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Abstract
Predicting the binding sites of target proteins
plays a fundamental role in drug discovery. Most
existing deep-learning methods consider a protein
as a 3D image by spatially clustering its atoms
into voxels and then feed the voxelized protein
into a 3D CNN for prediction. However, the CNN-
based methods encounter several critical issues:
1) defective in representing irregular protein struc-
tures; 2) sensitive to rotations; 3) insufficient to
characterize the protein surface; 4) unaware of
protein size shift. To address the above issues, this
work proposes EquiPocket, an E(3)-equivariant
Graph Neural Network (GNN) for binding site
prediction, which comprises three modules: the
first one to extract local geometric information
for each surface atom, the second one to model
both the chemical and spatial structure of pro-
tein and the last one to capture the geometry of
the surface via equivariant message passing over
the surface atoms. We further propose a dense
attention output layer to alleviate the effect in-
curred by variable protein size. Extensive ex-
periments on several representative benchmarks
demonstrate the superiority of our framework to
the state-of-the-art methods. Related codes can
be found at the link https://github.com/
fengyuewuya/EquiPocket.

1. Introduction
Nearly all biological and pharmacological processes in liv-
ing systems involve interactions between receptors (i.e. tar-
get proteins) and ligands (i.e. small molecules) (Rang, 2006).
These interactions take place at specific regions that are
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Figure 1: Illustrative comparison between previous CNN-
based methods (voxelization) and our EquiPocket.

referred to as binding sites/pockets on the target protein
structures. In-silico ligand binding site prediction forms an
indispensable and even the first step for various tasks. For
example, the predicted binding sites (or pockets) on the pro-
tein greatly facilitates downstream tasks, including protein-
ligand docking (Zhang et al., 2022; Yang et al., 2023) and
structure-based molecular generation (Isert et al., 2023).

Through the past years, various computational methods for
ligand binding site detection have emerged, broadly catego-
rized (Macari et al., 2019) into geometry-based (Levitt &
Banaszak, 1992; Le Guilloux et al., 2009; Dias et al., 2017),
probe-based (Laurie & Jackson, 2005; Faller et al., 2015),
and template-based methods (Brylinski & Skolnick, 2008;
Toti et al., 2018). These methods exploit hand-crafted algo-
rithms guided by domain knowledge or external templates,
leading to insufficient expressivity in representing proteins.
Lately, machine-learning methods like P2rank (Krivák &
Hoksza, 2018) utilize Random Forest with surface geometry
for prediction, which are still limited by the hand-crafted
features and insufficiently-expressive models. Motivated by
the breakthrough of deep learning, Convolutional Neural
Networks (CNNs) have been applied successfully for ligand
binding site prediction (Kandel et al., 2021). Typical works
include DeepSite (Jiménez et al., 2017), DeepPocket (Ag-
garwal et al., 2021), DeepSurf (Mylonas et al., 2021), Re-
curPocket (Li et al., 2022) and etc (Semwal et al., 2023).
The CNN-based methods consider a protein as a 3D image
by spatially clustering its atoms into the nearest voxels, and
then model the binding site prediction as a object detection

1

https://github.com/fengyuewuya/EquiPocket
https://github.com/fengyuewuya/EquiPocket


EquiPocket: an E(3)-Equivariant Geometric Graph Neural Network for Ligand Binding Site Prediction

problem or a semantic segmentation task on 3D grids. These
methods have demonstrated superiority and tend to achieve
top performance on various public benchmarks (Mylonas
et al., 2021). In spite of the impressive progress, existing
CNN-based methods still encounter several issues:

Issue 1. Defective in leveraging regular voxels to model the
proteins of irregular shape (see Figure 1(a)). Moreover, the
voxelization is usually constrained within a fixed-size (e.g.
70Å × 70Å × 70Å ) (Stepniewska-Dziubinska et al., 2020).
The outside atoms will be directly discarded, resulting in
incomplete and inaccurate modeling for large proteins.

Issue 2. Sensitive to rotations. The CNN-based methods
rely on fixed coordinate bases for discretizing proteins into
3D grids. When rotating the protein, the voxelization re-
sults could be distinct, affecting predicted binding sites.
This contradicts the fact that any protein rotation keeps the
binding sites invariant. While it can be alleviated by local
grid (Mylonas et al., 2021) or augmenting data with random
rotations (Ragoza et al., 2017), which yet is data-dependent
and unable to guarantee rotation invariance in theory.

Issue 3. Insufficient to characterize the geometry of the
protein surface. Surface atoms comprise the major part
of the binding pocket, which should be elaborately mod-
eled. In the CNN-based methods, surface atoms are situated
within voxels surrounded by empty voxels, which somehow
encodes the surface geometry. Nevertheless, such infor-
mation is too coarse to depict how surface atoms interact
and what their local geometry is. Indeed, the description
of surface atoms is purely driven by the geometric shape
of the solvent-accessible surface of the protein (Richmond,
1984) (Figure 1(b)), which, unfortunately, is less explored
in current learning-based works.

Issue 4. Unaware of protein size shift. In practical scenarios,
the size of proteins varies greatly across different datasets.
It requires the deep learning model we apply to be well
generalizable and adaptive, so that it is able to overcome
the distribution shift incurred by the variable protein size.
However, this point is not seriously discussed previously.

To address the above issues, this paper proposes to apply
Graph Neural Networks (GNNs) (Kip & Welling, 2016;
Chen et al., 2020) instead of CNNs to represent proteins. By
considering atoms as nodes, interactions as edges, GNNs
are able to encode the irregular protein structures. More
importantly, a recent line of researches (Satorras et al.,
2021a; Kong et al., 2023) has enhanced GNNs by encapsu-
lating E(3)-equivariance/invariance with respect to transla-
tions/rotations; in this way, equivariant GNNs yield outputs
that are independent of the choice of the coordinate systems.
That being said, trivially applying equivariant GNNs for the
binding site prediction task is still incapable of providing
desirable performance, and even achieves worse accuracy

than the CNN-based counterparts. By looking into their
design, equivariant GNNs naturally cope with the first two
issues as mentioned above, yet leave the other two unsolved.
To this end, we make the contributions as follows:

1) To the best of our knowledge, we are the first to apply
an E(3)-equivariant GNN for ligand binding site prediction,
which is dubbed EquiPocket. In contrast to conventional
CNN-based methods, EquiPocket is free of the voxelization
process, able to model irregular protein structures by nature,
and insensitive to any Euclidean transformation, thereby
addressing Issue 1 and 2.

2) EquiPocket consists of three modules: the first one to ex-
tract local geometric information for each surface atom with
the help of the solvent-accessible surface technique (Rich-
mond, 1984), the second one to model both the chemical
and the spatial structures of the protein, and the last one
to capture the comprehensive geometry of the surface via
equivariant message passing over the surface atoms. The
first and the last modules are proposed to tackle Issue 3.

3) To alleviate the effect by protein size shift in Issue 4, we
further propose a novel output layer called dense attention
output layer, which enables us to adaptively balance the
scope of the receptive field for each atom based on the
density distribution of the neighbor atoms.

4) Extensive experiments demonstrate the superiority of our
framework to the SOTA methods in prediction accuracy.
The design of our model is sufficiently ablated as well.

It is worth mentioning that some researchers have adopted
typical GNNs for protein pocket-related tasks. Pocket-
Miner (Meller et al., 2023) utilizes a graph model to predict
where cryptic pockets are likely to open in molecular dynam-
ics simulations. NodeCoder (Abdollahi et al., 2023) predicts
protein residue types with a graph representation. Scan-
Net (Tubiana et al., 2022) is trained to detect protein-protein
and protein-antibody binding sites. SiteRadar (Evteev et al.,
2023) incorporates grid generation and cropping with GNNs.
However, most of these methods significantly differ from the
task of ligand binding site prediction in this paper, and more-
over, these models are non-equivariant and not geometry-
aware. Detailed related work in Appendix A.2.

2. Notations and Definitions
Protein Graph. A protein such as the example in Fig-
ure 1(b) is denoted as a graph GP = (VP , EC , ED), where
VP = {v0, ..., vN} forms the set of N atoms, EC represents
the chemical-bond edges, and ED collects the spatial edges
between any two atoms if their spatial distance is less than
a cutoff θ > 0. In particular, each node (i.e. atom) is associ-
ated with a feature (xi, ci), where xi ∈ R3 denotes the 3D
coordinates and ci ∈ R5 is the chemical feature.
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Figure 2: Surface probe (a) and local geometric features (b).

Surface Probe Set. The surface geometry of a protein is
of crucial interest for binding site detection. By employing
the open source MSMS (Sanner et al., 1996), as shown
in Figure 2 (a), we move a probe (the grey circle) of a
certain radius along the protein to calculate the Solvent
Accessibility Surface (SAS) and Solvent Excluded Surface
(SES) (Lee & Richards, 1971). The resulting coordinates of
probe are considered as surface probes. Here we define the
set of surface probes, by S = {s0, ..., sM}, M ≫ N . Each
surface probe si corresponds to (xi, pi), where xi ∈ R3

represents the 3D coordinates of si and pi ∈ VP indicates
the index of the nearest protein atom in VP to si.

Protein Surface Graph. Referring to the surface probes
defined above, we collect all the nearest protein atoms pi
of the surface probes, forming the surface graph GS =
(VS , ES), and clearly GS ⊆ GP . Notably, the edges of the
surface graph, i.e. , ES is only composed of spatial edges
from ED, since those chemical edges are mostly broken
among the extracted atoms.

Equivariance and Invariance. In 3D space, the sym-
metry of the physical laws requires the detection model
to be equivariant with respect to arbitrary coordinate sys-
tems (Han et al., 2022). In form, suppose X to be 3D
geometric vectors (positions, velocities, etc) that are steer-
able by E(3) group (rotations/translations/reflections), and h
non-steerable features. The function f is E(3)-equivariant, if
for any transformation g ∈ E(3), f(g ·X,h) = g ·f(X,h),
∀X ∈ R3×m,h ∈ Rd. Similarly, f is invariant if
f(g ·X,h) = f(X,h). The group action · is instantiated
as g ·X := X+b for translation b ∈ R3 and g ·X := OX
for rotation/reflection O ∈ R3×3.

Problem Statement. Given a protein GP , its surface probes
S, and constructed surface graph GS , our goal is to learn an
E(3)-invariant model f(GP ,S,GS) to predict the atoms of
binding sites: VB ⊆ VP .

3. The Proposed Methodology
Figure 3 illustrates the overall framework of our EquiPocket,
which consists of three modules: the local geometric model-
ing module § 3.1 that focuses on extracting the geometric
information of each surface atom, the global structure mod-
eling module § 3.2 to characterize both the chemical and

spatial structures of the protein, and the surface message
passing module § 3.3 which concentrates on capturing the
entire surface geometry based on the extracted information
by the two former modules. The training losses are also pre-
sented. The related codes are provided at the link https:
//github.com/fengyuewuya/EquiPocket.

3.1. Local Geometric Modeling Module

This subsection presents how to extract the local geomet-
ric information of the protein surface GS , with the help of
surface probes S. The local geometry of each protein atom
closely determines if the region nearby is appropriate or not
to become part of binding sites. In Figure 2 (b), we adopt the
surrounding surface probes of each protein surface atom to
describe the local geometry. To be specific, for every surface
atom i ∈ VS , its surrounding surface probes are returned by
a subset of S, namely, Si = {sj = (xj , pj) ∈ S | pj = i},
where pj , indicates the nearest protein atom. We now con-
struct the geometric information based on Si. We denote
the center/mean of all 3D coordinates in Si as x̄i. For each
surrounding surface probe sj ∈ Si, we first search its two
nearest surface probes from S as sj1 and sj2 , and then cal-
culate the following relative position vectors:

xjj1 = xj − xj1 ,xjj2 = xj − xj2 ,xj,center = xj − x̄i,

xj,protein = xj − xi,xcenter,protein = x̄i − xi.
(1)

We further derive the following scalars upon Eq. 1:

g(sj) := [∥xjj1∥2, ∥xjj2∥2,∠1,

∥xj,center∥2, ∥xj,protein∥2, ∥xprotein,center∥2,∠2],
(2)

where the angels are computed by ∠1 =
xjj1

·xjj2

∥xjj1
∥2∥xjj2

∥2
and

∠2 =
xj,center·xcenter,protein

∥xj,center∥2∥xcenter,protein∥2
; here the operator · defines the

inner-product between two vectors. Basically, as displayed
in Figure 2, the first three quantities in g(sj) depict how
the nearby surface probes are arranged around sj , and the
last four ones describe where sj is located within the global
region of Si. We aggregate the geometric information g(sj)
over all surface probes in Si and obtain a readout descriptor
for surface atom i as

gi =[Pooling({MLP(g(sj))}sj∈Si),

MLP(Pooling{(g(sj))}sj∈Si)].
(3)

Here, MLP denotes multi-layer perceptron, and the function
Pooling is implemented by concatenating mean and max
pooling in our experiments. The front part in Eq. 3 is used to
gather local geometric features, while the latter part attempts
to compute the global size of surrounding surface probes.
Notably, the geometric descriptor gi is E(3)-invariant.

3.2. Global Structure Modeling Module

This module aims at processing the information of the whole
protein GP , including atom type, chemical bonds, relevant
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Figure 3: An illustration of the scheme of our EquiPocket framework.

spatial positions, etc. Although the pocket is majorly com-
prised of surface atoms, the global structure of the protein
in general influences how the ligand is interacted with and
how the pocket is formulated, which should be modeled. We
fulfil this purpose via two concatenated processes: chemical-
graph modeling and spatial-graph modeling.

The chemical-graph modeling process copes with the chem-
ical features {ci}i∈VP

and the chemical interactions EC of
the protein graph. For each atom in the protein, its chem-
ical type, the numbers of electrons around, and the chem-
ical bonds connected to other atoms are important clues
to identify the interaction between the protein and the lig-
and (Zhang et al., 2022). We employ typical GNNs (Kipf &
Welling, 2016; Velikovi et al., 2017; Sabrina et al., 2018) to
distill this type of information. Formally, we proceed:

{c′i}i∈VP
= GNN({ci}i∈VP

, EC), (4)

where c′i is the updated chemical feature for atom vi. While
various GNNs can be used in Eq. 4, here we implement
GAT (Velikovi et al., 2017) given its desirable performance
observed in our experiments.

The spatial-graph modeling process further involves the
3D coordinates {xi}i∈VP

to better depict the spatial inter-
actions ED within the protein. Different from chemical
features c′i, the 3D coordinates provide the spatial posi-
tion of each atom and reflect the pair-wise distances in 3D
space, which is helpful for physical interaction modeling.
We leverage EGNN (Satorras et al., 2021a) as it conforms
to E(3)-equivariance/invariance and achieves promising per-

formance on modeling spatial graphs:

{c′′i }i∈VP
= EGNN({xi, c

′
i}i∈VP

, ED). (5)

Here, we only reserve the invariant output (i.e. , c′′i ) and
have discarded the equivariant output (e.g. updated 3D
coordinates) of EGNN, since the goal of this module is to
provide invariant features. We select the updated features of
the surface atoms VS and fed into the module in § 3.3.

3.3. Surface Message Passing Module.

Given the local geometric features {gi}i∈VS
from § 3.1,

and the globally-encoded features of the surface atoms
{c′′i }i∈VS

from § 3.2, the module in this subsection car-
ries out equivariant message passing on the surface graph
GS to renew the entire features of the protein surface. We
mainly focus on the surface atoms here, because firstly the
surface atoms are more relevant to the binding sites than the
interior atoms, and secondly the features {c′′i }i∈VS

that are
considered as the input have somehow encoded the informa-
tion of the interior structure via the processes in § 3.2.

Surface-EGNN. During the l-th layer message passing,
each node is associated with an invariant feature h(l)

i ∈ Rml

and an equivariant double-channel matrix X
(l)
i ∈ R3×2. We

first concatenate c′′i with gi as the initial invariant feature,
h
(0)
i = [c′′i , gi]. The equivariant matrix X

(0)
i is initialized

by the 3D coordinates of the atom and the center of its
surrounding surface probes, that is, X(0)

i = [xi, x̄i]. We
update h

(l)
i ∈ Rdl and X

(l)
i ∈ R3×2 synchronously to un-

veil both the topological and geometrical patterns. Inspired
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from EGNN (Satorras et al., 2021a) and its multi-channel
version GMN (Huang et al., 2022), we formulate the l-th
layer for each surface atom i ∈ VS as

mij = ϕm

(
h
(l)
i ,h

(l)
j , fx(X

(l)
i ,X

(l)
j ), eij

)
,

h
(l+1)
i = ϕh

(
h
(l)
i ,

∑
j∈N(i)

mij

)
,

X
(l+1)
i = X

(l)
i +

1

|N(i)|
∑

j∈N (i)
(x

(l)
i,1 − x

(l)
j,1)ϕx(mij),

(6)

where the functions ϕm, ϕh, ϕx are MLPs, xi,1 (xj,1) de-
notes the first channel of Xi (Xj), N(i) denotes the spatial
neighbors of node i, | · | counts the size of the input set, and
the invariant message mij from node j to i is employed
to update the invariant feature h

(l+1)
i via ϕh and the equiv-

ariant matrix X
(l+1)
i via the aggregation of the relative

position x
(l)
i,1 − x

(l)
j,1 multiplied with ϕx.

As a core operator in the message passing above, the func-
tion fx(Xi,Xj) is defined as follows:

fx(Xi,Xj) = [∥xij∥2, ∥xci∥2, ∥xcj∥2,∠ci,ij ,∠cj,ij ,∠ci,cj ], (7)

where the relative positions are given by xij = xi,1 − xj,1,
xci = xi,2 − xi,1 and xcj = xj,2 − xj,2; the angles
∠ci,ij ,∠cj,ij and ∠ci,cj are defined as the inner-products
of the corresponding vectors denoted in the subscripts,
e.g. , ∠ci,ij =

xci·xij

∥xci∥2∥xij∥2
. Through the design in

Eq. 7, fx(Xi,Xj) elaborates the critical information (in-
cluding relative distances and angles) around the four
points: xi,1,xi,2,xj,1,xj,2, which largely characterizes
the geometrical interaction between the two input matrices.
Nicely, fx(Xi,Xj) is invariant, ensuring the equivariance
of Surface-EGNN.

Dense Attention Output Layer. Conventionally, we can
apply the output of the final layer, i.e. , (h(L)

i ,X
(L)
i ) to

estimate the binding site. Nevertheless, such flat output
overlooks the discrepancy of size and shape between differ-
ent proteins. As showed in Figure 5(b), for small or densely-
connected proteins, the receptive field of each node will
easily cover most nodes after a small number of message-
passing layers, and excessive message passing will lead to
over-smoothing (Huang et al., 2020) that will incurs perfor-
mance detriment. For large or sparsely-connected proteins,
on the contrary, insufficient message passing can hardly at-
tain the receptive field with a desirable scope, which will
also decrease the performance. It thus requires us to de-
velop an adaptive mechanism to balance the message pass-
ing scope between different proteins. We propose the dense
attention output layer (showed in Figure 4) for this goal.

Intuitively, for each target atom, the spatial distribution
of neighbors can reflect the density of spatial connections
around. This motivates us to calculate the proportion of

...

...
...

MLP

Concat

Sigmoid

Attention

Surface Probes
Protein Atom

Figure 4: An illustration of Dense Attention.

atoms with different distance ranges. we take θ as the dis-
tance unit to create the spatial graph and compute by:

n
(l)
i =

|{j ∈ VP | 0 ≤ ∥xi − xj∥2 < lθ}|
NP

, (8)

where, the proportion is evaluated within the distance range
[0, lθ], NP = |VP |, and the neighbor hop l ∈ Z+. We
collect the proportions of all hops from 0 to L, yielding the
proportion vector ni = [n

(0)
i , n

(1)
i , · · · , n(L)

i , NP ] ∈ RL+2

with NP plus to emphasize the total number of the pro-
tein atoms. Clearly, ni contains rich information of the
spatial density, and we apply it to determine the impor-
tance of different layers, by producing the attention ai =
Sigmoid(ϕa(ni)). Here, ϕa is an MLP with the number of
output channels as L+ 1, the Sigmoid1 function is applied
for each channel, implying that ai ∈ (0, 1)L+1. Subse-
quently, we multiply the hidden feature of corresponding
layer with each channel of attention vector. The results are
then concatenated into a vector denoted as hout

i . To retain
translation equivariance, we calculate the mean coordinates
of all layers as Xout

i :

hout
i = Concat(ai0h

(0)
i , ..., aiLh

(L)
i ),

Xout
i =

1

L+ 1

∑L

l=0
X

(l)
i ,

(9)

where ail is the l-th channel of ai. By making use of Eq. 9,
the learnable attentions enable the model to adaptively bal-
ance the importance of different layers for different input
proteins. We will illustrate the benefit of the proposed strat-
egy in our experiments.

3.4. Optimization Objective

Ligand Binding Site Prediction. We set yi = 1 if a sur-
face atom i is within 4Å to any ligand atom (Mylonas et al.,
2021) and compute ŷi = Sigmoid(MLP(hout

i )) as the prob-
ability of being a part of binding site according its dense
embedding hout

i . The loss Lb for this task is computed with
Dice loss (Jiménez et al., 2017; Kandel et al., 2021).

1Note that the sum of ai is unnecessarily equal to 1, since the
Sigmoid function instead of SoftMax function is applied here.
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Table 1: Experimental and ablation results of baseline models and our framework.

Methods Type Param Failure COACH420 HOLO4K PDBbind2020

(M) Rate ↓ DCC↑ DCA↑ DCC↑ DCA↑ DCC↑ DCA↑
Fpocketb Geometric-based \ 0.000 0.228 0.444 0.192 0.457 0.253 0.371

P2rankb Machine-learning \ 0.000 0.366 0.628 0.314 0.621 0.503 0.677

DeepSiteb

CNN-based
1.00 \ \ 0.564 \ 0.456 \ \

Kalasantyb 70.6 0.120 0.335 0.636 0.244 0.515 0.416 0.625
DeepSurfb 33.1 0.054 0.386 0.658 0.289 0.635 0.510 0.708
RecurPocketb 21.2 0.075 0.354 0.593 0.277 0.616 0.492 0.663

GAT Topological 0.03 0.110 0.039(0.005) 0.130(0.009) 0.036(0.003) 0.110(0.010) 0.032(0.001) 0.088(0.011)
GCN Graph 0.06 0.163 0.049(0.001) 0.139(0.010) 0.044(0.003) 0.174(0.003) 0.018(0.001) 0.070(0.002)
GCN2 0.11 0.466 0.042(0.098) 0.131(0.017) 0.051(0.004) 0.163(0.008) 0.023(0.007) 0.089(0.013)

SchNet Spatial 0.49 0.140 0.168(0.019) 0.444(0.020) 0.192(0.005) 0.501(0.004) 0.263(0.003) 0.457(0.004)
Egnn Graph 0.41 0.270 0.156(0.017) 0.361(0.020) 0.127(0.005) 0.406(0.004) 0.143(0.007) 0.302(0.006)

EquiPocket-L

Ours

0.15 0.552 0.070(0.009) 0.171(0.008) 0.044(0.004) 0.138(0.006) 0.051(0.003) 0.132(0.009)
EquiPocket-G 0.42 0.292 0.159(0.016) 0.373(0.021) 0.129(0.005) 0.411(0.005) 0.145(0.007) 0.311(0.007)
EquiPocket-LG 0.50 0.220 0.212(0.016) 0.443(0.011) 0.183(0.004) 0.502(0.008) 0.274(0.004) 0.462(0.005)
EquiPocket 1.70 0.051 0.423(0.014) 0.656(0.007) 0.337(0.006) 0.662(0.007) 0.545(0.010) 0.721(0.004)
a The standard deviation of each index is indicated in brackets. The result of 5-fold for EquiPocket is shown in Appendix 12.
b We use their published results, codes, or pretrained models. Details in Appendix A.4.6.

Relative Direction Prediction. Beyond the CNN-based
methods, our EquiPocket is an E(3)-equivariant model,
which can not only output the embedding hout

i but also
the coordinate matrix Xout

i (with initial position vector xi).
To enhance our framework for gathering local geometric
features, we further leverage the position vector mi to com-
pute the relative direction of its nearest ligand atom by
di = mi−xi

∥mi−xi∥2
, which is predicted as d̂i =

xout
i −xi

∥xout
i −xi∥2

.
The task loss Ld is computed with cosine loss. We compute
the eventual loss by L = Lb + Ld.

4. Experiments
4.1. Settings

Dataset. scPDB (Desaphy et al., 2015) is the famous dataset
for binding site prediction, which contains the protein, lig-
and, and 3D cavity structure generated by VolSite (Da Silva
et al., 2018). The 2017 release is used for training and cross-
validation. PDBbind (Wang et al., 2004) is a commonly
used dataset for researching protein-ligand complex, which
contains the 3D structures of proteins, ligands, binding sites,
and binding affinity results determined in the laboratory.
We use the v2020 release for evaluation. COACH 420 and
HOLO4K (Krivák & Hoksza, 2018) are two test datasets
for binding site prediction. We use the mlig subsets for
evaluation (Mylonas et al., 2021). The data summary and
preparation process are detailed in Appendix A.4.

Target of Binding Sites. The CNN-based methods (Aggar-
wal et al., 2021; Jiménez et al., 2017) mark a grid as positive
if its distance from the binding site’s geometric center is
less than 4Å. Following (Mylonas et al., 2021), the protein

atoms within 4Å of any ligand atom are set as positive and
negative otherwise. After obtaining the probability that an
atom is a candidate binding site, we use the mean-shift al-
gorithm (Comaniciu & Meer, 2002) to predict the binding
site center, which can determine the number of clusters on
its own (details in Appendix A.4.2).

Evaluation Metrics.We take the metrics including
DCC (Distance between the predicted binding site center
and the true binding site center), DCA (Shortest distance
between the predicted binding site center and any grid of
the ligand) and Failures Rate (Sample rate without any
predicted binding site center). Success rate is determined
for samples with the DCC(DCA) values below a predeter-
mined threshold. Following (Mylonas et al., 2021), we set
the threshold to 4 Å. More details are in Appendix A.4.1.

EquiPocket Framework.We implement our framework
based on (GAT (Velikovi et al., 2017)+EGNN (Satorras
et al., 2021a)) as our global structure modeling module. The
probe radius, cutoff θ and depth of our surface-egnn are set
to 1.5, 6 and 4 . To indicate the EquiPocket with different
modules, we adopt the following symbol: i) EquiPocket-
L: Only contain the local geometric modeling module. ii)
EquiPocket-G: Only contain the global structure model-
ing module. iii) EquiPocket-LG: Only contain both the
local geometric and global structure modeling modules. iii)
EquiPocket: Contain all the modules.

Baseline Models.1) geometric-based method: Fpocket
(Le Guilloux et al., 2009); 2) machine-learning method:
P2rank (Krivák & Hoksza, 2018); 3) CNN-based methods
: DeepSite (Jiménez et al., 2017), Kalasanty (Stepniewska-
Dziubinska et al., 2020), DeepSurf (Mylonas et al., 2021),
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Figure 5: The protein size shift and model performances for proteins of various sizes

RecurPocket (Li et al., 2022); 4) topological graph-based
models: GAT (Velikovi et al., 2017), GCN (Kip & Welling,
2016) and GCN2 (Chen et al., 2020); 5) spatial graph-based
models: SchNet (Schütt et al., 2017), EGNN (Satorras et al.,
2021b). Detailed implementation in Appendix A.4.6.

4.2. Model Comparison

As shown in Table 1, the performance of computational
method Fpocket is inferior, with no failure rate, since it
simply employs the geometric feature of a protein. The
machine-learning method P2rank significantly improves
performance by combining Random Forest with geometric
info from the protein surface. The performance of CNN-
based methods is much superior to that of the computational
method, with DCC and DCA improving by more than 50%
but requiring enormous parameter and computing resources.
However, these two early methods DeepSite and Kalasanty
are hampered by protein size shift (Issue 4) and their in-
ability to process big proteins, which may fail prediction.
The recently proposed method Deepsurf employs the local-
grid concept to handle any size of proteins, although CNN
architecture also still results in inevitable failures.

For graph models, the poor performance of topological-
graph models (GCN, GAT, GCN2) is primarily because they
only consider atom and chemical bond information, ignoring
the spatial structure in a protein. The performance of spatial-
graph models is generally better than that of topological-
graph models. EGNN utilizes not only the properties of
atoms but also their relative/absolute spatial positions, result-
ing in a better effect. SchNet merely updates the embedding
of atoms based on the relative distance of atoms. However,
the performance of spatial-graph model is worse than that
of CNN-based and geometric-based methods because the
former cannot obtain enough geometric features (Issue 3)
and cannot address the protein size shift (Issue 4).

As the above results indicate, geometric info of protein sur-
face and multi-level structure info in a protein is essential
for binding site prediction. In addition, it reflects the limi-
tations of the current GNN models, where it is difficult to
collect sufficient geometric information from the protein

surface or the calculation resources are too large to apply to
macromolecular systems like proteins. Consequently, our
EquiPocket framework is not only able to update chemical
and spatial information from an atomic perspective but also
able to effectively collect geometric information without ex-
cessive computing expense, resulting in a 10-20% increase
in effect over previous results. Case study for different
methods is shown in Appendix A.5.7.

4.3. Ablation Study

As shown in Table 1, we conduct ablation experiments on
our EquiPocket with different modules.

Local Geometric Modeling Module. This module is used
to extract the geometric features of protein atoms from their
nearest surface probes. EquiPocket-G consists solely of this
module, and the performance is negligible. There are two
primary causes for this result. First, geometric information
can only determine part of the binding sites. Second, it can
only reflect the geometric features over a relatively small
distance and cannot cover an expansive area.

Global Structure Modeling Module. The primary purpose
of this module is to extract information about the whole
protein, such as atom type, chemical bonds, relevant spatial
positions, etc. We implement EquiPocket-G based on (GAT
+ EGNN) models, which is E(3) equivariance/invariance
and has a better effect than its predecessor, EquiPocket-L.
In comparison, the value of DCC increased by about 10%,
and DCA increased by about 20%. This demonstrates that
structure information of the whole protein is necessary for
binding site prediction. In addition, when the two modules
are combined as the EquiPocket-LG, the performance is sig-
nificantly improved, proving the complementarity of surface
geometric information and global structure information.

Surface Message Passing Module. In the previous model,
EquiPocket-LG, information was extracted solely from
atoms and their closest surface probes. Nonetheless, the
binding site is determined not only by the information of a
single atom but also by the atoms surrounding it. Therefore,
the surface message passing module is proposed to collect
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Figure 6: The influences of the probe radius of MSMS, cutoff θ and depth of surface-egnn

and update the atom’s features from its neighbors. After
adding this module, the performance of EquiPocket has
been significantly enhanced, DCC and DCA have increased
by approximately 20%, and the failure rate has been signifi-
cantly reduced. Through the addition of multiple modules,
we address the Issue 3 and the performance of our frame-
work eventually surpasses that of the existing SOTA method,
demonstrating the efficacy of our framework design.

4.4. Protein Size Shift

As depicted in the Figure 5(a) and 5(b) that after data pro-
cessing, there is a significant gap in protein size and dis-
tribution between the training dataset (scPDB) and the test
dataset (COACH420, HOLO4k, PDBbind). The number of
atoms within a protein ranges from hundreds to tens of thou-
sands. As for protein distribution, scPDB has the longest
average structure, followed by HOLO4k and PDBbind, with
COACH420 having the shortest average protein structure.
This fact will hurt model learning and generalization.

We calculate the average DCC with the distribution of vari-
ous sizes proteins presented in Figure 5(c). The geometric-
based method Fpocket performs well for proteins with fewer
than 1,000 atoms but degrades as protein size increases.
In contrast, the CNN-based method Kalasanty shows per-
formance variations influenced by both protein size and
dataset distribution, with a trend of increasing and then de-
creasing performance. as depicted in Figure 5(a), scPDB
shows most proteins contain fewer than 2,000 protein atoms,
biasing model parameters. For proteins exceeding 8,000
atoms, Kalasanty underperforms compared to geometric-
based methods. The limitation stems from CNN-based
methods typically restricting protein space to 70Å * 70Å *
70Å, causing frequent failures with larger proteins. For our
EquiPocket framework, we do not need to cut the protein
into grids, and we utilize both geometric information from
the surface probes and global structure information from the
whole protein, so the performance for proteins of varying
sizes is significantly superior to that of other methods.

Dense Attention is introduced in § 3.3 to reduce the neg-
ative impact caused by the protein size shift (Issue 4). As
shown in Figure 5(c) (details in Appendix A.5.5), when the

number of atoms in a protein is less than 3000, the result of
the EquiPocket (w/o Dense Attention) is weaker than that of
the original EquiPocket, whereas when the protein is larger,
there is no significant distinction between the two models.
It simply reflects the role of Dense Attention, which, by
weighting the surface-egnn layer at different depths, miti-
gates the detrimental effect of the protein size shift.

Direction Loss is a novel task designed to improve the
extraction of local geometric features. The result of the
EquiPocket (w/o Direction Loss) in Figure 5(c) demon-
strates conclusively that the performance of small proteins
with fewer than 3,000 atoms is diminished in the absence
of this task, which reveals the importance of the task. The
detailed results can be found in Appendix A.5.6.

4.5. Hyperparameters Analysis

In our EquiPocket framework, the probe radius of MSMS,
the cutoff θ and depth of surface-egnn are crucial parameters
that can impact performance and computational efficiency.

Probe Radius. We implement various radius of probe (1,
1.5, 2), which can control the number and density of surface
probes. As shown in Figure 6(a) and 6(b), when reducing
the radius from 1.5 to 1, the DCC accuracy shows a slight
improvement. Conversely, when increasing the radius from
1.5 to 2, the DCC accuracy notably worsens. This is un-
derstandable as a smaller radius enhances geometric detail
capture on the protein surface, improving pocket detection.
Nonetheless, it also increases the number of surface probes,
raising GPU memory usage. To strike a balance between
memory consumption and detection accuracy, we opt for the
default radius value of 1.5 in our experiments. The detailed
results are provided in Appendix A.5.1.

Cutoff θ. We set the depth of surface-egnn to 4 and imple-
ment various cutoff values (2, 4, 6, 8, 10).

Figure 6(c) indicates that with the cutoff set to 2, the av-
erage DCC of our framework is poor, and GPU memory
is relatively low (22GB). This is due to the fact that when
the cutoff is small, the surface-egnn can only observe a tiny
receptive field. As the cutoff increases, the performance
and GPU memory continue to rise until the DCC reaches
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a bottleneck when the cutoff is 10, and the GPU memory
reaches 62GB. Therefore, when selecting parameters for our
framework, we must strike a balance between performance
and efficiency.

Depth. The depth of surface-egnn has an immediate influ-
ences on the performance and computation cost. We set the
cutoff to 6 and implement various depth (1, 2, 3, 4, 5, 6). Fig-
ure 6(d) demonstrates that as depth increases, performance
steadily improves and becomes stable as GPU memory con-
tinues to expand. Because the prediction of binding sites is
highly influenced by their surrounding atoms, therefore, an
excessively large receptive field may not offer any benefits
but will necessitate additional computing resources.

5. Conclusion
In this paper, concentrating on the ligand binding site pre-
diction, we propose EquiPocket, a novel E(3)-Equivariant
geometric graph framework, which contains the local geo-
metric modeling module, global structure modeling module,
and surface passing module to gather the surface geometric
and multi-level structure features in a protein. Experiments
demonstrate that our framework is highly generalizable and
beneficial, and achieves superior prediction accuracy and
computing efficiency compared with the existing methods.
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A. Appendix
A.1. The pseudo-code of our EquiPocket framework

Algorithm 1 EquiPocket

Input: Protein structure GP

Output: Candidate Binding sites and their ligandability
score

1: Clean Structure by removing solvent, hydrogens atoms
2: Create the solvent accessible surface of the protein S

use MSMS
3: for every si in S do
4: Get its closed protein atom pi
5: end for
6: Get the surface atom VS according to the surface

points‘s closed protein atom
7: for every surface atom i ∈ VS do
8: Get their surrounding surface points set Si
9: Get the geometric embedding gi

10: end for
11: Get the global structure embedding c

′′

i of the protein
12: for every surface atom i ∈ VS do
13: Get its invariant feature h

(0)
i = [c′′i , gi].] and equiv-

ariant position matrix X
(0)
i = [xi, x̄i]

14: Get the updated embedding h
(l)
i and updated coordi-

nates X(l)
i based on our surface-egnn model

15: Get the dense embedding hi and position Xi accord-
ing to its dense attention ai

16: predict the probability ŷi as ligandability score and
the nearest ligand atom direction di

17: end for
18: Discard protein atoms with probability less than

T (T=0.5 in our experiments);
19: Cluster the remaining protein atoms;
20: Form binding sites and get the average ligandability

score for each cluster;
21: Rank the predicted binding sites by their ligandability

score;
22: return The candidate binding sites and ligandability

score;

A.2. Related Work

A.2.1. BINDING SITE PREDICTION

Computational Methods. The computational methods for
binding site prediction include geometry-based (Levitt &
Banaszak, 1992; Hendlich et al., 1997; Weisel et al., 2007;
Le Guilloux et al., 2009; Chen et al., 2011; Dias et al., 2017),
probe- and energy-based (Laskowski, 1995; Laurie & Jack-

son, 2005; Ngan et al., 2012) and template-based (Brylinski
& Skolnick, 2008; Toti et al., 2018) methods: 1) Since most
ligand binding sites occur on the 3D structure, geometry-
based methods (POCKET (Levitt & Banaszak, 1992), Criti-
calFinder (Dias et al., 2017), LigSite (Hendlich et al., 1997),
Fpocket (Le Guilloux et al., 2009), etc. ) are designed
to identify these hollow spaces and then rank them using
the expert design geometric features. 2) Probe-based meth-
ods (SURFNET (Laskowski, 1995), Q-SiteFinder (Laurie
& Jackson, 2005), etc. (Faller et al., 2015)), also known as
energy-based methods, calculate the energy resulting from
the interaction between protein atoms and a small-molecule
probe, whose value dictates the existence of binding sites.
3)Template-based methods (FINDSITE (Brylinski & Skol-
nick, 2008), LIBRA (Toti et al., 2018), etc.) are mainly
to compare the required query protein with the published
protein structure database to identify the binding sites.

Traditional Learning-based Methods. PRANK (Krivák &
Hoksza, 2015) is a learning-based method that employs
the traditional machine learning algorithm random for-
est(RF) (Belgiu & Drăguţ, 2016). Based on the pocket
points and chemical properties from Fpocket (Le Guilloux
et al., 2009) and Concavity (Chen et al., 2011), this method
measures the ”ligandibility” as the binding ability of a candi-
date pocket using the RF model. P2rank (Krivák & Hoksza,
2018) is a widely used package for locating the ligand-
binding pockets based on protein structures, which enhances
prediction performance by incorporating geometric informa-
tion from the protein surface and Random Forest. However,
those methods require the manual extraction of numerous
features with limit upgrading.

CNN-based Methods. Over the last few years, deep learn-
ing has surpassed far more traditional ML methods in many
domains. For ligand binding site prediction task, many re-
searchers (Jiménez et al., 2017; Stepniewska-Dziubinska
et al., 2020; Mylonas et al., 2021; Kandel et al., 2021;
Aggarwal et al., 2021) regard a protein as a 3D image,
and model this task as a computer vision problem. Deep-
Site (Jiménez et al., 2017) is the first attempt to employ the
CNN architecture for binding site prediction, which like
P2Rank (Krivák & Hoksza, 2018) treats this task as a binary
classification problem and converts a protein to 3D vox-
elized grids. The methods FRSite (Jiang et al., 2019) and
Kalasanty (Stepniewska-Dziubinska et al., 2020) adhere to
the principle of deepsite, but the former regards this task as
an object detection problem, and the latter regards this task
as a semantic segmentation task. Deeppocket (Aggarwal
et al., 2021) is a method similar to p2rank, but implements a
CNN-based segmentation model as the scoring function in
order to more precisely locate the the binding sites. Deep-
Surf (Mylonas et al., 2021) constructs a local 3D grid and
updates the 3D-CNN architecture to mitigate the detrimental
effects of protein rotation. RecurRocket (Li et al., 2022)

13



EquiPocket: an E(3)-Equivariant Geometric Graph Neural Network for Ligand Binding Site Prediction

incorporates recurrent Lmser(Least mean square error re-
construction) networks with CNNs to enhance the repre-
sentation learning on the 3D protein structures. The recent
CNN-based method DeepLBS (Semwal et al., 2023) uses ge-
ometrical as well as pharmacophoric properties to quantify
the ligand-binding site.

A.2.2. GRAPH NEURAL NETWORKS FOR MOLECULE
MODELING

There are multi-level information in molecules including
atom info, chemical bonds, spatial structure, physical con-
straints, etc. Numerous researchers view molecules as topo-
logical structures and apply topological-based GNN models
(like graph2vec (Gonczarek et al., 2016), GAT (Velikovi
et al., 2017), GCN (Kip & Welling, 2016), GCN2 (Chen
et al., 2020), GIN (Xu et al., 2018) and etc. (Sun et al.,
2019)) to extract the chemical info, which achieve posi-
tive outcomes. With the accumulation of structure data for
molecules, spatial-based graph models (DimeNet (Klicpera
et al., 2020b) , DimeNet++ (Klicpera et al., 2020a),
SphereNet (Liu et al., 2021), SchNet (Schütt et al., 2017),
Egnn (Satorras et al., 2021a), (Huang et al., 2022), (Han
et al., 2022) and etc.) are proposed for molecule task which
aggregates spatial and topological information. However,
these models may not be adequate for macro-molecules due
to their high calculation and resource requirements.

A.2.3. GNN-BASED METHODS FOR POCKET TASKS.

ScanNet (Tubiana et al., 2022): This model constructs atom
and amino acid representations based on the spatial and
chemical arrangement of neighboring entities. It is trained
to detect protein-protein and protein-antibody binding sites,
showcasing its accuracy even with unseen protein folds.
However, it should be noted that ScanNet doesn’t incorpo-
rate surface geometric information of proteins, and it isn’t
tailored specifically for ligand-protein datasets. It utilizes
a straightforward message passing approach and lacks con-
sideration of geometric invariance. Besides, ScanNet is
designed for predicting binding sites in protein and protein,
protein and antibody, and protein and disordered protein
interactions, making it unsuitable for ligand binding site
prediction. PocketMiner (Meller et al., 2023): This model
utilizes a geometric graph model to identify cryptic pockets.
Unlike our study, PocketMiner doesn’t focus on pinpointing
where a structure becomes a pocket, which is related to tar-
get detection or semantic tasks. Instead, its main goal is pre-
dicting the locations where cryptic pockets, already known
in advance, will open—a classification prediction task. The
evaluation metric used is ROC-AUC, and it is compared
against molecular simulation methods. NodeCoder (Ab-
dollahi et al., 2023): NodeCoder is a computational model
designed for the prediction of protein residue types based
on a geometric graph representation. The model encom-

Table 2: Summary of Dataset

DataSet Average

Atom Num Atom in Surface Surface Points Target Atoms

scPDB 4205 2317 24010 47
COACH420 2123 1217 12325 58

HOLO4k 3845 2052 20023 106
PDBbind 3104 1677 17357 37

passes six distinct residue classifications, namely ligands,
peptides, ions, nucleic acid binding sites, post-translational
modifications, and transmembrane regions. It is crucial to
emphasize that NodeCoder primarily serves as a residue
classification tool rather than a protein pocket detection
algorithm. SiteRadar (Evteev et al., 2023): This model
incorporates the generation of grids, grid clustering, and
the application of GNNs to learn geometric information of
protein for the mapping of binding sites. PIPGCN (Fout
et al., 2017): This model employs GNN model to aggre-
gate information from different protein residues and predict
their categories in the Docking Benchmark Dataset. These
categories include residues that interact with ligands and
those that do not. It’s crucial to emphasize that PIPGCN is
designed for a classification task rather than target detection
or semantic segmentation.

A.3. Experiment Details

A.3.1. DATASET

scPDB (Desaphy et al., 2015) is the famous dataset for
binding site prediction, which contains the protein structure,
ligand structure, and 3D cavity structure generated by Vol-
Site (Da Silva et al., 2018). The 2017 release of scPDB
is used for training and cross-validation of our framework,
which contains 17,594 structures, 16,034 entries, 4,782 pro-
teins, and 6,326 ligands. PDBbind (Wang et al., 2004) is
a well-known and commonly used dataset for the research
of protein-ligand complex. It contains the 3D structures of
proteins, ligands, binding sites, and accurate binding affinity
results determined in the laboratory. We use the release of
v2020, which consists of two parts: general set (14, 127
complexes) and refined set (5,316 complexes). The general
set contains all protein-ligand complexes. The refined set
contains better-quality compounds selected from the general
set, which is used for the test in our experiments. COACH
420 and HOLO4K are two test datasets for the binding site
prediction, which are first introduced by (Krivák & Hoksza,
2018). Consistent with (Krivák & Hoksza, 2018; Mylonas
et al., 2021; Aggarwal et al., 2021), we use the mlig subsets
of each dataset for evaluation, which contain the relevant
ligands for binding site prediction.
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A.4. Supplementary Experiment Preparation

We perform the following four processing steps: i) Cluster
the structures in scPDB by their Uniprot IDs, and select the
longest sequenced protein structures from every cluster as
the train data (Kandel et al., 2021). Finally, 5,372 struc-
tures are selected out. ii) Split proteins and ligands for the
structures in COACH420 and HOLO4k, according to the
research (Krivák & Hoksza, 2018) . iii) Clean protein by
removing the solvent, hydrogens atoms. Using MSMS (San-
ner et al., 1996) to generate the solvent-accessible surface of
a protein. iv) Read the protein file by RDKIT (Tosco et al.,
2014), and extract the atom and chemical bond features.
Remove the error structures.

A.4.1. EVALUATION METRICS

DCC is the distance between the predicted binding site cen-
ter and the true binding site center. DCA is the shortest dis-
tance between the predicted binding site center and any atom
of the ligand. The samples with DCC(DCA) less than the
threshold are considered successful. The samples without
any binding site center are considered failures. Consistent
with (Jiménez et al., 2017; Mylonas et al., 2021; Aggarwal
et al., 2021; Stepniewska-Dziubinska et al., 2020), threshold
is set to 4 Å. We use Success Rate and Failure Rate to
evaluate experimental performance.

Success Rate(DCC/DCA) =

1({Predicted sites|DCC/DCA < threshold})
1({True sites})

,

Failure Rate =

1({Protein|1(predicted binding center) = 0})
1({Protein})

,

(10)

where 1(·) represents the cardinality of a set. After ranking
the predicted binding sites, we take the same number with
the true binding sites to calculate the success rate.

A.4.2. BINDING SITES CENTER

Table 3: The summary of binding sites for the experiment
datasets.

Number of Binding Sites Number of Proteins
COACH420 Holo4k PDBbind

1 235 2442 5025
2 36 635 0
3 7 67 0
4 4 22 0

>=5 2 38 0

The CNN-based methods (Jiménez et al., 2017; Aggarwal
et al., 2021; Stepniewska-Dziubinska et al., 2020) consider a
protein as a 3D image, convert it to a voxel representation by

discretizing it into grids and calculate the geometric center
of binding site centercnn according to the grid of the cavity
or ligand. They label the grid as positive if its geometric
center is closer than 4Å to the binding sites geometric center.
Therefore, the prediction objects of these models actually
contain the grid of ligand atoms. The predicted binding
site center ˆcentercnn of CNN-based methods is calculated
according to the positive grid. For our EquiPocket, we label
the protein atoms within 4Å of any ligand atom as positive
and negative otherwise. Therefore, there is a natural gap
in the prediction object between our framework and CNN-
based methods, which also lead to the natural gap for the
center of predicted binding site. In order to reduce the metric
difference caused by the different prediction objects, we get
the predicted binding site center ˆcenterequipocket as follow:
Ww use posi ∈ R3 to represent the position of protein
atom vi, centeri ∈ R3 to represent the nearest surface point
center, ˆposLi ∈ R3 to represent the predicted position of
nearest ligand atom from the protein atom vi. The ˆposLi is
used to calculate the geometric center of binding site.

p̂os
L
i = posi + threshold · (centeri − posi)

|centeri − posi|
, (11)

Where threshold4 is set to 4, because we label the protein
atoms within 4Å of any ligand atom as positive and negative
otherwise.

A.4.3. EXPERIMENT PROCESS

As indicated by the data distribution presented in Ta-
ble A.4.2, the majority of samples in the test dataset consist
of a single binding site, with only a subset of samples con-
taining multiple binding sites.

Following related methods (Krivák & Hoksza, 2018;
Jiménez et al., 2017; Mylonas et al., 2021; Aggarwal et al.,
2021; Le Guilloux et al., 2009), the specific processing steps
of our method are outlined belowr:

Training Process:

a. Following DeepSurf (Mylonas et al., 2021), the protein
atoms within 4 Ångströms of any ligand atom are set as
positive, otherwise negative.

b. EquiPocket predicts the druggability probability for each
atom, using the Dice loss function for model optimization.

Validation and Testing:

a. In accordance with related methods (Krivák & Hoksza,
2018; Jiménez et al., 2017; Mylonas et al., 2021; Aggarwal
et al., 2021; Le Guilloux et al., 2009), we define the center
of a binding site as the mean position of the ligand atoms.
This definition allows us to handle the proteins with multiple
binding sites (N ≥ 1).

b. We focus on predicting druggability probabilities for each
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atom rather than identifying specific binding site atoms.

c. Our method uses predicted atom-level probabilities
in a clustering process (Comaniciu & Meer, 2002) to au-
tonomously identify ligand binding site centers and drugga-
bility, which are crucial for metrics and downstream docking
tasks.

Performance Evaluation:

a. We evaluate based on the top-n predicted binding site
centers, where n does not exceed the actual number of
binding sites. If no predicted binding sites center is found,
it is considered a failure.

b. The predicted ligand binding center with the DCC/DCA
falls below a predetermined threshold, typically set to 4, is
classified as successful.

Through the aforementioned process, we are able to effec-
tively handle proteins with more than one binding site during
training, validation, and testing.

A.4.4. CROSS-VALIDATION

We shuffled the training data and divided the data into 5
parts, taking one of them at a time as the validation set. We
use 5-fold cross-validation and report the mean and standard
deviation. we present detailed results in Table 12.

A.4.5. ENVIRONMENT AND PARAMETER SETTINGS

For geometric-based method Fpocket, we use its published
tool. For CNN-based methods kalasanty and DeepSurf, we
use their published pre-train models. For GNN-based mod-
els, the number of layers is set to 3 except GAT. For GAT,
we set the number to 1. For GIN, we set the initial ϵ to 0
and make it trainable. For GCN2, we set the strength of the
initial residual connection α to 0.5 and the strength of the
identity mapping β to 1. For SchNet, EGNN, DimeNet++,
SphereNet as baseline models, we set the cutoff distance to
5. For our EquiPocket, we use Adam optimizer for model
training with a learning rate of 0.0001 and set the batch size
as 8. The basic dimensions of node and edge embeddings
are both set to 128. The dropout rate is set to 0.1. The
probe radius in MSMS to generate solvent-accessible sur-
face of a protein is set to 1.5. We implement our EquiPocket
framework in PyTorch Geometric, all the experiments are
conducted on a machine with an NVIDIA A100 GPU (80GB
memory). We take 5-fold cross validation on training data
scPDB and use valid loss to save checkpoint.

A.4.6. BASELINE RESULTS AND CODES

Table 4 describes sources of baseline codes. The results
of DeepSite come from (Mylonas et al., 2021). We utilize
the published pretrained models of kalasanty (Stepniewska-
Dziubinska et al., 2020), DeepSurf (Mylonas et al., 2021)

Table 4: Sources of baseline codes and pre-train models.

Methods URL

Fpocker https://github.com/Discngine/fpocket
kalasanty https://gitlab.com/cheminfIBB/kalasanty
DeepSurf https://github.com/stemylonas/DeepSurf

RecurPocket https://github.com/CMACH508/RecurPocket
P2rank https://github.com/rdk/p2rank
GAT https://github.com/pyg-team/pytorch geometric
GCN https://github.com/pyg-team/pytorch geometric

GCN2 https://github.com/chennnM/GCNII
SchNet https://github.com/pyg-team/pytorch geometric
EGNN https://github.com/vgsatorras/egnn/

for test results. RecurPocket (Li et al., 2022) has made up-
dates on two existing models: kalasanty and DeepPocket.
The former is a pure CNN-based method, while the latter
relies on the geometry-based method Fpocket to identify
candidate pockets and then utilizes CNNs for ranking. To
ensure a fair comparison, we chose to test with the former
pretrained model of RecurPocket (kalasanty). The recent
CNN-based method DeepLBS (Semwal et al., 2023) did not
provide pretrained models or public codes, so it was not
included in the baselines. The machine-learning method
P2Rank (Krivák & Hoksza, 2018) was originally trained
on the CHEN11 and JOINED datasets (Krivák & Hoksza,
2018), totaling 792 samples. In contrast, deep learning meth-
ods such as DeepSite, Kalasanty, DeepSurf, and EquiPocket
commonly used the scPDB dataset (Desaphy et al., 2015) for
training, which had 5000 samples after processing and dedu-
plication. P2Rank’s paper highlighted the greater diversity
of CHEN11 and JOINED compared to scPDB, affecting
model performance. To ensure a fair comparison, we at-
tempted to retrain P2Rank on the scPDB dataset. However,
as indicated in Table 5, we encountered convergence issues
when the training set size exceeded 3000 samples. There-
fore, we report the test results of retrained P2rank based on
a randomly selected subset of 792 samples from the scPDB,
which matches the quantity of number to the CHEN11 and
JOINED datasets of P2rank papers.

Table 5: The detailed DCA results of retrained P2rank.

Samples of scPDB COACH420 HOLO4k PDBbind2020
100 0.611 0.602 0.655

1000 0.648 0.613 0.672
2000 0.639 0.622 0.671
3000 0.177 0.130 0.256
4000 0.177 0.130 0.256
5000 0.177 0.130 0.256
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Table 6: Experimental results with different probe radius by
MSMS.

Radius Surface Points GPU Failure Rate COACH420 HOLO4K PDBbind2020

1 28030 44 0.053 0.433(0.018) 0.338(0.008) 0.549(0.005)
1.5 24010 33 0.051 0.423(0.014) 0.337(0.006) 0.545(0.010)
2 21725 28 0.096 0.393(0.024) 0.289(0.004) 0.524(0.012)

A.5. Supplementary Experimental Results

A.5.1. PROBE RADIUS

To evaluate the sensitivities of this parameter, we implement
various radius of probe (1, 1.5, 2) and provide the number
of surface points, GPU memory consumption, failure rate,
and the DCC accuracy of our EquiPocket on the test sets in
Table 6.

A.5.2. THE INFERENCE SPEED OF DIFFERENT METHODS

Table 7: The inference speed of different methods.

Method Type Time (s) per 100 proteins Average DCC
fpocket Geometric-based 23 0.214

Kalasanty 3D-CNN 86 0.321
DeepSurf 641 0.366

EquiPocket Ours 37 0.431

As showed in Table 7, the comparison of various methods
for predicting 100 proteins reveals the following: fpocket:
Fastest with only 23 seconds for 100 proteins, leveraging
manually defined geometric features. However, its perfor-
mance metrics are not notable. Kalasanty and DeepSurf:
Both are 3D-CNN-based. DeepSurf, using detailed local
grids on protein surfaces, outperforms Kalasanty in metrics
but is slower and the least efficient among the methods com-
pared. EquiPocket: Our method takes 47 seconds per 100
proteins and shows the best DCC metrics. It’s faster than 3D-
CNN methods but slower than geometric-based ones. This
is due to 3D-CNN methods transforming proteins into 3D
images (eg. 36 * 36 * 36 grids), increasing computational
costs compared to our using atom information (averages
2000-3000 nodes in a protein). EquiPocket also integrates
surface features with Surface-EGNN, enhancing efficiency
over DeepSurf.

A.5.3. THE INFORMATIVE ABLATION EXPERIMENT FOR
OUR TWO FEATURE EXTRACTORS.

Table 8: The informative ablation experiment for our two
feature extractors.

COACH420 HOLO4k PDBbind

Model Fail Ratio DCC DCA DCC DCA DCC DCA
EquiPocket/L 0.13 0.355 0.546 0.296 0.574 0.465 0.606
EquiPocket/R 0.09 0.364 0.541 0.294 0.598 0.474 0.627
EquiPocket/LR 0.16 0.308 0.502 0.268 0.543 0.409 0.566
EquiPocket 0.05 0.423 0.656 0.337 0.662 0.545 0.721

Our model predominantly comprises two feature extractors:
local geometric modeling module and global structural mod-
eling module, subsequently followed by the surface-EGNN
model. In response to your valuable suggestion, we propose
the following definitions:

EquiPocket/L: This variant of EquiPocket excludes local
geometric modeling module.

EquiPocket/R: This variant of EquiPocket excludes global
structural modeling module.

EquiPocket/LR: This variant of EquiPocket excludes both
local geometric modeling module and global structural mod-
eling module.

The results in Table 8 indicate that omitting any of these
modules negatively impacts performance. Specifically, ex-
cluding either the local geometric (L) or global structural (R)
module leads to a 10%-15% decrease in DCC/DCA metrics;
removing both L and R modules results in a more significant
drop of 20%-25%. These results highlight the essential role
of both feature extractors in predicting ligand binding sites.
Notably, the more pronounced performance decline when
omitting the local geometric module (L) suggests its higher
importance in protein pocket prediction. This finding is
consistent with current trends where methods like Fpocket,
P2rank, and DeepSurf primarily utilize geometric features
for binding site prediction.

A.5.4. THE COMPARISON RESULTS FOR LOCAL
GEOMETRIC FEATURES

In Eq. 3 of main paper, gi is the geometric embedding for a
protein atom, learned from surrounding surface probes, and
si denotes the local geometric properties of these probes
with properties such as distances and angle to protein atoms,
the surface center, neighboring probes, and so on. Initially,
we apply an MLP to these features, followed by pooling.
This process transforms the geometric properties before ag-
gregating them into the protein node’s geometric embedding.
However, since each property of si itself carries meaning-
ful information. We are concerned that applying MLP first
and then pooling might weaken the transmission of this
information. Therefore, we take the second part of the equa-
tion. To highlight the effectiveness of the features in Eq. 3,

Table 9: The comparison results for local geometric features

COACH420 HOLO4k PDBbind

Model Fail Ratio DCC DCA DCC DCA DCC DCA
EquiPocket-former 0.16 0.389 0.606 0.330 0.637 0.507 0.660
EquiPocket-latter 0.16 0.407 0.617 0.319 0.644 0.529 0.676
EquiPocket 0.05 0.423 0.656 0.337 0.662 0.545 0.721

we carried out extra experiments with ”EquiPocket-former”
focusing on the equation’s initial part and ”EquiPocket-
latter” on its latter part. The results in Table 9 indicate:
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Using either feature alone diminishes the predictive perfor-
mance compared to the full EquiPocket model. Specifically,
”EquiPocket-former” alone sees about a 10% drop, while
”EquiPocket-latter” alone results in around a 5% reduction.
This outcome underscores the necessity of both features,
with the latter part having a more substantial impact on our
model’s performance.

A.5.5. THE DETAILED EXPERIMENT RESULTS OF DENSE
ATTENTION

In Figure 5(c), we compared EquiPocket with/without the
Dense Attention module. We removed the Attention Mod-
ule in EquiPocket (w/o attention) for this comparison. As
showed in Table 10 showed, it is evident that Dense Atten-
tion notably improves prediction for proteins with less than
4000 nodes. However, for larger proteins, exceeding 4000
nodes, there’s no significant performance difference. These
findings highlight that Dense Attention boosts predictive ac-
curacy for smaller proteins while maintaining performance
for larger ones.

Table 10: The detailed DCC results of Dense Attention.

Atom Num Protein Num Ratio Cumsum Ratio EquiPocket(w/o Attention) EquiPocket
0-1000 296 0.04 0.04 0.328 0.428

1000-2000 2193 0.27 0.3 0.547 0.621
2000-3000 2534 0.31 0.61 0.551 0.590
3000-4000 1143 0.14 0.75 0.343 0.388
4000-5000 619 0.08 0.82 0.261 0.255
>=5000 1440 0.18 1 0.161 0.153

A.5.6. THE DETAILED EXPERIMENT RESULTS OF
DIRECTION LOSS

The relative direction between a protein atom and its near-
est ligand atom effectively captures the local geometric
information of the binding sites on a protein. Different from
the previous work (Krivák & Hoksza, 2018; Jiménez et al.,
2017; Mylonas et al., 2021), our method can output E(3)-
equivariant coordinates. To better capture the geometric
details of the protein surface, we introduced more detailed
relative direction (direction loss) as a supplementary target.

The corresponding ablation results have been shown in Fig-
ure 5(c) in the main paper, and detailed results are presented
in Table 11. EquiPocket (w/o Direction Loss) represents
our EquiPocket method removing the relative direction pre-
diction module. It can be observed that when the relative
direction prediction module is removed, our method’s per-
formance drops for proteins of different sizes. This is es-
pecially notable for proteins with fewer than 3000 atoms,
which account for 60% of the samples. If the relative di-
rection prediction is removed, the performance drops by
approximately 10%. These results demonstrate the effec-
tiveness of our designed relative direction target.

Table 11: The detailed DCC results of Direction Loss.

Atom num Protein num Ratio Cumsum ratio EquiPocket(w/o Direction Loss) EquiPocket
0-1000 296 0.04 0.04 0.319 0.428

1000-2000 2193 0.27 0.3 0.587 0.621
2000-3000 2534 0.31 0.61 0.551 0.590
3000-4000 1143 0.14 0.75 0.371 0.388
4000-5000 619 0.08 0.82 0.258 0.255
>=5000 1440 0.18 1 0.144 0.153

Figure 7: Case Study.

A.5.7. CASE STUDY

We also display two examples of our EquiPocket and other
methods in Figure 7. We take two proteins, 1f8e (with
12,268 atoms) and 5ei3 (with 1,572 atoms), from the test
dataset PDBbind. As can be seen from Figure 7: The bind-
ing sites predicted by the geometry-based method Fpocket
are extremely distant from the actual binding sites. This is
due to the fact that this method prioritizes local geometric
information and disregards the multi-level structure infor-
mation of proteins, resulting in limited scope and weak
performance. The CNN-based method Kalasanty did not
provide any predicted binding site for protein 1f8e. We
conjecture that this method restricts the protein within a spe-
cific space size which is highly susceptible to failure with
large proteins. The recently-proposed CNN-based method
DeepSurf takes local grids on the protein surface, which
can address the issue of fixed space size. However, the pre-
diction of binding sites in protein 5ei3 by DeepSurf is far
from the ground truth because the CNN-based methods are
defective in obtaining geometric and chemical features. Our
EquiPocket framework is unaffected by the shortcomings of
the aforementioned methods, allowing it to achieve superior
outcomes for both large and small proteins.
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Table 12: The 5-fold results for EquiPocket.

Methods Fold Param failure COACH420 HOLO4K PDBbind2020

(M) Rate ↓ DCC↑ DCA↑ DCC↑ DCA↑ DCC↑ DCA↑
EquiPocket-L 0 0.15 0.598 0.083 0.160 0.038 0.128 0.049 0.124
EquiPocket-L 1 0.15 0.557 0.064 0.165 0.046 0.138 0.055 0.142
EquiPocket-L 2 0.15 0.571 0.074 0.177 0.045 0.139 0.052 0.122
EquiPocket-L 3 0.15 0.462 0.059 0.173 0.042 0.138 0.052 0.129
EquiPocket-L 4 0.15 0.472 0.072 0.180 0.048 0.146 0.049 0.143

EquiPocket-G 0 0.42 0.305 0.135 0.330 0.122 0.400 0.142 0.302
EquiPocket-G 1 0.42 0.291 0.175 0.385 0.128 0.405 0.145 0.302
EquiPocket-G 2 0.42 0.295 0.145 0.357 0.121 0.407 0.145 0.305
EquiPocket-G 3 0.42 0.278 0.169 0.367 0.127 0.406 0.133 0.292
EquiPocket-G 4 0.42 0.292 0.152 0.367 0.133 0.411 0.151 0.308

EquiPocket-LG 0 0.50 0.235 0.225 0.442 0.183 0.498 0.273 0.463
EquiPocket-LG 1 0.50 0.207 0.220 0.460 0.189 0.509 0.280 0.468
EquiPocket-LG 2 0.50 0.203 0.184 0.440 0.180 0.510 0.269 0.459
EquiPocket-LG 3 0.50 0.224 0.215 0.448 0.186 0.500 0.275 0.465
EquiPocket-LG 4 0.50 0.231 0.213 0.431 0.179 0.492 0.272 0.456

EquiPocket 0 1.70 0.054 0.423 0.656 0.341 0.665 0.558 0.715
EquiPocket 1 1.70 0.053 0.431 0.660 0.329 0.668 0.538 0.725
EquiPocket 2 1.70 0.041 0.443 0.664 0.336 0.660 0.550 0.724
EquiPocket 3 1.70 0.051 0.411 0.646 0.338 0.668 0.532 0.723
EquiPocket 4 1.70 0.053 0.407 0.654 0.345 0.652 0.546 0.719
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