

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ABDUCTIVE LOGICAL RULE INDUCTION BY BRIDGING INDUCTIVE LOGIC PROGRAMMING AND MULTIMODAL LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

We propose ILP-CoT, a method that bridges Inductive Logic Programming (ILP) and Multimodal Large Language Models (MLLMs) for abductive logical rule induction. The task involves both discovering logical facts and inducing logical rules from a small number of unstructured textual or visual inputs, which still remain challenging when solely relying on ILP, due to the requirement of specified background knowledge and high computational cost, or MLLMs, due to the appearance of perceptual hallucinations. Based on the key observation that MLLMs could propose structure-correct rules even under hallucinations, our approach automatically builds ILP tasks with pruned search spaces based on the rule structure proposals from MLLMs, and utilizes ILP system to output rules built upon rectified logical facts and formal inductive reasoning. Its effectiveness is verified through challenging logical induction benchmarks, as well as a potential application of our approach, namely text-to-image customized generation with rule induction. Our code and data are released at <https://anonymous.4open.science/r/ILP-CoT-Ano-83DC/>.

1 INTRODUCTION

Although remarkable progress has been made in improving the deductive reasoning abilities of AI systems (OpenAI, 2024b; Guo et al., 2025), inductive reasoning from raw data, which challenges more on perceiving and understanding complex raw inputs than long-chain deductive reasoning, remains a significant challenge. To pursue this direction, we study the task of abductive logical rule induction, in which the target is to utilize a small number of unstructured textual or visual instances to automatically identify and ground symbolic concepts and then inducing possible logical rules indicated by the instances. This reasoning task involves the dual challenges of both input perception and logical induction. On the one hand, the model needs to extract abstract and transferable symbolic concepts from input instances; on the other hand, utilizing limited instances, it must accurately infer the underlying logical relationships or rules.

Traditionally, abductive logical rule induction can be solved by a two-step pipeline. In the first step, a preprocessing process is performed for visual perception of the symbolic concepts. Afterwards, an external Inductive Logic Programming (ILP) module (Muggleton & De Raedt, 1994; Cropper & Dumančić, 2022) is introduced for logical rule induction. ILP systems are formal logical reasoning systems with strong advantages in terms of interpretability and verifiability. By inductively learning from a finite set of facts and background knowledge, ILP is able to produce logically transparent and auditable rules. From a theoretical perspective, the rules output by ILP can be formally verified, a feature that is particularly important in high-risk scenarios or applications with stringent correctness requirements. However, ILP also faces fundamental challenges, such as relying on structured input data and potential inefficiency in large-scale data settings. In response to these challenges, recent work has begun to explore neurosymbolic methods that integrate deep learning with symbolic logical reasoning (Evans & Grefenstette, 2018; Manhaeve et al., 2018; Dai & Muggleton, 2020; Cunningham et al., 2023; Shindo et al., 2023; 2024). These approaches attempt to use neural networks for perception and representation learning, then employ ILP or other logic-based modules for rule induction and inference. Even though these approaches significantly enlarge the applicability in

real applications, utilizing ILP usually requires to design logical background knowledge by human experts, which is a fundamental obstacle in handling challenging inductive reasoning problems.

With the rise of Multimodal Large Language Models (MLLMs) (OpenAI, 2024a; Liu et al., 2023a; Bai et al., 2023b; Wang et al., 2023b), researchers have begun to explore the application of these powerful models to textual and visual understanding and generation tasks. Due to training on massive datasets, MLLMs already exhibit astonishing performance in handling multimodal inputs, extracting symbolic representations, and mining rich semantic information, making them promising candidates for addressing abductive visual rule induction. However, MLLMs still face multiple bottlenecks in perception and reasoning (Zhang et al., 2023), including hallucination phenomena, highly opaque reasoning processes, and a lack of verifiable logical chains. We discover that these bottlenecks still limit the ability of MLLMs to directly solve abductive logical rule induction, even when guided by Chain-of-Thought (CoT) reasoning (Wei et al., 2022).

As a result, it is difficult to rely solely on traditional ILP approaches or MLLMs to achieve a balanced solution that is robust and interpretable in abductive logical rule abduction. In this work, we propose a hybrid method, ILP-CoT, to bring the best of both worlds. Our approach integrates the ILP system into the CoT reasoning process of MLLMs in a “plug-and-play” manner, forming a fully interpretable reasoning pipeline from start to finish without additional training. Specifically, we leverage the strong cross-modal perception and symbol extraction capabilities of MLLMs to automatically generate initial logical facts, i.e. logical predicates and background knowledge from the input instances, where perceptual hallucinations could exist. Afterwards, based on the key observation that MLLMs could propose structure-correct rules even under hallucinations, our approach introduces a deterministic conversion process to automatically transform the rule structure proposals from MLLMs into ILP meta-rules, realizing the key technical step of building ILP tasks with pruned search spaces. Finally, we dynamically invoke an ILP system to perform formal rule induction, yielding explainable and verifiable rules with rectified logical facts. This division of labor separates the complex symbolic grounding process and reduces the size of the rule hypothesis space, letting ILP focus exclusively on the more compact and structured symbolic data. This approach not only reduces the risk of hallucination during MLLM-driven inference, but also relies on formal verification from ILP to ensure the accuracy and consistency of the rules.

We introduce challenging CLEVR-Hans (Shindo et al., 2024) and ARC (Chollet, 2019; Xu et al., 2023) logical induction benchmarks to systematically verify the efficacy of our approach. Furthermore, we propose a potential application, namely text-to-image customized generation with rule induction. In this task, a small number of images provided by the user are given, including multiple subjects that the user cares about. Furthermore, the images are labeled by the user as “liked” or “disliked”, followed by the preferences of the user for some latent regularities among the subjects, which can be represented by logical rules. We show that our approach enables to induce the latent logical rules from the training images, which can be utilized by downstream pre-trained text-to-image generation models to further generate images following user preferences.

2 RELATED WORK

Avoiding hallucination is a fundamental challenge for Large Language Models (LLMs) (Dasgupta et al., 2022; Saparov & He, 2022). A widely adopted strategy is Retrieval-Augmented Generation (RAG) (Lewis et al., 2020), which utilizes retrieval in external knowledge bases to avoid generating ungrounded contents. Although RAG is effective in reducing factual errors, it is invalid for rectifying fallacious reasoning processes. Furthermore, the requirement of accessing an external knowledge base is somehow limited for solving general reasoning tasks. Recently, there has been a growing trend in research to combine formal methods in LLMs. On the one hand, there have been attempts to use formal programming code (Gao et al., 2023; Li et al., 2023; Chae et al., 2024; Ling et al., 2024) or logical rules (Xu et al., 2024) as intermediate content to generate during CoT reasoning. These studies justify that formalizing the reasoning states can improve the accuracy of the reasoning chain without using external tools. However, it is still challenging to conduct fully reliable reasoning based on this mechanism. On the other hand, the idea of integrating external formal reasoning systems with LLMs has been explored in various reasoning tasks. Some research proposed to transform natural languages into code and further execute them using external symbolic solvers (Wu et al., 2022; He-Yueya et al., 2023; Lyu et al., 2023; Pan et al., 2023a; Ye et al., 2024; Jiang et al., 2024). A major issue is

108 that formalizing natural language into executable code is itself a difficult task, which is also a key
 109 challenge that we try to tackle in our work. In complex reasoning tasks with long reasoning chains,
 110 such as solving mathematical challenges, formal reasoning systems are treated as the sledgehammer
 111 to integrate with LLMs (Trinh et al., 2024). **Unlike existing approaches that focus on deductive**
 112 **reasoning tasks (Pan et al., 2023b; Olausson et al., 2023), our work focuses on inductive reasoning.**
 113 The significant difference lies in that inductive reasoning usually does not challenge the ability to do
 114 long-step reasoning but rather the ability to perceive and understand the input. This makes inductive
 115 reasoning more challenging for MLLMs due to the difficulty in perceiving complex multimodal
 116 inputs. **We also note that this makes our contribution in parallel with multimodal deductive reasoning**
 117 **methods (Wang et al., 2022; Madaan et al., 2023; Gao et al., 2024; Mondal et al., 2024).** The closest
 118 research to ours are Wang et al. (2023a); Qiu et al. (2023) to solve pure textual inductive reasoning.
 119 Their approach also uses LLMs to propose inductive hypothesis in Python and conduct program
 120 execution for correctness verification. In comparison, our approach utilizes a different methodology
 121 of bridging ILP reasoning and MLLMs to address logical induction tasks and alleviate hallucinations.
 122 Research on breaking the perceptual limitations of MLLMs has also received great attention. Existing
 123 approaches utilize scene graph knowledge (Mitra et al., 2023) or visual prompts (Wu et al., 2024),
 124 while formal methods have not received significant attention in MLLMs. The closest idea comes
 125 from visual question answering, in which textual LLMs are integrated with visual perception models
 126 to perform visual reasoning tasks (Hsu et al., 2024; Kamali et al., 2024). Purely textual LLMs rely on
 127 external visual processing models to perceive the input, while the target of our work is to conduct
 128 multimodal abductive induction based on the internal perceptual ability of MLLMs without using
 129 external tools to take the responsibility of perception.

130 3 ILP-CoT

132 3.1 PRELIMINARIES

134 In an abductive logical rule induction task, a small number of textual or visual instances are provided.
 135 Each instance is unstructured without any symbol-related annotations, while is labeled as *positive*
 136 or *negative* based on whether it is consistent with a set of latent logical rules, which describe
 137 regularities among multiple pre-defined subjects existing in all instances¹. The targets are twofold: 1)
 138 transforming the unstructured instances into structured ones to discover the logical facts, i.e. symbolic
 139 concepts about the subjects involved in the latent logical rules, and their corresponding grounding
 140 values; 2) inducing the latent logical rules based on the discovered logical facts.

141 We introduce the ILP-CoT method bridging ILP and MLLMs to effectively solve the abductive
 142 logical rule induction tasks. Fig. 1 illustrates the workflow of ILP-CoT, which integrates the ILP
 143 system into the CoT reasoning process of MLLMs in a “plug-and-play” manner. For better under-
 144 standing the technical design choice, we briefly introduce the reasoning mechanism of ILP systems
 145 following (Cropper & Dumančić, 2022), and refer the detailed introduction of ILP to this literature.

146 **ILP** seeks to identify a set of logical rules H that can explain (or more formally, entail) all positive
 147 examples E^+ while excluding the optional negative examples E^- , based on background knowledge
 148 B ². The positive and negative examples are sets of logical clauses. Each clause, representing one
 149 data instance, is of the form $p(x_1, x_2, \dots, x_m)$, where each x_i is a term representing a subject in
 150 the data, and p is the predicate representing specific logical facts among all x_i . The background
 151 knowledge B contains relations and information indirectly associated with the examples, which are
 152 also sets of logical clauses. To conduct rule induction, ILP systems follow the basic mechanism
 153 common in formal methods: searching in the hypothesis space \mathcal{H} of all possible logical rules to
 154 identify H satisfying the above target. Notably, the background knowledge B can include clauses
 155 representing essential restrictions on the hypothesis space, in special rule structure constraints, to
 156 serve as the inductive bias of the hypothesis space. As in general machine learning problems, properly
 157 choosing the inductive bias would significantly prune the hypothesis space and improve the efficiency
 158 of induction. The basic idea in ILP-CoT is to let MLLMs play the rule of proposing initial (probably
 159 hallucinated) logical facts from the unstructured raw input images and more importantly, the proper
 160 rule structure constraints to build efficiently solvable ILP tasks, and further let the ILP system generate

161 ¹The negative instances are optional to exist in the task.

²We consider the learning from entailment (LFE) setting of ILP.

Figure 1: The ILP-CoT reasoning workflow.

the correct rules based on rectified logical facts with formal inductive reasoning. In the following, we dive into the details of each step of the reasoning process.

3.2 GENERATING INITIAL LOGICAL FACTS

We propose a unified formal procedure to ask MLLM to generate logical facts, serving as the foundation for converting unstructured textual or visual inputs into verifiable symbolic representations. This procedure operates by first prompting the MLLM to propose capture tokens, which are abstract concepts and operators relevant to the domain, and subsequently grounding these tokens into concrete logical predicates for each instance. To accommodate different reasoning complexities, we categorize the generated logical facts into two distinct configurations based on the task type:

State description criteria. For single-state static tasks (e.g., CLEVR-Hans), the logical facts serve as a Criterion. This is a set of attributes and relational predicates, such as $\text{Color-red}(x)$ or $\text{Left-of}(x, y)$, which describes the static configuration of subjects within the input. In this setting, the criterion acts purely as a descriptive symbolization of the raw percept.

Transformation-criterion pairs. For multi-state input-output tasks (e.g., ARC), we extend the representation to a Transformation-Criterion pair. This consists of a transformation operator, which describes the specific action modifying the input state (e.g., Crop, Rotate, Copy), and a corresponding criterion, which serves as the pre-condition facts that must be satisfied to trigger this change. Formally, these pairs encode a conditional implication: a specific transformation is applied if and only if the subject satisfies the criterion constraints.

This unified formulation allows the MLLM to handle both static descriptions and dynamic manipulations within a single pipeline. For instance, in a complex visual reasoning scenario, the MLLM first proposes a transformation–criterion pair such as [Add]–[Color] and [Add]–[Size]. By separating the transformation from the criterion, the MLLM can then extract a criterion $\text{Fur-golden}(x) \wedge \text{Size-small}(x)$ paired with a transformation $\text{Add-toyball}(x)$. This explicitly maps the perceived attributes (a small golden dog) to the corresponding output modification (adding a toy ball), providing a verifiable logical basis for subsequent ILP rule induction.

3.3 BUILDING HYPOTHESIS SPACE WITH RULE STRUCTURE PROPOSAL

Once logical facts have been extracted, the next step is to construct a hypothesis space that enables efficient rule induction with ILP. This serves as the most crucial step in the reasoning pipeline. We adopt a two-substep approach.

Substep 1: Generating rule structure proposals using MLLM. The MLLM is asked to propose a small set of plausible rules that are consistent with the logical facts obtained in the previous step. We name these plausible rules as *rule structure proposals* since we only take their structures for further use instead of their semantics. The key observation for this design choice is that MLLMs could

propose structure-correct rules even under hallucinations. We can utilize this structural information as the proper inductive bias to prune the rule search space. Following rigorous logical reasoning process of ILP, the rule semantics, especially those hallucinated by the MLLM, can be significantly rectified in the induced rules of ILP. For example, when MLLM produces an initial rule "dogs are blue", the ILP module can take the structure "? are ?" and produces its own rule "cats are yellow". Even when the initial rule is fully hallucinated and wrong, the ILP module can still generate a correct rule, or refuse to output any rule when conflicts exist in logical facts.

Substep 2: Transforming proposals into logical meta-rules. The rule structure proposals are transformed into a set of *meta-rules* compatible with Metagol (Muggleton et al., 2015) by replacing specific predicates with placeholders and constants with variables. Metagol also serves as our design choice of the ILP method for logical rule induction. Among ILP approaches, Metagol has a particular way to define the hypothesis space, which is the meta-rules. Meta-rule is a high-level language bias that directly specify the structure of the rules. For example, if we use meta-rule $[[P, Q, R], [P, A, B], [[Q, A], [R, B]]]$, then we can only learn the rule of the form "To prove $P(A, B)$, prove $Q(A)$ and $R(B)$ ". If correctly defined, this is a more effective constraint for the hypothesis space than other ILP approaches using low-level language biases, e.g., mode/type declarations, bounds on clause length or depth, and coverage penalties. On the other hand, a major challenge for Metagol is to correctly pre-define these meta-rules, which requires expert knowledge traditionally. Our approach guides the MLLM to automatically find the meta-rules in the CoT process, tackling this essential challenge. The obtained meta-rules then serves as a strong structural bias for Metagol, directly constraining admissible rule forms and the corresponding search space, thereby producing efficient, interpretable candidates and enabling rapid convergence in the ILP step.

Remark. As structure templates, the meta-rules have direct correspondence with the plausible rules given by the MLLM. In substep 1, we require the MLLM to output the plausible rules in Prolog form. Then the transformation to meta-rules can be done using a fully fixed and automated process. No hallucination will appear in this process. Note that this is also true when other ILP methods are utilized in the ablation study in Sec. 4.5: The structure constraints for them can also be transformed from the rule structure proposals, with their corresponding automated processes.

3.4 RULE INDUCTION WITH ILP

Having established logical facts and an optimized hypothesis space through meta-rules, the next step employs Metagol for rule induction. Metagol systematically assembles logical facts into candidate rules guided by structural constraints imposed by the meta-rules. Candidate rules that satisfy the initial correctness criteria are then transformed into simplified natural language statements and expanded into detailed descriptions via MLLMs. The final rule selection is driven by maximizing a weighted scoring metric:

$$\hat{H} = \arg \max_{H \in \mathcal{H}} \left(\alpha \cdot \text{AvgScore}_{E^+}(H) - (1 - \alpha) \cdot \text{AvgScore}_{E^-}(H) \right), \quad (0 < \alpha < 1), \quad (1)$$

where $\text{AvgScore}_{E^+}(H)$ and $\text{AvgScore}_{E^-}(H)$ denote the average semantic alignment scores for positive and optional negative examples, respectively. In the experiments, for CLEVR-Hans and ARC benchmarks, we utilize the base MLLM itself to output the scores. For text-to-image customization, we utilize the CLIP embedding similarity (Radford et al., 2021) between images and rules as the scores. The weight α can be adjusted empirically, which is set between 0.7 and 0.8 in our experiments.

3.5 FAILURE REFLECTION

When the pipeline fails to produce a rule consistent with both positive and negative examples and to pass ILP verification, a failure-reflection loop is activated to diagnose root causes and iteratively repair the process. The loop begins by scrutinizing hallucinations in symbol grounding: compound facts are decomposed into single facts, and each fact is independently re-queried by the MLLM. If the fact is returned as false, it is replaced and reasoning is restarted—for example, re-querying `face_to_sun(sunflower)` and `direction_upright(sunflower)` separately rather than jointly. If this refinement remains insufficient, the completeness of the hypothesis space is assessed via knowledge cropping, prompting the MLLM to selectively discard the bottom 20% of predicates by similarity in order to compress and denoise the space. The MLLM then regenerates relations, abstracts them into new meta-rules, and the Metagol search is restarted. If the refined space

270
271 Table 1: Comparison of ILP-CoT and baseline
272 methods on CLEVR-Hans (Accuracy in %).
273

Model	Val	Test
Direct Predict (Qwen-7B)	54.76	51.60
Custom CoT (Qwen-7B)	34.44	35.85
ILP-CoT (Qwen-7B)	88.37	81.85
NEUMANN (w/o pretrain)	67.41	68.15
NEUMANN	96.67	97.43

274
275 Table 2: ILP backend ablation on CLEVR-Hans
276 (Accuracy %). See details in Sec. 4.5.
277

ILP method	Validation	Test
ILASP	Out-of-Time	Out-of-Time
Popper	25.53	46.74
Metagol (Ours)	88.37	81.85

278
279 still fails to yield valid rules, the failure is attributed to deficiencies in the initial design or selection of
280 capture tokens.
281282
283

4 EXPERIMENTS

284
285 **Benchmarks.** We evaluate ILP-CoT’s rule induction capabilities and its generalization performance
286 across three logical induction benchmarks: CLEVR-Hans (Shindo et al., 2024), ARC-AGI (Chollet,
287 2019), and 1D-ARC (Xu et al., 2023). We also propose ILP-CoT-Customization, a novel dataset for
288 text-to-image customized generation with rule induction. These datasets represent a broad range of
289 complexities, including both single-state and multi-state inference tasks, as well as both textual and
290 visual modalities, enabling comprehensive evaluation of ILP-CoT’s inductive reasoning abilities.
291292 **Custom CoT.** To verify the effectiveness of the ILP module, we introduce an ablation baseline in
293 all benchmarks, Custom CoT, which shares the major workflow designs of ILP-CoT, but does not
294 utilize ILP to produce the final rule and relies on the MLLM itself. The detailed implementation is
295 introduced in Sec. D.296
297

4.1 CLEVR-HANS

298
299 CLEVR-Hans (Shindo et al., 2024) is a synthetic visual reasoning benchmark derived from the
300 CLEVR dataset (Johnson et al., 2017), specifically constructed to evaluate the model’s capability to
301 learn abstract relational rules and overcome visual confounds. It consists of image data generated
302 according to a set of three predefined logical rules (e.g., images containing a grey sphere and a
303 red cube), and the objective is to identify and learn these implicit rules from training examples.
304 Models are evaluated on their ability to accurately classify unseen images based on the learned
305 rules. The CLEVR-Hans dataset is particularly challenging because the training and validation sets
306 contain deliberately introduced confounding factors (e.g., a large cube consistently appearing in
307 grey), encouraging models to incorrectly associate these superficial correlations with classification
308 criteria. Conversely, the test set explicitly removes these confounds, thereby testing a model’s true
309 generalization ability and its robustness against superficial correlation. Note that we follow the
310 standard evaluation protocol of CLEVR-Hans, which is relatively different from other benchmarks in
311 the paper. The details are introduced in Sec. G.
312313 **Results.** In our experiment, we evaluate the performance of ILP-CoT alongside several compara-
314 tive baselines: the current state-of-the-art NEUMANN (Shindo et al., 2024), NEUMANN without
315 pre-training its perception model, Custom CoT, and the Direct Predict. NEUMANN, leveraging a
316 Slot Attention-based perception model (Locatello et al., 2020) pre-trained specifically on the CLEVR
317 dataset and supplemented by carefully designed symbolic background knowledge, effectively avoids
318 learning the confounding features, thus demonstrating high accuracy. However, when NEUMANN’s
319 perception component is not pre-trained, its performance substantially deteriorates, underscoring tradi-
320 tional ILP models’ dependency on extensive perceptual pre-training. ILP-CoT, using the Qwen-7B
321 model (Bai et al., 2023a), faces challenges primarily related to grounding visual facts correctly—such
322 as partially capturing image facts or incorrectly identifying attributes. Nevertheless, through the cross-
323 validation of induced rules across positive and negative examples, ILP-CoT effectively mitigates these
324 perceptual errors to a considerable extent. A notable limitation observed was the hallucination errors
325 in applying rules during classification tasks, which hindered the strict adherence to induced rules.
326 Despite these perceptual limitations, ILP-CoT significantly surpasses the Custom CoT, Direct Predict
327 and NEUMANN without pre-training, while performing competitively with the fully pre-trained

324
325
326 Table 3: Accuracy(%) and hamming distance comparison on ARC-AGI-1.
327
328
329
330

	Direct Predict	Custom-CoT		ILP-CoT		
	Accuracy	Hamming Distance	Accuracy	Hamming Distance	Accuracy	Hamming Distance
GPT-4o	5.25	23.90	9.25	22.79	10.25	21.65
Gemini-2.0 Flash	7.00	36.50	10.00	24.60	11.25	22.50
Qwen-max	5.50	32.99	7.25	30.65	7.50	28.33

331
332 NEUMANN model. However, Custom CoT achieved the lowest scores among all evaluated models,
333 primarily due to severe hallucination issues caused by redundant and overly verbose rules learned by
334 the Qwen-7B model. Specifically, when Custom CoT applies these excessively detailed rules during
335 validation and testing, the abundance of misleading and noisy inputs overwhelms Qwen-7B’s perceptual
336 and reasoning capabilities, resulting in significant inaccuracies and instability in classification
337 performance. The quantitative evaluation results clearly reflect these observations, where ILP-CoT
338 demonstrates robust rule generalization capabilities, maintaining performance close to the NEU-
339 MANN benchmark and significantly outperforming models without extensive perceptual pre-training.
340 This confirms the advantage of combining symbolic reasoning with MLLMs to effectively address
341 perceptual grounding limitations, a critical aspect of visual reasoning benchmarks like CLEVR-Hans.
342

343 4.2 ARC BENCHMARKS

344
345 **ARC-AGI.** First, we conduct experiments on the ARC-AGI-1 benchmark (Chollet, 2019), which is
346 designed to rigorously test inductive reasoning in AI systems. Our study focuses on the 400 text-based
347 tasks in its training set. Each task consists of input–output example pairs in matrix form, requiring
348 models to infer latent rules or abstract patterns from few examples and then apply them to unseen
349 cases. The tasks span pattern recognition, numerical operations, and spatial relations, making it a
350 stringent testbed for inductive reasoning methods.

351 We evaluate our method on ARC-AGI-1 using three state-of-the-art MLLMs as base models—GPT-
352 4o (OpenAI, 2024a), Gemini-2.0 Flash (Gemini Team, Google DeepMind, 2025), and Qwen-
353 Max (Qwen Team, 2025)—and compare three prompting strategies: Direct Predict, Custom CoT, and
354 ILP-CoT. We refer the official leaderboard³ for the current best performing models. We note that as
355 with all CoT approaches, the performance of our approach relies on the choice of the base model.
356 Therefore, the focus of our experiments is to verify how much our approach improves the base model,
357 rather than achieving the best performance over all models.

358 **Results.** Custom CoT notably improves upon the Direct Predict by abstracting and streamlining
359 intermediate reasoning steps, emphasizing critical transformation criteria extracted during induction.
360 However, we observe that naïvely incorporating all intermediate reasoning into the CoT prompts
361 adversely impacts accuracy, often leading models to deviate progressively from correct solutions.
362 Thus, the effectiveness of our Custom CoT underscores the necessity of carefully curated abstraction
363 in intermediate reasoning steps. In the ILP-CoT framework, we integrate explicit logical reasoning
364 through ILP into the Custom CoT process. This addition not only significantly enhances accuracy
365 compared to both Direct Predict and Custom CoT settings but also reduces hallucination errors
366 typically seen in multimodal reasoning tasks.

367 To better capture performance differences, we report Hamming distances between model-generated
368 outputs and the ground truth. This measure highlights subtle yet critical improvements: ILP-CoT
369 consistently yields lower Hamming distances, indicating that the generated solutions are closer in
370 structure to the intended outcomes even when exact matches are not achieved. This observation
371 underscores ILP-CoT’s capability to refine its reasoning toward near-correct outputs through rigorous
372 logical induction, verification, and rectification. (Detailed qualitative analyses in the appendix
373 illustrate specific cases in which ILP-CoT corrects or substantially mitigates errors that persist under
Default and Custom CoT settings.)

374 **Additional experiments on 1D-ARC.** To further probe ILP-CoT on smaller base models, we also
375 include a lightweight evaluation under the 1D-ARC benchmark (Xu et al., 2023), which is discussed
376 in Sec. A. The results likewise show consistent gains for ILP-CoT over Direct Predict on two pure
377

³<https://arcprize.org/leaderboard>

378
 379
 380
 381
 382
 383
 384 Table 4: Induction performance across varying numbers of positive and negative examples under
 385 ILP-CoT-Customization. Each cell reports the proportions of Completely Correct / Mostly Correct /
 386 Partially Correct / Incorrect (See Sec. F for details of evaluation criterion), including the evaluations
 387 from human and AI evaluators. The human evaluation is averaged over participants.
 388

	1P1N	3P3N	5P1N	5P5N
Human				
Direct Predict Pos. Only	0.20/0.27/0.36/0.17	0.31/0.27/0.22/0.19	0.38/0.29/0.26/0.06	0.38/0.29/0.26/0.06
Custom CoT Pos. Only	0.37/0.27/0.33/0.03	0.27/0.35/0.33/0.05	0.42/0.24/0.28/0.05	0.42/0.24/0.28/0.05
Direct Predict	0.11/0.14/0.42/0.33	0.12/0.16/0.26/0.45	0.15/0.18/0.36/0.31	0.14/0.17/0.37/0.32
Custom CoT	0.38/0.27/0.30/0.04	0.19/0.39/0.37/0.05	0.37/0.26/0.33/0.04	0.34/0.26/0.32/0.08
ILP-CoT	0.53/0.21/0.25/0.01	0.64/0.21/0.13/0.02	0.58/0.24/0.17/0.01	0.63/0.27/0.09/0.00
Gemini 2.5 Pro				
Direct Predict Pos. Only	0.22/0.24/0.42/0.12	0.29/0.28/0.22/0.21	0.32/0.28/0.38/0.02	0.32/0.28/0.38/0.02
Custom CoT Pos. Only	0.32/0.26/0.39/0.03	0.19/0.39/0.35/0.07	0.39/0.17/0.41/0.03	0.39/0.17/0.41/0.03
Direct Predict	0.17/0.15/0.44/0.23	0.19/0.20/0.26/0.35	0.07/0.20/0.42/0.31	0.13/0.10/0.40/0.37
Custom CoT	0.37/0.23/0.36/0.04	0.10/0.48/0.39/0.03	0.28/0.25/0.44/0.03	0.28/0.18/0.46/0.08
ILP-CoT	0.52/0.13/0.34/0.01	0.56/0.24/0.17/0.03	0.53/0.20/0.25/0.02	0.59/0.28/0.12/0.01
GPT-5 Thinking				
Direct Predict Pos. Only	0.12/0.28/0.43/0.16	0.20/0.21/0.26/0.33	0.32/0.29/0.28/0.11	0.32/0.29/0.28/0.11
Custom CoT Pos. Only	0.36/0.20/0.43/0.01	0.16/0.28/0.51/0.05	0.36/0.19/0.33/0.12	0.36/0.33/0.19/0.12
Direct Predict	0.06/0.09/0.52/0.33	0.04/0.11/0.22/0.63	0.24/0.09/0.39/0.28	0.13/0.18/0.43/0.26
Custom CoT	0.33/0.25/0.36/0.06	0.06/0.34/0.53/0.07	0.32/0.19/0.43/0.06	0.32/0.22/0.34/0.12
ILP-CoT	0.49/0.24/0.27/0.00	0.57/0.24/0.17/0.02	0.53/0.30/0.16/0.01	0.61/0.28/0.11/0.00

414
 415 Figure 2: The figure presents four cases of customized image generation, showing training examples
 416 (top: positive, bottom: negative) and images generated with or without rule-based prompts. Rules,
 417 highlighted in red, ensure relational constraints are preserved in diverse contexts.
 418

419 textual LLMs, Qwen3-8B and Qwen3-14B (Yang et al., 2025), with larger improvements for the
 420 smaller model. This enhances the conclusion that formal induction and symbolic verification benefit
 421 models across scales.

4.3 TEXT-TO-IMAGE CUSTOMIZATION

422 We evaluate ILP-CoT on the challenging ILP-CoT-Customization task, which requires abducting
 423 generalized rules across diverse subjects and relies on broad background knowledge. The details
 424 of the dataset are introduced in Sec. F. To thoroughly assess our approach, we consider four data
 425 configurations: minimal (1 positive + 1 negative example), intermediate (3 positive + 3 negative
 426 examples), moderate (5 positive + 1 negative example), and rich (5 positive + 5 negative examples).
 427 For each configuration, rules produced by the models are judged by two human raters and two AI raters
 428 (Gemini Pro 2.5 (Comanici et al., 2025) and GPT-5 Thinking (OpenAI, 2025)), with all evaluators
 429 assigning one of four categories: Completely Correct, Mostly Correct, Partially Correct, or Incorrect.
 430

432 The evaluation criterion is introduced in Sec. F. We report the non-averaged human-only and AI-only
 433 results in Tab. 4. The models we benchmark include several GPT-4o (OpenAI, 2024a) variants under
 434 different prompting strategies—Direct Predict with or without negative examples, Custom CoT with
 435 or without negative examples—and ILP-CoT. All models output natural-language rule descriptions;
 436 ILP-CoT additionally induces intermediate Prolog-form rules that are then translated into natural
 437 language while preserving logical fidelity.

438 **Results.** Across all data regimes, ILP-CoT attains the highest rule quality and shifts the error mass up-
 439 ward—from “incorrect/partial” toward “mostly/fully correct”—while substantially reducing outright
 440 incorrect rules (Tab. 4). A key contrast emerges when negative examples are added to non-formal
 441 baselines: rather than helping, they often reduce the fully correct rate relative to positive-only vari-
 442 ants. This suggests that, absent a formal mechanism, negatives fail to become binding constraints;
 443 instead, they expand a noisy hypothesis space, encourage patchwork exception rules, and intro-
 444 duce contradictions across chain-of-thought steps—ultimately degrading the precision of necessary
 445 conditions. By design, ILP-CoT treats negatives as hard constraints: symbolic induction coupled
 446 with formal verification prunes spurious hypotheses early, and a verify–revise loop repairs missing
 447 conditions with targeted updates rather than lengthening unstable explanations. Consequently, each
 448 example—positive or negative—contributes constraint information, yielding more stable scaling
 449 with data and better data efficiency in low-data regimes. Additionally, we illustrate ILP-CoT’s
 450 practical advantages through customized image generation tasks. Incorporating learned rules sig-
 451 nificantly enhances the performance of generative models by ensuring relational constraints critical
 452 to user-specified contexts are preserved (Fig. 2 3). We utilize FLUX (Black Forest Labs, 2024) as
 453 the generative model, training it on provided examples. Initially, attempts to generate new images
 454 without explicitly specifying relational constraints observed in the training data resulted in outputs
 455 that failed to maintain these constraints. However, by explicitly encoding relational constraints
 456 derived from training examples into prompts, FLU reliably generated images adhering faithfully to
 457 these constraints. Further details of the customized generation method are introduced in Sec.E.

458 4.4 MLLM HALLUCINATION ANALYSIS AND ILP RECTIFICATION EFFICACY

460 To further analyze what hallucinations can appear for MLLMs in the tasks, and the effectiveness of ILP
 461 on rectifying them, we conduct both quantitative and qualitative analysis. The quantitative analysis is
 462 conducted on CLEVR-Hans. We report the rate of appearance for all kinds of hallucinations, namely
 463 missing, redundant, and wrong, for both logical facts and rule proposals from MLLMs, in Tab. 7. We
 464 observe that the major error type lies in missing and generating redundant logical facts, which lead to
 465 significantly bad quality in rule generation. This shows the native property of inductive reasoning,
 466 where the ability to correctly perceive and understand the input semantics lies in the most crucial
 467 ability for solving the tasks. Furthermore, we report the success rates of correcting the errors when
 468 ILP-CoT is adopted in Tab. 8. The results show the effectiveness of our approach, in special for
 469 rectifying missing and wrong facts. For intuitive illustration, we further provide qualitative analysis
 470 on examples of MLLM hallucinations in different benchmarks in Fig. 4 5 6.

471 **Meta-rule generation under hallucination.** To justify that MLLM can generate structure-correct
 472 rules even under hallucinations, we report the proportion of MLLM-generated rules that lead to correct
 473 meta-rules while themselves are incorrect, as illustrated in Tab. 10. The results show that among the
 474 semantic-wrong hypotheses generated by MLLM, the proportion of rules that remain structure-correct
 475 is significantly larger than the structure-incorrect ones. Afterwards, using the correctly generated
 476 meta-rules, ILP then fixes the remaining semantic errors using positive and negative examples. This
 477 is why the final rules can be correct even when raw hypotheses can be very wrong.

478 4.5 ABLATIONS ON ILP METHODS

480 To justify the advantage of using meta-rules as the rule structure constraints in our pipeline, we
 481 conduct ablations on alternative choice of ILP methods in our approach. We replace Metagol with
 482 two advanced ILP approaches, Popper (Cropper & Morel, 2021) and ILASP (Law et al., 2014), which
 483 are based on answer set programming mechanisms and utilize other types of inductive biases on the
 484 search space, declarations and modes, instead of meta-rules. Except for ILP methods, we keep all
 485 other workflows unchanged in the experiments. Note that for fair comparison, the inductive biases
 486 for them are also transformed from the same plausible rules from MLLM, with their corresponding

486 automated processes. The results in Tab. 2 verifies our discussions in Sec. 3.3. Popper achieves sub-
 487 optimal performance due to less-informative hypothesis space. ILASP can not complete search within
 488 our time constraint (5 minutes) for each instance, while our approach usually complete searching
 489 within 10 seconds. Meta-rules, which is utilized by Metagol as the structure inductive bias, show
 490 significant advantages as the structural inductive bias to be used in our method.

491
 492
 493 4.6 DISCUSSION
 494
 495

496 **Time cost.** In our experiments, we set a maximum limit of 5 reflection loops to prevent indefinite
 497 execution, and on average, the system usually requires more than 2 reflection iterations to successfully
 498 induce a valid rule. In terms of specific runtime for each stage, the fact-capturing process performed
 499 by the MLLM typically takes between 5 to 7 seconds. For logical rule induction, we enforce a strict
 500 timeout of 20 seconds for the ILP solver, although in practice the solving process usually completes
 501 within 8 to 12 seconds.

502
 503 **Failure reflection.** In the experiments, we do not explicitly set the number of retries for each method.
 504 The reflection is triggered only when the method can be aware of its failure. In contrast to other
 505 methods, for which the reflection should be decided by the MLLM itself, ILP-CoT incorporates
 506 reflection triggered by the formal detection of failures during rule induction. This phase is not
 507 controlled by the base MLLM but by ILP-CoT itself, which evaluates the consistency of learned rules
 508 and triggers reflection when inconsistencies are detected.

509 To justify the advantage of utilizing ILP for failure reflection, we report reflection triggering rates
 510 of GPT-4o under the ILP-CoT-Customization 3P3N experiment in Tab. 9. The reflection loop itself
 511 is a key contributor to ILP-CoT’s robustness. 87.2% of cases enter the loop exactly because no
 512 consistent rule is learned initially. When we replace the ILP guided trigger with purely LLM-based
 513 self-evaluation, GPT-4o never flags its own rules as incorrect when judging only on positive examples,
 514 and when given both positive and negative examples it chooses to restart on only 6.3% of cases. In
 515 contrast, the ILP-guided trigger reliably detects inconsistent rules and activates the reflection loop
 516 on precisely those instances where the current hypothesis is provably inadequate. Combined with
 517 the verify-revise procedures, this targeted triggering turns reflection into a principled debugging
 518 mechanism, yielding substantially higher coverage and precision with minimal additional cost.

519
 520 5 CONCLUSION
 521
 522

523 In this work, we study the task of abductive logical rule induction by using Multimodal Large
 524 Language Models (MLLMs). We propose ILP-CoT, a training-free method to integrate the inductive
 525 logic programming (ILP) system into the Chain-of-Thought (CoT) process. The key technical
 526 contribution lies in proposing a rule structure proposal conversion method to build ILP tasks with
 527 pruned search spaces, and utilize ILP to generate trustworthy rules based on formal inductive
 528 reasoning. We also propose the task of text-to-image customized generation with rule induction as a
 529 potential application our approach.

530 **Limitations and future work.** We identify two main limitations of current multimodal large
 531 language models (MLLMs) when applying our rule induction framework. First, hallucinations increase
 532 significantly as the number of subjects in an image grows. In such cases, our approach may require
 533 many reflection iterations, which leads to substantial computational and time costs. A promising
 534 research direction is to develop more efficient fact-discovery strategies, particularly ones that can be
 535 activated when the ILP module detects initial hallucinations. Second, successfully inducing rules in
 536 our framework critically depends on proposing correct meta-rules. Our current design assumes that
 537 MLLMs are capable of generating rules with syntactically correct structures. This assumption may
 538 break down for more complex ground-truth rules, such as those involving functional relationships.
 539 Future work could focus on further simplifying the construction of the hypothesis space and reducing
 540 reliance on the MLLM’s ability to propose high-quality rule structures.

540 REPRODUCIBILITY STATEMENT
541542 We have included the anonymous link of our code and data in the abstract. The code and data will
543 also be open-released upon acceptance, which will serve as the reliable resource to reproduce our
544 method and results.
545546 REFERENCES
547548 Jinze Bai, Shuai Bai, Yunfei Chu, and *et al.* Qwen technical report. arXiv preprint arXiv:2309.16609,
549 2023a. URL <https://arxiv.org/abs/2309.16609>. Introduces the open-weight model
550 *Qwen-7B* and its chat variant.
551552 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
553 and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
554 text reading, and beyond. 2023b.
555556 Black Forest Labs. Flux: Transformer-powered flow models at scale. <https://bfl.ai/announcements/24-08-01-bfl>, 2024. Accessed: 2025-05-15.
557558 Hyungjoo Chae, Yeonghyeon Kim, Seungone Kim, Kai Tzu-iunn Ong, Beong-woo Kwak, Moohyeon
559 Kim, Seonghwan Kim, Taeyoon Kwon, Jiwan Chung, Youngjae Yu, et al. Language models as
560 compilers: Simulating pseudocode execution improves algorithmic reasoning in language models.
arXiv preprint arXiv:2404.02575, 2024.
561562 François Fleuret. Abstraction and reasoning corpus for artificial general intelligence (arc-agi), 2019.
563 URL <https://arcprize.org/arc-agi>.
564565 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
566 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
567 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.
568569 Andrew Cropper and Sebastijan Dumančić. Inductive logic programming at 30: a new introduction.
570 *Journal of Artificial Intelligence Research*, 74:765–850, 2022.
571572 Andrew Cropper and Rolf Morel. Learning programs by learning from failures. *Machine Learning*,
110:801–856, 2021. doi: 10.1007/s10994-020-05934-z.
573574 Daniel Cunningham, Mark Law, Jorge Lobo, and Alessandra Russo. Ffnsl: feed-forward neural-
575 symbolic learner. *Machine Learning*, 112(2):515–569, 2023.
576577 Wang-Zhou Dai and Stephen H Muggleton. Abductive knowledge induction from raw data. arXiv
preprint arXiv:2010.03514, 2020.
578579 Ishita Dasgupta, Andrew K Lampinen, Stephanie CY Chan, Antonia Creswell, Dharshan Kumaran,
580 James L McClelland, and Felix Hill. Language models show human-like content effects on
581 reasoning. arXiv preprint arXiv:2207.07051, 2(3), 2022.
582583 Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. *Journal of
Artificial Intelligence Research*, 61:1–64, 2018.
584585 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
586 Graham Neubig. Pal: Program-aided language models. In *International Conference on Machine
Learning*, pp. 10764–10799. PMLR, 2023.
587588 Timin Gao, Peixian Chen, Mengdan Zhang, Chaoyou Fu, Yunhang Shen, Yan Zhang, Shengchuan
589 Zhang, Xiawu Zheng, Xing Sun, Liujuan Cao, et al. Cantor: Inspiring multimodal chain-of-thought
590 of mllm. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 9096–9105,
2024.
591592 Mengmeng Ge, Xu Jia, Takashi Isobe, Xiaomin Li, Qinghe Wang, Jing Mu, Dong Zhou, Li Wang,
593 Huchuan Lu, Lu Tian, et al. Customizing text-to-image generation with inverted interaction. In
Proceedings of the 32nd ACM International Conference on Multimedia, pp. 10901–10909, 2024.
594

594 Gemini Team, Google DeepMind. Gemini 2.0 flash model card. Technical model card, pub-
 595 lished 15 Apr 2025, 2025. URL <https://storage.googleapis.com/model-cards/documents/gemini-2-flash.pdf>.

596

597 Yuchao Gu, Xintao Wang, Jay Zhangjie Wu, Yujun Shi, Yunpeng Chen, Zihan Fan, Wuyou Xiao,
 598 Rui Zhao, Shuning Chang, Weijia Wu, et al. Mix-of-show: Decentralized low-rank adaptation for
 599 multi-concept customization of diffusion models. *Advances in Neural Information Processing
 600 Systems*, 36, 2024.

601

602 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 603 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 604 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

605

606 Joy He-Yueya, Gabriel Poesia, Rose E Wang, and Noah D Goodman. Solving math word problems
 607 by combining language models with symbolic solvers. *arXiv preprint arXiv:2304.09102*, 2023.

608

609 Joy Hsu, Jiayuan Mao, Josh Tenenbaum, and Jiajun Wu. What's left? concept grounding with
 610 logic-enhanced foundation models. *Advances in Neural Information Processing Systems*, 36, 2024.

611

612 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
 613 Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*,
 2021.

614

615 Dongwei Jiang, Marcio Fonseca, and Shay B Cohen. Leanreasoner: Boosting complex logical
 616 reasoning with lean. *arXiv preprint arXiv:2403.13312*, 2024.

617

618 Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and
 619 Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
 620 reasoning. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
 (CVPR)*, July 2017.

621

622 Danial Kamali, Elham J Barezi, and Parisa Kordjamshidi. Nesycoco: A neuro-symbolic concept
 623 composer for compositional generalization. *arXiv preprint arXiv:2412.15588*, 2024.

624

625 Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
 626 customization of text-to-image diffusion. In *Proceedings of the IEEE/CVF Conference on Computer
 627 Vision and Pattern Recognition*, pp. 1931–1941, 2023.

628

629 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

630

631 Mark Law, Alessandra Russo, and Krysia Broda. Inductive learning of answer set programs. In
 632 *Logics in Artificial Intelligence (JELIA 2014)*, volume 8761 of *Lecture Notes in Computer Science*,
 633 pp. 311–325, Cham, 2014. Springer. doi: 10.1007/978-3-319-11558-0_22.

634

635 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 636 Heinrich Kütter, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
 637 tion for knowledge-intensive nlp tasks. *Advances in Neural Information Processing Systems*, 33:
 638 9459–9474, 2020.

639

640 Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey Levine,
 641 Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-augmented
 642 code emulator. *arXiv preprint arXiv:2312.04474*, 2023.

643

644 Wang Lin, Jingyuan Chen, Jiaxin Shi, Yichen Zhu, Chen Liang, Junzhong Miao, Tao Jin, Zhou Zhao,
 645 Fei Wu, Shuicheng Yan, et al. Non-confusing generation of customized concepts in diffusion
 646 models. *arXiv preprint arXiv:2405.06914*, 2024.

647

648 Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao Su.
 649 Deductive verification of chain-of-thought reasoning. *Advances in Neural Information Processing
 650 Systems*, 36, 2024.

651

652 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*,
 653 2023a.

648 Zhiheng Liu, Yifei Zhang, Yujun Shen, Kecheng Zheng, Kai Zhu, Ruili Feng, Yu Liu, Deli Zhao,
 649 Jingren Zhou, and Yang Cao. Cones 2: Customizable image synthesis with multiple subjects. In
 650 *Proceedings of the 37th International Conference on Neural Information Processing Systems*, pp.
 651 57500–57519, 2023b.

652 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
 653 Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention.
 654 *Advances in neural information processing systems*, 33:11525–11538, 2020.

655 Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
 656 and Chris Callison-Burch. Faithful chain-of-thought reasoning. *arXiv preprint arXiv:2301.13379*,
 657 2023.

658 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 659 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 660 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.

661 Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
 662 DeepProbLog: Neural probabilistic logic programming, 2018.

663 Chancharik Mitra, Brandon Huang, Trevor Darrell, and Roei Herzig. Compositional chain-of-thought
 664 prompting for large multimodal models. *arXiv preprint arXiv:2311.17076*, 2023.

665 Debjyoti Mondal, Suraj Modi, Subhadarshi Panda, Rituraj Singh, and Godawari Sudhakar Rao.
 666 Kam-cot: Knowledge augmented multimodal chain-of-thoughts reasoning. In *Proceedings of the
 667 AAAI conference on artificial intelligence*, volume 38, pp. 18798–18806, 2024.

668 Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and methods. *The
 669 Journal of Logic Programming*, 19:629–679, 1994.

670 Stephen H Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. Meta-interpretive learning
 671 of higher-order dyadic datalog: Predicate invention revisited. *Machine Learning*, 100(1):49–73,
 672 2015.

673 Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang, Armando Solar-Lezama, Joshua Tenenbaum,
 674 and Roger Levy. Linc: A neurosymbolic approach for logical reasoning by combining language
 675 models with first-order logic provers. In *Proceedings of the 2023 Conference on Empirical Methods
 676 in Natural Language Processing*, pp. 5153–5176, 2023.

677 OpenAI. Hello GPT-4o, 2024a. URL <https://openai.com/index/hello-gpt-4o/>.

678 OpenAI. Learning to reason with llms, 2024b. URL <https://openai.com/index/learning-to-reason-with-llms/>.

679 OpenAI. Introducing gpt-5, 2025. URL <https://openai.com/index/introducing-gpt-5/>.

680 Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empowering
 681 large language models with symbolic solvers for faithful logical reasoning. *arXiv preprint
 682 arXiv:2305.12295*, 2023a.

683 Yuhao Pan, Yu Zhang, Xintao Li, Yingqi Li, Wei Lu, Hongyu Li, Zhi Li, Bo Wang, Wei Wei, and
 684 Zhiqiang Yang. Logic-lm: Empowering large language models with symbolic solvers for faithful
 685 logical reasoning. *arXiv preprint arXiv:2305.12295*, 2023b. URL <https://arxiv.org/abs/2305.12295>.

686 Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar, Valentina Pyatkin, Chandra Bhagavatula,
 687 Bailin Wang, Yoon Kim, Yejin Choi, Nouha Dziri, et al. Phenomenal yet puzzling: Testing
 688 inductive reasoning capabilities of language models with hypothesis refinement. *arXiv preprint
 689 arXiv:2310.08559*, 2023.

690 Qwen Team. Qwen2.5-max: Exploring the intelligence of a large-scale moe model. Project blog
 691 post, 28 Jan 2025, 2025. URL <https://qwenlm.github.io/blog/qwen2.5-max/>.
 692 Describes the proprietary hosted model family *qwen-max-2025-01-25*.

702 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 703 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 704 Learning transferable visual models from natural language supervision. In *Proceedings of the 38th*
 705 *International Conference on Machine Learning (ICML)*, pp. 8748–8763, 2021.

706

707 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 708 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Proceed-
 709 ings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22500–22510,
 710 2023.

711

712 Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
 713 of chain-of-thought. *arXiv preprint arXiv:2210.01240*, 2022.

714

715 Qingyu Shi, Lu Qi, Jianzong Wu, Jinbin Bai, Jingbo Wang, Yunhai Tong, Xiangtai Li, and Ming-
 716 Husan Yang. Relationbooth: Towards relation-aware customized object generation. *arXiv preprint
 717 arXiv:2410.23280*, 2024.

718

719 Hikaru Shindo, Viktor Pfanschilling, Devendra Singh Dhami, and Kristian Kersting. α ilp: thinking
 720 visual scenes as differentiable logic programs. *Machine Learning*, 112(5):1465–1497, 2023.

721

722 Hikaru Shindo, Viktor Pfanschilling, Devendra Singh Dhami, and Kristian Kersting. Learning
 723 differentiable logic programs for abstract visual reasoning. *Machine Learning*, 113(11):8533–8584,
 724 2024.

725

726 Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
 727 without human demonstrations. *Nature*, 625(7995):476–482, 2024.

728

729 Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah D Goodman.
 730 Hypothesis search: Inductive reasoning with language models. *arXiv preprint arXiv:2309.05660*,
 731 2023a.

732

733 Weihang Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
 734 Lei Zhao, Xixuan Song, et al. Cogvlm: Visual expert for pretrained language models. *arXiv
 735 preprint arXiv:2311.03079*, 2023b.

736

737 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 738 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 739 *arXiv preprint arXiv:2203.11171*, 2022.

740

741 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 742 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 743 neural information processing systems*, 35:24824–24837, 2022.

744

745 Junda Wu, Zhehao Zhang, Yu Xia, Xintong Li, Zhaoyang Xia, Aaron Chang, Tong Yu, Sungchul
 746 Kim, Ryan A Rossi, Ruiyi Zhang, et al. Visual prompting in multimodal large language models: A
 747 survey. *arXiv preprint arXiv:2409.15310*, 2024.

748

749 Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
 750 Christian Szegedy. Autoformalization with large language models. *Advances in Neural Information
 751 Processing Systems*, 35:32353–32368, 2022.

752

753 Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-Li Lee, and Wynne Hsu. Faithful logical
 754 reasoning via symbolic chain-of-thought. *arXiv preprint arXiv:2405.18357*, 2024.

755

756 Yudong Xu, Wenhao Li, Pashootan Vaezipoor, Scott Sanner, and Elias B. Khalil. Llms and the
 757 abstraction and reasoning corpus: Successes, failures, and the importance of object-based rep-
 758 resentations. *arXiv preprint arXiv:2305.18354*, 2023. doi: 10.48550/arXiv.2305.18354. URL
 759 <https://arxiv.org/abs/2305.18354>.

760

761 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 762 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 763 2025.

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Satlm: Satisfiability-aided language models using declarative prompting. *Advances in Neural Information Processing Systems*, 36, 2024.

Xulu Zhang, Xiao-Yong Wei, Wengyu Zhang, Jinlin Wu, Zhaoxiang Zhang, Zhen Lei, and Qing Li. A survey on personalized content synthesis with diffusion models. *arXiv preprint arXiv:2405.05538*, 2024.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal chain-of-thought reasoning in language models. *arXiv preprint arXiv:2302.00923*, 2023.

A RESULTS ON 1D-ARC

1D-ARC (simplified ARC) benchmark. To further verify robustness across reasoning difficulty levels, we evaluate ILP-CoT on the 1D-ARC benchmark (Xu et al., 2023) using pure textual Qwen3-8B and Qwen3-14B (Yang et al., 2025) as base MLLMs.

Table 5: 1D-ARC accuracy (%) with Qwen3 family.

Model	Direct Predict	ILP-CoT
Qwen3-8B	9.54	20.53
Qwen3-14B	33.43	42.81

B MORE COMPARISON OF INDUCTIVE REASONING BASELINES

Table 6: Accuracy (%) of inductive reasoning methods under ARC-AGI.

Model	Direct Predict	Phenomenal Yet Puzzling	Hypothesis Search	ILP-CoT
GPT-4o	5.25	4.00	8.00	10.25

To further justify the effectiveness of ILP-CoT. We report the performance comparison over two existing inductive reasoning methods, Phenomenal Yet Puzzling (Qiu et al., 2023) and Hypothesis Search (Wang et al., 2023a) under the ARC-AGI benchmark. We utilize GPT-4o as the base model and test under the full 400 examples in its training set. The results show the desirable performance of ILP-CoT.

C QUANTITATIVE AND QUALITATIVE RESULTS IN SEC. 4.4 AND SEC. 4.6

We report quantitative analysis on MLLM hallucinations and the effectiveness of ILP-CoT in error rectification in Tab. 7 8, and qualitative illustrations on MLLM hallucinations in Fig. 4 5 6.

Table 7: Rate of appearance for different MLLM hallucination types under CLEVR-Hans w.r.t. the number of ground-truth logical facts/rules in the tasks.

	Missing	Redundant	Wrong
Facts (3)	0.503	0.860	0.280
Facts (4)	0.550	0.807	0.200
Facts (5)	0.406	0.692	0.240
Rules (1)	0.980	0.996	0.980
Rules (2)	0.985 (2 miss) / 1.000 (1 miss)	0.997	1.000

810
811
812 Table 8: Rectification success rates per error type on CLEVR-Hans.
813
814
815
816
817
818

	Missing	Redundant	Wrong
Facts (3)	0.357	0.25	1.00
Facts (4)	0.462	0.277	1.00
Facts (5)	0.133	0.075	1.00
Rules (1)	0.153	0.150	0.153
Rules (2)	0.081 (2 miss) / 0.090 (1 miss)	0.080	0.09

819
820
821 Table 9: Reflection triggering rates of GPT-4o on the Text-to-Image-Customization 3P3N setting.
822
823
824
825

Condition	Reflection Rate
Positive Only	0.0%
Positive + Negative	6.3%
ILP-CoT	87.2%

826
827

D CUSTOM CoT

828829
830 Due to the issue of hallucination in perception and reasoning, we discover that current MLLMs are
831 still not able to directly perform visual rule abduction without CoT reasoning. We propose a natural
832 CoT process to break the whole task into simpler substeps:
833

1. **Capture token generation.** Generate a set of abstract concepts to determine transformation and its criteria, the criteria include concrete description of attributes and relationships.
2. **Attribute identification.** Determine explicit attributes such as color, size, and shape.
3. **Relationship identification.** Infer relationships and interactions among objects.
4. **Rule induction.** MLLMs conduct final rule induction to identify the final rule based on the subjects, attributes, and relationships discovered.

840
841 The first two steps correspond to the discovery of symbolic concepts and the grounding of symbols,
842 and the last two steps correspond to the induction of rules. Note that the first three steps are taken for
843 each image instance.844 **Example:** Consider the example illustrated in Fig. 1.

1. **Step 1:** Generate abstract captured tokens such as color and proximity.
2. **Step 2:** In the positive examples, the dog is golden and the cat is small in size. In contrast, in the negative examples, the dog is either black or white, and the cat has a tabby coat.
3. **Step 3:** In the positive examples, the two animals appear to be playing together. Conversely, in the negative examples, the animals exhibit hostile behavior toward each other.
4. **Step 4:** Induce the corresponding rule. A successful induction should output the rule that *a golden dog and a cat are playing together*. However, failure cases may occur if incorrect or overly specific rules are generated.

845
846 We find that by utilizing this CoT design, the visual rule abduction ability of MLLMs can be
847 significantly improved. However, hallucinations remain the unaddressed issue due to the lack of
848 a formal verification mechanism. In the following, we introduce the basic mechanism of the ILP
849 module, which plays a crucial role in our proposed approach.
850851
852

E TEXT-TO-IMAGE CUSTOMIZATION WITH RULE INDUCTION

853854
855 To provide a potential application of our visual induction method, we introduce the task of text-to-
856 image customization with rule induction. Most text-to-image customized generation approaches Ruiz
857 et al. (2023); Zhang et al. (2024) focus on subject customization. Although several research studies
858

864
865
866
867
868
869
870
871 Table 10: Meta-rule learning accuracy on the ILP-CoT-Customization 3P3N setting. For each
872 ILP-CoT run, we compare the meta-rules induced from GPT-4o’s rule proposals with the meta-
873 rule decomposition of the ground-truth rule. Rows distinguish whether the learned meta-rules are
874 structurally consistent with the ground truth, while columns distinguish whether the final induced
875 hypothesis (Prolog rule) is semantically correct or incorrect. Each entry gives the proportion of runs
876 falling into the corresponding combination.

871	Correctness of Meta-Rule	Hypothesis Correct	Hypothesis Incorrect
872	Correct	35.5%	50.9%
873	Wrong	0%	13.6%

891
892 Figure 3: The figure presents four more cases of customized image generation, showing training
893 examples (top: positive, bottom: negative) and images generated with or without rule-based prompts.
894 Rules, highlighted in red, ensure relational constraints are preserved in diverse contexts.

895
896 study multi-subject customization Kumari et al. (2023); Liu et al. (2023b); Lin et al. (2024); Gu
897 et al. (2024), the semantic relationships among subjects in training images are ignored in the testing
898 stage generation process. Recently, there have been attempts to introduce relational constraints in the
899 customization task Ge et al. (2024); Shi et al. (2024). These studies focus on improving the control
900 ability of pre-defined constraints instead of inducing rules from data. In the rule-based customization
901 task, the instances are labeled as positive and negative ones, potentially by the users, indicating a
902 latent rule to be induced. After fine-tuned customization, the testing-stage generation should follow
903 both the subjects and rules. We design a straightforward baseline for this task in which the proposed
904 ILP-CoT approach is used for rule induction. In the experiments, we show that the baseline method
905 achieves desirable performance in common generation tasks, while the room for improvement is also
906 large, indicating future research in this task.

907 To enable the automated generation of new, rule-compliant images featuring specific roles, we
908 introduce a mechanism that associates each main role with a unique special token. Concretely, each
909 role is labeled with a token in the format [v0], [v1], [v2], and so on. We employ LoRA (Hu et al.,
910 2021) to fine-tune a latent diffusion model FLUX (Labs, 2024)—specifically adjusting the linear
911 layers in single and double streams as well as the CLIP model (Radford et al., 2021)—so that each
912 special token is mapped to its corresponding role.

913 **Semantic segmentation for role isolation.** A semantic segmentation model is first used to segment
914 the original image according to its main roles (e.g., a dog or a cat). After segmentation, each patch
915 associated with a main role is paired with its corresponding special token. This pairing allows us
916 to apply LoRA-based fine-tuning on FLUX, wherein we minimize the MSE loss to disentangle the
917 visual features of each special token from those of the other roles. Through this process, each special
918 token becomes distinctly representative of a particular entity.

918 **Rule and token integration.** Once the model is fine-tuned, we combine the induced rules with
 919 special tokens to generate customized images that satisfy both the learned constraints and the newly
 920 introduced narrative details. For example, suppose the two main roles are labeled as `[v0] dog` and
 921 `[v1] cat`, and we have a rule stating that `[v0] dog` has golden fur and plays with `[v1] cat`. We
 922 can then prompt the MLLM to produce a story-like description—for instance, one that portrays a dog
 923 and a cat in a moonlit forest beside twisted, ancient trees and a solitary, small flower. We subsequently
 924 replace all references to the dog and cat in this description with `[v0] dog` and `[v1] cat`, respectively,
 925 and place the rules at the beginning of the description as constraints. This approach ensures
 926 that the generated image (1) accurately reflects the roles associated with each token, (2) complies
 927 with the rule regarding the dog’s golden fur and its interaction with the cat, and (3) integrates the
 928 newly described context from the MLLM-generated story.

929 **Ensuring rule adherence and visual fidelity.** By explicitly linking each main role to a token
 930 and restricting the model’s understanding of that role via LoRA fine-tuning, the final synthesized
 931 images respect the rules learned during the ILP phase while preserving key visual characteristics of
 932 the original roles. This mechanism prevents unwanted alterations (e.g., changing a dog’s color or
 933 form) and allows us to seamlessly integrate new contexts or story elements—such as environmental
 934 changes—without violating the rules. Consequently, the generated images maintain both fidelity
 935 to the original subjects and consistency with any high-level narrative details specified through the
 936 MLLMs.

937 **Rule-guided prompting strategy.** Our generation process begins with a *user-generated prompt* that
 938 describes a scenario, objects, or attributes of interest. Each object mentioned in the prompt is tagged
 939 with a special token, denoted as `[v#]`, which was introduced during training to maintain a binding
 940 between the textual description and its corresponding visual representation. To merge the user prompt
 941 with a learned rule, we prepend or append a concise rule-based statement to the prompt.

942 F ILP-CoT-CUSTOMIZATION DATASET

943 **Dataset generation and composition.** We generated 29 different rule-based tasks using images
 944 produced by Stable Diffusion, designed to evaluate ILP-CoT’s ability to abduce visual rules. The
 945 dataset consists of:

- 946 • **22 induction tasks:** Each task contains 10 images, including 5 positive and 5 negative
 947 examples. Each image represents a complete rule independently. These tasks are used for
 948 learning visual ILP tasks.
- 949 • **7 generation tasks:** Each task contains 3 positive and 3 negative examples. The main
 950 subjects in all positive examples maintain the same appearance and style. These tasks are
 951 designed for customization based on rules.

952 The 29 tasks encompass a diverse range of rule-based relationships, including relationships between
 953 a single primary subject and a theme, relationships between multiple primary subjects, relationships
 954 between a single primary subject and background characters, and relationships involving multiple
 955 primary subjects and background characters. The dataset further includes:

- 956 • **Spatial relation tasks:** These tasks focus on relative spatial positioning, such as left/right,
 957 above/below, etc.
- 958 • **Attribute association tasks:** These tasks require the model to capture associations between
 959 attributes (e.g., color, category) and objects, such as "The cat likes the golden dog."
- 960 • **Role interaction tasks:** For example, "The mother is holding the child, and the father is
 961 watching the child," requiring the model to understand interactions between roles.
- 962 • **Environmental response tasks:** Such as "The sunflower faces the sun," testing whether the
 963 model can infer how objects respond to environmental changes.

964 **Positive and negative example generation strategy.** In the dataset generation process, a unique
 965 predefined rule is used to determine positive examples. For negative examples, we randomly select
 966 one or more conditions from the rule and invert them, ensuring that at least one condition is violated.
 967 This approach guarantees that positive examples strictly follow the predefined rule, while negative

972 examples systematically deviate from it, thereby providing a challenging and diverse dataset for rule
 973 induction.

974 **Evaluating criterion.** Each task is evaluated under four different data settings: 1 positive + 1 negative
 975 example; 3 positive + 3 negative examples; 5 positive + 1 negative example; and 5 positive + 5
 976 negative examples. Rules are categorized into four levels of accuracy: Correct, Mostly Correct,
 977 Partially Correct, and Incorrect. Two human evaluators and two AI evaluators were invited to assess
 978 the generated rules. The evaluation process involved:

- 980 1. The evaluator is presented the ground-truth rule for each task.
- 981 2. Evaluators analyzing whether the generated rule precisely describes all positive examples
 982 while excluding negative ones.
- 983 3. Evaluators scoring the rule independently, without additional hints.

985 Each task was repeated five times, and the final scores were averaged.

987 G TRAINING AND EVALUATION PROTOCOL ON CLEVR-HANS

989 The CLEVR-Hans dataset contains three predefined rules; each rule corresponds to about 3,000
 990 images. The standard protocol requires the model to train under the full dataset, which violates the
 991 few-shot setting in our paper. So for MLLMs, we utilize a sample-then-voting strategy. During
 992 training, we group every five images into a small set and conduct MLLM reasoning on each small
 993 set to induce a rule. Concretely, for *each class*, we randomly sample 300 images from that class,
 994 partition them into groups of 5 (yielding 60 groups), and conduct MLLM reasoning once per group,
 995 which produces up to 60 candidate rules. For each class, we tally which induced rule appears most
 996 frequently among the 60 outputs and treat that majority (representative) rule as the class's rule. During
 997 testing, the model is asked to classify the testing instances into one of the three classes and the final
 998 result is the classification accuracy. For MLLM methods, we ask the MLLM to compare the test
 999 instance with the learned rule for each class, and make the classify decision accordingly.

1000 H THE USE OF LARGE LANGUAGE MODELS

1001 LLMs play the following roles in this paper:

- 1002 • The subject of research: We study bridging MLLMs and ILP to solve abductive logic
 1003 induction problems.
- 1004 • The evaluator in the experiments: In Tab. 4, we report the evaluation results from two
 1005 MLLMs in the experiment.
- 1006 • The assistant of writing: We utilize LLMs to help proofread the manuscript and fix writing
 1007 issues.

Figure 4: Illustration of ILP-CoT’s stepwise reasoning and typical errors leading to single-inference failures on CLEVR-Hans. In capturing positive examples, initial inference incorrectly identified the color of the cube while neglecting essential attributes like size and material. However, the ILP consistency check triggered a re-evaluation, successfully capturing these attributes subsequently. For negative examples, although the cube’s color was incorrectly captured, additional false-negative information generally had limited impact on rule induction. This is because such information must simultaneously align with incorrect negative captures and true attributes from positive examples, a scenario highly sparse in hypothesis space. In parallel, redundant logic facts - such as duplicates or unnecessary attribute assignments - were also frequently observed. While redundant information did not fundamentally distort the correct hypothesis, it expanded the hypothesis space and introduced noisy combinations that needed to be pruned during induction. Correctly captured information effectively filtered redundant combinations from positive examples. In meta-rule construction, despite initial hypothesis inaccuracies, the derived meta-rules matched those of the correct hypothesis, significantly narrowing the rule hypothesis space and ensuring accurate rule induction.

Figure 6: Illustration of ILP-CoT’s stepwise reasoning and typical errors leading to single-inference failures on ILP-CoT-Customization. Four tasks (chair size and person selection, cat-dog interactions, sunflower orientations, and classroom scenarios) highlight common issues: (1) missing capturing words (e.g., “relative_size” omission); (2) neglecting detected features (e.g., ignoring “uniform(Teacher)’’); (3) semantic misalignment in capturing words (e.g., inferring “facing_towards_sun” due to priors); and (4) missing relationships in hypothesis space (e.g., omitting “play_with”). Errors often stem from MLLMs’ reliance on priors or skipping predicates, leading to incomplete or incorrect rules.