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ABSTRACT

With the growing demand for immersive visual experience in virtual and aug-
mented reality, high-resolution (HR) and high-quality (HQ) omnidirectional im-
ages (ODIs) are becoming increasingly essential. However, the limited capabili-
ties of capturing device and transmission bandwidth constrain ODI resolution, hin-
dering the rendering of fine 360° details. This challenge is further compounded
by unknown real-world degradations and geometric distortions, which severely
degrade ODI visual quality. Although real-world super-resolution (Real-SR) has
been widely studied, existing degradation simulations fail to accurately character-
ize the complex imaging pipeline of ODIs. In practice, ODIs are usually collected
by fisheye cameras and projected from the sphere to a plane through Equirect-
angular Projection (ERP), which introduces aliasing and domain-specific distor-
tions. To bridge this gap, we propose a Degradation-Separated real-world Om-
nidirectional image Super-Resolution (DSOSR) framework that explicitly models
the combined degradations from fisheye imaging and ERP projection. DSOSR is
built upon two key insights: (1) projection degradations with strong priors signif-
icantly affect the distribution of random degradations, and (2) human attention in
immersive scenarios typically focuses on local attractive viewpoints. Motivated
by these observations, we develop a Perspective Projection Representation (PPR)
to extract viewpoint features in parallel with the ERP branch, thereby isolating
aliased degradations across domains. A Degradation-Specific Module (DSM) is
then incorporated to separately modulate ERP-induced intrinsic geometric distor-
tions and PPR-induced random real-world degradations. Furthermore, a Projec-
tion Fusion Attention Module (PFAM) is introduced to exploit inter-dependencies
between ERP and PPR features, enabling more effective fusion of complementary
representations. Extensive experiments demonstrate that the proposed DSOSR
achieves state-of-the-art performance, delivering visually compelling and high-
fidelity omnidirectional Real-SR results for practical applications.

1 INTRODUCTION

Omnidirectional images (ODIs), also referred to as 360° or panoramic images, capture the full 360°
field of view (FoV), thereby providing highly immersive and realistic visual experiences. With the
rapid development of virtual and augmented reality applications, the demand for immersive ODIs
has surged. To deliver a vast perspective, ODIs must be rendered at sufficiently high resolutions,
such as 4K, 8K, or even 16K. Meanwhile, local regions that users typically focus on (ranging from
100°x 100° to 120° x 120° (Dasari et al., [2020)) should remain clear and detailed. However, most
ODIs suffer from limited resolution due to the high cost of high-precision capturing devices and
transmission bandwidth. Moreover, throughout the practical imaging pipeline—including acquisi-
tion, stitching, projection, transmission, processing, and viewing—ODIs are further degraded by
blur, noise, down-sampling, compression artifacts, and projection distortions, all of which signifi-
cantly reduce visual fidelity. Among these challenges, achieving high-resolution (HR) reconstruc-
tion remains the most fundamental requirement. Super-Resolution (SR) is a commonly adopted
solution on the client side to enhance ODI quality. Nevertheless, most existing SR methods (Dong
et al.| 2014} Lim et al., |2017; |Ledig et al.| [2017} Zhang et al., [2018}; |Chen et al., 2023} Tian et al.,
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Figure 1: Real-world ODI degradations across the imaging pipeline. During the process of capturing
fisheye ODIs and converting them into ERP representations, random degradations like blur, noise,
resizing, and compression emerge. These effects are further compounded by projection-related dis-
tortions, including geometric stretching and deformation, which intensify artifacts and severely im-
pair visual quality. It can be observed from the zoom-in regions that fisheye and ERP projections
exhibit distinct degradation distributions.

[2024) rely on the assumption of ideal Bicubic down-sampling, which deviates considerably from
real-world degradations and thus limits their generalization ability. To this end, several real-world

super-resolution (Real-SR) approaches (Cai et all, 2019, (Wang et all, 2021a; [Zhang et al. 2021},

[Wang et al, 20210 [Wei et all, 2021}, [Liang et al., 2022} [Chan et al.| [2022) either implicitly learn
degradation priors from low-resolution (LR) images or explicitly synthesize LR-HR pairs to approx-

imate real-world distributions. However, these methods overlook the broader range of degradations
encountered in the ODI imaging chain, where mixed degradation distributions significantly chal-
lenge the restoration of photo-realistic high-quality ODIs.

ODIs are captured using fisheye cameras and stitched to cover the entire 360° space. To enable
compatibility with conventional image transmission and processing pipelines, spherical ODIs are
projected onto planar formats. This pixel-wise mapping inevitably leads to information loss and
interpolation distortions. Despite the emergence of novel projection techniques, Equirectangular
Projection (ERP) is still the most widely utilized due to its low computational complexity and broad
applicability, as ERP images can be directly treated as generic 2D images with non-uniform content
density. After projection, ERP ODIs are subject to compression, transmission, and enhancement
before being back-projected onto the sphere for viewing localized perspective regions. As illus-
trated in Fig. [T} various types and levels of real-world degradations D, arise throughout the ODI
imaging pipeline, while ERP further introduces geometric distortions Dgrp, leading to complex

degradation distributions. Recent ODI-SR methods (Ozcinar et al., 2019} [Deng et al., 2021}, 2022
[An & Zhang| 2023}, [Wang et al.,[2024; [Ji et al.| 2024} [Yang et al.,[2025} [Shen et al.,[2025) mainly ad-
dress ERP distortion by exploiting latitude-related geometric priors. Beyond these, OSRT

2023) considers ODI formation and designs a fisheye-based down-sampling strategy, FATO
et al.l 2024) models the non-uniform ERP content distribution via fine-grained frequency represen-
tation, and OmniSSR 2024a)) leverages planar generative priors within diffusion models for
zero-shot ODI-SR. While these approaches partially alleviate projection and down-sampling degra-
dations, they remain limited in covering the full spectrum of real-world scenarios, thus constraining
both performance and generalization.

To overcome the challenges of real-world ODI-SR, we propose a combined fisheye-ERP degra-
dation model to synthesize more realistic training samples that capture distortions across different
degradation distributions. Considering the inherent complexity and diversity of ODI degradations,
we design a dual-branch architecture that separately handles latitude-related projection distortions
and blind pixel-level degradations. Specifically, a high-fidelity perspective projection representation
branch is employed in parallel with the ERP branch to enhance viewpoint visual quality. In addition,
degradation-specific encoding is applied to guide both branches in modulating distortions with and
without location priors. Finally, a projection fusion mechanism is integrated to aggregate comple-
mentary information across reconstructed feature domains. The main contributions of this paper are
summarized as follows:
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1. We propose a mixed Fisheye-ERP degradation model that realistically simulates practical
ODI distortions across the real-world application workflow—acquisition, stitching, projec-
tion, transmission, processing, and viewing. By explicitly separating degradations with
different priors, our approach achieves more faithful restoration.

2. We introduce a Perspective Projection Representation (PPR) for continuous sampling that
maps ERP ODIs into the perceptual viewing domain. The PPR effectively decouples geo-
metric distortions and enables accurate modulation of real-world degradations observed in
practical viewpoints.

3. We design a dual-branch network based on ERP and PPR representations, equipped with
Degradation-Specific Modules (DSMs) to adaptively compensate for degradations in differ-
ent distributions. Furthermore, a Projection Fusion Attention Module (PFAM) is developed
to facilitate cross-branch interaction and enhance restoration performance.

2 RELATED WORK

2.1 REAL-WORLD IMAGE SUPER-RESOLUTION

With the rapid progress of deep learning, network-based image super-resolution (SR) models (Dong
et al., 2014} [Lim et al.l [2017; Ledig et al.| 2017} Zhang et al.l [2018; |Chen et al., 2023} |Tian et al.,
2024 have replaced traditional methods. However, these approaches always assume predefined de-
generation types with fixed patterns, which fail to accurately reflect the complex and diverse degra-
dation characteristics presented in real-world low-resolution (LR) images. In practice, LR images
are acquired under diverse device conditions and environments, and are inevitably affected by blur,
noise, resizing, and compression. To narrow the gap between synthetic and real-world degradations,
a series of works have explored real-world super-resolution (Real-SR). RealSR (Cai et al. 2019)
constructed a large kernel pool to cover diverse degradation types. BSRGAN (Zhang et al., [2021)
and Real-ESRGAN (Wang et al., 2021b) explicitly built a mathematical degradation pipeline for
more realistic synthesis. [Son et al.| (2021) simulated unknown down-sampling processes through
adversarial training. DASR (Liang et al.| [2022) adaptively estimated degradation information from
LR inputs and employs it to modulate network parameters. LWay (Chen et al., 2024)) bridged the
synthetic-real gap by combining supervised pre-training with self-supervised learning. DKP (Yang
et al., [2024) designed an unsupervised kernel estimation strategy based on a Markov chain Monte
Carlo sampling. AdaSR (Fan et al. 2024) leveraged sample-adaptive priors learned through im-
age self-similarity. More recently, diffusion-based models (Lin et al., [2024; [Wu et al.l 2024} |Yu
et al., 2024) have achieved remarkable improvements by introducing photorealistic generative pri-
ors. Nevertheless, such models inherit the substantial computational cost of diffusion backbones,
which makes scaling to ultra-high-resolution ODIs particularly challenging.

2.2  OMNIDIRECTIONAL IMAGE SUPER-RESOLUTION

Several methods have been proposed to address the unique distortions in omnidirectional image
super-resolution (ODI-SR). (Ozcinar et al.| (2019) first considered the latitude-related distortions
of ERP and optimized the loss function accordingly. LAU-Net (Deng et al., [2021) revealed that
ERP ODI pixels are unevenly distributed across latitudes and introduced a hierarchical processing
strategy, which was further improved in LAU-Net+ (Deng et al) [2022) by adding a lightweight
high-latitude enhancement module and a bidirectional loss. SphereSR (Yoon et al.| [2022)) designed
an icosahedron-based feature extraction module to predict continuous coordinate transformations
between spherical and arbitrary projection formats. |An & Zhang| (2023) proposed a perception-
oriented network that enhances viewpoints observed with high frequency. Subsequent works in-
vestigated more advanced strategies. OSRT (Yu et al., 2023)) aligned features through continuous
and adaptive offsets to mitigate ERP distortions, while GDGT-OSR (Yang et al.| [2025) extended
this idea with a distortion-modulated rectangle-window self-attention mechanism to better capture
self-similar textures. FATO (An et al.| [2024) explored the frequency-domain distribution of ODIs
and introduced a high-frequency attention module to deal with content density imbalance. BPOSR
(Wang et al.,[2024) jointly utilized ERP and cubemap projections through a parallel attention mech-
anism, exploiting the complementary properties of different formats. ODA-SRN (Ji et al., 2024)
proposed multi-segment parameterized convolutions to generate dynamic filters that compensate for
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Figure 2: The overall framework of the proposed DSOSR. It consists of two parallel branches: an
ERP branch and a PPR branch. Specifically, PPR patches are transformed from ERP patches in a
nearly lossless manner, ensuring consistent content across both representations. The PPR branch
extracts features under the distribution of human visual perspective, thereby enhancing perceptual
realism. To handle different degradation sources, DSMs are embedded in both branches: the ERP
branch adaptively compensates for geometric projection distortions, while the PPR branch focuses
on random real-world degradations in local viewpoints. Finally, the PFAMs aggregate and re-weight
the restored features from the two branches, enabling supplementary information exchange and
generating high-quality reconstructions.

geometric distortions during feature extraction. FAOR (Shen et al.,[2025) incorporated spherical ge-
ometric priors to adapt implicit image functions from the planar domain to ERP images. OmniSSR
(L1 et al.l |20244) introduced octadecaplex tangent interaction and gradient decomposition to achieve
zero-shot ODI-SR. Despite these advances, most existing methods primarily focus on geometric
ERP distortions under the assumption of fixed bicubic down-sampling. They ignore the degradation
characteristics of real-world ODIs as well as the distribution patterns of human visual perception
across local viewpoints. These limitations hinder the practical applicability of ODI-SR methods and
restrict their ability to deliver truly immersive experiences.

3 METHOD

3.1 OVERALL FRAMEWORK

The pipeline of DSOSR is demonstrated in Fig. 2| Given a low-quality (LQ) ERP image 5%,
with both geometric and real-world degradations, the objective is to learn an adaptive model M
that can modulate aliased degradations Dgrp and Dgre, while restoring high-resolution details.
Formally, I5%, € R¥*WxC is partitioned into patches P p € R"***C with positional infor-
mation. To decouple degradation types, the Perspective Projection Representation (PPR) transforms
ERP patches into perspective patches PﬁgR € R wXC thereby isolating Drrp and focusing
on alleviating Dg.q;. Both ERP and PPR patches are first encoded through 3 x 3 convolutions
to generate shallow features F» and F2 . These are then fed into two parallel branches: the
ERP branch with N ERP-Adaptive Modulation Blocks (EAMBs), and the PPR branch with N PPR-
Adaptive Modulation Blocks (PAMBs). Each block is built upon multiple Hybrid Attention Blocks
(HABs, (Chen et al. |2023)) and augmented with a Degradation-Specific Module (DSM). DSMs
in EAMBs estimate projection-induced degradation Dgrp and compensate for latitude-related dis-
tortions, while DSMs in PAMBs emphasize real-world degradation Dg.,; for improving viewpoint-
consistent features. Furthermore, Projection Fusion Attention Modules (PFAMs) are inserted at each
stage to aggregate features Fynp and Fj p across the two branches. The outputs from PFAM; to
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Figure 3: (a) Illustration of pixel distributions in Equirectangular Projection (ERP) and Perspective
Projection Representation (PPR). The higher latitudes correspond to more dispersed pixels. (b)
PPR converts ERP patches into perspective patches, aligning viewing distributions and effectively
decoupling projection degradations.

PFAMy 1, are progressively fused through an additional attention module, yielding the final high-
quality reconstruction.

3.2 PERSPECTIVE PROJECTION REPRESENTATION (PPR)

ERP achieves the space-to-plane transformation but brings distortions in polar regions. When such
geometric degradations are aliased with real-world degradations accumulated at different stages of
the ODI imaging pipeline (Fig. [T, recovering clean content becomes highly challenging. To address
this issue, we introduce a perspective branch that processes features without projection interference
and is more consistent with human viewing distributions. However, existing transformation methods
rely on interpolation, which results in blurred representations. Therefore, we creatively propose a
Perspective Projection Representation (PPR) that enables nearly lossless mapping.

As shown in Fig. [3[a), the projection between ERP and PPR is formulated along the cutting plane
direction. Specifically, an ERP coordinate grid is first mapped onto the spherical surface, followed
by a rotation matrix applied at the sphere center o to simulate camera rotations. The tangent plane at
the rotated viewpoint (orange region) is then back-projected to the ERP pixel coordinates, yielding
the transformation ERP— Sphere—PPR. Nevertheless, current resampling strategies (e.g., Bicubic
or Bilinear interpolation) depend on intermediate spherical warping, which inevitably introduces
information loss. Inspired by findings that orientation and curvature based spatially varying priors
contribute to enhance representational capacity 2022), we develop an accurate perspec-
tive representation to explicitly decouple projection degradations from real-world distortions. For
a target PPR position p’(u’, v") corresponding to an ERP position p(u, v), we assume a continuous
mapping function p’ = f(p). The local grid Jp’ is estimated by considering p and its neighbor set
P in different directions. P is a set {p;|p; = f~'(p') + [, 2], [m,n] € [-1,0,1]},i = 0,1,..., 7.
The linear approximation can be calculated as:

op; = f(p) = f(pi) = f(i) + T (pi)(p — pi) — f(pi) = Ty (i) (p — pi) = J¢(pi)dp, (1)

where J¢(p;) € R?*? denotes the Jacobian matrix of f at p;, and 6p = p — p; is the local grid
in ERP space. Since ERP-to-PPR mapping varies across spherical latitudes, higher-order priors are
necessary to capture arbitrary warping. Following |Lee et al.| (2022); [Li et al.|(2024b), we further
incorporate the second-order Hessian matrix H¢(P) € R****2 with the first-order Jacobian matrix
to provide the orientation and curvature priors. Based on such geometric descriptions, we approxi-
mately simulate §p’ = J;(P)dp, and 6(Vp') = H;(P)6(Vp):

/ / / / / / / / /
_ |Pa— D3 _ 3+ py—2p Py + D5 — Py — D7y
J(P) = Hp(P) = . 2
#(P) [p’l—p’e] 1(P) [p’z+pé—p6—p’7 Py + v — 20 &
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Figure 4: (a) DSM generates adaptive guidance tailored to different projection distributions. (b) The
attention-based fusion of the Projection Fusion Attention Module (PFAM).

Unlike previous works that adopt Jacobian and Hessian matrices merely for pixel warping, we pro-
vide a quantitative description of the ERP-PPR conversion in terms of §p’ and §(Vp’) without resort-
ing to intermediate spherical coordinates. More precisely, we concatenate the six matrix elements
as spatial priors s(P), which and allow us to accurately represent the ERP—PPR mapping without
extraditional spherical resampling. Inspired by the implicit neural representation works (Chen et al.,
2021; [Son & Leel 2021} [Lee et al., 2022)), we predict PPR pixels p; from the latent space of ERP
pixels p, guided by s(P). To achieve this, we design a learnable coordinate transformation estimator
E = {E,, E;, E,} that captures local textures in the 2D Fourier domain|Lee et al.| (2022). The pixel
estimation form ERP to PPR can be expressed as follows:

cos{m(< E¢(E(p)),dp > +Ep(s(P)))}
E(&E(p),dp,s(P)) = E.(E . ’ p , 3
€w.onsP) = Eaeton o (ST BIER 3 IR ®
where £(-) indicates a feature encoder, E,, F t, and I, estimate amplitude, frequency, and phase,
respectively. Here, < -, > means the inner product. Based on this estimator, the PPR pixel
distribution is predicted as:
L
PpgR = ERP + sz 5p, ( )))7 “4)
i€P

where Up(+) is Bilinear up-sampling to facilitate stable model convergence and w; is a local ensem-
ble coefficient. Instead of directly utilizing interpolation-based mappings (e.g., OpenCV Remap),
our PPR formulation mitigates information loss from direct ERP-to-PPR transformation. As de-
picted in Fig. [3(b), the resulting PPR images are processed as an additional branch, effectively
isolating geometric ERP degradations, emphasizing real-world distortions, and better aligning with
practical human viewing distributions.

3.3 DEGRADATION-SPECIFIC MODULE (DSM)

As illustrated in Fig. we design two complementary modules, the ERP-Adaptive Modulation
Block (EAMB) and the PPR-Adaptive Modulation Block (PAMB), to address multi-degradation in
ODIs. The EAMB focuses on features in the ERP domain and alleviates latitude-related projection
distortions, while the PAMB concentrates on perspective-domain features to handle random real-
world degradations. To further exploit domain-specific priors, we incorporate Degradation-Specific
Modules (DSMs) into both branches, enabling effective degradation guidance across different pro-
jection distributions in real-world ODIs.

Fig. f{a) shows the architecture of the proposed DSM. In the ith stage, the inputs to EAMB and
PAMB are denoted as Fi,pp € RFP*WX and Fi,, € RPXWXe respectively. Since the feature
distributions vary with different projections in the h x w direction, we first capture the projection-
specific degradation priors by embedding the integrated projection degradation via 1 x 1 CNNs.
The detailed derivation of the latitude-related quantization map can be found in Appendix[A.2] The
embedded conditional map of size h x w x 1 is fused with the degraded feature F',p to obtain
a geometrically calibrated representation FE rp- As we aim to achieve the distribution-depended
estimation adaptively, we design a lightweight encoder to generate degradation descriptor vectors
Dipp € Rhaxwaxeed gpnq pDi, . € Rhaxwaxerd  Specifically, the features are first processed
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by 3 x 3 CNNs with LeakyReLU activation, and then projected into descriptor vectors through
Adaptive Average Pooling (AAP). These vectors are mapped back into the shape of hy X wgq X ceq
and hg X wq X cpq as masks, which are subsequently up-sampled and refined by CNNs to realize
feature-level modulation. The generation of degradation-specific features in ERP and PPR branches
is summarized as:

K
DSFipp/DSFipr =Up <Conv <Z AAP(ConV(Fhpp/Fhpr)) km) ) , (5)
k=1
where k represents the length of the descriptor vector. Finally, we concatenate the input features
with the degradation-aware features and feed them into the Transformer block HAB (Chen et al.,
2023)), formulated as:

Fprp/Fppr = Conv(HAB(Cat(Fppp/Fipr, DSFhrp/DSFipg))). (6)

3.4 PROJECTION FUSION ATTENTION MODULE (PFAM)

The aggregation and fusion of enhanced features across different distributions and stages have a sig-
nificant impact on the final SR performance. As demonstrated in Fig. [2] the outputs of EAMBs and
PAMBs originate from distinct projection domains and hierarchical depths, which poses challenges
for effective integration. To address this, we propose a Projection Fusion Attention Module (PFAM)
to achieve adaptive and robust feature fusion. The overall framework of PFAM is depicted in Fig. [2|
We employ a self-attention mechanism to dynamically emphasize informative features while sup-
pressing redundant or repeated ones. Specifically, we take F; , » as the value matrix V and construct
the key matrix metric as K = V' T, and the query matrix @ is derived from F}, r- By performing
projection-guided attention, PFAMi produces the fused output F* that effectively integrates Fj; o
and F};PR. The fused feature set is defined as F of {F%,i = 0,1,...,N,N+1}, which aggregates
information across multiple depths. To further compress and refine F, we introduce a 3D attention
module that jointly processes along the depth dimension. As shown in Fig. f[b), the features in F
are concatenated and passed through the fusion attention block, enabling effective aggregation of
multi-level and multi-distribution representations. In a word, PFAM serves as the bridge between
the ERP and PPR branches, enabling the network to leverage complementary representations from
different projection domains. By introducing attention-based fusion, PFAM not only reduces the
risk of feature misalignment but also adaptively balances the contributions of geometric and real-
world oriented representations. Together with DSM-guided modulation in EAMBs and PAMBs,
PFAM ensures that DSOSR can fully exploit both projection-separated and depth-aware features,
ultimately leading to more robust and accurate ODI super-resolution.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

The proposed DSOSR presents a projection fusion representation based solution for real-world ODI-
SR. To simulate the ODI degradations in practical scenarios, we utilize ODI datasets Flickr360(Cao
et al., 2023) (training and testing), ODI-SR (Deng et al., 2021) (testing), and SUN360 (Xiao et al.,
2012) (testing), where the resolution of HR ERP ODIs is 1024 x 2048. Next, we generate random
degradations (Fisheye and ERP distributions, indicated in Fig. [T)) in the pre-partitioned datasets fol-
lowing the settings of Real- ESRGAN (Wang et al., 2021b). The number N of EAMBs and PAMBs
is 4 with a depth of 6, the channels c. and ¢, are set to 60 and 30, respectively. In the DSMs, we set
k =5, ceq = 128, and ¢,q = 64. We integrate one PFAM between every EAMB and PAMB to fuse
features, and an additional PFAM after the final blocks. During training, HR ODIs are cropped to
256 x 256 patches and augmented with flip. We adopt a batch size of 8§ and optimize DSOSR with
the Adam optimizer (Ir = 2 x 1074, B; = 0.9, and 3 = 0.99) for 200K iterations through the L1
loss function. The training is conducted on A6000 GPUs in PyTorch.

4.2 COMPARISON RESULTS

To validate the effectiveness of the proposed real-world DSOSR network, we compare it with ex-
isting ODI-SR, Real-SR, and image restoration methods, including 360-SS (Ozcinar et al., |2019),
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Dataset Flickr360 Dataset ODI-SR Dataset
Method PSNR (dB)T/ | WS-PSNR (dB)T/ | PSNR (dB)T/ | WS-PSNR (dB)T/
SSIMt WS-SSIM?T SSIM?1 WS-SSIM?T
360-SS 24.2070.6198 23.6570.5963 23.3070.6031 22.5970.5712
Real-ESRGAN | 24.30/0.6171 23.77/70.5944 23.24/0.6001 22.50/0.5665
SwinIR 25.16/0.6827 24.66 /0.6628 23.97/0.6537 23.27/0.6242
HAT 25.19/0.6838 24.68 /1 0.6641 23.97/0.6541 23.27/0.6245
PromptIR 25.20/0.6852 24.70/ 0.6648 24.00/0.6555 23.30/0.6256
OSRT 25.41/0.6886 24.92/0.6680 24.22 /1 0.6569 23.54/0.6277
BPOSR 25.34/0.6864 24.83/0.6651 24.14/0.6541 23.44/0.6244
AdalR 25.49/0.6912 24.98 / 0.6706 24.26 /0.6591 23.57/0.6302
DSOSR(Ours) | 25.64/0.6934 25.13/0.6726 24.37 / 0.6626 23.67 / 0.6334

Table 1: Quantitative x4 real-world ODI-SR comparison on Flickr360 and ODI-SR datasets. Bold
and underlined values indicate the best and second-best results.

| ¥ LQ HAT

PromptIR

Real-ESRGAN

DSOSR (Ours)

Figure 5: Qualitative x4 real-world ODI-SR comparison on ERP ODIs.

OSRT (Yu et al.} [2023), BPOSR 2024), Real-ESRGAN 2021D), SwinIR
(Liang et al.,[2021), HAT (Chen et al., [2023)), PromptIR 2023), AdalR (Cui et al.
2025). PSNR, SSIM, and ERP ODI-oriented WS-PSNR 12017), WS-SSIM (Zhou et al.
2018)) are calculated on the luma (Y) channel to conduct numerical comparison. Notably, the parts
of mentioned approaches are not designed for the real-world ODI-SR task in their initial version.
Therefore, we fairly retrain them in a unified training paradigm on the simulated real-world ODI-SR
dataset. The training parameters are kept the same, and the only difference is the network architec-
ture.

4.2.1 QUANTITATIVE AND QUALITATIVE COMPARISON

As displayed in Tab. [T, our DSOSR achieves the best quantitative metrics on all benchmarks, demon-
strating its superior capacity. Notably, DSOSR overcomes the second-best approach AdalR with
0.15 dB WS-PSNR on the Flickr360 dataset. More quantitative and computational efficiency com-
parison results are mentioned in Sec. [A.3]

Fig. [5] presents visual results from representative ODI-SR and image restoration methods. Upon in-
spection of zoomed-in regions, only DSOSR effectively removes the artifacts aliased in LQ inputs.
The grids and stripes of buildings in DSOSR are restored with better fidelity in the color distribution.
In the second scene, no noticeable noise is generated around the picture in the DSOSR reconstruc-
tion. These observations corroborate that DSOSR reconstructs finer structural details and surpasses
current methods.

4.3 ABLATION STUDIES

In this section, we perform ablation studies to validate the effectiveness of developed components
individually. All ablation experimental settings follow the configuration of the full-scale DSOSR
training on the x4 real-world ODI-SR task.



Under review as a conference paper at ICLR 2026

Table 2: Ablation studies for the parallel branch design and corresponding Perspective Projection
Representation (PPR) on the real-world Flickr360 dataset.

Method Single-branch Dual-branch ERP Pers PPR|PSNR/SSIM WS-PSNR / WS-SSIM
Baseline v v 25.2070.6858 24.6370.6644
Perspective (Pers) v v 25.09/0.6820 24.51/0.6602
Dual-Baseline 25.35/0.6865 24.77/0.6650
Baseline + Pers v 25.47/0.6882 24.90/0.6669
Baseline + PPR v’ 125.50/0.6892 24.94/0.6682

NN
NN

Table 3: Ablation studies for the Degradation-
Specific Module (DSM) and Projection Fusion
Attention Module (PFAM) on the real-world
Flickr360 dataset.

Method PSNR / SSIM[WS-PSNR / WS-SSIM
Baseline + PPR|25.50/0.6892 24.9470.6682
) i + DSMggrp  [25.56/0.6906 25.02/0.6702
Sl + DSMppr  |25.58 7/ 0.6909 25.03/0.6703
OpenCV Remap + DSMEgrpeppr [25.58 /0.6910]  25.06 /0.6712
Figure 6: ERP-to-Perspective-to-ERP Results. +PFAM  [25.60/0.6923 25.10/0.6719

Effects of different dual-branch architectures and projection representations. Tab. [2] demon-
strates the performance benefits of several branch and representation architectures. It can be found
that directly projecting ERP images into the perspective domain and processing features do not lead
to performance enhancement. Directly replicating the network structure (halved dimension) to serve
as an extra branch achieves 0.14 dB WS-PSNR improvements. Compared with the feature width ex-
pansion in the same distribution, the proposed parallel perspective branch provides complementary
representations and brings 0.27 dB gains in the term of WS-PSNR. The further accurate PPR boosts
the result to 24.94 dB WS-PSNR. These results corroborate the effectiveness of the dual-branch
design in ERP and PPR representations. Moreover, we visualize the ERP-to-Perspective-to-ERP
mapping processed by OpenCV Remap and PPR in Fig. |6l Compared to interpolation-based meth-
ods, when PPR ODIs are projected back to the ERP format, it is nearly lossless without blurring.

Impact of individual architecture modules. We conduct this ablation to further examine the pro-
posed Degradation-Specific Module (DSM) and Projection Fusion Attention Module (PFAM) on the
PPR-based dual-branch framework. We incrementally include individual components, and results
are shown in Tab. El The joint introduction of DSMgrp and DSMppg leads to a 0.1 dB WS-PSNR
improvement. Meanwhile, the baseline method with PPR and PFAM reaches 25.10 dB WS-PSNR.
The degradation guidance across different projection distributions and the following attention-based
fusion facilitates the ability of DSOSR to handle real-world ODIs.

5 CONCLUSION

In this paper, we proposed a Degradation-Separated real-world Omnidirectional image Super-
Resolution (DSOSR) network in practical scenarios. First, we modeled a realistic two-stage Fisheye-
ERP degradation based on the ODI imaging pipeline. Motivated by the findings: (1) that geometric
projection degradation aliases with the random distortions, and (2) users prefer limited viewpoints
across the whole 360° space, we subsequently developed a Perspective Projection Representation
(PPR) based dual-branch architecture to explicitly separate degradations in different distributions
and match the human perception law. Moreover, we integrated Degradation-Specific Modules
(DSMs) in both branches to adaptively extract degradation priors. The enhanced features are fur-
ther aggregated through Projection Fusion Attention Modules (PFAMs) in each stage for facilitat-
ing information interaction. Extensive experimental results on different datasets demonstrated that
DSOSR achieves the best real-world ODI-SR performance and is application-friendly with faster
speed and practical viewpoint enhancement.



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT
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research does not generate harmful, offensive, or unsafe content, and the proposed methods are
designed for general computer vision applications without direct high-risk societal implications.

REPRODUCIBILITY STATEMENT

All datasets used in this study are publicly available super-resolution benchmark datasets. Upon
publication, we will release the complete code and data-processing scripts, including training con-
figurations, hyperparameters, and random seeds. The experiments can be reproduced on common
GPUs without requiring special resources or non-public data.
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A APPENDIX

A.1 USE OoF LLMs

We employed large language models solely for minor language polishing and code reproduction.
All research ideas, experimental designs, analyses, and conclusions were independently developed
by the authors.

A.2 EQUIRECTANGULAR PROJECTION

In this section, we follow the coordinate representation in the main paper and provide a rigorous
derivation of the ERP and its associated distortion analysis. More precisely, spherical coordinates
are defined as (p, 0, ¢), where § € (0,27) and ¢ € (0, 7) denote longitude and latitude, respectively.
The corresponding planar horizontal and vertical coordinates are parameterized as (u, v).

A.2.1 GEOMETRIC TRANSFORMATION
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Figure 7: Geometric explanation of transforming between the ideal spherical surface and ERP plane.

The coordinate transformation between 3D sphere and 2D plane is defined as:

p= a2 +y2+ 22, (z=pcos(¢)cos(f),

0 = arctan(y/z), y = pcos(¢)sin(h), (7)

¢ = arcsin(z/p). z = psin(g).

0= (u/W—0.5)2r, (u= (/21 +0.5)W, g
{¢= (0.5 — v/H)r. {v — (05— ¢/m)H. ®

where (x, y, z) are world coordinates responding to spherical coordinates (p, 6, ¢), H and W indi-
cate the height and width (in pixels) of the ERP omnidirectional image (ODI). Fig. [7] provides an
illustrative example of the forward ERP projection and its exact inverse back-projection between the
spherical and planar domains.

A.2.2 PROJECTION DISTORTION

Inspired by |Sun et al.| (2017), we quantify the projection distortion via the local stretching ratio
(STR) induced by the mapping from the spherical surface to the ERP plane. As shown in Fig.
assuming a spherical element dfd¢ whose area is 65 (0, ¢). After ERP, the planar area element dudv
with a center point (u, v) is defined as § P(u, v). The differential relation between element dfd¢ and
dP(u,v) is captured by the Jacobian determinant dudv = J(6, ¢)dfd¢ as follows:

auv) |58 5%
J(8,9) = = |50 b 9
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Dataset SUN360 Dataset
Method PSNgs(I?\?%T/ stgg_l\g;&?w Params. (M)]. | FLOPs (T)J. | Runtime (s).
360-5S 2302 70,5943 | 2244705872 0.19 073 021
Real-ESRGAN | 23.07/0.5922 | 22.51/0.5870 16.70 235 0.69
SwinIR 23.66/0.6439 | 23.14/0.6414 11.67 170 0.75
HAT 23.67/0.6444 | 23.15/0.6419 2033 2.84 0.51
PromptIR | 23.69/0.6464 | 23.17/0.6438 48.85 0.67 0.47
OSRT 23.82/0.6484 | 2332/0.6464 6.02 0.79 133
BPOSR 2375706459 | 23.22/0.6430 207 0.32 0.42
AdalR 23.85/0.6502 | 23.35/0.6486 78.90 0.96 0.38
DSOSR(Ours) | 24.00/0.6528 | 23.50/0.6513 3.50 055 034

Table 4: Quantitative x4 real-world ODI-SR and computational efficiency comparison on the
SUN360 dataset.

Furthermore, the area 6 P(u,v) and 05(6, ¢) are equal to |dudv| and dfde¢cos(¢), respectively.
Therefor, the area stretching ratio STR(u, v) can be derived as:

_ 35(6,6)  |d9dg|cos(9)  cos(d)
STR(u,v) = SP(u,v)  |dudv| ‘3(%@)
9(0,9) (10)
B cos(9)
~I0,9)

From Eq. [8} we can conclude that |.J(6, ¢)| = 1, thus obtaining STR(u,v) = cos(¢) for ERP. As
a result, ERP distortions are fully characterized by latitudes. As latitude increases, STR decreases,
and distortion becomes more severe. Therefore, we could formulate STR as latitude-related pixel
weights ranging from O to 1:

Wiat(u,v) = cos((v — (H/2) + 0.5)7/H). (11)

A.3 QUANTITATIVE COMPARISON RESULTS

Experimental results on the SUN360 dataset and the computational efficiency are summarized in
Tab. @] Relative to other methods with a large number of parameters, DSOSR achieves a faster
running speed while preserving the best SR quality, striking an effective complexity-performance
trade-off.
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