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ABSTRACT

Subgraph learning has dominated most practices of improving the expressive
power of Message passing neural networks (MPNNs). Existing subgraph discov-
ery policies can be classified into node-based and partition-based, which both
achieve impressive performance in most scenarios. Unfortunately, we observe
that there exists a subgraph degradation trap in these two mainstream solutions.
This means extracted subgraphs fail to achieve better expression. In this work,
we start with an intuitive observation and theoretical analysis to explore subgraph
degeneration. We then summarize the limitations of these two subgraph strategies
from the perspective of reconstruction ability. To this end, we propose perfect
reconstruction principle to realize high-quality subgraph extraction. To achieve
this, two affiliated questions should be well-addressed. (i) how to ensure the
subgraphs possessing with ’perfect’ information? (ii) how to guarantee the ’recon-
struction’ power of obtained subgraphs? Firstly, we propose a subgraph partition
strategy Rayleigh-resistance to extract non-overlap subgraphs by leveraging the
graph spectral theory. Secondly, we put forward the Query mechanism to achieve
subgraph-level equivariant learning, which guarantees subgraph reconstruction
ability. These two parts, perfect subgraph partition and equivariant subgraph learn-
ing are seamlessly unified as a novel Rayleigh-resistance Equivariant Subgraph
learning architecture (RayE-Sub). A series of experiments on both synthetic and
real datasets demonstrate that our approach can consistently outperform previous
MPNNs architectures.

1 INTRODUCTION

Message Passing Neural Networks (MPNNs) have been widely applied in graph representation
due to their simplicity, intuitiveness and effectiveness. Plenty of MPNN variants have achieved
great success in various fields, such as molecular discovery, social network analysis and traffic flow
prediction (Yang et al., 2022; Zhang et al., 2022; Zhou et al., 2020). However, it has been proved that
these architectures exist limited expressiveness, which are at most as expressive as 1-dimensional
Weisfeiler-Lehman (1-WL) test (Xu et al., 2018; Morris et al., 2019). To this end, numerous recent
researches have proposed more powerful architectures (Zhang et al., 2023; Miao et al., 2022; Cotta
et al., 2021; Frasca et al., 2022; Bevilacqua et al., 2022; Zhao et al., 2021; Kreuzer et al., 2021).
Among them, subgraph learning is one of the most predominant solution.

Subgraph representation learning aims to extract a bag of subgraphs from an original graph, and
explore more powerful expressive methods based on subgraphs (Frasca et al., 2022). Based on the
partition perspective of different subgraph discovery solutions, we can classify subgraph learning
into two main research lines. (i) Node-based subgraph discovery policy employs predefined structure
to extract subgraphs, wherein every subgraph is centered with a unique node in the graph. The
implementations of this category include node-deletion, node-marking, and ego-network subgraph
extraction policies (Bevilacqua et al., 2022; Zhao et al., 2021). (ii) Partition-based subgraph discovery
policy extracts a bag of non-overlapping subgraphs from original graphs. This category includes
high-frequency substructure extraction, nodes clustering and edges dropping (Preti et al., 2023; Miao
et al., 2022). Both of them have revealed effectiveness in practices, where the former is with more
simplicity, while the latter is more interpretable.
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We further reflect on these subgraph learning strategies. However, we observe that both of them
suffer the limitations potentially resulting in degeneration. For node-based subgraph learning, it may
inevitably generate subgraphs with severe overlaps. This kind of overlaps make the extracted local
information during subgraph learning be similar to the aggregated information of node-level MPNNs.
And the homogenization of information may eventually lead to the degradation of subgraphs in terms
of representation power (Top Panel of Figure 1). For partition-based subgraph discovery policy,
researchers usually focus on how to implement effective subgraph partition strategies, but ignore the
order information of subgraphs. This results in limited distinguishing ability in many scenarios, such
as the failure of discriminating most isomers in chemistry (Bottom Panel of Figure 1).

Given above, we summarize existing limitations of previous subgraph learning strategies into the
perspective of reconstruction ability. We observe that both subgraph learning methods are with
a common issue, i.e., the obtained subgraphs fail to reconstruct the original graph perfectly. The
subgraphs generated from node-based strategy will be redundant for reconstructing because of
overlapping information, while the subgraphs extracted from partition-based methods fail to possess
the inverse reconstruction ability. Thus, we can summarize that their failures into the limitations of
reconstruction ability. Actually, if a set of subgraphs can perform exact reconstruction without any
redundancy, we can designate these subgraphs as perfect reconstruction, and then the interpretability
and generalization of subgraph learning will be greatly promoted. Therefore, this naturally raises the
question that how to obtain subgraphs with perfect reconstruction ability?

Present work. We provide the answers to above question by introducing two sub-solutions: (i)
partitioning graph to obtain non-overlap subgraphs ensures the ’perfect’ property, (ii) utilizing
subgraph-level equivariance principle guarantees the ’reconstruction’ property. Specifically, we
propose a partition-based strategy guided by spectral graph theory, and employ the Query mechanism
to achieve subgraph-level equivariant learning. Firstly, partition-based strategy is more intuitive
and interpretable to reflect the real-world facts, such as finding functional groups in molecules,
decoupling subnetworks in social networks, and discovering urban functional patterns in cities (Jin
et al., 2020; Zhang et al., 2022; Zhou et al., 2020). The commonality of these scenarios lies in
finding the physically meaningful boundary among complex and diverse connections. Spectral theory
is with power to draw graphs and find the potential boundary from spectral domain (Spielman,
2019; Kreuzer et al., 2021). Therefore, we propose a spectrum-based subgraph partition strategy
Rayleigh-resistance. Although a bag of subgraphs obtained by partitioning have appropriate and
non-redundant information, they still lack reconstruction ability. Secondly, to significantly boost
the reconstruction ability, we utilize equivariance principle to investigate the equivalent relationship
among subgraphs, thus guarantee the reconstruction power (Bevilacqua et al., 2022). Specifically,
we propose a Siamese-Query scheme to implement our equivariant architecture, where a Siamese
network processes each subgraph independently with same parameters, and the Query mechanism
aggregates all subgraphs with their order information. Altogether, above two parts composed of our
Rayleigh-resistance Equivariant Subgraph learning architecture (RayE-Sub), which achieves the
perfect reconstruction of extracted subgraphs.

We provide thorough theoretical analysis and comprehensive empirical evaluation. On the theoretical
side, we first prove the subgraph degeneration of node-based subgraph discovery by investigating the
relationship between subgraph learning and node-wise MPNN. Then we demonstrate that resistance
distance can be an alternative to Rayleigh quotient, to characterize the graph stability for discovering
subgraph boundary. On the empirical side, we show the limited indistinguishability of existing
subgraph learning by two families of examples, and verify the competitive performance of our
approach on both synthetic and real datasets.

2 RELATED WORK

Subgraph Learning. According to different subgraph discovery strategies, subgraph learning can
be classified into node-based (Frasca et al., 2022; Bevilacqua et al., 2022; Zhao et al., 2021; Cotta
et al., 2021) and partition-based learning (Yang et al., 2022; Jin et al., 2020; Miao et al., 2022)
paradigm. ESAN (Bevilacqua et al., 2022) implements an subgraph equivariant learning architecture
and achieves better expressiveness by per-layer aggregation across subgraphs. SUN (Frasca et al.,
2022) profoundly studies the characteristics of node-based subgraph learning. Further, SUN aligns
the permutation group of nodes and subgraphs, and models the symmetry with a smaller single
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Figure 1: Illustration of subgraph failures. Top panel: m = 2, k = 2 in Example 1, they will
generate the same EGO-based subgraphs. Bottom panel: two isomers cannot be distinguished by
partition-based methods, 2-Butanol and 2-Methyl-1-Propanol.

permutation group. GSAT (Miao et al., 2022) is a representative partition-based learning method.
Guided by the information bottleneck theory, GSAT designs a subgraph extraction strategy with edge
deletions based on stochastic attention mechanism. However, in subgraph learning, there is still no
uniform architectures to achieve the tradeoff between partition and node-based subgraph discovery.

Expressive power of MPNNs. Exploring more expressive learning architectures is the primary
goal in graph representation learning. Current researches tend to be divided into three lines, i.e.,
the MPNN-based methods aligned with WL-Test, transformer-based and solutions derived from
novel representation power measures. First, MPNN-based methods improves expressiveness on
WL-Test by devising higher-order message-passing (Bodnar et al., 2021; Morris et al., 2019; 2020),
position and structure encoding (Chen et al., 2020; Puny et al., 2020; Dwivedi et al., 2021). However,
the computational cost for k > 3 expressive power in WL-Test should be unacceptable. Second,
instead of traditional message passing, transformer like Graphormer computes the soft attention
scores for aggregation (Ying et al., 2021). Third, Zhang et al.(Zhang et al., 2023) take a novel
perspective, the graph bi-connectivity, as measure of expressiveness and promotes the representation
on bi-connectivity aspect. In this work, we inherit the third line and further exploits elegant theoretical
paradigms, to find a more interpretable perspective to realize more powerful representation.

3 SUBGRAPH LEARNING FROM RECONSTRUCTION PERSPECTIVE

In this section, we first dissect the existence of limited expressive power in both node-based and
partition-based approaches, and then summarize the limitations into the limited reconstruction ability.

Notation. Let G = (A,X) be an undirected graph with n nodes. The adjacency matrix A ∈ Rn×n

denotes G’s edge set E over its set of n nodes V . The feature matrix X ∈ Rn×d represents
the features of all nodes, where x(u) ∈ R1×d is the feature of u. Let [n] = 1, ..., n. GS =
{G1

S , · · · , Gk
S} represent the subgraph set generated by subgraph discovery policy π(G). Each

subgraph is Gi
S = (Ai

S , X
i
S) with V i

S ⊆ V , Ei
S ⊆ E, where 1 ≤ i ≤ k. We denote xi ∈ R|Vi|×d as

the feature of all nodes in subgraph Gi
S , which is different from x(u).

3.1 NODE-BASED SUBGRAPH LEARNING

Node-based subgraph discovery manner has become the most popular policy in subgraph learning
due to its simplicity and effectiveness (Frasca et al., 2022; Bevilacqua et al., 2022; Zhao et al.,
2021). The specific subgraph discovery strategies consist of node-deletion (ND), node-marking
(NM), and ego-networks (EGO) policies. Our work is inspired from an observation that two family
graphs (Zhang et al., 2023) can be indistinguishable for node-based subgraph learning in Example 1.
Specifically, we observe that two subgraph sets generated by these two families of graphs are not
distinguishable, as shown in Figure 1.
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Figure 2: The architecture of RayE-Sub. Left panel: our RayE-Sub is composed of two stages: a
partition block Rayleigh-resistance, a subgraph-level equivariant module Siamese-Query. Right
panel: the detailed process of Rayleigh-resistance.

This observation inspires us to investigate the theoretical interpretation in subgraphs failures. We
theoretically prove the existence of this degeneration from the perspective of message passing. Based
on (Arora et al., 2016), we derive the Lemma 1 regarding function composition.
Lemma 1. (Function composition (Arora et al., 2016).) MPNNs can repeatedly update each node’s
embedding by aggregating information from their neighbors. The graph-level embedding hG can be
obtained by

hG = POOL ◦ σ ◦TL ◦ · · · ◦T2 ◦ σ ◦T1(A,X) (1)
where σ and Tl are the l-th layer update and aggregation operators (matrices), POOL is the
READOUT, ◦ denotes layer composition. There exists a global aggregation matrix T, merging
from {T1, ...,Tl}, to make this architecture have equivalent representation:

hG = POOL ◦ σ ◦T(A,X) (2)

where each element T(i, j) indicates the aggregation coefficient from j to i.

We can obtain a profound understanding about message passing mechanism, which is essentially to
explore the aggregation coefficient among nodes. If extracted subgraphs fail to limit previous MPNN’
aggregation trend, they will not bring better ability of distinguishing (Alsentzer et al., 2020; Yuan
et al., 2021). Detailed proof is provided in Appendix C.1.
Theorem 1. (The existence of subgraph degradation.) Let M be the ground-truth aggregation
matrix of graph G, and the aggregation matrix conducted by node-level MPNNs be TG, while the
aggregation matrix implemented by node-based subgraph learning be TS . Then, there exists graph
G satisfying TS = TG.

Proof. Node-based subgraph learning generates n subgraph set GS = {G1
S , G

2
S , · · · , Gn

S}, wherein
every subgraph is associated with a unique node. The aggregation process of each subgraph Gi

S

obtains a corresponding aggregation matrix Ti
S . For the whole graph, the aggregation matrix of

information passing among all nodes is TS =
∑

i∈[n]

Ti
S . Therefore, we turn the question into proving

the existence of
∑

i∈[n]

Ti
S = TG. Detailed proof is provided in Appendix C.2.

Theorem 1 indicates the existence of subgraph degradation, which verifies our intuitive observation.
Note that the degradation of subgraphs is not universal, but it doesn’t alter the fact that the expression
ability of subgraph learning is strictly more powerful than 1-dimensional Weisfeiler-Lehman (1-WL).
More discussion is provided in Appendix C.3.

3.2 PARTITION-BASED SUBGRAPH LEARNING

Partition-based subgraph learning aims to extract a subgraph set GS = {G1
S , G

2
S , · · · , Gk

S} which
are with no overlaps among any pair of elements, as described in Equation 3 and 4.
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V = V1
S ∪ V2

S ∪ ... ∪ Vk
S (3)

Vi
S ∩ V

j
S = ∅ (∀i, j ∈ [k], i ̸= j) (4)

Given that various practices aim to refine and obtain a minimal label-relevant subgraph set (Miao
et al., 2022; Wu et al., 2022), Equation 3 is not a compulsory condition. Compared with node-based
subgraph strategy, partition-based is more intuitively in real-world tasks, such as finding the functional
groups in molecules (Yang et al., 2022).

However, most previous works (Miao et al., 2022; Wu et al., 2020; Preti et al., 2023; Yuan et al.,
2021) pay more attention to partition principle, but ignore subgraph-level symmetry analysis. This
limitation results in failing to achieve the desired powerful representation ability, namely subgraph
degradation. We can easily observe the examples in biochemistry domain, e.g., position isomerism is
a common phenomenon in chemistry, which can be viewed as molecular descriptions with the same
functional groups compositions but different positions. It is shown in the bottom panel of Figure 1.

We rethink this observation via permutation equivariance and invariance analysis. We can denote the
invariant learning ignoring subgraph-level symmetry as f : f(τ ·GS) = f(GS), where τ denotes
the exact permutation of subgraph. In other words, the order of subgraphs is independent of the
representation of original graph. Obviously, this design is not appropriate for real-world tasks of
subgraph learning. Equivariant learning g : g(τ ·GS) = τ · g(GS) at the subgraph-level can have
more intuitive interpretability (Bevilacqua et al., 2022).

3.3 UNIFYING SUBGRAPH LEARNING VIA RECONSTRUCTION ABILITY

Based on the fresh review of prior practices, we summarize the root reason for subgraph degradation
to two limitations as below.

Node-based subgraphs with redundant information. The most notable characteristic of the
subgraphs GS extracted by the node-based methods is that there are numerous pairwise subgraphs
with overlapping information, namely Gi

S ∩Gj
S ̸= ∅ for i ̸= j. We also note that the degradation

of message passing space (neighbors information) is the main cause of node-based subgraphs
failure. However, overlapping subgraphs precisely give each node an independent and 1-WL-similar
messaging passing space. We also can find successful practice to support this attitude. ESAN
(Bevilacqua et al., 2022) extract subgraph set Gm

S ⊆ Gn
S via a stochastic sampling strategy, which

has been widely followed (Zhang et al., 2023). Actually, this design can be viewed as a manner to
avoid degradation by reducing overlap between subgraphs. Thus, the redundant information of GS

becomes a key challenge for node-based strategies.

Partition-based subgraphs with absent information. We can also summarize the characteristics
of GS obtained by partition-based subgraph selection policy, i.e., (i) there is no information overlap
between any pair of subgraphs, namely Gi

S ∩ Gj
S = ∅ for i ̸= j, (ii) GS is disordered with no

positional associations among subgraphs. The above two indicate that the elements in GS are
independent of each other. Thus, it is obvious that the absence of subgraph-level order information
inevitably leads to the failure of distinguishing.

To summarize, we attribute the limitations of above two strategies to redundancy and absence,
respectively. The redundant and insufficient subgraphs results in failing to perfectly reconstruct the
whole graph. Inspired by this discovery, we take the perspective of perfect reconstruction to remedy
above two limitations.
Definition 1. Let subgraph set GS be extracted by G. The subgraph set GS will be equipped with
reconstruction ability if there exist a reconstruction function r(·) satisfying r(GS) = G. Specifically,
GS with redundant reconstruction ability is defined

r(GS∗) = G ∃GS∗ ⊂ GS , r(·) (5)

GS with perfect reconstruction ability is defined
r(GS∗) ̸= G ∀GS∗ ⊂ GS , r(·) (6)

If there does not existence a reconstruction function r(·) satisfying r(GS) = G, GS is with no
reconstruction ability.
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In view of the limitations of these two methods in reconstruction ability, we expect to extract subgraphs
with perfect reconstruction ability to potentially avoid the degradation trap. Since the subgraphs
extracted by node-based strategy have irregular information overlap and limited interpretability, we
thus pay our attention to improving partition-based subgraph learning.

4 RAYE-SUB: RAYLEIGH-RESISTANCE EQUIVARIANT SUBGRAPH LEARNING

In this section, we design a powerful architecture RayE-Sub to extract subgraphs with perfect
reconstruction ability. And, the expressive power of RayE-WL is also studied.

4.1 RAYLEIGH-RESISTANCE POLICY FOR SUBGRAPH PARTITION

Subgraph partition methods aim to find the significant boundary, which composes of a series of edges
connecting two irrelevant nodes. In implementations, topological characteristics and feature contents
are vital factors affecting the effectiveness of partition principles. Inspired by the great superiority
of spectral theory in drawing graphs (Spielman, 2019; Kreuzer et al., 2021), we exploit the idea of
spectrum to realize the subgraph partitions with topological and feature information.

The Laplacian operator LG is the entry to spectral theory, where Rayleigh quotient of LG elegantly
depict the stability of graph G (Spielman, 2019).
Definition 2. The Rayleigh quotient q(G) of the Laplacian matrix LG is defined as

q(G) = xTLGx =
∑

(u,v)∈E

wuv(x(u)− x(v))
2
, xTx = 1 (7)

where x ∈ Rn×1 is the feature matrix of nodes 1 .

Empirically, the value of q(G) is the resonance of both structure wuv and feature contents
(x(u)− x(v))2 for all edges (u, v). In other words, Rayleigh quotient quantifies the stability of
the graph with structure and feature information. The smaller q(G) refers to that nodes are closer
with each other so that the graph is more stable. Otherwise, the graph is fragile.

There exists an equation between the Laplacian matrix LGi
S
∈ Rn×n of the subgraph Gi

S , boundary
matrix BGi

S
∈ Rn×n and extraction matrix LG(Vi, Vi) ∈ Rn×n of LG: LG(Vi, Vi) = LGi

S
+BGi

S
,

where BGi
S

represents the boundary between Gi
S and the rest of the graph with BGi

S
(a, a) =∑

b/∈Gi
S

wab. For the boundary of global graph BG =
∑
i∈[k]

BGi
S

, xTLGx =
∑
i∈[k]

xTLGi
S
x+ xTBGx.

Given a specific x, xTLGx becomes fixed. Thus, discovering partition boundary max
BG

xTBGx is

equivalent to optimizing min
GS

q(GS) = min
GS

∑
i∈[k]

xTLGi
S
x.

However, this optimization tends to obtain the boundary BG consisting of all the edges, resulting
in a bag of single-node subgraphs. The direct solution is to take the number of nodes as a one of
description factors of subgraph stability. Follow this idea, instead of LG, we utilize the normalized
Laplacian matrix NG = D−1/2LGD

−1/2 to rewrite the formation of Rayleigh quotient as,

q∗(G) = xTNGx =
∑

(a,b)∈E

wab(
x(a)√
da
− x(b)√

db
)2 (8)

where dj represents the degree of j. It effectively avoids single-node subgraphs case, since a bag
of single-node subgraphs means that all nodes have degrees of 0, which results in infinity q∗(G).
Thus, our following discussion is based on the rewritten q∗(G). We provide a theoretical analysis of
Equation 8 in Appendix C.5.

Optimizing min
GS

q∗(GS) is a NP (Non-deterministic Polynomial) problem, thus such optimization is

an inaccessible target in practical implementation. To this end, we borrow the resistance distance
to implement the quantification defined by Rayleigh quotient. Resistance distance (RD) is a basic

1We let the feature dimension be 1 to simplify subsequent analysis.
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metric in graph spectral theory (Xiao & Gutman, 2003). It reflects both distance and the accessibility
(number of pathways) between two nodes, which has the potential to characterize the global structural
topology. We propose to exploit RD as an alternative to quantify the stability of subgraph.

Definition 3. The resistance distance between two vertices u and v in an electrical network, is
measured by the resistance of the entire network when we treat it as one complex resistor. It can be
computed by

RDuv = (δu − δv)
TL+(δu − δv) (9)

where δj is the elementary unit vector with 1 in coordinate j and L+ is the pseudo-inverse of L.

Theorem 2. (Equivalence between Resistance distance and Rayleigh quotient.) Let u and v be any
two vertices connected by an edge. Under the accessible constraints, the resistance distance between
u and v is approximately equivalent to the stability of pairwise vertices defined by Rayleigh quotient.

Proof. We prove that we can achieve their equivalence by integrating the feature information x
into the topology with the edge reweighting strategy of wuv = ||xu − xv||−2. Detailed proof have
been provided in Appendix C.4. Besides, we also provide an efficient approximation approach for
calculating RD with the time complexity of O(|E|) in Appendix E.

4.2 SIAMESE-QUERY NETWORK FOR SUBGRAPH-LEVEL EQUIVARIANT AGGREGATION

Above discussion supports extracting a bag of subgraphs without overlap (i.e., ’perfect’). After that,
we must guarantee ordered reconstruction of subgraphs. Specifically, we propose a Siamese-Query
scheme to realize equivariant subgraph learning, as shown in Figure 2. These layers map bags of
subgraphs into representation Z as follows,

hG = L(A,X), hS = CONCAT[L(Ai, Xi)] Q = hGWQ, K = hSWK , V = hSWV (10)

Z = softmax(
QKT

√
d

)V (11)

where WQ,WK ,WV ∈ Rd×d are learnable parameters. hG ∈ R1×d and hS ∈ Rm×d respectively
denote the graph-level and subgraph-level embedding obtained by an MPNN encoder L. The
representation of G for prediction denotes Z. Query mechanism introduces attention score (order) to
each subgraph by mirroring global information, which smoothly realizes subgraph-level equivariant
learning. We define g(hG, hS) = softmax(QKT

√
d
). For any permutation τ acting on subgraphs,

g(hG, τ · hS) = τ · g(hG, hS) is always hold on.

4.3 LEARNING OBJECTIVE

RayE-Sub is a two-stage learning architecture, where Rayleigh-resistance realizes subgraph partition
and Siamese-Query achieves subgraph-level equivariant learning.

Rayleigh-resistance aims to obtain boundary BG to partition graph G. Specifically, we employ the
resistance distance between two connected nodes to quantify the stability of this edge s(u, v). Similar
to Rayleigh quotient, smaller resistance distance indicates a more stabler connection. Therefore, BG

is composed of the edges (u, v) belonging to top-β(S), which picks out the top β larger of S.

BG := ∪
(u,v)∈E

{(u, v)}, s(u, v) ∈ top-β(S) (12)

Siamese-Query is the prediction module of subgraph equivariant learning. For each graph with label
Yi and its prediction Ŷi, we impose the cross entropy loss on all N graphs as the learning objective,
i.e.,

L := − 1

N

N∑
i=1

Yi log(Ŷi) (13)
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Table 1: Performance comparisons. The best results are in bold and the second best is underlined.

MOLHIV BBBP SIDER MUTAG BA-2Motifs Spurious-Motif (Sp-M)
0.5 0.7 0.9

GCN 75.5 ± 1.6 65.3 ± 1.9 52.1 ± 2.0 83.7 ± 4.7 86.8 ± 1.7 33.2 ± 1.8 31.6 ± 1.7 29.6 ± 6.2
Graph-SAGE 74.8 ± 3.4 64.1 ± 2.8 52.5 ± 1.6 84.6 ± 5.3 85.7 ± 2.3 34.8 ± 2.0 31.5 ± 2.5 30.4 ± 3.4

GIN 75.8 ± 1.3 66.4 ± 2.0 56.2 ± 1.6 89.4 ± 5.6 89.5 ± 2.1 39.9 ± 1.3 39.0 ± 1.6 38.6 ± 2.3
ESAN 77.2 ± 1.3 68.8 ± 1.3 58.1 ± 1.8 92.0 ± 5.0 92.9 ± 2.9 56.1 ± 1.7 47.9 ± 1.5 44.8 ± 2.9

GNN-AK 76.8 ± 1.2 67.7 ± 4.2 57.5 ± 1.4 92.3 ± 6.8 91.6 ± 3.3 54.2 ± 1.2 44.8 ± 1.7 42.6 ± 1.8
SUN 76.6 ± 0.9 66.4 ± 1.5 56.7 ± 2.0 94.7 ± 5.2 93.6 ± 4.1 55.6 ± 3.2 45.2 ± 2.4 43.2 ± 1.6

IB-subgraph 76.4 ± 2.6 68.1 ± 1.1 57.7 ± 2.1 91.1 ± 6.4 90.1 ± 6.5 54.4 ± 7.0 48.5 ± 5.8 46.2 ± 5.7
GSAT 76.5 ± 1.5 69.0 ± 1.2 57.2 ± 1.3 96.7 ± 2.1 97.4 ± 1.9 46.6 ± 2.9 49.1 ± 3.0 39.8 ± 2.4
DIR 76.3 ± 1.1 68.2 ± 1.4 57.8 ± 1.8 92.1 ± 2.3 93.8 ± 9.6 45.5 ± 3.8 41.1 ± 2.6 37.6 ± 2.0

RayE-Sub 77.6 ± 1.0 72.2 ± 1.1 58.4 ± 1.9 95.6 ± 2.4 98.5 ± 1.0 53.8 ± 2.0 49.6 ± 2.9 45.8 ± 2.2

4.4 THE EXPRESSIVE POWER OF RAYE-WL

We introduce WL analogue (RayE-WL) for RayE-Sub to support our next study of the expressiveness.
Due to limited pages, we only present the core step of RayE-WL, color refinement algorithm, detailed
algorithm is provided in Algorithm 3. On subgraph Gi

S ∈ GS , the color of node v ∈ Gi
S is refined

according to the rule,

ct+1
v,Gi

S

:= HASH(ctv,Gi
S
, N t

v,Gi
S
, ct+1

Gi
S

) (14)

ct+1
Gi

S

:= HASH(ctGi
S
,M t

Gi
S ,G, c

WL,t
G ) (15)

N t
v,Gi

S
denotes the multiset of colors in v’s neighborhood over subgraph Gi

S after the t-th iteration.

ct
Gi

S
represents the color of the subgraph Gi

S in which node v is located after the t-th iteration. M t
Gi

S ,G

denotes the color multiset of all subgraphs of the graph G independently mapped by 1-WL after
the t-th iteration, M t

Gi
S ,G

= {cWL,t
S |S ∈ GGi

S
}. ctG represents the color of the graph G mapped by

1-WL after the t-th iteration.

Theorem 3. (RayE-WL is more powerful than 1-WL.) RayE-WL is strictly more powerful than
1-WL in distinguishing between non-isomorphic graphs, which is upper bounded by 3-WL.

Proof. Given two non-isomorphic graphs G, H , we first prove that RayE-WL is stronger than 1-WL
by two terms. (i) If they can be distinguished by the 1-WL graph isomorphism test, RayE-WL
can strictly distinguish them. (ii) There exist graphs that cannot be distinguished by 1-WL but can
be distinguished by RayE-WL. Then, we comprehensively compare our architecture with 3-WL.
Detailed proof is provided in Appendix D.2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. The datasets for evaluation are two-fold, four real-world datasets and two synthetic
datasets on graph classification tasks. (i) Real-world datasets: MUTAG (Debnath et al., 1991)
and three OGB datasets (Hu et al., 2020) (MOLHIV, BBBP and SIDER). (ii) Synthetic datasets:
BA-2Motifs (Luo et al., 2020) and Spurious-Motif (Sp-M) (Wu et al., 2022). The detailed dataset
statistics are provided in Appendix F.1.

Baselines. Our baselines are three-fold, including GNN backbones, node-based subgraph learning
methods and partition-based subgraph learning models. (i) Backbone baselines: GCN Kipf &
Welling (2016), Graph-SAGE Hamilton et al. (2017) and GIN Xu et al. (2018). (ii) Node-based sub-
graph learning methods: ESAN Bevilacqua et al. (2022), GNN-AK Zhao et al. (2021), SUN Frasca
et al. (2022). (iii) Partition-based subgraph learning models: IB-subgraph Yu et al. (2020), GSAT
Miao et al. (2022) and DIR Wu et al. (2022). The details of baselines can be found in Appendix F.2
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Table 2: Ablation results. The performance
of RayE-Sub with different backbones.

RayE-Sub
(GIN)

RayE-Sub
(PNA)

Sp-M (0.5) 53.8 ± 2.0 72.7 ± 2.6
Sp-M (0.7) 49.6 ± 2.9 66.7 ± 1.9
Sp-M (0.9) 45.8 ± 2.2 60.6 ± 2.3
MUTAG 95.6 ± 2.4 94.8 ± 2.8
SIDER 58.4 ± 1.9 57.3 ± 2.0

Backbone and Metrics. We exploit GIN as the back-
bone of RayE-Sub due to its extensive popularity. To
ensure fair comparisons, we let GIN serve as the basic
model in all baselines. We also explore the influence of
different backbones on performance, which is provided
in Section 5.3. For prediction performance, we employ
ROC-AUC for OGB datasets (MOLHIV, BBBP and
SIDER) and accuracy for the other datasets.

5.2 MAIN RESULTS

The overall performance is summarized Table 1, and we have the following Observations:
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Figure 3: Sensitivity analysis of β
on MUTAG and BBBP, where y-
axis represents the discount of each
setting to the best performance.

Obs 1: Consistently outperform traditional backbone mod-
els on all datasets. Compared with traditional backbone meth-
ods, our approach achieves significant improvements across
all datasets with a maximum performance margin of 9%. This
improvement empirically verifies that subgraph learning can
effectively boost the expressive power of graph learning.

Obs 2: Compared with other subgraph learning methods,
RayE-Sub achieves competitive results in both real and
synthetic datasets. Encouragingly, RayE-Sub obtains the
SOTA on five datasets. Specifically, our RayE-Sub outperforms
best baselines by 3.2% and 1.1% respectively on BBBP and
BA-2Motifs. Such performance superiority can be explicitly
attributed to the coupling effects of both two objectives, i.e.,
Rayleigh-resistance based subgraph partition and Siamese-
Query based equivariant subgraph learning.

Obs 3: Partition-based subgraph discovery approaches
have better predictive ability than node-based methods. In all eight tests, partition-based subgraph
learning methods including RayE-Sub obtain seven best results. Especially, the top-2 performances
on all datasets are almost achieved by partition-based approaches. These results verify that partition-
based methods not only have better interpretability, but also are with better expressiveness.

5.3 ABLATION STUDY AND SENSITIVITY ANALYSIS

Our ablation studies are designed to explore the effects of RayE-Sub with different backbones.
Specifically, we compare the performances of RayE-Sub when GIN and PNA are utilized as base
encoder respectively. As shown in Table 2, we observe that PNA-based architecture has strong
expression ability on synthetic datasets. We analyze that the design of PNA using multiple aggregators
can better exploit common sub-units of graphs, which matches the generation principles of synthetic
datasets (Wu et al., 2022). GIN has an advantage on more complex tasks in real-world datasets.

Furthermore, we conduct sensitivity analysis of model performance about β, the results are in Figure 3.
Our model achieves best results when β is within [0.05, 0.1]. In other words, about 5%-10% of the
edges in two molecular datasets are with fragile connections, and their role is simply to bond different
functional groups. Therefore, we set β = 0.05 on all datasets. We also provide visualizations of the
subgraphs discovered by Rayleigh-resistance to verify such observation in Appendix G.

6 CONCLUSION

In this paper, we systematically study subgraph learning methods from the perspective of perfect
subgraph reconstruction, and propose a novel architecture RayE-Sub. We first observe and summarize
the phenomenon of subgraph degradation of current subgraph learning methods. We then exploit
the spectral theory and subgraph equivalence principle to respectively remedy overlapping and
disorder issues, which jointly contribute to perfect reconstruction. Experiments on both synthetic and
real-world datasets demonstrate the effectiveness of RayE-Sub. Moreover, theoretical analysis and
practical observations profoundly guarantee the superiority of our architecture.
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A MORE OBSERVATIONS OF SUBGRAPHS FAILURE

Example 1. (The degeneration of Node-based subgraphs.) Let G1 = {V1, E1} and G2 = {V2, E2}
be a pair of graphs with n = 2kl + 1, where k, l are two positive integers satisfying kl > 3. Note
that V1 = V2 = [n], E1 and E2 satisfy the following conditions,

E1 = {{i, (i mod kl) + 1} : i ∈ [kl]} ∪ {{i+ kl, (i mod kl) + kl + 1} : i ∈ [kl]}
∪ {{n, i} : i ∈ [2kl], i mod l = 0} (16)

E2 = {{i, (i mod 2kl) + 1} : i ∈ [2kl]} ∪ {{n, i} : i ∈ [2kl], i mod l = 0} (17)

By setting m = 2, k = 2, we visualize a specific example in the top panel of Figure 1. Since EGO is
more accessible for readers than other node-based policies. Next, we provide more observations of
subgraphs failure on ND-based (Node Delete) and NM-based (Node Marking) strategies. Actually,
our Example 1 also can support the failure of ND-based and NM-based subgraph learning. We confirm
this fact via an intuitive case. Specifically, we can obtain G and H by setting m = 1, k = 4 as
shown in Figure 4. For original G and H , they cannot be distinguished by 1-WL (Zhang et al., 2023).
Therefore, we focus more on explore whether we can distinguish them by node-based subgraphse.
We can extract their subgraph set from G and H respectively based on ND policy as shown in Figure
4. Unfortunately, they still can’t be distinguished by subraph-level analysis. We will explain the
reasons in detail in the following analysis.

The G1
S extracted from G is two 4-cycle regular graphs, while the H1

S extracted from H is a 8-cycle
regular graph. It is obvious that 3-WL could not distinguish them. Although 3-WL can distinguish
between them well, existing methods do not have this ability. On the one hand, almost all node-based
subgraph learning methods are upper bounded by 3-WL. They are unable to distinguish G1

S and H1
S .

For G2
S and H2

S , similar to G1
S , still can be distinguished by 3-WL, but not by 1-WL. Intuitively, the

neighbor information of each node in G2
S and H2

S is same. This homogenization will result in their
indistinguishability. Theoretically, we can confirm this fact with the simple aggregation practice of
Algorithm 1. The failure of NM-based method is similar to ND-based strategy, so we don’t repeat it.

B MORE ANALYSIS OF SPECTRAL THEORY

It is a traditional research direction to draw the distance between nodes, compare graphs and partition
substructures from the view of spectral theory. In this section, we provide more analysis of spectral
theory to better support our research motivation and specific methods.

B.1 UNDERSTANDING RAYLEIGH QUOTIENT FROM SPECTRAL THEORY.

Fundamentally, our subgraphs partition method based on Rayleigh quotient is inspired by spectral
graph theory. As understood in the text, Rayleigh quotient intuitively show the stability of graphs.
More importantly, Rayleigh quotient has a rich theoretical basis to guide subgraph partition.

Lemma 2. (Spielman, 2019) Let M be a symmetric matrix with eigenvalues µ1, ..., µn and a
corresponding orthonormal basis of eigenvectors φ1, ..., φn. Let x be a vector whose expansion in
the eigenbasis is

x =
∑
i

ciφi (18)

Then,

xTMx = (
∑
i

ciφi)
TM(

∑
j

cjφj) = (
∑
i

ciφi)
T (

∑
j

cjµjφj) =
∑
i,j

cicjφ
T
i φj =

∑
i

c2iµi (19)

as

φT
i φi =

{
1, i = j
0, i ̸= j

(20)

Lemma 3. (Spielman, 2019) Let M be an n-dimensional real symmetric matrix. There exist numbers
µ1, ..., µn and orthonormal vectors φ1, ..., φn such that Mφi = µiφi. Moreover,

φ1 ∈ arg max
||x||=1

xTMx (21)
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Figure 4: The support graphs (G and H) of ND-based subgraph learning failure by setting m =
1, k = 4 in Example 1.

and for 2 ≤ i ≤ n
φi ∈ arg max

||x||=1

xTφj=0,j<i

xTMx (22)

Similarly,
φi ∈ arg min

||x||=1

xTφj=0,j>i

xTMx (23)

Theorem 4. (Spielman, 2019) Let M be a symmetric matrix with eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn.
Then,

µk = max
S⊆Rn

dim(S)=k

min
x∈S
x ̸=0

xTMx

xTx
= min

T⊆Rn

dim(T )=n−k+1

max
x∈T
x ̸=0

xTMx

xTx
(24)

where the maximization and minimization are over subspaces S and T of Rn.

When M is the Laplacian operator LG of the graph G, this theorem reveals a fact that the extreme
values of Rayleigh quotient are equivalent with eigenvalues of LG. We provide two lines of proof to
support this theorem.

Proof 1. Let φ1, ..., φn be an orthonormal basis of eigenvectors of M corresponding to µ1, ..., µn.
We will just verify the first characterization of µk. First, let S be the span of φ1, ..., φk. We can
expand every x ∈ S as

x =
k∑

i=1

ciφi (25)

Based on Lemma 2, we can obatin

xTMx

xTx
=

∑
i

c2iµi∑
i

c2i
≥

∑
i

c2iµk∑
i

c2i
= µk (26)

Thus,

min
x∈S

xTMx

xTx
≥ µk (27)

To show that this is in fact the maximum, we will prove that for all subspaces S of dimension k,

min
x∈S

xTMx

xTx
≤ µk (28)

Let T be the span of φ1, ..., φn. As T has dimension n − k + 1, every S of dimension k has an
intersection with T of dimension at least 1. Thus,

min
x∈S

xTMx

xTx
≤ min

x∈S∩T

xTMx

xTx
≤ max

x∈T

xTMx

xTx
(29)
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Any x in T can be expressed as

x =

n∑
i=k

ciφi (30)

and so for x in T

xTMx

xTx
=

n∑
i=k

c2iµi

n∑
i=k

c2i

≤

n∑
i=k

c2iµk

n∑
i=k

c2i

= µk (31)

In conclusion, we prove µk = max
S⊆Rn

dim(S)=k

min
x∈S
x̸=0

xTMx
xT x

, the other is similar.

Proof 2. First, we recall that the gradient of a function at its maximum must be the zero vector. Let’s
compute that gradient. We have

∇xTx = 2x (32)

and

∇xTMx = 2Mx (33)

Thus,

∇xTMx

xTx
=

(xTx)(2Mx)− (xTMx)(2x)

(xTx)
2 (34)

In order for this to be zero, we must have

(xTx)(2Mx) = (xTMx)(2x) (35)

which is equivalent to

Mx =
xTMx

xTx
x (36)

That is, if and only if x is an eigenvector of M with eigenvalue equal to its Rayleigh quotient. As
x maximizes the Rayleigh quotient, this eigenvalue must be µ1. Based on Lemma 3, it is not hard
to prove that Theorem 4 by generalizing this characterization to all of the eigenvalues of M . Much
of the above discussion is derived from (Spielman, 2019), and more detailed understanding is also
available from it.

B.2 FURTHER ANALYSIS OF RESISTANCE DISTANCE.

The resistance distance between two vertices a and b in an electrical network is the resistance of the
entire network when we treat it as one complex resistor. That is, we consider an electrical flow that
sends one unit of current into node a and outflows one unit of current from node b. We then measure
the potential difference between a and b that is required to realize this current, define it to be the
resistance distance between a and b, and write it RDab.

RDab
def
= (δa − δb)

TL+(δa − δb) (37)

where δj is the elementary unit vector with 1 in coordinate j and L+ is the pseudo-inverse of L.

RDab
def
= (δa − δb)

TL+(δa − δb)
= (L+/2(δa − δb))L

+/2(δa − δb)
= ||L+/2(δa − δb)||2
= ||L+/2δa − L+/2δb||2
= dist(L+/2δa, L

+/2δb)
2

(38)
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Resistance Distance through Energy Minimization. Physics tells us that the vertices will settle
into the position that minimizes the potential energy. The potential energy of an ideal linear spring
with constant w when stretched to length l is

1

2
wl2 (39)

So, the potential energy in a configuration x is given by

ξ(x)
def
=

1

2

∑
(a,b)∈E

wab(x(a)− x(b))
2 (40)

The lowest energy must be reached when the each variable of ξ(x) is zero. The partial derivative with
respect to x(a) is

1

2

∑
(a,b)∈E

2wab(x(a)− x(b)) =
∑

(a,b)∈E

wab(x(a)− x(b)) (41)

Setting this to zero gives the equations we can obtain

x(a) =
1

da

∑
(a,b)∈E

wabx(b) (42)

For future reference, we state this result as a lemma (Spielman, 2019).

Lemma 4. (Spielman, 2019) Let G = (V,E,w) be a connected, weighted graph, let B ⊂ V , and
let S = V −B. Given x(B), ξ(x) is minimized by setting x(S) so that x is harmonic on S.

We focus on the resistance distance between a and b, thus x should be harmonic on V − {a, b}.
Fortunately, we already know how compute such a vector x. Set

y = L+(δa − δb)/RDab (43)

We can get
y(a)− y(b) = (δa − δb)

TL+(δa − δb)/RDab = 1 (44)

thus y is harmonic on V − {a, b}. We further set x = y − 1y(s). It is obvious that x satisfies
x(s) = 0, x(t) = 1, and it is harmonic on V − {a, b}. We compute the energy to be

xTLx = yTLy
= 1

(RD(a,b))2
(L+(δa − δb))

TL(L+(δa − δb))

= 1
(RD(a,b))2

(δa − δb)
TL+LL+(δa − δb)

= 1
(RD(a,b))2

(δa − δb)
TL+(δa − δb)

= 1
RD(a,b)

(45)

This derivation reveals a fact that the weights of edges are the reciprocals of their resistance distance.
In practical implementation, we employ this understanding to achieve the approximate resistance
distance with the time complexity of O(|E|). More importantly,Equation 45 builds a theoretical
bridge between Rayleigh quotient and Resistance distance, which inspires us to utilize resistance
distance to describe the stability of the graph and propose Rayleigh-resistance.

C PROOF OF THEOREMS

C.1 PROOF OF LEMMA

Lemma 1. (Function composition (Arora et al., 2016).) MPNNs can repeatedly update each node’s
embedding by aggregating information from their neighbors. The graph-level embedding hG can be
obtained by

hG = POOL ◦ σ ◦ TL ◦ · · · ◦ T2 ◦ σ ◦ T1(A,X) (46)
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where σ and Tl are the l-th layer update and aggregation operators (matrices), POOL is the
READOUT operation, ◦ denotes layer composition. There exists a global aggregation matrix
T, merge from {Ti|i = 1, 2, ..., l}, to make this architecture have equivalent representation:

hG = POOL ◦ σ ◦ T(A,X) (47)

where each element T(i, j) indicates the aggregation coefficient from j to i.

Proof. It is clear that any function represented by a ReLU DNN is a continuous piecewise linear
(PWL) function. To see the converse, we first note that any PWL function can be represented as a
linear combination of piecewise linear convex functions (Wang & Sun, 2005). For every piecewise
linear function hG : Rn → R, there exists a finite set of affine linear functions h1, ..., hk and subsets
S1, ..., Sp ⊆ {1, ..., k} (not necessarily disjoint) where each Si is of cardinality at most n+ 1, such
that

hG =

p∑
j=1

sj(maxhi
i∈Sj

) (48)

where sj ∈ {−1,+1} for all j = 1, ..., p. Since a function of the form maxhi
i∈Sj

is a piecewise

linear convex function with at most n+ 1 pieces (because |Sj | ≤ n+ 1), Equation 48 says that any
continuous piecewise linear function (not necessarily convex) can be obtained as a linear combination
of piecewise linear convex functions each of which has at most n + 1 affine pieces. (Arora et al.,
2016) has shown that composition, addition, and pointwise maximum of PWL functions are also
representable by ReLU DNNs. In particular, we note that max{x, y} = x+y

2 + |x−y|
2 is implementable

by a two layer ReLU network and use this construction in an inductive manner to show that maximum
of n+ 1 numbers can be computed using a ReLU DNN with depth at most ⌈log2(n+ 1)⌉. We can
conclude that every piecewise linear function hG can be represented by a function with at most
⌈log2(n+ 1)⌉ depth. Thus, there exists

σ ◦ TL ◦ · · · ◦ T2 ◦ σ ◦ T1 = T (49)

We finish this proof.

C.2 PROOF OF THEOREMS 1

Theorems 1. (The degradation of nsode-based subgraph learning.) Suppose the ground-truth
aggregation matrix of graph G is M , the aggregation result from node-level MPNNs is TG, and the
result from node-based subgraph learning is TS . Then, there exists graph G satisfying TS = TG.

Proof. Node-based subgraph learning generate n subgraphs GS = {G1
S , G

2
S , · · · , Gn

S} , wherein
every subgraph is associated with a unique node. The aggregation process of each subgraph Gi

S has
a corresponding attention T i

S . For all the subgraphs, the attention of information passing between
all nodes is TS =

∑
i∈[n]

T i
S . Thus, we turn the question into a proof of whether

∑
i∈[n]

T i
S = TG exists.

G SG

Figure 5: A complete graph G with 5 nodes to
support Theorems 1.

Since (Frasca et al., 2022) has shown that the
ND-based and NM-based methods are the most
expressive node-based subgraph learning strate-
gies, we just study ND-based subgraph discov-
ery policy in our discussion. Consider a com-
plete graph G with 5 nodes and its subgraph set
GS as shown in Figure 5, and briefly assume
that all node attributes are the same. We observe
that each subgraph is a complete graph with
4 nodes, which is not fundamentally different
from G. And, we can easily deduce that TG is a
constant multiple of

∑
i∈[n]

T i
S , which doesn’t change the final result. Therefore, there exists graph G

satisfying TS = TG.
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Theorem 1 indicates the existence of subgraph degradation, which verifies our intuitive observation.
Note that the degradation of subgraphs is not universal, and it doesn’t alter the fact that the expression
ability of subgraph learning is strictly more powerful than 1-dimensional Weisfeiler-Lehman (1-WL).

C.3 THE EXPRESSIVE POWER OF NODE-BASED METHODS (NODE-WL)

Theorem 1 indicates the existence of subgraph degradation, which verifies our intuitive observation.
Note that the degradation of subgraphs is not universal, and it doesn’t alter the fact that the expression
ability of subgraph learning is strictly more powerful than 1-dimensional Weisfeiler-Lehman (1-WL).

We always analyze that Node-WL is stronger than 1-WL by proving following two terms. Given two
non-isomorphic graphs G, H , (i) if they can be distinguished by the 1-WL graph isomorphism test,
Node-WL can strictly distinguish them; (ii) there exist graphs that cannot be distinguished by 1-WL
but can be distinguished by Node-WL. We can conclude that there will be some non-isomorphic
pairs of graphs, they can neither be distinguished by Node-WL nor 1-WL. The cases of subgraph
degradation corresponds to this scenario. Therefore, the cases of subgraph degradation do not affect
the proof of these two terms and the expression ability of subgraph learning is still strictly more
powerful than 1-WL.

This work aims to systematically study this degradation phenomenon and further provide a more
stable subgraph learning architecture to address this subgraph degradation. In terms of expression
ability, our architecture is still upper bounded by 3-WL.

C.4 PROOF OF THEOREMS 2

Theorems 3. (Equivalence between Resistance distance and Rayleigh quotient.) Let u and v be
any two vertices connected by an edge. Under the accessible constraints, the resistance distance
between u and v is approximately equivalent to the stability of pairwise vertices defined by Rayleigh
quotient.

Proof. Recall that we have LG = UTWU , where U ∈ Rm×n is the signed edge-vertex adjacency
matrix and W ∈ Rm×m is the diagonal matrix of edge weights. Thus, NG can be rewritten as
D−1/2UTWUD−1/2. Consider the following two derivations,

xTNGx=xTD−1/2UTWUD−1/2x = ||W 1/2UD−1/2x||2 (50)

RDuv = (δu − δv)
TL+

GLGL
+
G(δu − δv) = ||W 1/2UL+

G(δu − δv)||2 (51)

The comparability between Equation 50 and 51 transforms original question into exploring whether
there is a method to make D−1/2x and L+

G(δu− δv) keep related connection. In other words, we will
explore whether there exist the function ϕ(·) satisfying D−1/2x = ϕ(L+

G(δu − δv)). We investigate
this problem by integrating the feature information x into the topology, and prove that we can find
appropriate ways to achieve their equivalence.

Since LG is symmetric we can diagonalize it and write

LG =

n−1∑
i=1

λiµiµ
T
i (52)

where λ1, λ2, ..., λn−1 are the nonzero eigenvalues of LG and µ1, µ2, ...., µn−1 are a corresponding
set of orthonormal eigenvectors. Thus, we can obtain the L+

G,

L+
G =

n−1∑
i=1

1

λi
µiµ

T
i (53)

For all nodes u and v connected by edges, we can easily obtain (δu − δv) ∈ Rn×|E|. We can derive

that the i-th row element of L+
G(δu − δv) is denoted as

n−1∑
k=1

1
λk

(µ2
ki − µkiµkj)κi, where κi ∈ R1×n,

and if j directly connected to i, then κi[j] has a value of 1, otherwise it is 0. For D−1/2x, its i-th row
element is xi√

di
. Therefore, we transform this question to explore whether there exist the function ϕ(·)
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satisfying xi√
di

= ϕ(
n−1∑
k=1

1
λk

(µ2
ki − µkiµkj)κi). We define N (i) = {j1, ..., jdi} and further simplify

the latter term:∑ n−1∑
k=1

1
λk

(µ2
ki − µkiµkj)κi = di

n−1∑
k=1

1
λk

µ2
ki −

∑
j∈N (i)

n−1∑
k=1

1
λk

µkiµkj

= (
n−1∑
k=1

1
λk

µ2
ki −

n−1∑
k=1

1
λk

µkiµkj1) + ...+ (
n−1∑
k=1

1
λk

µ2
ki −

n−1∑
k=1

1
λk

µkiµkjdi )

=
n−1∑
k=1

1
λk

(µ2
ki − µkiµkj1) + ...+

n−1∑
k=1

1
λk

(µ2
ki − µkiµkjdi )

(54)

We recall the definition of access time in graph spectral theory. H(i, j) is the expected number of
steps before node j is visited, starting from node i.

H(i, j) = 2|E|
n−1∑
k=1

1

λk
(
µ2
ki

di
− µkiµkj√

didj
) (55)

The similarity between Equation 54 and 55 inspires us to employ the concept of access time to

denote ϕ(·). Specifically, we define that ϕ(L+
G(δu − δv)) =

∑
j∈N(i)

H(i,j)

√
di

. It is not hard to implement.
Actually, the access time between neighbors is determined by the weight of the edges and the local
topology. Therefore, integrating feature information x into the topology is the key to ensure this
equation. The problem has been transformed to prove the correlation between xi and

∑
j∈N(i)

H(i, j).

To simplify above discussion, we set the dimension of x to 1. In practical implementation, however,
the dimension of x is d (non-zero). Thus, we explore the topological relationship between nodes from
the embedded Euclidean space. We first achieve the reweighting of edge via wuv = ||xu − xv||−2.
This design reveals that the isolation or centrality of node embedding in Euclidean space must lead to
its topological isolation or centrality. For example, isolated node i (xi) must be hard to reach, so the
access time (

∑
j∈N(i)

H(i, j)) to its neighbors must also be long, which satisfies our expectation.

In conclusion, when the reweighting strategy of edge wuv = ||xu− xv||−2 is achieved, the resistance
distance between u and v is approximately equivalent to the stability of pairwise vertices defined by
Rayleigh quotient. The theoretical understanding of effective resistance distance supports this design:
the edge weight and resistance distance have opposite tendency (Spielman, 2019).

C.5 PROOF OF EQUATION 8

We can rewrite the formation of Rayleigh quotient:

q∗(G) = xTNGx =
∑

(a,b)∈E

wab(
x(a)√
da

− x(b)√
db

)2 (56)

where dj represents the degree of j. Intuitively, Equation 56 effectively avoids single-node subgraphs
case by considering the degree of node in subgraph. However, we still wonder if this rewriting
theoretically results in different semantics. We make the following derivation:

since
xTNGx = xTD−1/2LGD

−1/2x (57)

we can obtain
NG(Vi, Vi) = D−1/2LGi

S
D−1/2 +D−1/2BGi

S
D−1/2 (58)

further, we get
xTNGx =

∑
i∈[k]

xTD−1/2LGi
S
D−1/2x+ xTD−1/2BGD

−1/2x (59)

Given x, xTNGx is also fixed. Thus, discovering the significant boundary max
BG

xTD−1/2BGD
−1/2x

is equivalent to optimizing min
GS

xTNGx = min
GS

∑
i∈[k]

xTD−1/2LGi
S
D−1/2x =
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min
GS

∑
i∈[k]

(D−1/2x)
T
LGi

S
D−1/2x. In this case, we can view y = D−1/2x as the feature of

nodes. Different from the previous one, topological information (degree) of nodes is also an
important standard for graph partition. Therefore, our improvement can not only realize the subgraph
partition guided by Rayleigh quotient but also avoid the defect of single-node subgraph case.

D THE STUDY OF EXPRESSIVE POWER

D.1 THE WEISFEILER-LEHMAN ALGORITHM AND ITS VARIANTS

In this section, we first present two families of algorithms k-dimensional Weisfeiler-Lehman algorithm
(k-WL) and k-dimensional Folklore WeisfeilerLehman algorithms (k-FWL), both parameterized
by k ∈ [n]. k-WL and k-FWL both construct a coloring of k-tuples of vertices, where the k-tuple
is denoted by i ∈ [n]k ( vi = (vi1 , ..., vik) ∈ V k). And, the output of k-WL and k-FWL obtain
denotes the color Ci of each k-tuple vi. The difference of k-WL and k-FWL is in how the colors are
aggregated from neighboring k-tuples. We define two notions of neighborhoods of a k-tuple i ∈ [n]k:

Nj(i) = {(i1, ..., ij−1, i
′, ij+1, ..., ik)|i′ ∈ [n]} (60)

NF
j (i) = ((j, i2, ..., ik), (i1, j, ..., ik), ..., (i1, ..., ik−1, j)) (61)

Nj(i) denotes the j-th neighborhood of the tuple i used by the WL algorithm, where j ∈ [k]. NF
j (i)

represents the j-th neighborhood of the tuple i used by the FWL algorithm, where j ∈ [n]. Note that
Nj(i) is a set of n k-tuples, while NF

j (i) is an ordered set of k k-tuples. Therefore, we can obtain
detailed algorithms of k-WL and k-FWL as shown in Algorithm 1 and 2.

Algorithm 1: The k-dimensional Weisfeiler-Lehman Algorithm
Input: Graph G = (V,E) and the number of iterations T
Output: The coloring of all k-tuples C

1 Initialization: The initial coloring C0 is defined using the isomorphism type of each k-tuple
2 for t← 1 to T do
3 for each k-tuple i do
4 Ct

i := HASH(Ct−1
i , ({{Ct−1

j |j ∈ Nj(i)}|j ∈ [k]}))
5 end
6 end

Result: C

Algorithm 2: The k-dimensional Folklore Weisfeiler-Lehman Algorithm
Input: Graph G = (V,E) and the number of iterations T
Output: The coloring of all k-tuples C

1 Initialization: The initial coloring C0 is defined using the isomorphism type of each k-tuple for
t← 1 to T do

2 for each k-tuple i do
3 Ct

i := HASH(Ct−1
i , {{(Ct−1

j |j ∈ NF
j (i))|j ∈ [n]}})

4 end
5 end

Result: C

D.2 THE EXPRESSIVE POWER OF RAYE-WL

We start by introducing WL analogue (RayE-WL) for RayE-Sub to support our next study of the
expressiveness of our. Due to limited pages, we only present the core step of RayE-WL: color
refinement algorithm, detailed algorithm is provided in Algorithm 3. On subgraph Gi

S ∈ GS , the
color of node v ∈ Gi

S is refined according to the rule:
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ct+1
v,Gi

S

:= HASH(ctv,Gi
S
, N t

v,Gi
S
, ct+1

Gi
S

) (62)

ct+1
Gi

S

:= HASH(ctGi
S
,M t

Gi
S ,G, c

WL,t
G ) (63)

N t
v,Gi

S
denotes the multiset of colors in v’s neighborhood over subgraph Gi

S after the t-th iteration.

ct
Gi

S
represents the color of the subgraph Gi

S in which node v is existed after the t-th iteration. M t
Gi

S ,G

denotes the color multiset of all subgraphs of the graph G independently mapped by 1-WL after the
t-th iteration, M t

Gi
S ,G

= {cWL,t
S |S ∈ GGi

S
}. ctG represents the color of the graph G mapped by 1-WL

after the t-th iteration.

We then explore the expressive power of RayE-WL from two aspects: comparing its ability with
1-WL, and studying the expressivity upper bound of RayE-WL.

Theorems 4. (RayE-WL is more powerful than 1-WL.) in distinguishing between non-isomorphic
graphs, which is upper bounded by 3-WL.

Proof. We first prove that RayE-WL is strictly more powerful than 1-WL. Given two non-isomorphic
graphs G, H , we first prove that RayE-WL is stronger than 1-WL by two terms. (i) If they can be
distinguished by the 1-WL graph isomorphism test, RayE-WL can strictly distinguish them. (ii)
There exist graphs that cannot be distinguished by 1-WL but can be distinguished by RayE-WL.

For the first term, G and H can be distinguished by the 1-WL graph isomorphism test, which means
cG ̸= cH . We can easily deduce {cGi

S
|Gi

S ∈ GS} ≠ {cHi
S
|Hi

S ∈ HS}, where GS and HS are the
subgraph sets extracted by G and H respectively. The final the color multiset of G and H is also
distinguishable.

Algorithm 3: The RayE-WL Algorithm
Input: Graph G = (V,E) and the number of iterations T
Output: The coloring of all nodes cT

1 Initialization: Initialize the color of each node c0, and the subgraph set GS extracted from G
2 for t← 1 to T do
3 for each subgraph S in GS do
4 for each node v in S do
5 ctS := HASH(ct−1

S ,M t−1
S,G , cWL,t−1

G )

6 ctv,S := HASH(ct−1
v,S , N t−1

v,S , ctS)

7 end
8 end
9 end

Result: cT

For the second term, G and H cannot be distinguished by the 1-WL graph isomorphism test,
which means cG = cH . After G and H are partitioned into subgraphs GS and HS , there are two
existing cases that should be discussed. One is that each subgraph can be distinguished which
means {MGi

S ,G|Gi
S ∈ GS} ̸= {MHi

S ,H |Hi
S ∈ HS}. In other words, the independent mapping

results based on 1-WL in each subgraph can distinguish between GS and HS . Thus, we can
similarly deduce {cGi

S
|Gi

S ∈ GS} ≠ {cHi
S
|Si

S ∈ HS}. The final color of each node cv,S is also
distinguishable. More importantly, another case is each subgraph still cannot be distinguished which
means {MGi

S ,G|Gi
S ∈ GS} = {MHi

S ,H |Hi
S ∈ HS}. The bottom panel of Figure 1 intuitively

describes this case. According to the comparison between their color refinement algorithm, we can
observe our RayE-WL is a subclass of 3-WL. Thus, we can conclude that RayE-WL is upper bounded
by 3-WL

E TIME COMPLEXITY ANALYSIS

In this section, we analyze the time complexity from theoretical analysis and experimental comparison.
For each graph G = (A,X), our method has two parts of calculation: subgraphs partition and
subgraph-level equivariant learning.
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Time Complexity. The running time of the subgraphs partition stage main comes from calculating
edge weight (wab) and resistance distance (RDab). It is obvious that the process of reweighting
edge costs O(|E|) time. We are only concerned with the resistance distance between nodes con-
nected by edges, thus we do not need to follow the inefficient calculation method with O(|V |3).
Inspired by Equation 45, we propose a resistance distance approximation method with O(|E|)
time complexity. Specifically, we first precalculate the resistance distance among all the nodes
RD∗ in the case that all edges have a weight of 1. Then, with the weight wab of edge (a, b),
we approximate the resistance distance RDab = RD∗

ab/wab. This proposal realizes the calcu-
lation of resistance distance in O(|E|) time complexity. Note that this approximate method can
only be used to calculate the resistance distance between nodes connected by edges. The cost
time of the subgraph-level equivariant learning stage main stems from query mechanism. Its time
complexity is O(md2), where m represents the number of subgraphs, d indicates the hidden di-
mension. Due to d is a constant that we set up, the time complexity of RayE-Sub is O(|E|).

Table 3: The execution time of four baselines on three
datasets.

BBBP MUTAG BA-2Motifs
GIN 0.79 1.07 0.64
PNA 1.30 2.62 0.91

GNN-AK 2.76 4.32 1.23
GSAT 3.88 6.49 2.98

RayE-Sub 4.06 9.86 2.65

Execution Time. We compare the exe-
cution time (epoch/s) of four baselines
(GIN, PNA, GNN-AK and GSAT) on
three datasets (BBBP, MUTAG and BA-
2Motifs) as shown in Table 3. Note that
all experiments are conducted on a Tesla
V100-PCIE-16GB GPU, and the back-
bones of all models are 2-layer GIN,
same as RayE-Sub. The result shows that
the running efficiency of RayE-Sub is competitive, and it achieves interpretability and performance
improvements within an acceptable time consumption.

F SUPPLEMENTARY EXPERIMENTS

F.1 DETAILS OF THE DATASETS

BA-2Motifs is a synthetic dataset created by (Luo et al., 2020) with two graph classes. House motifs
and cycle motifs give class labels and thus are regarded as ground-truth explanations for the two
classes respectively.

Spurious-Motif is a synthetic dataset proposed by (Wu et al., 2022) with three graph classes. Each
graph is composed of one base S and one motif C. The motif C directly determines the label of the
graph. We can create Spurious-Motif datasets with different spurious correlation, which represents
the degree (b) between the base S and the label. In our implementation, we choose b = 0.5, 0.7 and
0.9 to obtain datasets.

MUTAG Debnath et al. (1991) is a binary dataset of molecular property, where nodes are atoms and
edges are chemical bonds. Each graph is associated with a binary label based on its mutagenic effect.

Open Graph Benchmark (OGB) Hu et al. (2020) is a series of real, large-scale and diverse datasets
which is utilized for machine learning on graphs. It covers almost all real-world tasks, including
node-level, link-level and graph-level property prediction. We choose MOLHIV, BBBP and SIDER
to verify our method.

F.2 DETAILS OF THE BASELINES

Our baselines are three-fold, including GNN backbones, node-based subgraph learning methods and
partition-based subgraph learning models. The details are as follows.

Backbone baselines. GCN Kipf & Welling (2016), Graph-SAGE Hamilton et al. (2017) and GIN Xu
et al. (2018) are very popular backbones in most practices. These classic MPNNs are limited in their
expressive ability, they are still selected as baselines by many subgraph learning methods Zhang et al.
(2023); Zhao et al. (2021); Yang et al. (2022); Frasca et al. (2022).

Node-based subgraph learning methods. ESAN (Bevilacqua et al., 2022) implements an subgraph
equivariant learning architecture and achieve better expressiveness by per-layer aggregation across
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Figure 6: Visualizing the boundary discovered by RayE-Sub, where the bold connections are the
edges of boundary. Left panel: the boundary obtained by RayE-Sub for MUTAG. Right panel: the
boundary discovered by RayE-Sub for BA-2Motifs.

subgraphs. GNN-AK Zhao et al. (2021) follows a similar manner to develop Subgraph GNNs by
considering the star-pattern as the pre-defined substructure. SUN (Frasca et al., 2022) profoundly
studies the characteristics of node-based subgraph learning. Further, SUN aligns the permutation
group of nodes and subgraphs, and models the symmetry with a smaller single permutation group.

Partition-based subgraph learning models. IB-subgraph Yu et al. (2020) first implement the
information bottleneck theory in practice on graph learning, which is not only a subgraph learning
method based on partition (edge drop) but also an important exploration of interpretability. GSAT
(Miao et al., 2022) follows this practice and designs a subgraph extraction strategy with edge deletions
based on stochastic attention mechanism. DIR (Wu et al., 2022) splits the input graph into causal and
non-causal subgraphs, and utilizes invariant features to construct intrinsically interpretable GNNs.

G INTERPRETATION VISUALIZATION

We provide visualizations of the boundary discovered by RayE-Sub on two datasets (MUTAG and
BA-2Motifs) as shown in Figure 6. According to the results of visualization, we explore (i) whether
our method can partition original graph into label-relevant subgraphs, (ii) whether the setup of
β = 0.05 can match the real scenario of the datasets.

Following (Miao et al., 2022), −NO2 and −NH2 in MUTAG dataset are labeled as ground-truth
explanations. In our practice, we observe that our RayE-Sub always partition −NO2 or −NH2 into a
subgraph as shown in Figure 6. We have to acknowledge that our method also splits at label-relevant
edges. Excitingly, our partition tends to divide the molecule into a bag of functional groups, which
indicates that our method is suitable for real-world tasks. Besides, we find that the number of
label-relevant subgraphs is small, only a few edge partition can satisfy the expectation of prediction.
Therefore, the setup of β = 0.05 is appropriate for real-world tasks.

Following (Luo et al., 2020), house motifs and cycle motifs give class labels and thus are regarded as
ground-truth explanations for the two classes respectively. Specifically, each base graph is generated
using the BA model and will be attached with two house motifs or three house motifs randomly. The
number of house motifs represents the graph class. The primary goal of this task is to identify house
motifs. We observe that our RayE-Sub always partition house motif (pink nodes) into a subgraph.
Similar to MUTAG, BA-2Motifs also needs only a few number of boundary edges to achieve accurate
prediction.

In conclusion, our RayE-Sub can partition original graph into label-relevant subgraphs, and the setup
of β = 0.05 is appropriate for the tasks of these datasets.

H FUTURE WORKS

We can still improve our work from following two aspects. In the subgraphs partition stage, how to
set an personalized and optimal partition rate β via domain knowledge across different datasets is
still unexplored. And in the subgraph aggregation stage, it is interesting to investigate more powerful
equivariant architectures for ordered aggregations.
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