icant speedups in a wide range of application areas. In this context, we present a novel
benchmark for the evaluation of 1-step generative learning models in terms of speed and
physical correctness.
Our Urban Sound Propagation benchmark is based on the physically complex and practi-
cally relevant, yet intuitively easy to grasp task of modeling the 2d propagation of waves
from a sound source in an urban environment. We provide a dataset with 100k samples,
where each sample consists of pairs of real 2d building maps drawn from OpenStreetmap, a
parameterized sound source, and a simulated ground truth sound propagation for the given
scene. The dataset provides four different simulation tasks with increasing complexity re-
garding reflection, diffraction and source variance. A first baseline evaluation of common
generative U-Net, GAN and Diffusion models shows, that while these models are very well
capable of modeling sound propagations in simple cases, the approximation of sub-systems
represented by higher order equations systematically fails.

Information about the dataset, download instructions and source codes are provided on
our website: https://www.urban-sound-data.org.

Keywords: Generative Models, 1-step Physic Simulation, Sound Propagation

1 Introduction

Critical for urban planning and noise pollution management, traditional sound mapping
methods are resource-heavy [Dutilleux et al. (2009)]. Our approach uses a dataset from
OpenStreetMap, annotated with simulated sound maps to mirror diverse urban scenar-
ios [Śliwińska Kowalska and Zaborowski (2017)]. The research evaluates the effectiveness of
U-Net, Generative Adversarial Networks (GAN) [Goodfellow et al. (2014)], and Denoising
Diffusion Probabilistic Models [Ho et al. (2020b)] in adhering to the complexities of ur-
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ban soundscapes. We specifically investigate these models’ capabilities in capturing sound
reflections and diffractions.
In the realm of generative model development for physical phenomena, the availability and
specificity of datasets play a crucial role. While datasets are catering to a variety of envi-
ronmental and structural scenarios, there remains a noticeable gap in resources specifically
designed for urban sound propagation. This gap is particularly significant given the complex
interplay of variables in urban environments that affect sound dynamics, such as building
layouts, material properties, and ambient conditions.
Our research fills this void by introducing a novel dataset for studying urban sound propa-
gation. This dataset is distinct in its focus on the intricate patterns and behaviors of sound
waves as they navigate through urban landscapes. The introduction of this dataset marks a
pivotal advancement in the field. It provides a much-needed resource for precise simulation
and analysis of urban soundscapes and sets a new standard for future explorations in this
area. By offering a dataset specifically focused on urban sound dynamics, we aim to cat-
alyze further research and innovation in sound mapping using advanced machine learning
techniques, thereby contributing to the evolution of urban planning and noise mitigation
strategies.

1.1 Related Work

The integration of physical principles within generative models represents an active and
burgeoning area of research, particularly in fields such as image and sound processing.
Models like PUGAN [Cong et al. (2023)] and FEM-GAN [Argilaga (2023)] have showcased
the potential of combining GANs with physical modeling to enhance performance in envi-
ronments with complex physical laws. Likewise, progress in fluid dynamics or structural
system identification via the PG-GAN approach has highlighted the improvements in both
efficiency and precision achievable when generative models incorporate physics-based loss
functions and simulations [Kim et al. (2018); Yu and Liu (2024)].
These studies collectively underscore a crucial trend: the integration of physical laws into
the training of generative models not only enhances the fidelity and reliability of these
models but also significantly improves their performance in tasks involving complex phys-
ical phenomena [Zhang et al. (2021); Karpatne et al. (2022); Chen et al. (2023)]. While
significant advancements have been made in the realm of generative models across diverse
disciplines, the domain of urban sound propagation presents a unique set of challenges that
remain largely unaddressed. Recognizing this deficiency, our research underscores the ne-
cessity of incorporating physics-guided principles into generative modeling. By doing so, we
aim to establish a new baseline for urban sound propagation research, marking an essential
first step towards 1-Step generative modeling of complex physical systems.

2 Physics of Sound Propagation

Mathematically, the propagation of sound over time is described via partial differential
wave equations. Due to space constrains and the practical nature of our problem setting,
we will neglect the derivation from continuous wave equations and directly focus an the
discrete and iterative implementations of sound propagation which have been applied for
our ground-truth simulations.
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Following [Vorländer (2007)], for a discrete set of receivers R, the amplitude Lj
Rk

of receiver
Rk at frequency j is computed via iterative differences:

Lj
Rk

= Lj
W −AdivRk

−Aj
atmRk

−Aj
difRk

−Aj
grdRk

, where (1)

Lj
W models the source, (2)

AdivRk
captures the geometrical spreading, (3)

Aj
atmRk

represents the atmospheric absorption, (4)

Aj
difRk

models diffraction, (5)

Aj
grdRk

the ground effect - which is neglected in our study. (6)

Additionally, the model accounts for reflections by adjusting the power level Lj
W based on

the absorption coefficient αvert of the surfaces involved. This adjustment is performed using
the equation

L
(nref )
W = L

(nref−1)
W + nref × 10 log10(1− αvert) (7)

where nref indicates the number of reflections considered. Specular reflections are modeled
using the image receiver method, which provides a computationally efficient way to account
for the angle of incidence being equal to the angle of reflection [Vorländer (2007)]. The
sound level at each receiver reflects the cumulative effect of direct, diffracted, and reflected
sound paths.
As the number of reflections increases, the complexity of calculating the power level Lj

W also
increases. This is because each reflection path introduces additional calculations that are
not strictly linear due to the logarithmic nature of the decibel scale and the multiplicative
effect of each reflection’s absorption.

3 Dataset Creation and Properties

The proposed dataset has been generated from 25k real geolocations, spread across 10
different pre-selected cities. For each of these cities, our dataset provides 2,500 samples
from distinct locations, thereby offering a wide range of urban environments for our analysis.
The associated image samples originate from pre-processed satellite images that capture the
urban landscape within a rectangular 500m² area, depicting buildings as black pixels, while
open spaces are represented by white pixels. All of this geodata has been collected from
open sources via the Overpass API 1 and has been processed with GeoPandas [Jordahl
et al. (2020)] to ensure a consistent coverage of 500m² per sample. Further, we applied a
location selection heuristic to steer the sample positioning relative to building structures
and required each site to be encircled by a minimum of 10 buildings within a 200-meter
radius. Additionally, a constraint of a 50-meter minimum distance from any building to the
sample location was imposed to model realistic urban scenarios.
Ground-Truth Simulation. We applied the open source NoiseModelling v4 simulation
framework [Bocher et al. (2019)], which fulfills the CNOSSOS-EU standard for noise emis-
sion [Kephalopoulos et al. (2012)] in order to generate ground-truth propagation maps for

1. OSM-data for this study was collected using the Overpass API, available at http://overpass-api.de/
api/map.
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the collected samples according to eq. 1. We extended the existing regular 5m simulation
grid by placing additional sound receivers at every 5 meters along the edges and at corners
of buildings, while systematically removing any receivers positioned inside the buildings.
After the simulation step, we linearly interpolated the receiver values onto a 512x512 or
256x256 pixel maps, where each pixel indicates the decibel level at that specific location.
The decibel values are normalized to a grayscale range, mapping a 0-100 dB range to 0-255
grayscale values. Fig. 10 gives an overview of the full process. More details on our scalable
implementation of the generation pipeline are given in Appendix A.

(a) Sattelite image (b) Receiver grid (c) Urban layout (d) Sound propagation

Figure 1: Starting with the selection of a 500m² area (a), buildings are identified, followed by
placing a receiver grid (b). The urban layout (c) and the corresponding sound propagation,
simulated using the NoiseModelling Framework from a central signal source, are then used
in the dataset (d).

Limitation to 2d Propagations. A significant limitation of our dataset is the absence of
building height information, which restricts our ability to accurately model vertical sound
diffraction. Consequently, our current dataset focuses only on horizontal diffraction. Verti-
cal diffraction is disabled during the simulation step.

3.1 Prediction Tasks

We simulate the ground-truth propagation maps at all locations for four different prediction
tasks with increasing complexity, resulting in a total of 100k samples in the final dataset.
Baseline Task: In the most simplistic baseline setup, a steady noise source with a level of
95 dB at 500 Hz has been simulated without diffraction and reflection. This allows to test
generative models under stable conditions, focusing on changes in the environment around
the sound source.
Diffraction Task: To isolate the effect of sound wave diffraction around obstacles this
setup is nearly identical to the baseline task, except for enabling horizontal diffraction dur-
ing the simulation process. This task allows to assess the models’ precision in predicting
how sound waves bend and spread upon encountering buildings.
Reflection Task: Maintaining the same sound level and frequency, this setting focused on
modeling sound reflections off surfaces. The constant power level Lj

W,i and a standardized
absorption coefficient αvert (set to 0.1) were used to simulate paths with multiple reflections.
Combined Task: Incorporating variance in source sound levels (60 to 115 dB) and environ-
mental variables like humidity and temperature, this setting added complexity. The power
level Lj

W and atmospheric absorption coefficient Aj
atm varied per sample. Reflection and
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diffraction were included to replicate realistic sound propagation, with each phenomenon
adding complexity by altering the sound paths and power levels at receivers.

4 Evaluation & Baseline Results

4.1 Experimental Setup

Generative Models. For a first baseline evaluation, we benchmarked three widely used
architectures for image generation on all four tasks: a standard U-Net [Ronneberger et al.
(2015)], a Pix2Pix-based GAN [Isola et al. (2016)], and a Denoising Diffusion Probabilistic
Model [Ho et al. (2020a)]. Each model was constructed upon a unified U-Net backbone,
scaling from 64 to 1028 channels, and then reconverging to 64. All models were trained
with a consistent batch size of 18 for a maximum of 50 epochs. An early stopping criterion
with a patience of 3 epochs was implemented to curtail training when no improvement in
validation loss was detected, thereby preventing overfitting. All additional hyperparameters
can be found in Appendix C.
Evaluation Metrics. The primary interest of our baseline evaluation is to investigate
the capabilities of standard image-to-image generative models to predict physically correct
sound propagations in our defined tasks. The pixel difference at a given location between
true and prediction is used to determine the quality of this prediction. While Mean Absolute
Error (MAE) quantifies the average magnitude of prediction errors, the implementation of
Weighted Mean Absolute Percentage Error (wMAPE) enhances this evaluation by particu-
larly penalizing inaccuracies in instances where predictions gives high values in areas that
physically should have low amplitudes, such as regions behind buildings. This approach
assigns a maximal error rate of 100% to these errors. Additionally, to assess how well
each model captured the reflections or diffractions we specifically measured both metrics
in areas not in direct line of sight to the central signal source in the OSM images. This
assessment was conducted by performing ray tracing from the sound source, allowing us
to evaluate the models’ effectiveness in prediction propagations in Line-of-Sight (LoS) and
outside Line-of-Sight (NLoS) by reflection and diffraction.

4.2 Baseline Performance

The initial assessment of U-Net, GAN, and Diffusion models using MAE and MAPE es-
tablished a baseline for comparison (see Table1). The baseline provides a controlled en-
vironment to assess the generative models’ fundamental capabilities. With a fixed sound
level and frequency, the models’ performance in predicting Lj

Rk
could be evaluated without

the additional complexities of environmental interactions. This setup confirmed that even
under stable conditions, there is some variance in the models ability to capture the subtle
changes around the noise source.

Reflection and Diffraction Tasks. For the reflection task, each model displayed distinct
performance characteristics regarding their ability to model reflective patterns. A sample
from the reflection dataset, as illustrated in Figure 2, showcases the unique approaches of
each model architecture in handling the higher-order complexities of reflections (see eq. 7).
More qualitative samples are provided in Appendix B, quantitative results are shown in
table 2.
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Table 1: Performance metrics including MAE and MAPE across different tasks for all
architectures. Note: Due to varying decibel value ranges, the combined task metrics cannot
be directly compared with the other three tasks.

Model Baseline Diffraction Reflections Combined
MAE wMAPE MAE wMAPE MAE wMAPE MAE wMAPE

UNet 2.08 19.45 1.65 9.75 3.22 31.87 1.77 20.59
GAN 1.52 8.21 1.66 8.03 2.88 16.57 1.76 19.12
Diffusion 2.57 25.21 2.12 11.85 4.14 35.20 1.57 21.45

Figure 2: Comparing the ground-truth simulation with the predictions from U-Net, GAN,
and diffusion model for a single sample within the reflection task.

The U-Net model tends to blur most areas, indicating a general approach to sound mapping
that prioritizes broad patterns over specific details. On the other hand, the GAN model
attempts to imprint specific patterns within these areas, reflecting a more detailed-oriented
strategy. Notably, the Diffusion model, despite having a high MAE and MAPE in NLoS
areas, makes an apparent effort to visually replicate reflection patterns.

In the reflection task, the recursive nature of sound interactions (see eq. 7) introduces
non-linear complexities. The nonlinearity arises because the adjustment for each reflection
depends on the cumulative effect of all previous reflections, each potentially altering the
sound level in a unique manner. The generative models must, therefore, be capable not just
of modeling the initial interaction of sound with the environment, but also of capturing the
compounded effect of multiple reflections.
Combined Task. The final comprehensive evaluation using variance in all terms revealed
the adaptability of the Diffusion model (see table 2), showing a marked improvement in its
performance. Meanwhile, U-Net and GAN exhibited a stable performance across different
tasks, highlighting their consistency.

4.3 Analysis

By separating the loss in LoS and NLoS conditions, each model exhibited distinct strengths
and weaknesses. When models encounter tasks with reflections or diffractions, we observe
an increase in MAE for NLoS regions across all tested architectures. Both the UNet and
GAN models show a moderate rise in NLoS error, but it is most significant in the Diffu-
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Figure 3: Comparing the ground-truth simulation with the prediction of the diffusion model
for a single sample within the combined task, distinguishing between the MAE in LoS
and NLoS.

sion model. Despite its ability to visually replicate sound reflection patterns, there is a
notable discrepancy between its visual outputs and actual acoustic precision. This discrep-
ancy suggests that the Diffusion model, while visually detailed, does not fully capture the
complexities of sound physics.

Figure 4: Comparing the ground-truth simulation with the prediction of the diffusion model
for a single sample within the reflection task, distinguishing between the MAE in LoS and
NLoS.

An illustrative example from the final setting incorporating a complex mix of direct sound
paths, reflections, and diffractions, with varying environmental conditions is depicted in
Figure 4. This sample visualizes the nuanced challenges faced by the diffusion model. More
qualitative results are provided in Appendix B, quantitative results are shown in table 2.

Runtime Analysis The comparison of performance metrics in Table 2 reveals differences
between generative models and the traditional sound propagation simulation in terms of
processing speed. The generative models, especially GAN and U-Net, show a significant
improvement in runtime over the conventional simulation (up to factor 20k). The Diffusion
model has a slightly higher runtime than GAN and U-Net. This comparison underscores
the advantages of GAN and U-Net in terms of speed, highlighting their effectiveness as
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Table 2: Consolidated performance metrics across tasks for all architectures. The ”Runtime
per Sample” is reported in seconds and represents an average computed over 100 samples.

Model Task LoS NLoS LoS NLoS Runtime per
MAE MAE wMAPE wMAPE Sample (s)

Sim. Baseline 0.00 0.00 0.00 0.00 20.4717 ±1.4885
UNet Baseline 2.29 1.73 12.91 37.57 0.0126 ±0.0012
GAN Baseline 1.73 1.19 9.36 6.75 0.0095 ±0.0012
Diffusion Baseline 2.42 3.26 15.57 51.08 4.1560 ±0.0061

Sim. Diffraction 0.00 0.00 0.00 0.00 20.6027 ±0.7953
UNet Diffraction 0.94 3.27 4.22 22.36 0.0126 ±0.0012
GAN Diffraction 0.91 3.36 3.51 18.06 0.0095 ±0.0012
Diffusion Diffraction 1.59 3.27 8.25 20.30 4.1560 ±0.0061

Sim. Reflection 0.00 0.00 0.00 0.00 25.0973 ±3.2928
UNet Reflection 2.29 5.72 12.75 80.46 0.0126 ±0.0012
GAN Reflection 2.14 4.79 11.30 30.67 0.0095 ±0.0012
Diffusion Reflection 2.74 7.93 17.85 80.38 4.1560 ±0.0061

Sim. Combined 0.00 0.00 0.00 0.00 29.2395 ±4.7059
UNet Combined 1.39 2.63 10.10 45.15 0.0126 ±0.0012
GAN Combined 1.37 2.67 9.80 40.68 0.0095 ±0.0012
Diffusion Combined 1.26 2.21 13.07 40.38 4.1560 ±0.0061

quicker alternatives to traditional simulation methods. For additional analysis, please refer
to Appendix 6.

5 Discussion & Future Work

Our first baseline results showed that the proposed dataset provides a suitable proxy-
problem for further research and development of data driven models for the prediction
of complex physical tasks. The provided 2d sound propagation tasks have a manageable
compute complexity, both on the simulation side as well for the training of state-of-the-art
generative models, while providing different levels of difficulty. The evaluation of current
image-to-image generative models shows, that speedups of up to factor 20k compared to
the simulation are realistic, while the physical correctness still needs further improvement.
The initial analysis of the prediction results points towards two very interesting phenomena,
which need further investigation: I) the very different error pattern produced by different
generative approaches, and II) the eminent disability of all model to capture higher order
dependencies.
Broader Impact Statement. The aim of the presented dataset is to foster research
towards fast and physically correct 1-step generative models. Such models have the poten-
tial to drastically speed-up complex simulation of environmental (climate) or engineering
problems, resulting in a wide range of positive effects in various applications. As for any
simulation technique, the authors can not entirely rule out malignant applications.

8



Data-centric Machine Learning Research Workshop at ICLR 2024

Reproducibility Statement

Detailed information about the dataset and the download link are provided under the
website: https://www.urban-sound-data.org/. The code necessary to replicate the ex-
periments discussed in this paper has been made publicly available on the GitHub web-
site: https://github.com/urban-sound-data/urban-sound-data. Additionally, a com-
prehensive description of the dataset is given as a Datacard in Section C.
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Appendix A. Scalable Simulation Pipeline.

The dataset generation pipeline visualized in Figure 5 is a crucial component of our study,
developed to efficiently process sound propagation data in diverse urban settings. Utilizing
the NoiseModelling framework Bocher et al. (2019), we have automated the data input and
simulation processes within a Docker-containerized environment. The pipeline commences
with the automatic download of a 500m² area map from OpenStreetMap for each loca-
tion using the Overpass API, followed by their import into the NoiseModelling framework
alongside the signal source.

fetch OSM-data

import data into
NoiseModelling v4.0

generate receiver grid

simulate sound
distribution

interpolate soundmap

repeat per sam
ple

export buildings &
soundmap

Pre-Datasets

Soundmaps

Buildings

Datasets

location sampling

enrich based on setup

40x Pods

Fetch OSM-data

Import data into
NoiseModelling v4.0

Generate receiver grid

Simulate sound
distribution

Interpolate soundmap

repeat per sam
ple

Export buildings &
soundmap

Pre-Datasets

Soundmaps

Buildings

Datasets

Location sampling

Enrich based on
scenario

40x Pods

Figure 5: Detailed visualization of the dataset generation pipeline.

Considering the computational intensity of this process, with an average duration of 30
seconds per sample, our pipeline is structured for scalability. It operates on a Kubernetes
cluster with 40 pods, enabling us to complete the generation of the entire dataset, encom-
passing 25,000 data points for each complexity level, in approximately 20 hours.
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Appendix B. Additional Qualitative Results

Figure 6: Comparing the output of the physical simulation with the predictions from U-Net,
GAN, and diffusion model for a single sample within the baseline task dataset.

Figure 7: Comparing the output of the physical simulation with the predictions from U-Net,
GAN, and diffusion model for a single sample within the diffraction task dataset.
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Figure 8: Comparing the output of the physical simulation with the predictions from U-Net,
GAN, and diffusion model for a single sample within the reflection task dataset.

Figure 9: Comparing the output of the physical simulation with the predictions from U-Net,
GAN, and diffusion model for a single sample within the combined task dataset.
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(a) U-Net

(b) GAN

(c) Diffusion model

Figure 10: Comparing the output of the physical simulation with the prediction of U-net
(a), GAN (b) and diffusion model (c) for a single sample within the reflection task dataset,
distinguishing between the MAE in LoS and NLoS.

Appendix C. Training Setup

This appendix provides a detailed overview of the architecture, input specifications and
hyperparameter used for the generative models utilized in this research. The U-Net model
architecture, adopted from [Ronneberger et al. (2015)], and the GAN setup, based on [Isola
et al. (2016)], are designed to process grayscale image inputs. For the combined task, the
input is extended by appending additional parameters as a separate dimension.

For the Diffusion model, we followed the methodology described in [Ho et al. (2020a)]
while incorporating conditional inputs as separate dimensions besides the noised input im-
age. Each model was constructed upon a unified U-Net backbone, scaling from 64 to 1028
channels, and then reconverging to 64.
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Table 3: UNet Training Hyperparameter

Hyperparameter Value

Batchsize 18
Learning Rate 1× 10−4

Image Size 256
Max Epochs 50

Table 4: GAN Training Hyperparameter

Hyperparameter Value

Batchsize 18
Learning Rate Discriminator 1× 10−4

Learning Rate Generator 2× 10−4

Image Size 256
Max Epochs 50
L1 Lambda 100
Lambda GP 10

Table 5: Diffusion Model Training Hyperparameter

Hyperparameter Value

Batchsize 18
Learning Rate 1× 10−4

Image Size 256
Max Epochs 50
Noise Steps 1000

Table 6: Model vs. Simulation Performance Comparison for Single Sample Processing

Model - Condition Mean Runtime (s) Std. Dev. (s)

UNet 0.0126 0.0012
GAN 0.0095 0.0012
Diffusion 4.1560 0.0061

Simulation - Baseline 20.4717 1.4885
Simulation - Diffraction 20.6027 0.7953
Simulation - Reflection 25.0973 3.2928
Simulation - Combined 29.2395 4.7059

Simulation - Combined 186.2295 16.8491
- 3rd Order Reflections
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Urban Sound 
Propagation 

This dataset is assembled for research into urban sound propagation, 
comprising 25,000 data points across 10 diverse cities. Each city is 
represented by 2,500 locations, offering a comprehensive analysis of 
various urban configurations. The dataset utilizes OpenStreetMap 
(OSM) imagery to detail the urban layout within a 500m x 500m area 
for each location, where buildings are delineated with black pixels 
and open spaces with white pixels. 
 
Supplementing the urban structural images, the dataset includes 
sound distribution maps at resolutions of 512x512 and 256x256. 
These maps are precisely generated through the NoiseModelling v4.0 
framework, an advanced simulation tool engineered for accurate 
modeling of sound dynamics within urban environments. 
 
For researchers and experts interested in exploring the intricacies of 
sound simulation, additional insights can be obtained from the 
NoiseModelling framework documentation. 

DATASET LINK DATA CARD AUTHOR(S) 

https://doi.org/10.5281/zenodo.10609793 Martin Spitznagel, IMLA: Owner 

Janis Keuper, IMLA:  Owner 

 

Authorship 

Publishers 

PUBLISHING 
ORGANIZATION(S) 

INDUSTRY TYPE(S) CONTACT DETAIL(S) 

Institute for Machine 
Learning and Analytics 
(IMLA) 

Academic – Tech Affiliation: Offenburg University 

Website: https://imla.hs-offenburg.de/ 

Funding Sources 

INSTITUTION(S) FUNDING OR GRANT SUMMARY(IES) 

German Federal 
Ministry of Education 
and Research (BMBF) 

This project is part of the “Forschung an Fachhochschulen in Kooperation mit Unternehmen (FH-
Kooperativ)” program, within the joint project KI-Bohrer [https://www.ki-bohrer.de/] and is 
funded under the grant number 13FH525KX1. 

  



 
 

Dataset Overview 

DATA SUBJECT(S) DATASET SNAPSHOT CONTENT DESCRIPTION 

Data about natural 
phenomena 

Data about places and 
objects 

 

 

 

Size of Dataset ~5 GB 

Number of Instances ~100,000 

Training 19908 x 4 

Evaluation 3732 x 4 

Test 1244 x 4 

 

Additional Notes: The dataset is segmented 
into four distinct subsets, each tailored to 
explore specific aspects of sound 
propagation in urban environments: 
Baseline, Reflection, Diffraction, and 
Combined. 

 

A data point in this dataset consists of two 
main components: an urban layout image 
from OpenStreetMap and a corresponding 
sound distribution map. The urban layout 
image is a 500m x 500m area depiction 
where buildings are marked in black and 
open spaces in white. The sound distribution 
map generated using NoiseModelling v4.0, 
illustrates the sound dynamics within that 
urban environment at resolutions of 
512x512 or 256x256.  

The dataset comprises four subsets: Baseline 
for basic sound behavior, Reflection 
examining sound wave interactions with 
surfaces, Diffraction focusing on sound 
navigating around objects, and Combined 
which merges reflection, diffraction and 
changing environmental factors like 
temperature and humidity. 

Dataset Version and Maintenance 

MAINTENANCE STATUS VERSION DETAILS MAINTENANCE PLAN 

Regularly Updated 

(New versions of the dataset 
have been or will continue to 
be made available.) 

 
 

 

Current Version: 2.0 

Last Updated: 02/2024 

Release Date: 02/2024 

Feedback:  
martin.spitznagel@hs-offenburg.de 

 

 

  



 

Example of Data Points 

PRIMARY DATA 
MODALITY 

SAMPLING OF DATA 
POINTS 

DATA FIELDS 

Multimodal  

- Image Data 
- Geospatial Data 
- Tabular Data 

 

  

Field Name Field Value Description 

lat float Latitude of the sound 
measurement location. 

long float Longitude of the sound 
measurement location.     

db Object Key-value pairs of sound 
levels in decibels for a 
given frequency 
(lwd{fqz}).     

soundmap string Path to 256x256 
resolution sound 
distribution image. 

soundmap_512 string Path to 512x512 
resolution sound 
distribution image. 

osm string Path to Open Street Map 
image showing urban 
layout. 

temperature float Temperature (°C) at the 
location. 

humidity float Humidity (%) at the 
location. 

yaw float Orientation of the noise 
source. Can be empty.        

sample_id int Unique identifier for the 
data point. 

 

 

 

 

 

 

 

 



 

 
TYPICAL DATA POINT 

 
EXAMPLE OF DATA POINT 

 

``` { 
  "lat": 48.030229082138526, 
  "long": 11.367773397906852, 
"db": {"lwd500": 69}, 
"soundmap":  
"./soundmaps/256/0_LEQ_256.png", 
"soundmap_512":  
"./soundmaps/512/0_LEQ_512.png", 

  "osm": 
"./buildings/osm_23747.png", 
  "temperature": 12, 
  "humidity": 35, 
  "yaw": None, 
"sample_id": "23747" 
} ``` 

 

Below is an example of an OSM and Simulated Sound Propagation pair: 
 
OSM:  

 
 
Simulated Sound Propagation: 

 

  



 

Motivations & Intentions 

Motivations 

PURPOSE(S) DOMAIN(S) OF APPLICATION MOTIVATING FACTOR(S) 

Research 

 

`Generative Models`, `1-step Physic 
Simulation`, `Sound Propagation`, 
`Machine Learning`  

Generative models, through their capacity to 
learn from complex datasets, hold significant 
potential in understanding the intricate physics 
behind sound propagation. By training on data 
that encompasses various urban layouts and the 
corresponding sound distribution maps, these 
models can uncover the underlying patterns and 
principles governing how sound travels and 
interacts with different obstacles, such as 
buildings and open spaces. This capability enables 
the creation of predictive models that can 
simulate sound behavior in any urban 
environment, thereby offering valuable insights 
for urban planning, acoustic design, and noise 
mitigation strategies, all rooted in a deep 
understanding of the physical laws of sound 
propagation. 

Intended Use 

DATASET USE(S) SUITABLE USE CASE(S) UNSUITABLE USE CASE(S) 

Safe for research use 

 

Sound propagation: Enhancing models for 
predicting how sound travels in densely 
built areas. 
 
 

Predicting indoor noise levels: The dataset is 
designed for outdoor urban sound distribution, 
not for indoor environments. 
 
Traffic flow or congestion analysis: It focuses on 
sound distribution and ignores vehicle 
movements or traffic patterns. 
 
 
 
 
 

 RESEARCH AND PROBLEM SPACE(S)  

 The dataset specifically addresses the 
problem space of outdoor urban noise 
propagation. It is intended for 
developing models that can predict 
sound distribution around buildings 
within urban environments. 

 

 



 

Provenance 

Collection 

METHOD(S) USED METHODOLOGY DETAIL(S) SOURCE DESCRIPTION(S) 

- API 

- Physical Simulation 
Framework 

 

 

Overpass API 

Source: The Overpass API is a read-only API that serves up 
custom selected parts of the OSM map data. It acts as a 
database over the web: the client sends a query to the API 
and gets back the data set that corresponds to the query. 
 
Platform: https://overpass-api.de/ 
 
Is this source considered sensitive or high-risk? [Yes / No] 
 
Dates of Collection: [10 2023 - 12 2024] 
 
Primary modality of collected data: 
Geospatial Data 
 
 
NoiseModelling v4.0 
 
Source: An advanced simulation tool engineered for 
accurate modeling of sound dynamics within urban 
environments. 
 
Platform: https://github.com/Universite-Gustave-
Eiffel/NoiseModelling 
 
Is this source considered sensitive or high-risk? [Yes / No] 
 
Dates of Collection: [10 2023 - 12 2024] 
 
Primary modality of collected data: 
Geospatial Data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OSM Buildings: This source 
provides images from Open 
Street Map (OSM) that depict 
urban layouts, specifically 
focusing on buildings within 
cities. In these images, black 
pixels represent buildings, and 
white pixels indicate open 
spaces. 
 
 
Sound Propagation: This 
component of the dataset 
involves simulated sound 
distribution images around 
urban centers, where the noise 
source is placed at the center. 
 



 

Collection Criteria 

DATA SELECTION DATA INCLUSION DATA EXCLUSION 

Location Sampling: The locations 
are randomly sampled across 10 
cities/areas:  
["Hamburg", "Hannover", 
"Augsburg", "Bonn", "Muenchen", 
"Schwerin", "Berlin", "Paris", 
"Stuttgart", "Aachen"] 
 
 

Enough Obstacles: At least 10 Buildings within a circle 
r=200m around the sound source. 
No Obstacle to close: No Building within a r=50m circle 
around the sound source. 
 
 
Additional Notes: 

 

Additional Notes: If the Data 
Inclusion criteria is not met, 
the data is excluded. 
No additional exclusion criteria 
are introduced. 
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