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ABSTRACT

We propose ILP-CoT, a method that bridges Inductive Logic Programming (ILP)
and Multimodal Large Language Models (MLLMs) for abductive logical rule
induction. The task involves both discovering logical facts and inducing logi-
cal rules from a small number of unstructured textual or visual inputs, which
still remain challenging when solely relying on ILP, due to the requirement
of specified background knowledge and high computational cost, or MLLMs,
due to the appearance of perceptual hallucinations. Based on the key observa-
tion that MLLMSs could propose structure-correct rules even under hallucina-
tions, our approach automatically builds ILP tasks with pruned search spaces
based on the rule structure proposals from MLLMs, and utilizes ILP system
to output rules built upon rectified logical facts and formal inductive reason-
ing. Its effectiveness is verified through challenging logical induction bench-
marks, as well as a potential application of our approach, namely text-to-image
customized generation with rule induction. Our code and data are released at
https://anonymous.4open.science/r/ILP-CoT-Ano—-83DC/l

1 INTRODUCTION

Although remarkable progress has been made in improving the deductive reasoning abilities of Al
systems (OpenAl, [2024b; |Guo et al., [2025)), inductive reasoning from raw data, which challenges
more on perceiving and understanding complex raw inputs than long-chain deductive reasoning,
remains a significant challenge. To pursue this direction, we study the task of abductive logical rule
induction, in which the target is to utilize a small number of unstructured textual or visual instances
to automatically identify and ground symbolic concepts and then inducing possible logical rules
indicated by the instances. This reasoning task involves the dual challenges of both input perception
and logical induction. On the one hand, the model needs to extract abstract and transferable symbolic
concepts from input instances; on the other hand, utilizing limited instances, it must accurately infer
the underlying logical relationships or rules.

Traditionally, abductive logical rule induction can be solved by a two-step pipeline. In the first step,
a preprocessing process is performed for visual perception of the symbolic concepts. Afterwards,
an external Inductive Logic Programming (ILP) module (Muggleton & De Raedt,|1994; |Cropper &
Dumancic, [2022) is introduced for logical rule induction. ILP systems are formal logical reasoning
systems with strong advantages in terms of interpretability and verifiability. By inductively learning
from a finite set of facts and background knowledge, ILP is able to produce logically transparent and
auditable rules. From a theoretical perspective, the rules output by ILP can be formally verified, a
feature that is particularly important in high-risk scenarios or applications with stringent correctness
requirements. However, ILP also faces fundamental challenges, such as relying on structured input
data and potential inefficiency in large-scale data settings. In response to these challenges, recent
work has begun to explore neurosymbolic methods that integrate deep learning with symbolic
logical reasoning (Evans & Grefenstette, 2018}, Manhaeve et al., 2018}; |Dai & Muggleton, [2020;
Cunnington et al.,|2023; Shindo et al., 2023} |2024). These approaches attempt to use neural networks
for perception and representation learning, then employ ILP or other logic-based modules for rule
induction and inference. Even though these approaches significantly enlarge the applicability in
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real applications, utilizing ILP usually requires to design logical background knowledge by human
experts, which is a fundamental obstacle in handling challenging inductive reasoning problems.

With the rise of Multimodal Large Language Models (MLLMs) (OpenAll [20244a; Liu et al.| [2023a;
Bai et al.| |2023b; Wang et al.| [2023b)), researchers have begun to explore the application of these
powerful models to textual and visual understanding and generation tasks. Due to training on massive
datasets, MLLLMs already exhibit astonishing performance in handling multimodal inputs, extracting
symbolic representations, and mining rich semantic information, making them promising candidates
for addressing abductive visual rule induction. However, MLLMs still face multiple bottlenecks in
perception and reasoning (Zhang et al.| 2023), including hallucination phenomena, highly opaque
reasoning processes, and a lack of verifiable logical chains. We discover that these bottlenecks still
limit the ability of MLLMs to directly solve abductive logical rule induction, even when guided by
Chain-of-Thought (CoT) reasoning (Wei et al.| 2022]).

As aresult, it is difficult to rely solely on traditional ILP approaches or MLLMs to achieve a balanced
solution that is robust and interpretable in abductive logical rule abduction. In this work, we propose
a hybrid method, ILP-CoT, to bring the best of both worlds. Our approach integrates the ILP system
into the CoT reasoning process of MLLMs in a “plug-and-play” manner, forming a fully interpretable
reasoning pipeline from start to finish without additional training. Specifically, we leverage the strong
cross-modal perception and symbol extraction capabilities of MLLMs to automatically generate
initial logical facts, i.e. logical predicates and background knowledge from the input instances, where
perceptual hallucinations could exist. Afterwards, based on the key observation that MLLMs could
propose structure-correct rules even under hallucinations, our approach introduces a deterministic
conversion process to automatically transform the rule structure proposals from MLLMs into ILP
meta-rules, realizing the key technical step of building ILP tasks with pruned search spaces. Finally,
we dynamically invoke an ILP system to perform formal rule induction, yielding explainable and
verifiable rules with rectified logical facts. This division of labor separates the complex symbolic
grounding process and reduces the size of the rule hypothesis space, letting ILP focus exclusively
on the more compact and structured symbolic data. This approach not only reduces the risk of
hallucination during MLLM-driven inference, but also relies on formal verification from ILP to
ensure the accuracy and consistency of the rules.

We introduce challenging CLEVR-Hans (Shindo et al.}[2024)) and ARC (Chollet,2019;Xu et al.,[2023)
logical induction benchmarks to systematically verify the efficacy of our approach. Furthermore,
we propose a potential application, namely text-to-image customized generation with rule induction.
In this task, a small number of images provided by the user are given, including multiple subjects
that the user cares about. Furthermore, the images are labeled by the user as “liked” or “disliked”,
followed by the preferences of the user for some latent regularities among the subjects, which can be
represented by logical rules. We show that our approach enables to induce the latent logical rules
from the training images, which can be utilized by downstream pre-trained text-to-image generation
models to further generate images following user preferences.

2 RELATED WORK

Avoiding hallucination is a fundamental challenge for Large Language Models (LLMs) (Dasgupta
et al.,|2022; Saparov & He, |2022). A widely adopted strategy is Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020), which utilizes retrieval in external knowledge bases to avoid generating
ungrounded contents. Although RAG is effective in reducing factual errors, it is invalid for rectifying
fallacious reasoning processes. Furthermore, the requirement of accessing an external knowledge
base is somehow limited for solving general reasoning tasks. Recently, there has been a growing
trend in research to combine formal methods in LLMs. On the one hand, there have been attempts to
use formal programming code (Gao et al.}| 2023} |Li et al., 2023 |Chae et al., 2024} [Ling et al., 2024) or
logical rules (Xu et al., 2024)) as intermediate content to generate during CoT reasoning. These studies
justify that formalizing the reasoning states can improve the accuracy of the reasoning chain without
using external tools. However, it is still challenging to conduct fully reliable reasoning based on this
mechanism. On the other hand, the idea of integrating external formal reasoning systems with LLMs
has been explored in various reasoning tasks. Some research proposed to transform natural languages
into code and further execute them using external symbolic solvers (Wu et al 2022; He-Yueya
et al., 2023} Lyu et al.,[2023} |Pan et al.,|2023a; |Ye et al.| [2024; Jiang et al.,|2024). A major issue is
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that formalizing natural language into executable code is itself a difficult task, which is also a key
challenge that we try to tackle in our work. In complex reasoning tasks with long reasoning chains,
such as solving mathematical challenges, formal reasoning systems are treated as the sledgehammer
to integrate with LLMs (Trinh et al., 2024). Unlike existing approaches that focus on deductive
reasoning tasks (Pan et al.,|2023b; (Olausson et al., [2023)), our work focuses on inductive reasoning.
The significant difference lies in that inductive reasoning usually does not challenge the ability to do
long-step reasoning but rather the ability to perceive and understand the input. This makes inductive
reasoning more challenging for MLLMs due to the difficulty in perceiving complex multimodal
inputs. We also note that this makes our contribution in parallel with multimodal deductive reasoning
methods (Wang et al.| |2022; Madaan et al., [2023};|Gao et al.,[2024; Mondal et al.|2024])). The closest
research to ours are Wang et al.| (2023a);|Q1u et al.|(2023) to solve pure textual inductive reasoning.
Their approach also uses LLMs to propose inductive hypothesis in Python and conduct program
execution for correctness verification. In comparison, our approach utilizes a different methodology
of bridging ILP reasoning and MLLMs to address logical induction tasks and alleviate hallucinations.
Research on breaking the perceptual limitations of MLLMSs has also received great attention. Existing
approaches utilize scene graph knowledge (Mitra et al., |2023) or visual prompts (Wu et al.|2024),
while formal methods have not received significant attention in MLLMs. The closest idea comes
from visual question answering, in which textual LLMs are integrated with visual perception models
to perform visual reasoning tasks (Hsu et al.} 2024; |[Kamali et al., [2024)). Purely textual LLMs rely on
external visual processing models to perceive the input, while the target of our work is to conduct
multimodal abductive induction based on the internal perceptual ability of MLLMs without using
external tools to take the responsibility of perception.

3 ILP-CoT

3.1 PRELIMINARIES

In an abductive logical rule induction task, a small number of textual or visual instances are provided.
Each instance is unstructured without any symbol-related annotations, while is labeled as positive
or negative based on whether it is consistent with a set of latent logical rules, which describe
regularities among multiple pre-defined subjects existing in all instances|'| The targets are twofold: 1)
transforming the unstructured instances into structured ones to discover the logical facts, i.e. symbolic
concepts about the subjects involved in the latent logical rules, and their corresponding grounding
values; 2) inducing the latent logical rules based on the discovered logical facts.

We introduce the ILP-CoT method bridging ILP and MLLMs to effectively solve the abductive
logical rule induction tasks. Fig. [I]illustrates the workflow of ILP-CoT, which integrates the ILP
system into the CoT reasoning process of MLLMs in a “plug-and-play” manner. For better under-
standing the technical design choice, we briefly introduce the reasoning mechanism of ILP systems
following (Cropper & Dumancic| [2022)), and refer the detailed introduction of ILP to this literature.

ILP seeks to identify a set of logical rules H that can explain (or more formally, entail) all positive
examples ET while excluding the optional negative examples £, based on background knowledge
B El The positive and negative examples are sets of logical clauses. Each clause, representing one
data instance, is of the form p(z1, 2, ..., Z,,), where each z; is a term representing a subject in
the data, and p is the predicate representing specific logical facts among all ;. The background
knowledge B contains relations and information indirectly associated with the examples, which are
also sets of logical clauses. To conduct rule induction, ILP systems follow the basic mechanism
common in formal methods: searching in the hypothesis space H of all possible logical rules to
identify H satisfying the above target. Notably, the background knowledge B can include clauses
representing essential restrictions on the hypothesis space, in special rule structure constraints, to
serve as the inductive bias of the hypothesis space. As in general machine learning problems, properly
choosing the inductive bias would significantly prune the hypothesis space and improve the efficiency
of induction. The basic idea in ILP-CoT is to let MLLMs play the rule of proposing initial (probably
hallucinated) logical facts from the unstructured raw input images and more importantly, the proper
rule structure constraints to build efficiently solvable ILP tasks, and further let the ILP system generate

'The negative instances are optional to exist in the task.
We consider the learning from entailment (LFE) setting of ILP.
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Rulein NL:
1. A mall cat play with a golden dog
2. Small metal cube and small metal sphere

ing Capture Tokens Logical Facts |

| Failure Reflection & Final-Rule Selection

Prompt MLLM with positive examples to generate capture tokens for
Transformation , attributes & relationships

g

Transformation: Crop, Mirror,Copy Knowledge from Positive Examples
Criterion:

-Attributes: Color, Size, Pose ...
-Relationship: Proximity , Emotion ...

Building is Space

Prompt MLLM with Knowledge and Positive examples to generate hypotheses.
Rule Structure Proposal Meta Rules
### Rule Set 1: Show Together Rule metarule([P,Q,R],[P,A,B,[[Q,B],[R,A,B]])

fur_golden(dog). size_small(cat).

small(cube). grey(cube).

stretch(input), red(objects).
from Negative

dog)

Failure Reflection

If conflicts occur in facts and relationships:

1) Fine-Grained Token Splitting:

Re-extract criteria:

fur_golden(dog). grey(cube). red(objects) > image 0,1, ...
Re-extract transformations:

crop(input), mirror(input) > (10,00, (11,01),...

Resample tokens based on transformations and criteria
2) Incomplete Hypothesis Space:

Randomly cropping knowledge and Resample hypotheses
3) Rerun pipeline until a valid rule is found or maximum
number of attempts is exceeded.

Final Rule Example

Prompt the MLLM to find the best-fitting rule from all positive
examples.

f(Cat, Dog) :- fur_golden(Dog),interaction_playing(Cat, Dog),
small(Cat).

Position_Pattern(Dog,Cat) :- grey(Cat),
besides(Dog,Cat). ...

3. The red and orange blocks stretch horizontally, and the green
block stretches vertically.

Expected Prolog-form:

f(A,B) :- predicatesO(A), predicates1(A, B).

f(A,B) - predicatesO(A), predicates1(B), predicates2(A, B).

f(A,B) :- predicatesO(A), predicates1(B), f(A, B).

£(A,B,C):- pi , predicates1(A), predicates2(B).

f(A,B,C):- predicatesO(A), predicates1(A,B), predicates2(B,C).

f(A) - predicatesO(A).

predicates0(A) :- predicates1(0), predicates2(O).

Rule Induction With ILP

Metarule Example: metarule([P,Q.R], [P,A,B], [[Q,B],[R,A,B]])
Positive facts: fur_golden(dog). size_small(cat). Negative facts: white(dog). aggressive(cat,dog)

iation Space: Q € {fur_color, size_small, height, ...}; P € {white, aggressive, on_top_of, ...}
Outcome: Rule, Rule2 ... (eg. F(dog,cat) - tail_up(dog),tail_curly(cat),on_top_of(cat,dog).)

Prolog rules to NLP: prompt MLLMs to translate Prolog rules to NLP rules

Score: NLP rules 1 & Clip on Postive case > S1_pos , NLP rules 1 & Clip on Negative case > S1_neg
Final Score: Argmax((0.8* S_pos ~ 0.2*S_neg))

£(10) :- stretch(I0).
stretch(I0) :- green(0), vertically_stretch(O).
stretch(10) :- orange(0), red(0), horizontally _stretch(O).

Figure 1: The ILP-CoT reasoning workflow.

the correct rules based on rectified logical facts with formal inductive reasoning. In the following, we
dive into the details of each step of the reasoning process.

3.2 GENERATING INITIAL LOGICAL FACTS

We propose a unified formal procedure to ask MLLM to generate logical facts, serving as the
foundation for converting unstructured textual or visual inputs into verifiable symbolic representations.
This procedure operates by first prompting the MLLM to propose capture tokens, which are abstract
concepts and operators relevant to the domain, and subsequently grounding these tokens into concrete
logical predicates for each instance. To accommodate different reasoning complexities, we categorize
the generated logical facts into two distinct configurations based on the task type:

State description criteria. For single-state static tasks (e.g., CLEVR-Hans), the logical facts serve as
a Criterion. This is a set of attributes and relational predicates, such as Color-red(z) or Left-of(z, y),
which describes the static configuration of subjects within the input. In this setting, the criterion acts
purely as a descriptive symbolization of the raw percept.

Transformation-criterion pairs. For multi-state input-output tasks (e.g., ARC), we extend the
representation to a Transformation-Criterion pair. This consists of a transformation operator, which
describes the specific action modifying the input state (e.g., Crop, Rotate, Copy), and a corresponding
criterion, which serves as the pre-condition facts that must be satisfied to trigger this change. Formally,
these pairs encode a conditional implication: a specific transformation is applied if and only if the
subject satisfies the criterion constraints.

This unified formulation allows the MLLM to handle both static descriptions and dynamic ma-
nipulations within a single pipeline. For instance, in a complex visual reasoning scenario, the
MLLM first proposes a transformation—criterion pair such as [Add]-[Color] and [Add]-[Size].
By separating the transformation from the criterion, the MLLM can then extract a criterion
Fur-golden(x) A Size-small(x) paired with a transformation Add-toyball(z). This explicitly maps
the perceived attributes (a small golden dog) to the corresponding output modification (adding a toy
ball), providing a verifiable logical basis for subsequent ILP rule induction.

3.3 BUILDING HYPOTHESIS SPACE WITH RULE STRUCTURE PROPOSAL

Once logical facts have been extracted, the next step is to construct a hypothesis space that enables
efficient rule induction with ILP. This serves as the most crucial step in the reasoning pipeline. We
adopt a two-substep approach.

Substep 1: Generating rule structure proposals using MLLM. The MLLM is asked to propose a
small set of plausible rules that are consistent with the logical facts obtained in the previous step. We
name these plausible rules as rule structure proposals since we only take their structures for further
use instead of their semantics. The key observation for this design choice is that MLLMs could
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propose structure-correct rules even under hallucinations. We can utilize this structural information
as the proper inductive bias to prune the rule search space. Following rigorous logical reasoning
process of ILP, the rule semantics, especially those hallucinated by the MLLM, can be significantly
rectified in the induced rules of ILP. For example, when MLLM produces an initial rule "dogs are
blue", the ILP module can take the structure "? are 7" and produces its own rule "cats are yellow".
Even when the initial rule is fully hallucinated and wrong, the ILP module can still generate a correct
rule, or refuse to output any rule when conflicts exist in logical facts.

Substep 2: Transforming proposals into logical meta-rules. The rule structure proposals are
transformed into a set of meta-rules compatible with Metagol (Muggleton et al.,2015)) by replacing
specific predicates with placeholders and constants with variables. Metagol also serves as our
design choice of the ILP method for logical rule induction. Among ILP approaches, Metagol has
a particular way to define the hypothesis space, which is the meta-rules. Meta-rule is a high-level
language bias that directly specify the structure of the rules. For example, if we use meta-rule
[[P,Q,R], [P,A,B], [[Q,A], [R,B]]],then we can only learn the rule of the form “To prove
P(A, B), prove Q(A) and R(B)”. If correctly defined, this is a more effective constraint for
the hypothesis space than other ILP approaches using low-level language biases, e.g., mode/type
declarations, bounds on clause length or depth, and coverage penalties. On the other hand, a major
challenge for Metagol is to correctly pre-define these meta-rules, which requires expert knowledge
traditionally. Our approach guides the MLLM to automatically find the meta-rules in the CoT process,
tackling this essential challenge. The obtained meta-rules then serves as a strong structural bias for
Metagol, directly constraining admissible rule forms and the corresponding search space, thereby
producing efficient, interpretable candidates and enabling rapid convergence in the ILP step.

Remark. As structure templates, the meta-rules have direct correspondence with the plausible rules
given by the MLLM. In substep 1, we require the MLLM to output the plausible rules in Prolog
form. Then the transformation to meta-rules can be done using a fully fixed and automated process.
No hallucination will appear in this process. Note that this is also true when other ILP methods are
utilized in the ablation study in Sec.[d.5} The structure constraints for them can also be transformed
from the rule structure proposals, with their corresponding automated processes.

3.4 RULE INDUCTION WITH ILP

Having established logical facts and an optimized hypothesis space through meta-rules, the next step
employs Metagol for rule induction. Metagol systematically assembles logical facts into candidate
rules guided by structural constraints imposed by the meta-rules. Candidate rules that satisfy the initial
correctness criteria are then transformed into simplified natural language statements and expanded
into detailed descriptions via MLLMs. The final rule selection is driven by maximizing a weighted
scoring metric:

H = arg max (a - AvgScore g+ (H) — (1 — a) - AvgScore g (H)), O<a<l), @)

where AvgScore . (H) and AvgScore_ (H) denote the average semantic alignment scores for
positive and optional negative examples, respectively. In the experiments, for CLEVR-Hans and ARC
benchmarks, we utilize the base MLLM itself to output the scores. For text-to-image customization,
we utilize the CLIP embedding similarity (Radford et al., [2021)) between images and rules as the
scores. The weight o can be adjusted empirically, which is set between 0.7 and 0.8 in our experiments.

3.5 FAILURE REFLECTION

When the pipeline fails to produce a rule consistent with both positive and negative examples and
to pass ILP verification, a failure-reflection loop is activated to diagnose root causes and iteratively
repair the process. The loop begins by scrutinizing hallucinations in symbol grounding: com-
pound facts are decomposed into single facts, and each fact is independently re-queried by the
MLLM. If the fact is returned as false, it is replaced and reasoning is restarted—for example, re-
querying face_to_sun (sunflower) and direction_upright (sunflower) separately
rather than jointly. If this refinement remains insufficient, the completeness of the hypothesis space is
assessed via knowledge cropping, prompting the MLLM to selectively discard the bottom 20% of
predicates by similarity in order to compress and denoise the space. The MLLM then regenerates
relations, abstracts them into new meta-rules, and the Metagol search is restarted. If the refined space
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Table 1: Comparison of ILP-CoT and baseline
methods on CLEVR-Hans (Accuracy in %). Table 2: ILP backend ablation on CLEVR-Hans
(Accuracy %). See details in Sec. E}

Model Val Test

Direct Predict (Qwen-7B)  54.76  51.60 ILP method Validation Test
Custom CoT (Qwen-7B) 34.44  35.85 ILASP Out-of-Time  Out-of-Time
ILP-CoT (Qwen-7B) 88.37 81.85 Popper 2553 46.74
NEUMANN (w/o pretrain)  67.41 68.15 Metagol (Ours) 88.37 81.85
NEUMANN 96.67 97.43

still fails to yield valid rules, the failure is attributed to deficiencies in the initial design or selection of
capture tokens.

4 EXPERIMENTS

Benchmarks. We evaluate ILP-CoT’s rule induction capabilities and its generalization performance
across three logical induction benchmarks: CLEVR-Hans (Shindo et al.| 2024), ARC-AGI (Chollet,
2019), and 1D-ARC (Xu et al., [2023)). We also propose ILP-CoT-Customization, a novel dataset for
text-to-image customized generation with rule induction. These datasets represent a broad range of
complexities, including both single-state and multi-state inference tasks, as well as both textual and
visual modalities, enabling comprehensive evaluation of ILP-CoT’s inductive reasoning abilities.

Custom CoT. To verify the effectiveness of the ILP module, we introduce an ablation baseline in
all benchmarks, Custom CoT, which shares the major workflow designs of ILP-CoT, but does not
utilize ILP to produce the final rule and relies on the MLLM itself. The detailed implementation is
introduced in Sec.

4.1 CLEVR-HANS

CLEVR-Hans (Shindo et al.| 2024)) is a synthetic visual reasoning benchmark derived from the
CLEVR dataset (Johnson et al.,[2017), specifically constructed to evaluate the model’s capability to
learn abstract relational rules and overcome visual confounds. It consists of image data generated
according to a set of three predefined logical rules (e.g., images containing a grey sphere and a
red cube), and the objective is to identify and learn these implicit rules from training examples.
Models are evaluated on their ability to accurately classify unseen images based on the learned
rules. The CLEVR-Hans dataset is particularly challenging because the training and validation sets
contain deliberately introduced confounding factors (e.g., a large cube consistently appearing in
grey), encouraging models to incorrectly associate these superficial correlations with classification
criteria. Conversely, the test set explicitly removes these confounds, thereby testing a model’s true
generalization ability and its robustness against superficial correlation. Note that we follow the
standard evaluation protocol of CLEVR-Hans, which is relatively different from other benchmarks in
the paper. The details are introduced in Sec. [G]

Results. In our experiment, we evaluate the performance of ILP-CoT alongside several compara-
tive baselines: the current state-of-the-art NEUMANN (Shindo et al.|[2024)), NEUMANN without
pre-training its perception model, Custom CoT, and the Direct Predict. NEUMANN, leveraging a
Slot Attention-based perception model (Locatello et al.,[2020) pre-trained specifically on the CLEVR
dataset and supplemented by carefully designed symbolic background knowledge, effectively avoids
learning the confounding features, thus demonstrating high accuracy. However, when NEUMANN’s
perception component is not pre-trained, its performance substantially deteriorates, underscoring tra-
ditional ILP models’ dependency on extensive perceptual pre-training. ILP-CoT, using the Qwen-7B
model (Bai et al.|[2023a), faces challenges primarily related to grounding visual facts correctly—such
as partially capturing image facts or incorrectly identifying attributes. Nevertheless, through the cross-
validation of induced rules across positive and negative examples, ILP-CoT effectively mitigates these
perceptual errors to a considerable extent. A notable limitation observed was the hallucination errors
in applying rules during classification tasks, which hindered the strict adherence to induced rules.
Despite these perceptual limitations, ILP-CoT significantly surpasses the Custom CoT, Direct Predict
and NEUMANN without pre-training, while performing competitively with the fully pre-trained



Under review as a conference paper at ICLR 2026

Table 3: Accuracy(%) and hamming distance comparison on ARC-AGI-1.

Direct Predict Custom-CoT ILP-CoT
Accuracy Hamming Distance Accuracy Hamming Distance Accuracy Hamming Distance
GPT-40 5.25 23.90 9.25 22.79 10.25 21.65
Gemini-2.0 Flash 7.00 36.50 10.00 24.60 11.25 22.50
Qwen-max 5.50 32.99 7.25 30.65 7.50 28.33

NEUMANN model. However, Custom CoT achieved the lowest scores among all evaluated models,
primarily due to severe hallucination issues caused by redundant and overly verbose rules learned by
the Qwen-7B model. Specifically, when Custom CoT applies these excessively detailed rules during
validation and testing, the abundance of misleading and noisy inputs overwhelms Qwen-7B’s percep-
tual and reasoning capabilities, resulting in significant inaccuracies and instability in classification
performance. The quantitative evaluation results clearly reflect these observations, where ILP-CoT
demonstrates robust rule generalization capabilities, maintaining performance close to the NEU-
MANN benchmark and significantly outperforming models without extensive perceptual pre-training.
This confirms the advantage of combining symbolic reasoning with MLLMs to effectively address
perceptual grounding limitations, a critical aspect of visual reasoning benchmarks like CLEVR-Hans.

4.2 ARC BENCHMARKS

ARC-AGL. First, we conduct experiments on the ARC-AGI-1 benchmark (Chollet, 2019), which is
designed to rigorously test inductive reasoning in Al systems. Our study focuses on the 400 text-based
tasks in its training set. Each task consists of input—output example pairs in matrix form, requiring
models to infer latent rules or abstract patterns from few examples and then apply them to unseen
cases. The tasks span pattern recognition, numerical operations, and spatial relations, making it a
stringent testbed for inductive reasoning methods.

We evaluate our method on ARC-AGI-1 using three state-of-the-art MLLMs as base models—GPT-
40 (OpenAl, [2024a), Gemini-2.0 Flash (Gemini Team, Google DeepMind, 2025), and Qwen-
Max (Qwen Team), [2025)—and compare three prompting strategies: Direct Predict, Custom CoT, and
ILP-CoT. We refer the official leadboardE]for the current best performing models. We note that as
with all CoT approaches, the performance of our approach relies on the choice of the base model.
Therefore, the focus of our experiments is to verify how much our approach improves the base model,
rather than achieving the best performance over all models.

Results. Custom CoT notably improves upon the Direct Predict by abstracting and streamlining
intermediate reasoning steps, emphasizing critical transformation criteria extracted during induction.
However, we observe that naively incorporating all intermediate reasoning into the CoT prompts
adversely impacts accuracy, often leading models to deviate progressively from correct solutions.
Thus, the effectiveness of our Custom CoT underscores the necessity of carefully curated abstraction
in intermediate reasoning steps. In the ILP-CoT framework, we integrate explicit logical reasoning
through ILP into the Custom CoT process. This addition not only significantly enhances accuracy
compared to both Direct Predict and Custom CoT settings but also reduces hallucination errors
typically seen in multimodal reasoning tasks.

To better capture performance differences, we report Hamming distances between model-generated
outputs and the ground truth. This measure highlights subtle yet critical improvements: ILP-CoT
consistently yields lower Hamming distances, indicating that the generated solutions are closer in
structure to the intended outcomes even when exact matches are not achieved. This observation
underscores ILP-CoT’s capability to refine its reasoning toward near-correct outputs through rigorous
logical induction, verification, and rectification. (Detailed qualitative analyses in the appendix
illustrate specific cases in which ILP-CoT corrects or substantially mitigates errors that persist under
Default and Custom CoT settings.)

Additional experiments on 1D-ARC. To further probe ILP-CoT on smaller base models, we also
include a lightweight evaluation under the 1D-ARC benchmark (Xu et al.}|2023)), which is discussed
in Sec.|A| The results likewise show consistent gains for ILP-CoT over Direct Predict on two pure

3https://arcprize.org/leaderboard



Under review as a conference paper at ICLR 2026

Table 4: Induction performance across varying numbers of positive and negative examples under
ILP-CoT-Customization. Each cell reports the proportions of Completely Correct / Mostly Correct /
Partially Correct / Incorrect (See Sec. [F] for details of evaluation criterion), including the evaluations
from human and Al evaluators. The human evaluation is averaged over participants.

1PIN 3P3N SPIN 5P5N
Human
Direct Predict Pos. Only  0.20/0.27/0.36/0.17  0.31/0.27/0.22/0.19  0.38/0.29/0.26/0.06  0.38/0.29/0.26/0.06
Custom CoT Pos. Only 0.37/0.27/0.33/0.03  0.27/0.35/0.33/0.05  0.42/0.24/0.28/0.05  0.42/0.24/0.28/0.05
Direct Predict 0.11/0.14/0.42/0.33  0.12/0.16/0.26/0.45  0.15/0.18/0.36/0.31  0.14/0.17/0.37/0.32
Custom CoT 0.38/0.27/0.30/0.04  0.19/0.39/0.37/0.05  0.37/0.26/0.33/0.04  0.34/0.26/0.32/0.08
ILP-CoT 0.53/0.21/0.25/0.01  0.64/0.21/0.13/0.02  0.58/0.24/0.17/0.01  0.63/0.27/0.09/0.00
Gemini 2.5 Pro
Direct Predict Pos. Only  0.22/0.24/0.42/0.12  0.29/0.28/0.22/0.21  0.32/0.28/0.38/0.02  0.32/0.28/0.38/0.02
Custom CoT Pos. Only 0.32/0.26/0.39/0.03  0.19/0.39/0.35/0.07  0.39/0.17/0.41/0.03  0.39/0.17/0.41/0.03
Direct Predict 0.17/0.15/0.44/0.23  0.19/0.20/0.26/0.35  0.07/0.20/0.42/0.31  0.13/0.10/0.40/0.37
Custom CoT 0.37/0.23/0.36/0.04  0.10/0.48/0.39/0.03  0.28/0.25/0.44/0.03  0.28/0.18/0.46/0.08
ILP-CoT 0.52/0.13/0.34/0.01  0.56/0.24/0.17/0.03  0.53/0.20/0.25/0.02  0.59/0.28/0.12/0.01
GPT-5 Thinking
Direct Predict Pos. Only  0.12/0.28/0.43/0.16  0.20/0.21/0.26/0.33  0.32/0.29/0.28/0.11  0.32/0.29/0.28/0.11

Custom CoT Pos. Only  0.36/0.20/0.43/0.01  0.16/0.28/0.51/0.05  0.36/0.19/0.33/0.12  0.36/0.33/0.19/0.12
Direct Predict 0.06/0.09/0.52/0.33  0.04/0.11/0.22/0.63  0.24/0.09/0.39/0.28  0.13/0.18/0.43/0.26
Custom CoT 0.33/0.25/0.36/0.06  0.06/0.34/0.53/0.07  0.32/0.19/0.43/0.06  0.32/0.22/0.34/0.12
ILP-CoT 0.49/0.24/0.27/0.00  0.57/0.24/0.17/0.02  0.53/0.30/0.16/0.01  0.61/0.28/0.11/0.00

Training Examples Without Rule Prompt Training Examples Without Rule Prompt With Rule Prompt

With Rule Prompt |

| Without Rule Prompt: the[v1]man and the[v2]woman eating

Without Rule Prompt: the[v1]bird !
! With Rule Prompt: the[vl]man and the[v2]woman eating, both eating apple

With Rule Prompt: the[v1]bird staying on a branch

Training Examples

Training Examples

i g o b s
% 2 1) : = N |

Without Rule Prompt: the [v2]Jwoman and [v3]baby, and the[v1]man in a forest, where gold
filters through the dense canopy, casting dappled shadows on the soft moss beneath their feet.
With Rule Prompt: the [v2]woman holds the[v3]baby, and the[vl]man is watching him.They are in a
forest, where golden sunlight filters through the dense canopy, casting dappled shadows on the soft
moss beneath their feet.

Without Rule Prompt With Rule Prompt

Without Rule Prompt: the[v1]cat sleeping in a dark,
horrifying deathland.

E With Rule Prompt: the[v1]cat sleeping on a red cushion, in
! a dark, horrifying deathland.

Figure 2: The figure presents four cases of customized image generation, showing training examples
(top: positive, bottom: negative) and images generated with or without rule-based prompts. Rules,
highlighted in red, ensure relational constraints are preserved in diverse contexts.

textual LLMs, Qwen3-8B and Qwen3-14B (Yang et al| 2025), with larger improvements for the
smaller model. This enhances the conclusion that formal induction and symbolic verification benefit

models across scales.

4.3 TEXT-TO-IMAGE CUSTOMIZATION

We evaluate ILP-CoT on the challenging ILP-CoT-Customization task, which requires abducting
generalized rules across diverse subjects and relies on broad background knowledge. The details
of the dataset are introduced in Sec. [F] To thoroughly assess our approach, we consider four data
configurations: minimal (1 positive + 1 negative example), intermediate (3 positive + 3 negative
examples), moderate (5 positive + 1 negative example), and rich (5 positive + 5 negative examples).
For each configuration, rules produced by the models are judged by two human raters and two Al raters

(Gemini Pro 2.5 (Comanici et al.| 2025) and GPT-5 Thinking (OpenAl, 2025)), with all evaluators

assigning one of four categories: Completely Correct, Mostly Correct, Partially Correct, or Incorrect.
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The evaluation criterion is introduced in Sec.[F] We report the non-averaged human-only and Al-only
results in Tab. E} The models we benchmark include several GPT-4o0 (OpenAl, |20244) variants under
different prompting strategies—Direct Predict with or without negative examples, Custom CoT with
or without negative examples—and ILP-CoT. All models output natural-language rule descriptions;
ILP-CoT additionally induces intermediate Prolog-form rules that are then translated into natural
language while preserving logical fidelity.

Results.Across all data regimes, ILP-CoT attains the highest rule quality and shifts the error mass up-
ward—from “incorrect/partial” toward “mostly/fully correct”—while substantially reducing outright
incorrect rules (Tab. ). A key contrast emerges when negative examples are added to non-formal
baselines: rather than helping, they often reduce the fully correct rate relative to positive-only vari-
ants. This suggests that, absent a formal mechanism, negatives fail to become binding constraints;
instead, they expand a noisy hypothesis space, encourage patchwork exception rules, and intro-
duce contradictions across chain-of-thought steps—ultimately degrading the precision of necessary
conditions. By design, ILP-CoT treats negatives as hard constraints: symbolic induction coupled
with formal verification prunes spurious hypotheses early, and a verify—revise loop repairs missing
conditions with targeted updates rather than lengthening unstable explanations. Consequently, each
example—positive or negative—contributes constraint information, yielding more stable scaling
with data and better data efficiency in low-data regimes. Additionally, we illustrate ILP-CoT’s
practical advantages through customized image generation tasks. Incorporating learned rules sig-
nificantly enhances the performance of generative models by ensuring relational constraints critical
to user-specified contexts are preserved (Fig. E]E]) We utilize FLUX (Black Forest Labs| [2024)) as
the generative model, training it on provided examples. Initially, attempts to generate new images
without explicitly specifying relational constraints observed in the training data resulted in outputs
that failed to maintain these constraints. However, by explicitly encoding relational constraints
derived from training examples into prompts, FLU reliably generated images adhering faithfully to
these constraints. Further details of the customized generation method are introduced in Sec[E|

4.4 MLLM HALLUCINATION ANALYSIS AND ILP RECTIFICATION EFFICACY

To further analyze what hallucinations can appear for MLLMs in the tasks, and the effectiveness of ILP
on rectifying them, we conduct both quantitative and qualitative analysis. The quantitative analysis is
conducted on CLEVR-Hans. We report the rate of appearance for all kinds of hallucinations, namely
missing, redundant, and wrong, for both logical facts and rule proposals from MLLMs, in Tab. [/] We
observe that the major error type lies in missing and generating redundant logical facts, which lead to
significantly bad quality in rule generation. This shows the native property of inductive reasoning,
where the ability to correctly perceive and understand the input semantics lies in the most crucial
ability for solving the tasks. Furthermore, we report the success rates of correcting the errors when
ILP-CoT is adopted in Tab. [§] The results show the effectiveness of our approach, in special for
rectifying missing and wrong facts. For intuitive illustration, we further provide qualitative analysis
on examples of MLLM hallucinations in different benchmarks in Fig. {[3][6]

Meta-rule generation under hallucination. To justify that MLLM can generate structure-correct
rules even under hallucinations, we report the proportion of MLLM-generated rules that lead to correct
meta-rules while themselves are incorrect, as illustrated in Tab. The results show that among the
semantic-wrong hypotheses generated by MLLM, the proportion of rules that remain structure-correct
is significantly larger than the structure-incorrect ones. Afterwards, using the correctly generated
meta-rules, ILP then fixes the remaining semantic errors using positive and negative examples. This
is why the final rules can be correct even when raw hypotheses can be very wrong.

4.5 ABLATIONS ON ILP METHODS

To justify the advantage of using meta-rules as the rule structure constraints in our pipeline, we
conduct ablations on alternative choice of ILP methods in our approach. We replace Metagol with
two advanced ILP approaches, Popper (Cropper & Morel, [2021)) and ILASP (Law et al.,[2014), which
are based on answer set programming mechanisms and utilize other types of inductive biases on the
search space, declarations and modes, instead of meta-rules. Except for ILP methods, we keep all
other workflows unchanged in the experiments. Note that for fair comparison, the inductive biases
for them are also transformed from the same plausible rules from MLLM, with their corresponding
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automated processes. The results in Tab. 2] verifies our discussions in Sec.[3:3] Popper achieves sub-
optimal performance due to less-informative hypothesis space. ILASP can not complete search within
our time constraint (5 minutes) for each instance, while our approach usually complete searching
within 10 seconds. Meta-rules, which is utilized by Metagol as the structure inductive bias, show
significant advantages as the structural inductive bias to be used in our method.

4.6 DISCUSSION

Time cost. In our experiments, we set a maximum limit of 5 reflection loops to prevent indefinite
execution, and on average, the system usually requires more than 2 reflection iterations to successfully
induce a valid rule. In terms of specific runtime for each stage, the fact-capturing process performed
by the MLLM typically takes between 5 to 7 seconds. For logical rule induction, we enforce a strict
timeout of 20 seconds for the ILP solver, although in practice the solving process usually completes
within 8 to 12 seconds.

Failure reflection. In the experiments, we do not explicitly set the number of retries for each method.
The reflection is triggered only when the method can be aware of its failure. In contrast to other
methods, for which the reflection should be decided by the MLLM itself, ILP-CoT incorporates
reflection triggered by the formal detection of failures during rule induction. This phase is not
controlled by the base MLLM but by ILP-CoT itself, which evaluates the consistency of learned rules
and triggers reflection when inconsistencies are detected.

To justify the advantage of utilizing ILP for failure reflection, we report reflection triggering rates
of GPT-40 under the ILP-CoT-Customization 3P3N experiment in Tab.[9] The reflection loop itself
is a key contributor to ILP-CoT’s robustness. 87.2% of cases enter the loop exactly because no
consistent rule is learned initially. When we replace the ILP guided trigger with purely LLM-based
self-evaluation, GPT-40 never flags its own rules as incorrect when judging only on positive examples,
and when given both positive and negative examples it chooses to restart on only 6.3% of cases. In
contrast, the ILP-guided trigger reliably detects inconsistent rules and activates the reflection loop
on precisely those instances where the current hypothesis is provably inadequate. Combined with
the verify—revise procedures, this targeted triggering turns reflection into a principled debugging
mechanism, yielding substantially higher coverage and precision with minimal additional cost.

5 CONCLUSION

In this work, we study the task of abductive logical rule induction by using Multimodal Large
Language Models (MLLMs). We propose ILP-CoT, a training-free method to integrate the inductive
logic programming (ILP) system into the Chain-of-Thought (CoT) process. The key technical
contribution lies in proposing a rule structure proposal conversion method to build ILP tasks with
pruned search spaces, and utilize ILP to generate trustworthy rules based on formal inductive
reasoning. We also propose the task of text-to-image customized generation with rule induction as a
potential application our approach.

Limitations and future work. We identify two main limitations of current multimodal large
language models (MLLMs) when applying our rule induction framework.First, hallucinations increase
significantly as the number of subjects in an image grows. In such cases, our approach may require
many reflection iterations, which leads to substantial computational and time costs. A promising
research direction is to develop more efficient fact-discovery strategies, particularly ones that can be
activated when the ILP module detects initial hallucinations. Second, successfully inducing rules in
our framework critically depends on proposing correct meta-rules. Our current design assumes that
MLLMs are capable of generating rules with syntactically correct structures. This assumption may
break down for more complex ground-truth rules, such as those involving functional relationships.
Future work could focus on further simplifying the construction of the hypothesis space and reducing
reliance on the MLLM’s ability to propose high-quality rule structures.

10
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REPRODUCIBILITY STATEMENT

We have included the anonymous link of our code and data in the abstract. The code and data will
also be open-released upon acceptance, which will serve as the reliable resource to reproduce our
method and results.
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A RESULTS ON 1D-ARC

1D-ARC (simplified ARC) benchmark. To further verify robustness across reasoning difficulty
levels, we evaluate ILP-CoT on the 1D-ARC benchmark (Xu et al.}2023) using pure texual Qwen3-8B
and Qwen3-14B (Yang et al.,[2025) as base MLLMs.

Table 5: 1D-ARC accuracy (%) with Qwen3 family.

Model Direct Predict ILP-CoT
Qwen3-8B 9.54 20.53
Qwen3-14B 33.43 42.81

B MORE COMPARISON OF INDUCTIVE REASONING BASELINES

Table 6: Accuracy (%) of inductive reasoning methods under ARC-AGI.

Model Direct Predict Phenomenal Yet Puzzling Hypothesis Search  ILP-CoT
GPT-40 5.25 4.00 8.00 10.25

To further justify the effectiveness of ILP-CoT. We report the performance comparison over two
existing inductive reasoning methods, Phenomenal Yet Puzzling (Q1u et al., | 2023) and Hypothesis
Search (Wang et al.| [2023a) under the ARC-AGI benchmark. We utilize GPT-40 as the base model
and test under the full 400 examples in its training set. The results show the desirable performance of
ILP-CoT.

C QUANTITATIVE AND QUALITATIVE RESULTS IN SEC. 4.4 AND SEC.[4.6|

We report quantitative analysis on MLLM hallucinations and the effectiveness of ILP-CoT in error
rectification in Tab.[7|[8] and qualitative illustrations on MLLM hallucinations in Fig. @][5][e]

Table 7: Rate of appearance for different MLLM hallucination types under CLEVR-Hans w.r.t. the
number of ground-truth logical facts/rules in the tasks.

Missing Redundant  Wrong
Facts (3) 0.503 0.860 0.280
Facts (4) 0.550 0.807 0.200
Facts (5) 0.406 0.692 0.240
Rules (1) 0.980 0.996 0.980
Rules (2)  0.985 (2 miss) / 1.000 (1 miss) 0.997 1.000
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Table 8: Rectification success rates per error type on CLEVR-Hans.

Missing Redundant  Wrong
Facts (3) 0.357 0.25 1.00
Facts (4) 0.462 0.277 1.00
Facts (5) 0.133 0.075 1.00
Rules (1) 0.153 0.150 0.153
Rules (2)  0.081 (2 miss) / 0.090 (1 miss) 0.080 0.09

Table 9: Reflection triggering rates of GPT-40 on the Text-to-Image-Customization 3P3N setting.

Condition Reflection Rate
Positive Only 0.0%
Positive + Negative 6.3%
ILP-CoT 87.2%

D CustoMm CoT

Due to the issue of hallucination in perception and reasoning, we discover that current MLLMs are
still not able to directly perform visual rule abduction without CoT reasoning. We propose a natural
CoT process to break the whole task into simpler substeps:

1. Capture token generation. Generate a set of abstract concepts to determine transformation
and its criteria, the criteria include concrete description of attributes and relationships.

2. Attribute identification. Determine explicit attributes such as color, size, and shape.
3. Relationship identification. Infer relationships and interactions among objects.

4. Rule induction. MLLMSs conduct final rule induction to identify the final rule based on the
subjects, attributes, and relationships discovered.

The first two steps correspond to the discovery of symbolic concepts and the grounding of symbols,
and the last two steps correspond to the induction of rules. Note that the first three steps are taken for
each image instance.

Example: Consider the example illustrated in Fig. [T}

1. Step 1: Generate abstract captured tokens such as color and proximity.

2. Step 2: In the positive examples, the dog is golden and the cat is small in size. In contrast,
in the negative examples, the dog is either black or white, and the cat has a tabby coat.

3. Step 3: In the positive examples, the two animals appear to be playing together. Conversely,
in the negative examples, the animals exhibit hostile behavior toward each other.

4. Step 4: Induce the corresponding rule. A successful induction should output the rule that a
golden dog and a cat are playing together. However, failure cases may occur if incorrect or
overly specific rules are generated.

We find that by utilizing this CoT design, the visual rule abduction ability of MLLMs can be
significantly improved. However, hallucinations remain the unaddressed issue due to the lack of
a formal verification mechanism. In the following, we introduce the basic mechanism of the ILP
module, which plays a crucial role in our proposed approach.

E TEXT-TO-IMAGE CUSTOMIZATION WITH RULE INDUCTION

To provide a potential application of our visual induction method, we introduce the task of text-to-
image customization with rule induction. Most text-to-image customized generation approaches Ruiz
et al.| (2023)); Zhang et al.| (2024)) focus on subject customization. Although several research studies
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Table 10: Meta-rule learning accuracy on the ILP-CoT-Customization 3P3N setting. For each
ILP-CoT run, we compare the meta-rules induced from GPT-40’s rule proposals with the meta-
rule decomposition of the ground-truth rule. Rows distinguish whether the learned meta-rules are
structurally consistent with the ground truth, while columns distinguish whether the final induced
hypothesis (Prolog rule) is semantically correct or incorrect. Each entry gives the proportion of runs
falling into the corresponding combination.

Correctness of Meta-Rule  Hypothesis Correct Hypothesis Incorrect

Correct 35.5% 50.9%
Wrong 0% 13.6%

1

Without Rule Prompt: the[v1]man holds flower to the[v2]lwoman } Without Rule Prompt: the(vi]woman and the[v2]child in a park

With Rule Prompt: the[v1]man holds out flower, the[v2]woman is about to catch it by her hand ! With Rule Prompt: the[viJwoman and the[v2]child in a park, the child is playing piano and mom is
I supervising her

! Without Rule Prompt: the[v1]bird in a park, a man singing happily and the[v1]bird dancing with the
Without Rule Prompt: the[v1]boy in a springtime park, dancing happily i song
With Rule Prompt: the[v1]boy in a springtime park, dancing happily, if it's snowy, the[v1]boy will | With Rule Prompt: the[v1]bird in a park, staying on the branch, a man singing happily and the[v1]bird
wear down jacket ' dancing with the song

Figure 3: The figure presents four more cases of customized image generation, showing training
examples (top: positive, bottom: negative) and images generated with or without rule-based prompts.
Rules, highlighted in red, ensure relational constraints are preserved in diverse contexts.

study multi-subject customization [Kumari et al.| (2023)); [Liu et al| (2023b); [Lin et al.| (2024);

(2024), the semantic relationships among subjects in training images are ignored in the testing
stage generation process. Recently, there have been attempts to introduce relational constraints in the
customization task Ge et al.| (2024); [Shi et al| (2024). These studies focus on improving the control
ability of pre-defined constraints instead of inducing rules from data. In the rule-based customization
task, the instances are labeled as positive and negative ones, potentially by the users, indicating a
latent rule to be induced. After fine-tuned customization, the testing-stage generation should follow
both the subjects and rules. We design a straightforward baseline for this task in which the proposed
ILP-CoT approach is used for rule induction. In the experiments, we show that the baseline method
achieves desirable performance in common generation tasks, while the room for improvement is also
large, indicating future research in this task.

To enable the automated generation of new, rule-compliant images featuring specific roles, we
introduce a mechanism that associates each main role with a unique special token. Concretely, each
role is labeled with a token in the format [v0], [v1], [v2], and so on. We employ LoRA
to fine-tune a latent diffusion model FLUX 2024)—specifically adjusting the linear
layers in single and double streams as well as the CLIP model (Radford et al, 2021)—so that each
special token is mapped to its corresponding role.

Semantic segmentation for role isolation. A semantic segmentation model is first used to segment
the original image according to its main roles (e.g., a dog or a cat). After segmentation, each patch
associated with a main role is paired with its corresponding special token. This pairing allows us
to apply LoRA-based fine-tuning on FLUX, wherein we minimize the MSE loss to disentangle the
visual features of each special token from those of the other roles. Through this process, each special
token becomes distinctly representative of a particular entity.
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Rule and token integration. Once the model is fine-tuned, we combine the induced rules with
special tokens to generate customized images that satisfy both the learned constraints and the newly
introduced narrative details. For example, suppose the two main roles are labeled as [v0] dog and
[v1]cat, and we have a rule stating that [v0] dog has golden fur and plays with [v1]cat. We
can then prompt the MLLM to produce a story-like description—for instance, one that portrays a dog
and a cat in a moonlit forest beside twisted, ancient trees and a solitary, small flower. We subsequently
replace all references to the dog and cat in this description with [v0]dog and [v1]cat, respec-
tively, and place the rules at the beginning of the description as constraints. This approach ensures
that the generated image (1) accurately reflects the roles associated with each token, (2) complies
with the rule regarding the dog’s golden fur and its interaction with the cat, and (3) integrates the
newly described context from the MLLM-generated story.

Ensuring rule adherence and visual fidelity. By explicitly linking each main role to a token
and restricting the model’s understanding of that role via LoRA fine-tuning, the final synthesized
images respect the rules learned during the ILP phase while preserving key visual characteristics of
the original roles. This mechanism prevents unwanted alterations (e.g., changing a dog’s color or
form) and allows us to seamlessly integrate new contexts or story elements—such as environmental
changes—without violating the rules. Consequently, the generated images maintain both fidelity
to the original subjects and consistency with any high-level narrative details specified through the
MLLMs.

Rule-guided prompting strategy. Our generation process begins with a user-generated prompt that
describes a scenario, objects, or attributes of interest. Each object mentioned in the prompt is tagged
with a special token, denoted as [vi ], which was introduced during training to maintain a binding
between the textual description and its corresponding visual representation. To merge the user prompt
with a learned rule, we prepend or append a concise rule-based statement to the prompt.

F ILP-COT-CUSTOMIZATION DATASET

Dataset generation and composition. We generated 29 different rule-based tasks using images
produced by Stable Diffusion, designed to evaluate ILP-CoT’s ability to abduce visual rules. The
dataset consists of:

¢ 22 induction tasks: Each task contains 10 images, including 5 positive and 5 negative
examples. Each image represents a complete rule independently. These tasks are used for
learning visual ILP tasks.

* 7 generation tasks: Each task contains 3 positive and 3 negative examples. The main
subjects in all positive examples maintain the same appearance and style. These tasks are
designed for customization based on rules.

The 29 tasks encompass a diverse range of rule-based relationships, including relationships between
a single primary subject and a theme, relationships between multiple primary subjects, relationships
between a single primary subject and background characters, and relationships involving multiple
primary subjects and background characters. The dataset further includes:

» Spatial relation tasks: These tasks focus on relative spatial positioning, such as left/right,
above/below, etc.

* Attribute association tasks: These tasks require the model to capture associations between
attributes (e.g., color, category) and objects, such as "The cat likes the golden dog."

* Role interaction tasks: For example, "The mother is holding the child, and the father is
watching the child," requiring the model to understand interactions between roles.

* Environmental response tasks: Such as "The sunflower faces the sun," testing whether the
model can infer how objects respond to environmental changes.

Positive and negative example generation strategy. In the dataset generation process, a unique
predefined rule is used to determine positive examples. For negative examples, we randomly select
one or more conditions from the rule and invert them, ensuring that at least one condition is violated.
This approach guarantees that positive examples strictly follow the predefined rule, while negative

18



Under review as a conference paper at ICLR 2026

examples systematically deviate from it, thereby providing a challenging and diverse dataset for rule
induction.

Evaluating criterion. Each task is evaluated under four different data settings: 1 positive + 1 negative
example; 3 positive + 3 negative examples; 5 positive + 1 negative example; and 5 positive + 5
negative examples. Rules are categorized into four levels of accuracy: Correct, Mostly Correct,
Partially Correct, and Incorrect. Two human evaluators and two Al evaluators were invited to assess
the generated rules. The evaluation process involved:

1. The evaluator is presented the groud-truth rule for each task.

2. Evaluators analyzing whether the generated rule precisely describes all positive examples
while excluding negative ones.

3. Evaluators scoring the rule independently, without additional hints.

Each task was repeated five times, and the final scores were averaged.

G TRAINING AND EVALUATION PROTOCOL ON CLEVR-HANS

The CLEVR-Hans dataset contains three predefined rules; each rule corresponds to about 3,000
images. The standard protocol requires the model to train under the full dataset, which violates the
few-shot setting in our paper. So for MLLMs, we utilize a sample-then-voting strategy. During
training, we group every five images into a small set and conduct MLLM reasoning on each small
set to induce a rule. Concretely, for each class, we randomly sample 300 images from that class,
partition them into groups of 5 (yielding 60 groups), and conduct MLLM reasoning once per group,
which produces up to 60 candidate rules. For each class, we tally which induced rule appears most
frequently among the 60 outputs and treat that majority (representative) rule as the class’s rule. During
testing, the model is asked to classify the testing instances into one of the three classes and the final
result is the classification accuracy. For MLLM methods, we ask the MLLM to compare the test
instance with the learned rule for each class, and make the classify decision accordingly.

H THE USE OF LARGE LANGUAGE MODELS

LLMs play the following roles in this paper:
» The subject of research: We study bridging MLLMs and ILP to solve abductive logic
induction problems.

* The evaluator in the experiments: In Tab.[d] we report the evaluation results from two
MLLMs in the experiment.

* The assistant of writing: We utilize LLMs to help proofread the manuscript and fix writing
issues.
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Attributes:
Color, Shape, Size,

[Generating Capture Tokens ] Number, Material

(pre-defined)

Relationship:
None

. . cyan(cylinder) (wrong),
Generating Logical Facts for  blue(sphere), (redundant)
Positive Examples amall(sphere), (miss)
large(cube),
small(cube), (redundant)
metal(cube). (miss)

[ Generating Logical Facts } ““““““““

black(cube) (wrong),

Generating Logical Facts for  rubber(sphere) (redundant)
Negative Examples small(sphere) (redundant)

### rule set 1: show together
““prolog
show together(Cube,Cylinder,
Sphere) :

[Building Hypothesis Space } large(cube),

large(cylinder), (miss)
grey(cube). (wrong)

Figure 4: Tllustration of ILP-CoT’s stepwise reasoning and typical errors leading to single-inference
failures on CLEVR-Hans. In capturing positive examples, initial inference incorrectly identified
the color of the cube while neglecting essential attributes like size and material. However, the ILP
consistency check triggered a re-evaluation, successfully capturing these attributes subsequently.
For negative examples, although the cube’s color was incorrectly captured, additional false-negative
information generally had limited impact on rule induction. This is because such information must
simultaneously align with incorrect negative captures and true attributes from positive examples, a
scenario highly sparse in hypothesis space. in parallel, redundant logic facts - such as duplicates or
unnecessary attribute assignments - were also frequently observed. While redundant information did
not fundamentally distort the correct hypothesis, it expanded the hypothesis space and introduced
noisy combinations that needed to be pruned during induction. Correctly captured information
effectively filtered redundant combinations from positive examples. In meta-rule construction, despite
initial hypothesis inaccuracies, the derived meta-rules matched those of the correct hypothesis,
significantly narrowing the rule hypothesis space and ensuring accurate rule induction.
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Duplicate-block (wrong)

Add-column(wrong)

E Generati ng Ca th re Tokens ] Spread_horizontally-color_order (wrong)

Gravity_down-square (miss)

expand
fill_empty_spaces
copy_block

{ Generating Logical Facts j

red(objects) (redundant)

dund.

y r
largest(objects) (miss)
square_block(objects) (redundant)

[gravity_fall]_[cluster_color]
cluster_ color(object).
singular_color(object).
only_one(object). (miss)

{Building Hypothesis Space ] [disappear]_[nonzero]

none_zero(objects). (redundant)
disappear(objects). (redundant)
[align]_[vertically_objects_color_red]
red(objects) (wrong)
adjacent(objects)

Figure 5: Illustration of ILP-CoT’s stepwise reasoning and typical errors leading to single-inference
failures on ARC-AGI-1. The following issues were observed across three tasks: (1) Drop: A specific
color falls from the top to the bottom of the screen. (2) Fill: In a 3x3 grid, the largest object is used as
a template to fill all grid sections, where the color of the filled shapes matches the color of the dividing
grid lines. (3) Gravity: Small blocks move toward their corresponding color cluster, and blocks
without a matching color disappear. In the initial inference of the Drop task, the model could not find
a solution that satisfied all three tasks simultaneously. This failure triggered a restart of the ILP-CoT
learning process, eventually leading to a stable solution after identifying the Gravity_Down-Square
transformation criterion. In the Fill task, key attributes such as ’largest’ were initially overlooked,
preventing the ILP from forming a consistent rule across positive examples. Refinement of these
attributes subsequently enabled effective rule learning. In the Gravity task, we demonstrate potential
issues arising during hypothesis-space construction: attributes and relationships were established,
but incorrect associations and redundant logical facts—such as unnecessary or duplicated color and
shape assignments—expanded the hypothesis space and introduced noise. While these redundancies
did not directly invalidate correct rules, they required additional pruning and verification during
ILP induction. Despite this, the model managed to learn suboptimal but practically sufficient rules,
allowing effective generalization on test data.
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Generating Capture
Tokens

Generating Logical Facts for
Positive Examples

Generating Logical Facts

Generating Logical Facts for
Negative Examples

Building Hypothesis Space

attributes: ...

relationships:
sitting_on, next_to,
-

relative_size (miss)

color_golden(dog0).
play_with(cat1,dog1).

color_golden(dog1).
play_with(cat1,dog1). (miss)

color_golden(dog2).
play_with(cat1,dog1). (miss)

back_towards_sun(sunflower3).
facing_towards_sun(sunflower4). (wrong)

facing_towards_sun(sunflower5). (wrong)

### rule set 1: classroom setting

““prolog

classroom_setting(Teacher, Student) :-
standing_in_front_of(Teacher, Student),
sitting_at_desk(Student),
uniform(Teacher), (miss)
school_uniform(Student), (miss)
teaching(Teacher, Student).

Figure 6: Illustration of ILP-CoT’s stepwise reasoning and typical errors leading to single-inference
failures on ILP-CoT-Customization. Four tasks (chair size and person selection, cat-dog inter-
actions, sunflower orientations, and classroom scenarios) highlight common issues: (1) missing
capturing words (e.g., “relative_size” omission); (2) neglecting detected features (e.g., ignoring “uni-
form(Teacher)”); (3) semantic misalignment in capturing words (e.g., inferring “facing_towards_sun”
due to priors); and (4) missing relationships in hypothesis space (e.g., omitting “play_with”). Errors
often stem from MLLMs’ reliance on priors or skipping predicates, leading to incomplete or incorrect

rules.
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