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Abstract

Recent research has shown that Transformers with
linear attention are capable of in-context learning
(ICL) by implementing a linear estimator through
gradient descent steps. However, the existing re-
sults on the optimization landscape apply under
stylized settings where task and feature vectors
are assumed to be IID and the attention weights
are fully parameterized. In this work, we develop
a stronger characterization of the optimization and
generalization landscape of ICL through contribu-
tions on architectures, low-rank parameterization,
and correlated designs: (1) We study the land-
scape of 1-layer linear attention and 1-layer H3,
a state-space model. Under a suitable correlated
design assumption, we prove that both implement
1-step preconditioned gradient descent. We show
that thanks to its native convolution filters, H3
also has the advantage of implementing sample
weighting and outperforming linear attention in
suitable settings. (2) By studying correlated de-
signs, we provide new risk bounds for retrieval
augmented generation (RAG) and task-feature
alignment which reveal how ICL sample complex-
ity benefits from distributional alignment. (3) We
derive the optimal risk for low-rank parameterized
attention weights in terms of covariance spectrum.
Through this, we also shed light on how LoRA
can adapt to a new distribution by capturing the
shift between task covariances. Experimental re-
sults corroborate our theoretical findings. Overall,
this work explores the optimization and risk land-
scape of ICL in practically meaningful settings
and contributes to a more thorough understanding
of its mechanics.
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1. Introduction
Modern language models exhibit remarkable ability to learn
novel tasks or solve complex problems from the demonstra-
tions provided within their context window (Brown et al.,
2020; GeminiTeam et al., 2023; OpenAI, 2023; Touvron
et al., 2023). Such in-context learning (ICL) offers a novel
and effective alternative to traditional fine-tuning techniques.
It enables successful prediction across a wide range of tasks
simply through a forward pass, eliminating the need for
task-specific model weight updates. Since its introduction,
ICL capability has become an important feature of LLM
with its applications spanning retrieval-augmented genera-
tion (Lewis et al., 2020), and reasoning via advanced prompt-
ing techniques, such as chain-of-thought (Wei et al., 2022).
While ICL already exhibits considerable benefits with a
small number of demonstrations, i.e., few-shot data, there
is a growing interest in extending its benefits to the many-
shot settings, potentially realizing even more pronounced
benefits (Agarwal et al., 2024).

ICL ability also presents an important research avenue to
develop stronger theoretical and mechanistic understanding
of large language models. To this aim, there has been signif-
icant recent interest in demystifying ICL through the lens of
function approximation (Liu et al., 2023a), Bayesian infer-
ence (Müller et al., 2021; Xie et al., 2022; Han et al., 2023),
and learning and optimization theory (Ahn et al., 2023; Ma-
hankali et al., 2024; Zhang et al., 2024; Duraisamy, 2024).
The latter is concerned with understanding the optimization
landscape of ICL, which is also crucial for understanding
the generalization properties of the model. A notable re-
sult in this direction is the observation that linear attention
models (Schlag et al., 2021; Von Oswald et al., 2023; Ahn
et al., 2023) implement preconditioned gradient descent
(PGD) during ICL (Ahn et al., 2023; Mahdavi et al., 2024).
While this line of works provide a fresh perspective to ICL,
the existing studies do not address many questions arising
from real-life applications nor provide guiding principles for
various ICL setups motivated by practical considerations.

To this aim, we revisit the theoretical exploration of ICL
with linear data model where we feed an in-context prompt
containing n examples (xi, yi = x⊤i β + ξi)

n
i=1 ⊂ R

d × R and
a test instance or query xn+1 ∈ R

d to the model, where d is
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Figure 1: We investigate the optimization landscape of in-context learning from the lens of architecture choice, the role of
distributional alignment, and low-rank parameterization. The empirical performance (solid curves) are aligned with our
theoretical results (dotted curves) from Section 3. More experimental details and discussion are deferred to Section 4.

the feature dimension, β ∈ Rd is the task vector, and (ξi)n
i=1

denote the noise in individual labels. Given the in-context
prompt, the model is tasked to predict ŷn+1 – an estimate
for yn+1 = x⊤n+1β + ξn+1. We aim to provide answers to the
following questions by exploring the loss landscape of ICL:

(Q1) Is the ability to implement gradient-based ICL unique
to (linear) attention? Can alternative sequence models
implement richer algorithms beyond PGD?

(Q2) In language modeling, ICL often works well with
few-shot samples whereas standard linear estimation
typically requires O (d) samples. How to reconcile
this discrepancy between classical learning and ICL?

(Q3) To our knowledge, existing works assume linear-
attention is fully parameterized, i.e., key and query
projections Wk,Wq ∈ R

d×d. What happens when they
are low-rank? What happens when there is distribu-
tion shift between training and test in-context prompts
and we use LoRA (Hu et al., 2022) for adaptation?

In this work, we conduct a careful investigation of these
questions. Specifically, we focus on ICL with 1-layer mod-
els and make the following contributions:

(A1) We jointly investigate the landscape of linear attention
and H3 (Fu et al., 2023), a widely popular state-space
model (SSM). We prove that under correlated design,
both models implement 1-step PGD (c.f. Proposi-
tion 2.3) and the alignments in Fig. 1(a) verify that

where the dotted curve represents the theoretical result
derived from Theorem 3.1. Our analysis reveals that
the gating mechanism in H3 imitates attention. We
also empirically show that H3 has the advantage of im-
plementing sample-weighting which allows it to out-
perform linear attention in temporally-heterogeneous
problem settings in Section 4 and Figure 4.

(A2) Proposition 2.3 allows for task and features to be
correlated to each other as long as odd moments are
zero. Through this, we can assess the impact of dis-
tributional alignment on the sample complexity of
ICL. Specifically, we characterize the performance of
Retrieval Augmented Generation (RAG) (c.f. Theo-
rem 3.3 and Fig. 1(b)) and Task-Feature Alignment
(c.f. Theorem 3.4), where the in-context examples are
α-correlated with either the query or the task vector.
For both settings, we prove that alignment amplifies
the effective sample size of ICL by a factor of α2d+ 1,
highlighting that aligned data are crucial for the suc-
cess of ICL in few-shot settings.

(A3) We show that, under low-rank parameterization, op-
timal attention-weights still implements PGD ac-
cording to the truncated eigenspectrum of the fused
task-feature covariance (see Section 3.2). We simi-
larly derive risk upper bounds for LoRA adaptation
(c.f. Eq. (14) and Fig. 1(c)), and show that, these
bounds accurately predict the empirical performance.
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2. Problem Setup and Preliminaries
We begin with a short note on notation. Let bold lower-
case and uppercase letters (e.g., x and X) represent vectors
and matrices, respectively. The symbol ⊙ is defined as the
element-wise (Hadamard) product, and ∗ denotes the convo-
lution operator. 1d and 0d denote the d-dimensional all-ones
and all-zeros vectors, respectively; and Id denotes the iden-
tity matrix of dimension d × d. Additionally, let tr (W)
denote the trace of the square matrix W.

As mentioned earlier, we study the optimization landscapes
of 1-layer linear attention (Katharopoulos et al., 2020;
Schlag et al., 2021) and H3 (Fu et al., 2023) models when
training with prompts containing in-context data following
a linear model. We construct the input in-context prompt
similar to Ahn et al. (2023); Mahankali et al. (2024); Zhang
et al. (2024) as follows.

Linear data distribution. Let (x, y) ∈ Rd × R be a (feature,
label) pair generated by a d-dimensional linear model pa-
rameterized by β ∈ Rd, i.e., y = x⊤β + ξ, where x and β
are feature and task vectors, and ξ is the label noise. Given
demonstrations (xi, yi)n+1

i=1 sampled from a single β, define
the input in-context prompt

Z = [z1 . . . zn zn+1]⊤ =
[
x1 . . . xn xn+1
y1 . . . yn 0

]⊤
. (1)

Here, we set zi =

[
xi

yi

]
for i ≤ n and the last/query token

zn+1 =

[
xn+1

0

]
. Then, given Z, the goal of the model is to

predict the correct label yn+1 corresponding to xn+1. For
cleaner notation, when it is clear from context, we drop the
subscript n + 1 and set x = xn+1, z = zn+1. Different from
the previous work (Ahn et al., 2023; Mahankali et al., 2024;
Zhang et al., 2024; Mahdavi et al., 2024) where (xi)n+1

i=1 and
β are assumed to be independent, our analysis focuses on
a more general linear setting that captures the dependency
between (xi)n+1

i=1 and β.

Model architectures. To start with, we first review the
architectures of both Transformer and state-space model
(SSM). Similar to the previous work (Von Oswald et al.,
2023; Ahn et al., 2023; Mahankali et al., 2024; Zhang et al.,
2024) and to simplify the model structure, we focus on
single-layer models and omit the nonlinearity, e.g., soft-
max operation and MLP activation, from the Transformer.
Given the input prompt Z ∈ R(n+1)×(d+1) in (1), which can
be treated as a sequence of (d + 1)-dimensional tokens, the
single-layer linear attention ATT and H3-like single-layer
SSM SSM are denoted by

ATT(Z) = (ZWqW⊤
k Z⊤)ZWv (2a)

SSM(Z) =
(
(ZWq) ⊙ ((ZWk ⊙ ZWv) ∗ f )

)
(2b)

where Wk, Wq, Wv ∈ R
(d+1)×(d+1) denote the key, query and

value weight matrices, respectively. In (2b), the parameter
f ∈ Rn+1 is a 1-D convolutional filter that mixes tokens.
The Hadamard product ⊙ is the gating mechanism (Dauphin
et al., 2017) between key and query channels, which is
crucial for attention-like feature creation. Thus, (2b) is
more generally a gated-convolution layer. For f only, we
use indexing f = [ f0 . . . fn]⊤ ∈ Rn+1 and given any vector
a, denote convolution output (a ∗ f )i =

∑i
j=1 fi− ja j. Note

that our notation slightly differs from the original H3 model
(Fu et al., 2023) in two ways:

1. SSMs provide efficient parameterization of f which
would otherwise grow with sequence length. In
essence, H3 utilizes a linear state-space model si =

Asi−1 + Bui and yi = Csi with parameters (A ∈
Rd×d, B ∈ Rd×1,C ∈ R1×d) from which the filter f
is obtained via the impulse response fi = CAiB for
i ≥ 0. Here d is the state dimension and, in practice, A
is chosen to be diagonal. Observe that, setting d = 1
and A = ρ,C = B = 1, SSM reduces to the expo-
nential smoothing fi = ρi for i ≥ 0. Thus, H3 also
captures the all-ones filter as a special instance. As we
show in Proposition 2.3, this simple filter is optimal
under independent data model and exactly imitates
linear attention. Note that, utilizing a filter f as in (2b)
is strictly more expressive than the SSM as it captures
all possible impulse responses.

2. H3 also applies a shift SSM to the key embeddings
to enable the retrieval of the local context around as-
sociative recall hits. We opted not to incorporate this
shift operator in our model. This is because unless
the features of the neighboring tokens are correlated
(which is not the case for the typical independent data
model), the entry-wise products between values and
shifted keys will have zero mean and be redundant for
the final prediction.

We note that we conduct all empirical evaluations with the
original H3 model, which displays exact agreement with our
theory formalized for (6b), further validating our modeling
choice.

2.1. In-context Linear Estimation

We will next study the algorithms that can be imple-
mented by the single-layer attention and state-space mod-
els. Through this, we will show that training ATT and SSM
with linear ICL data is equivalent to the prediction obtained
from one step of optimally-preconditioned gradient descent
(PGD) and sample-weighted preconditioned gradient de-
scent (WPGD), respectively. We will further show that
under mild assumption, the optimal sample weighting for
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SSM (e.g., f ) is an all-ones vector and therefore, establishing
the equivalence among PGD, ATT, and SSM.

Background: 1-step gradient descent. Consider minimiz-
ing squared loss and solving linear regression using one step
of PGD and WPGD. Given n samples (xi, yi)n

i=1, define

X = [x1 · · · xn]⊤ ∈ Rn×d and y = [y1 · · · yn]⊤ ∈ Rn.

Starting from β0 = 0d and letting η = 1/2 be the step size,
1-step GD preconditioned with weights W returns prediction

ŷ = x⊤WX⊤y := gPGD(Z), (3)

and a single-step sample-weighted GD given weights ω ∈
Rn and W ∈ Rd×d returns prediction

ŷ = x⊤WX⊤(ω ⊙ y) := gWPGD(Z), (4)

where Z is defined in (1) consisting of X, y and x. Our goal
is to find the optimal W, as well as ω in (4) that minimize
the population risks defined as follows.

min
W
LPGD(W) where LPGD(W) = E

[
(y − gPGD(Z))2

]
, (5a)

min
W,ω
LWPGD(W) where LWPGD(W) = E

[
(y − gWPGD(Z))2

]
. (5b)

Here, the expectation is over the randomness in (xi, ξi)n+1
i=1

and β, and we useW to represent the set of corresponding
trainable parameters. The search spaces for ω and W are Rn

and Rd×d, respectively.

As per (2), given input prompt Z ∈ R(n+1)×(d+1), either of
the underlying models outputs a (n + 1)-length sequence.
Note that the label for the query x = xn+1 is excluded from
the prompt Z. Similar to Ahn et al. (2023); Mahankali
et al. (2024), we consider a training objective with a causal
mask to ensure inputs cannot attend to their own labels and
training can be parallelized. Let Z0 = [z1 . . . zn 0]⊤ be
the features post-causal masking at time/index n + 1. Given
weights Wk,Wq,Wv and the filter f for SSM, predictions at

the query token z =
[
x
0

]
take the following forms following

sequence-to-sequence mappings in (2):

gATT(Z) = (z⊤WqW⊤
k Z⊤0 )Z0Wvv,

gSSM(Z) =
(
(z⊤Wq)⊤ ⊙ ((Z0Wk ⊙ Z0Wv) ∗ f )n+1

)
v,

where v ∈ Rd+1 is the linear prediction head and ((Z0Wk ⊙

Z0Wv) ∗ f )n+1 returns the last row of the convolution output.
Note that SSM can implement the mask by setting f0 =
0. Now consider the meta learning setting and select loss
function to be the squared loss, same as in (5). Thus, the
objectives for both models take the following forms.

min
Wk ,Wq,Wv,v

LATT(W) where LATT(W) = E
[
(y − gATT(Z))2

]
, (6a)

min
Wk ,Wq,Wv,v, f

LSSM(W) where LSSM(W) = E
[
(y − gSSM(Z))2

]
. (6b)

Here, similarly, the expectation subsumes the randomness
of (xi, ξi)n+1

i=1 and β and W represents the set of trainable
parameters. The search space for matrices Wk, Wq, Wv is
R(d+1)×(d+1), for head v is Rd+1, and for f is Rn+1.

Note that for all the optimization methods (c.f. (5), (6)), to
simplify the analysis, we train the models without capturing
additional bias terms. Therefore, in the following, we intro-
duce the centralized data assumptions such that the models
are trained to make unbiased predictions.

To begin with, a cross moment of random variables is de-
fined as the expectation of a monomial of these variables,
with the order of the cross moment being the same as order
of the monomial. For example, E[x⊤Wβ] is a sum of cross-
moments of order 2. Then, it motivates the following data
assumptions.
Assumption 2.1. All cross moments of the entries of (xi)n+1

i=1
and β with odd orders are zero.
Assumption 2.2. (ξi)n+1

i=1 are independent of (xi)n+1
i=1 and β,

and their cross moments with odd orders are zero.

Note that compared to (Ahn et al., 2023; Mahankali et al.,
2024; Zhang et al., 2024), Assumption 2.1 is more general
which also subsumes the dependent distribution settings. In
this work, we consider the following three linear models
(omitting noise) satisfying Assumption 2.1. Let Σβ,Σx ∈

Rd×d represent the task and feature covariance matrices for
independent data, and let 0 ≤ α ≤ 1 be the correlation
level when considering data dependency. More specific
discussions are deferred to Section 3.

• Independent task and data:

β ∼ N(0,Σβ), xi ∼ N(0,Σx), i ≤ n + 1.

• Retrieval augmented generation:

β, x ∼ N(0, Id), xi

∣∣∣ x ∼ N(αx, (1 − α2)Id), i ≤ n.

• Task-feature alignment:

β ∼ N(0, Id), xi

∣∣∣ β ∼ N(αβ, Id), i ≤ n + 1.

Next, we introduce the following result which establishes
the equivalence among optimizing linear attention (c.f. (6a)),
H3 (c.f. (6b)), and gradient descent (c.f. (5)).
Proposition 2.3. Suppose Assumptions 2.1 and 2.2 hold.
Consider the objectives as defined in (5) and (6), and let
L⋆PGD, L

⋆
WPGD, L

⋆
ATT, and L⋆SSM be their optimal risks, respec-

tively. Then,

L⋆PGD = L
⋆
ATT and L⋆WPGD = L

⋆
SSM.

Additionally, if the examples (xi, yi)n
i=1 follow the same dis-

tribution and are conditionally independent given x,β, then
SSM/H3 can achieve the optimal loss using the all-ones filter
and L⋆PGD = L

⋆
SSM.
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We defer the proof to Appendix B.1. Proposition 2.3 es-
tablishes that analyzing the optimization landscape of ICL
for both single-layer linear attention and the H3 model can
be effectively reduced to examining the behavior of a one-
step PGD algorithm. Notably, under the independent, RAG
and task-feature alignment data settings discussed above,
examples (xi, yi)n

i=1 are independently sampled given x and
β, and we therefore conclude that L⋆PGD = L

⋆
ATT = L

⋆
SSM.

Leveraging this result, the subsequent section of the paper
concentrate on addressing (5a), taking into account various
linear data distributions.

While Proposition 2.3 demonstrates the equivalence of opti-
mal losses, we also study the uniqueness and equivalence
of optimal prediction functions. To this end, we analyze the
strong convexity of LPGD(W).

Lemma 2.4. Suppose Assumption 2.2 holds and let ξ =
[ξ1 ξ2 · · · ξn]⊤. Then the loss LPGD(W) in (5a) is strongly-
convex iff. E[(x⊤WX⊤Xβ)2] + E[(x⊤WX⊤ξ)2] is strongly-
convex. Additionally, let g⋆PGD, g⋆ATT be the optimal prediction
functions of (5a), (6a). Then under the conditions of As-
sumptions 2.1 and 2.2, and the strong convexity, g⋆PGD = g⋆ATT.

Lemma 2.5. Suppose that the label noise (ξi)n
i=1 are i.i.d.,

zero-mean, variance σ2 and independent of everything else,
and that there is a decomposition x = x1 + x2, X = X1 + X2,
and β = β1 + β2 such that either of the following holds

• σ > 0, and (x1, X1) have full rank covariance and are
independent of each other and (x2, X2).

• (x1,β1, X1) have full rank covariance and are indepen-
dent of each other and (x2,β2, X2).

Then, the loss LPGD(W) in (5a) is strongly-convex.

As mentioned above, we study three specific linear models:
with general independent, RAG-related, and task-feature
alignment data. Note that for all the three cases, according to
Proposition 2.3, we have L⋆PGD = L

⋆
ATT = L

⋆
SSM. Additionally,

the second claim in Lemma 2.5 holds, and LPGD(W) is
strongly convex. Therefore, following Lemma 2.4, we have
g⋆PGD = g⋆ATT. Thanks to the equivalence among PGD, ATT,
and SSM, in the next section, we focus on the solution of
objective (5a) under different scenarios, which will reflect
the optimization landscapes of ATT and SSM models.

3. Main Results
In light of Proposition 2.3, optimizing a single layer linear-
attention or H3 model is equivalent to solving the objective
(5a). Therefore, in this section, we examine the properties of
the one-step PGD in (5a). To this end, we consider multiple
problem settings, including distinct data distributions and
low-rank training.

3.1. Analysis of Linear Data Models

We first consider the standard independent data setting. We
will then examine correlated designs.

Independent data model. Let Σx and Σβ be the covariance
matrices of the input feature and task vectors, respectively,
and σ ≥ 0 be the noise level. We assume

β ∼ N(0,Σβ), xi ∼ N(0,Σx), ξi ∼ N(0, σ2), i ≤ n + 1 (7)

and the label is obtained via yi = x⊤i β + ξi. Our following
result characterizes the optimal solution of (5a). Note that
the data generated from (7) satisfies the conditions in Propo-
sition 2.3. Therefore, the same results can be applied to both
linear-attention and H3 models.

Theorem 3.1. Consider independent linear data in (7), and
suppose the covariance matrices Σx,Σβ are full rank. Recap
the objective from (5a) and let W⋆ := arg minW LPGD(W),
and L⋆ = LPGD(W⋆). Additionally, let Σ = Σ1/2

x ΣβΣ
1/2
x and

M = tr (Σ) + σ2. Then W⋆ and L⋆ satisfy

W⋆ = Σ−1/2
x W̄⋆Σ−1/2

x and L⋆ = M − ntr
(
ΣW̄⋆

)
, (8)

where we define W̄⋆ =
(
(n + 1)Id + MΣ−1

)−1
.

Corollary 3.2. Consider noiseless i.i.d. linear data where
Σx = Σβ = Id and σ = 0. Then, the objective in (5a) returns

W⋆ =
1

n + d + 1
Id and L⋆ = d −

nd
n + d + 1

.

See Appendix C.2 for proofs. Note that Theorem 3.1 is
consistent with prior work (Ahn et al., 2023, Theorem 1)
when specialized to isotropic task covariance, i.e., Σβ = Id.
However, their result is limited as the features and task are
assumed to be independent. This prompts us to ask: What is
the optimization landscape with correlated in-context sam-
ples? Toward this, we consider the following RAG-inspired
and task-feature alignment models, where Assumptions 2.1
and 2.2 continue to hold and Proposition 2.3 applies.

Retrieval augmented generation. To provide a statistical
model of the practical RAG approaches, given the query
vector xn+1 = x, we propose to draw ICL demonstrations
that are similar to x with the same shared task vector β.
Modeling feature similarity through the cosine angle, RAG
should sample the ICL examples xi, i ≤ n, from the original
feature distribution conditioned on the event cos(xi, x) ≥ α
where α is the similarity threshold. As an approximate
proxy, under the Gaussian distribution model, we assume
that β ∼ N(0, Id), x ∼ N(0, Id) and that RAG samples
α-correlated demonstrations (xi, yi)n

i=1 as follows:

xi

∣∣∣ x ∼ N(αx, (1 − α2)Id), ξi ∼ N(0, σ2), 1 ≤ i ≤ n (9)

and yi = x⊤i β + ξi. Note that the above normalization en-
sures that the marginal feature distribution remainsN(0, Id).

5
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The full analysis of RAG is provides in Appendix C.3.
Specifically, when we carry out the analysis by assuming
α = O

(
1/
√

d
)

and d/n = O (1) where O (·) denotes propor-
tionality, our derivation leads to the following result:

Theorem 3.3. Consider linear model in (9). Recap the
objective from (5a) and let W⋆ := arg minW LPGD(W), and
L⋆ = LPGD(W⋆). Additionally, let κ = α2d + 1 and suppose
α = O

(
1/
√

d
)
, d/n = O (1) and d is sufficiently large. Then

W⋆ and L⋆ have approximate forms

W⋆ ≈
1

κn + d + σ2 Id and L⋆ ≈ d + σ2 −
κnd

κn + d + σ2 . (10)

Here, (10) is reminiscent of Corollary 3.2 and has a surpris-
ingly clean message. Observe that, α2d + 1 is the dominant
multiplier ahead of n in both equations. Thus, we deduce
that, RAG model follows the same error bound as the inde-
pendent data model, however, its sample size is amplified
by a factor of α2d + 1. α = 0 reduces to the result of Corol-
lary 3.2 whereas we need to set α = O

(
1/
√

d
)

for constant
amplification. When α = 1, RAG achieves the approximate
riskL⋆ ≈ 2+σ2, where the constant bias is due to the higher
order moments (e.g., the 4’th and 6’th moments) of the stan-
dard Gaussian distribution. As d increases, the normalized
loss L⋆/d → 0. The full analysis of its optimal solution W⋆
and loss L⋆ are deferred Theorem C.1 in Appendix C.3.

Task-feature alignment. We also consider another depen-
dent data setting where task and feature vectors are assumed
to be correlated. This dataset model has the following moti-
vation: In general, an LLM can generate any token within
the vocabulary. However, once we specify the task (e.g. do-
main of the prompt), the LLM output becomes more deter-
ministic and there are much fewer token candidates. For
instance, if the task is “Country”, “France” is a viable out-
put compared to “Helium” and vice versa when the task is
“Chemistry”. Formally speaking, this can be formalized as
the input x having a diverse distribution whereas it becomes
more predictable conditioned on β. Therefore, it can be
captured through a linear model by making the conditional
covariance of x

∣∣∣ β to be approximately low-rank. This for-
malism can be viewed as a spectral alignment between input
and task, which is also well-established in deep learning
both empirically and theoretically (Li et al., 2020; Arora
et al., 2019; Canatar et al., 2021; Cao et al., 2019). Here,
we consider such a setting where the shared task vector is
sampled as standard Gaussian distribution β ∼ N(0, Id)
and letting κ = α2d + 1, we sample the α-correlated ICL
demonstrations (xi, yi)n+1

i=1 as follows:

xi

∣∣∣ β ∼ N(αβ, Id), ξi ∼ N(0, σ2), 1 ≤ i ≤ n + 1. (11)

and yi = κ
−1/2x⊤i β + ξi. Here, κ−1/2 is a normalization factor

to ensure that label variance remains invariant to α. To
keep the exposition cleaner, we defer the full analysis of

its optimal solution W⋆ and loss L⋆ to Theorem C.2 in
Appendix C.4. Similar to the RAG setting, by assuming
α = O

(
1/
√

d
)

and d/n = O (1), we obtain the following
results for the optimal parameter and risk.

Theorem 3.4. Consider linear model in (11). Recap the
objective from (5a) and let W⋆ := arg minW LPGD(W), and
L⋆ = LPGD(W⋆). Additionally, given κ = α2d + 1 and
suppose α = O

(
1/
√

d
)
, d/n = O (1) and d is sufficiently

large. Then W⋆ and L⋆ have approximate forms

W⋆ ≈
1

κn + (d + σ2)/κ
Id and L⋆ ≈ d + σ2 −

κnd
κn + (d + σ2)/κ

. (12)

Similar to (10), (12) contains κ = α2 + 1 multiplier ahead
of n, which reduces the in-context sample complexity and
setting α = 0 reduces to the results of Corollary 3.2.

3.2. Low-rank Parameterization and LoRA

In this section, we investigate training low-rank models,
which assume Wk,Wq ∈ R

(d+1)×r where r is the rank re-
striction. Equivalently, we consider objective (5a) under
condition rank (W) = r.

Lemma 3.5. Consider independent linear data in (7). Re-
cap the objective from (5a) and enforce rank (W) ≤ r and
W⊤ =W. Let Σ = Σ1/2

x ΣβΣ
1/2
x and M = tr (Σ) + σ2. Let λi

be the i’th largest eigenvalue of Σ, we have that

min
rank(W)≤r,W=W⊤

L(W) = M −
r∑

i=1

nλ2
i

(n + 1)λi + M
. (13)

Note that tr (Σ) =
∑d

i=1 λi. Removing the rank constraint
and considering noiseless data setting, this reduces to the fol-
lowing optimal risk L⋆ =

∑d
i=1

λi+M
n+1+M/λi

. See Appendix D.1
for more details.

Impact of LoRA: Based on the above lemma, we con-
sider the impact of LoRA for adapting the pretrained model
to a new task distribution under jointly-diagonalizable old
and new eigenvalues of Σ, Σnew, (λi)d

i=1, (λnew
i )d

i=1. Con-
sider adapting LoRA matrix to the combined key and value
weights in attention, which reflects minimizing the popu-
lation loss L̃(Wlora) := L(W + Wlora) in (5a) with fixed
W. Suppose tr (Σ) = tr (Σnew) = M, σ = 0 and W is
jointly diagonalizable with Σ, Σnew, then LoRA’s risk is
upper-bounded by

min
rank(Wlora)≤r

L̃(Wlora) ≤

min
|I|≤r,I⊂[d]

∑
i<I

λi + M
n + 1 + M/λi

+
∑
i∈I

λnew
i + M

n + 1 + M/λnew
i

 . (14)

Note that, the right hand side is provided assuming the
optimal LoRA-updated model Wlora is also jointly diagonal-
izable with covariances Σ, Σnew, and W.

6



Fine-grained Analysis of In-context Linear Estimation

0 10 20 30 40 50
# in-context samples

0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 ri
sk

Linear Att
H3
Theorem 1

(a) Σx = Σβ = Id and σ = 0

0 10 20 30 40 50
# in-context samples

0.4

0.6

0.8

1.0

1.2

Te
st

 ri
sk

2/d = 0
2/d = 0.1
2/d = 0.2
2/d = 0.3

(b) Noisy label

0 10 20 30 40 50
# in-context samples

0.2

0.4

0.6

0.8

Te
st

 ri
sk

= 0
= 0.3
= 0.6
= 0.9

(c) Non-isotropic task

Figure 2: Empirical evidence validates Theorem 3.1 and Proposition 2.3. Experimental details are discussed in Section 4.

4. Experiments
We now conduct synthetic experiments to support our the-
oretical findings and further explore the behavior of dif-
ferent models of interest under different conditions. The
experiments are designed to investigate various scenarios,
including independent data, retrieval-augmented generation
(RAG), task-feature alignment, low-rank parameterization,
and LoRA adaption.

Experimental setting. We train 1-layer attention and H3
models for solving the linear regression ICL. As described
in Section 2, we consider meta-learning setting where task
parameter β is randomly generated for each training se-
quence. In all experiments, we set the dimension d = 20.
Depending on the in-context length (n), different models are
trained to make in-context predictions. We train each model
for 10000 iterations with batch size 128 and Adam optimizer
with learning rate 10−3. Since our study focuses on the opti-
mization landscape, and experiments are implemented via
gradient descent, we repeat 20 model trainings from differ-
ent initialization and results are presented as the minimal
test risk among those 20 trails. In all the plots, theoretical
predictions are obtained via the corresponding formulae pre-
sented in Section 3 and the test risks are normalized by the
dimension d.

• Equivalence among L⋆PGD, L
⋆
ATT and L⋆SSM (Figure 2).

To verify Proposition 2.3 as well as Theorem 3.1, we run
random linear regression instances where in-context samples
are generated obeying (7). Fig. 2(a) is identical to Fig. 1(a)
where we set Σx = Σβ = Id and σ = 0. In Fig. 2(b), set
Σx = Σβ = I and vary noise level σ2 from 0 to 0.3 × d.
In Fig. 2(c), we consider noiseless labels, σ = 0, isotropic
feature distribution Σx = Id and set task covariance to be
Σβ = γ11⊤ + (1 − γ)Id by choosing γ in {0, 0.3, 0.6, 0.9}.
Note that in Fig. 2(c), we train a sufficient number of models
(greater than 20) to ensure the optimal model is obtained.
In all the figures, solid and dashed curves correspond to
the ICL results from training 1-layer ATT and SSM models,
respectively, and dotted curves are obtained from (8) in
Theorem 3.1. The alignment of solid, dashed and dotted
curves validates our Proposition 2.3 and Theorem 3.1.

•Distributional alignment experiments (Figs. 3(a)&3(b)).
In Figs. 3(a) and 3(b), we generate RAG and task-feature
alignment data following (9) and (11), respectively, by set-
ting σ = 0 and varying α from 0 to 0.6. Attention training
results are displayed in solid curves, and we generate theory
curve (dotted) via the L⋆ formula as described in (36) in
Appendix C.3 and (42) in Appendix C.4. The empirical
alignments corroborate Theorems C.1 and C.2, further con-
firming that Proposition 2.3 is applicable to a broader range
of real-world distributional alignment data.

• Low-rank (Fig. 3(c)) and LoRA (Fig. 3(d)) experi-
ments. We also run simulations to verify our theoretical
findings in Section 3.2. Consider the independent data set-
ting as described in (7). In Fig. 3(c), we set Σx = Id,
σ = 0 and task covariance to be diagonal with diagonal
entries c[1 2−1 · · · d−1]⊤ for some normalization constant
c = d/

∑d
i=1 i−1, and parameterize the attention model us-

ing matrices Wk,Wq ∈ R
(d+1)×r and vary r across the set

{1, 5, 10, 20}. Results show that empirical (solid) and theoret-
ical (dotted, c.f. (13)) curves overlap. In Fig. 3(d), we imple-
ment two phases of training. Phase 1: Setting Σx = Σβ = Id

and σ = 0, we pretrain the model with full rank parameters
and obtain weights Ŵk, Ŵq, Ŵv ∈ R

(d+1)×(d+1). Phase 2: We
generate new examples with task covariance Σβ being a
diagonal matrix with diagonal entries c′[2−1 2−2 · · · 2−d]⊤

for some normalization constant c′ = d/
∑d

i=1 2−i. Given
the rank restriction r, we train additional LoRA parame-
ters Wup,Wdown ∈ R

(d+1)×r where Wlora := WupW⊤
down and

(2a) becomes ATT(Z) = (Z(ŴqŴ⊤
k +WupW⊤

down)Z⊤)ZŴv.
Fig. 3(d) presents the results after two phases of training
where dotted curves are drawn from the right hand side of
(14) directly. Here, note that since Σ,Σnew are diagonal,
the right hand side of (14) returns the exact optimal risk of
LoRA and the alignments verify it.

• H3 outperforms linear attention (Figure 4). Until now,
our analysis has established the equivalence between linear
attention and H3 models in solving linear ICL problem. Fur-
thermore, we also investigate settings where H3 could out-
perform linear attention due to its sample weighting ability.
In Figs. 4(a) and 4(b), instead of training separate models to
fit the different context lengths, we train a single model with
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Figure 3: Distributional alignment and low-rank experiments. Experimental details are discussed in Section 4.

0 10 20 30 40 50 60 70 80
# in-context samples

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Te
st

 ri
sk

nmax = 30
nmax = 50
nmax = 80

(a) Linear attention

0 10 20 30 40 50 60 70 80
# in-context samples

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Te
st

 ri
sk

nmax = 30
nmax = 50
nmax = 80

(b) H3

30 40 50 60 70 80
nmax

0.45

0.50

0.55

0.60

Av
er

ag
ed

 te
st

 ri
sk

Linear Att
H3

(c) Averaged risk

0 10 20 30 40 50
# in-context samples

0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 ri
sk

Linear Att
H3

(d) Evolving β

Figure 4: Further comparison for linear attention and H3. Experimental details are discussed in Section 4.

fixed max-length nmax and loss is evaluated as the average
loss given samples from 1 to nmax. Such setting has been
wildly studied in the previous ICL work (Garg et al., 2022;
Akyürek et al., 2023; Li et al., 2023). We generate data
according to (7) with Σx = Σβ = Id and σ = 0, and train
1-layer linear attention (Fig. 4(a)) and H3 (Fig. 4(b)) models
with different max-lengths nmax = 30, 50, 80. Comparison
between Fig. 4(a) and 4(b) shows that 1-layer attention and
H3 implement different algorithms in solving the averaged
linear regression problem and H3 is more consistent in gen-
eralizing to longer context lengths. In Fig. 4(c), we plot the
averaged risks for each model and H3 outperforms linear
attention. Furthermore, in Fig. 4(d), we focus on the setting
where in-context examples are generated using evolving
task vector β. Specifically, consider that each sequence cor-
responds to two individual task parameters β1 ∼ N(0, Id)
and β2 ∼ N(0, Id). Then the i’th sample is generated via
xi ∼ N(0, Id) and yi = β

⊤
i xi where βi = λiβ1 + (1 − λi)β2

and λi = i/n. The results are reported in Fig. 4(d) which
again shows that H3 achieves better performance compared
to linear attention, as H3 may benefit from the additional
convolutional filter (c.f. f in (2b)). Here, dotted curve repre-
sent the theoretical results under i.i.d. and noiseless setting,
derived from Corollary 3.2.

5. Discussion
In this work, we revisited the loss landscape of in-context
learning with 1-layer sequence models. We have established
a general connection between ICL and gradient methods
that accounts for correlated data, non-attention architectures
(specifically SSMs), and the impact of low-rank parameter-

ization including LoRA adaptation. Our results elucidate
two central findings: (1) The functions learned by different
sequence model architectures exhibit a strong degree of uni-
versality and (ii) Dataset and prompt design, such as RAG,
can substantially benefit ICL performance.

Future directions and limitations. The results of this work
fall short of being a comprehensive theory for ICL in LLMs
and can be augmented in multiple directions. First, while
the exact equivalence between H3 and linear attention is
remarkable, we should examine whether it extends to other
SSMs. Secondly, while empirically predictive, our RAG and
LoRA analyses are not precise and fully formal. Thirdly,
it is desirable to develop a deeper understanding of multi-
layer architectures and connect to iterative GD methods as
in (Ahn et al., 2023; Von Oswald et al., 2023). Finally, we
have studied the population risk of ICL training whereas
one can also explore the sample complexity of pretrain-
ing (Wu et al., 2023; Lu et al., 2024). Moving beyond
the theoretically tractable setup of this work, our simpli-
fied models are trained on in-context prompts from random
initialization. Therefore, this theoretical study doesn’t ad-
dress more challenging in-context learning tasks, such as
question answering, where both in-context demonstration
and general knowledge from pretraining are required. Fu-
ture work in this area could also shed light on how certain
contexts might elicit undesirable behaviors acquired by an
LLM during pretraining, an aspect not covered in our cur-
rent analysis. This work also studies a theoretical model
for retrieval augmentation-based ICL. In a real-life retrieval
augmentation-based ICL, one needs to account for the qual-
ity of the collection of the retrievable demonstrations and
its (negative) impacts on the final predictions.
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A. Related Work
There is growing interest in understanding the mechanisms behind ICL (Brown et al., 2020; Liu et al., 2023b; Rae et al., 2021)
in large language models (LLMs) due to its success in continuously enabling novel applications for LLMs (GeminiTeam
et al., 2023; OpenAI, 2023; Touvron et al., 2023). Towards this, Xie et al. (2022) explain ICL by language model’s ability
to perform implicit Bayesian inference where, under specific assumptions on the pre-training data distribution, the model
infers a shared latent concept among the in-context examples and leverages the concept to make a prediction. Müller et al.
(2021); Hollmann et al. (2022); Müller et al. (2023) introduce prior-data fitted network (PFN) to approximate Bayesian
inference on synthetic datasets and use it to perform downstream tasks such as tabular dataset classification. On the other
hand, Olsson et al. (2022) posit induction heads as the key mechanism enabling ICL in Transformers. Park et al. (2024)
study how various distributional properties of training data aid in the emergence of ICL in Transformers.

In the previous work, Garg et al. (2022) explored ICL ability of Transformers. In particular, they considered in-context
prompts where each in-context example is labeled by a target function from a given function class, including linear models.
A number of works have studied this and related settings to develop a theoretical understanding of ICL (von Oswald et al.,
2023; Gatmiry et al.; Collins et al., 2024; Lin & Lee, 2024; Li et al., 2024; Bai et al., 2024; Akyürek et al., 2023; Zhang et al.,
2023; Du et al., 2023). Akyürek et al. (2023) focus on linear regression and provide a construction of Transformer weights
that can enable a single step of GD based on in-context examples. They further show that Transformers trained on in-context
prompts exhibit behaviors similar to the models recovered via explicit learning algorithm on the in-context examples in
a prompt. Along the similar line, Von Oswald et al. (2023) provide a construction of weights in linear attention-only
Transformers that can emulate GD steps on in-context examples for a linear regression task. Interestingly, they find similarity
between their constructed networks and the networks resulting from training on in-context prompts corresponding to linear
regression tasks. Similar to this line of work, Dai et al. (2023) argue that pre-trained language models act as meta-optimizer
which utilize attention to apply meta-gradients to the original language model based on the in-context examples. Focusing
on various NLP tasks, they further connect it to a specific form of explicit fine-tuning that performs gradient updates to the
attention-related parameters. Inspired by the connection between linear attention and GD, they developed a novel attention
mechanism that mirrors the behavior of GD with momentum. Beyond Transformers, existing work (Lee et al., 2023; Zucchet
et al., 2023; Grazzi et al., 2024) demonstrate that other model architectures, such as SSM and RNNs, are also capable of
in-context learning (ICL).

Building on these primarily empirical studies, Zhang et al. (2024); Mahankali et al. (2024); Ahn et al. (2023); Duraisamy
(2024) focus on developing a theoretical understanding of Transformers trained to perform ICL. For single-layer linear
attention model trained on in-context prompts for random linear regression tasks with isotropic Gaussian features and
isotropic Gaussian weight vectors, Mahankali et al. (2024); Ahn et al. (2023) show that the resulting model implements
a single step of GD on in-context examples in a test prompt, thereby corroborating the findings of (Von Oswald et al.,
2023). They also show that the learned model implements a PGD step, when faced with anisotropic Gaussian features, with
Mahankali et al. (2024) also considering anisotropic Gaussian weight vectors. Ahn et al. (2023) further study multi-layer
model and show that the trained model can implement a generalization of GD++ algorithm, supporting an empirical
observation in (Von Oswald et al., 2023). On the other hand, Mahankali et al. (2024) extend their single-layer setup to
consider suitable non-linear target functions, showing that learned Transformer again implements a single step of GD
on lineare regression objective. For a single-layer linear attention model, Zhang et al. (2024) study the optimization
dynamics of gradient flow while training such a model on in-context prompts for random linear regression tasks. Despite the
non-convexity of the underlying problem, they show the convergence to the global minimum of the population objective.
Similar to Mahankali et al. (2024); Ahn et al. (2023), they show that the trained model implements a single step of GD and
PGD for isotropic and anisotropic Gaussian features, respectively. In addition, they also characterize the test-time prediction
error for the trained model while highlighting its dependence on train and test prompt lengths. Interestingly, Zhang et al.
(2024) further explore the effect of various distributional shifts, including the shift in task weight vector distributions between
train and test time as well as the covariate shifts among train and test in-context prompts. Interestingly, they find that while
linear-attention models are robust to most shifts, they exhibit brittleness to the covariate shifts.

While our work shares similarities with this line of works, as discussed in our contributions in the introduction, we expand
the theoretical understanding of ICL along multiple novel dimensions, which includes the first study of LoRA adaptation for
ICL in the presence of a distributional shift. Furthermore, we strive to capture the effect of retrieval augmentation (Lewis
et al., 2020; Nakano et al., 2021) on ICL through our analysis. Retrieval augmentation allows for selecting most relevant
demonstration out of a large collection for a test instance, e.g., via a dense retrieval model (Izacard et al., 2023), which
can significantly outperform the typical ICL setup where fixed task-specific demonstrations are provided as in-context
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examples (Wang et al., 2022; Basu et al., 2023). Through a careful modeling of retrieval augmentation via correlated
design, we show that it indeed has a desirable amplification effect where the effective number in-context examples becomes
larger with higher correlation which corresponds to preforming a successful retrieval of query-relevant demonstrations in a
practical retrieval augmented setup.

Recently, state space models (SSMs) (Gu et al., 2021b;a; Fu et al., 2023; Gu & Dao, 2023) have appeared as potential
alternatives to Transformer architecture, with more efficient scaling to input sequence length. Recent studies demonstrate
that such SSMs can also perform ICL for simple non-language tasks (Park et al., 2024; Grazzi et al., 2024) as well as
complex NLP tasks (Grazzi et al., 2024). That said, a rigorous theoretical understanding of ICL for SSMs akin to (Zhang
et al., 2024; Mahankali et al., 2024; Ahn et al., 2023) is missing from the literature. In this work, we provide the first such
theoretical treatment for ICL with SSMs. Focusing on H3 architecture (Fu et al., 2023), we highlight its advantages over
linear attention in specific ICL settings.

B. Equivalence among Gradient Descent, Attention, and State-Space Models
In this section, we present the proofs related to Section 2. Recap that given data

X = [x1 · · · xn]⊤ ∈ Rn×d,

ξ = [ξ1 · · · ξn]⊤ ∈ Rn,

y = [y1 · · · yn]⊤ = Xβ + ξ ∈ Rn,

Z0 = [z1 . . . zn 0d+1]⊤ =
[
x1 . . . xn 0d

y1 . . . yn 0

]⊤
∈ R(n+1)×(d+1),

and corresponding prediction functions

gPGD(Z) = x⊤WX⊤y, (15a)
gWPGD(Z) = x⊤WX⊤(ω ⊙ y), (15b)
gATT(Z) = (z⊤WqW⊤

k Z⊤0 )Z0Wvv, (15c)

gSSM(Z) =
(
(z⊤Wq)⊤ ⊙ ((Z0Wk ⊙ Z0Wv) ∗ f )n+1

)
v, (15d)

we have objectives

min
W
LPGD(W) where LPGD(W) = E

[
(y − gPGD(Z))2

]
, (16a)

min
W,ω
LWPGD(W) where LWPGD(W) = E

[
(y − gWPGD(Z))2

]
, (16b)

min
Wk ,Wq,Wv,v

LATT(W) where LATT(W) = E
[
(y − gATT(Z))2

]
, (16c)

min
Wk ,Wq,Wv,v, f

LSSM(W) where LSSM(W) = E
[
(y − gSSM(Z))2

]
. (16d)

Here, the expectation is over the randomness in (xi, ξi)n
i=1 and β, and the search space for W is Rd×d, for ω is Rn, for

Wk,Wq,Wv is R(d+1)×(d+1), for v is Rd+1, and for f is Rn+1.

B.1. Proof of Proposition 2.3

Consider the problem setting as discussed in Section 2, Proposition 2.3 can be proven by the following two lemmas.

Lemma B.1. Suppose Assumptions 2.1 and 2.2 hold. Then, given the objectives (16a) and (16c), we have

min
Wq,Wk ,Wv,v

LATT(W) = min
W
LPGD(W).

Proof. Recap the linear attention estimator from (15c) and denote

WqW⊤
k =

[
W̄ w1
w⊤2 w

]
and Wvv =

[
v1
v

]
,
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where W̄ ∈ Rd×d, w1,w2, v1 ∈ R
d, and w, v ∈ R. Then we have

gATT(Z) = (z⊤WqW⊤
k Z⊤0 )Z0Wvv

= [x⊤ 0]
[
W̄ w1
w⊤2 w

] [
X⊤ 0d

y⊤ 0

] [
X y
0⊤d 0

] [
v1
v

]
= (x⊤W̄X⊤ + x⊤w1y⊤)(Xv1 + yv)

= x⊤(vW̄)X⊤y + x⊤w1y⊤Xv1 + x⊤
(
W̄X⊤Xv1 + v ∥y∥2ℓ2 w1

)
= x⊤(vW̄ + w1v⊤1 )X⊤y + x⊤

(
W̄X⊤Xv1 + v ∥y∥2ℓ2 w1

)
= x⊤W̃X⊤y︸     ︷︷     ︸

g̃ATT(Z)

+ x⊤
(
W̄X⊤Xv1 + v ∥y∥2ℓ2 w1

)︸                            ︷︷                            ︸
ε

, (17)

where W̃ := vW̄ + w1v⊤1 .

We first show that for any given parameters Wk,Wq,Wv, v,

E
[
(gATT(Z) − y)2

]
≥ E

[
(g̃ATT(Z) − y)2

]
. (18)

To this goal, we have

E
[
(gATT(Z) − y)2

]
− E

[
(g̃ATT(Z) − y)2

]
= E

[
(g̃ATT(Z) + ε − y)2

]
− E

[
(g̃ATT(Z) − y)2

]
= E[ε2] + 2E[(g̃ATT(Z) − y)ε] (19)

where we have decomposition

(g̃ATT(Z) − y)ε = (x⊤W̃X⊤y − y)x⊤
(
W̄X⊤Xv1 + v ∥y∥2ℓ2 w1

)
= y⊤XW̃⊤xx⊤

(
W̄X⊤Xv1 + v ∥y∥2ℓ2 w1

)
− yx⊤

(
W̄X⊤Xv1 + v ∥y∥2ℓ2 w1

)
= y⊤XW̃⊤xx⊤W̄X⊤Xv1︸                      ︷︷                      ︸

(a)

+ v ∥y∥2ℓ2 y⊤XW̃⊤xx⊤w1︸                      ︷︷                      ︸
(b)

− yx⊤W̄X⊤Xv1︸          ︷︷          ︸
(c)

− vy ∥y∥2ℓ2 x⊤w1︸          ︷︷          ︸
(d)

.

In the following, we consider the expectations of (a), (b), (c), (d) sequentially, which return zeros under Assumptions 2.1
and 2.2. Note that since Assumption 2.1 holds, expectation of any odd order of monomial of the entries of X, x,β returns
zero, i.e., order of x⊤βx is 3 and therefore E[x⊤βx] = 0d.

(a) : E
[
y⊤XW̃⊤xx⊤W̄X⊤Xv1

]
= E

[
(Xβ + ξ)⊤XW̃⊤xx⊤W̄X⊤Xv1

]
= E

[
β⊤X⊤XW̃⊤xx⊤W̄X⊤Xv1

]
+ E

[
ξ⊤XW̃⊤xx⊤W̄X⊤Xv1

]
= 0.

(b) : E
[
v ∥y∥2ℓ2 y⊤XW̃⊤xx⊤w1

]
= E

[
v(Xβ + ξ)⊤(Xβ + ξ)(Xβ + ξ)⊤XW̃⊤xx⊤w1

]
= E

[
v ∥ξ∥2ℓ2 ξ

⊤XW̃⊤xx⊤w1

]
= 0.

(c) : E
[
yx⊤W̄X⊤Xv1

]
= E

[
(x⊤β + ξ)x⊤W̄X⊤Xv1

]
= E

[
β⊤xx⊤W̄X⊤Xv1

]
+ E

[
ξx⊤W̄X⊤Xv1

]
= 0.
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(d) : E
[
vy ∥y∥2ℓ2 x⊤w1

]
= vE

[
(β⊤x + ξ)(Xβ + ξ)⊤(Xβ + ξ)x⊤w1

]
= vE

[
ξ ∥ξ∥2ℓ2 x⊤w1

]
= 0.

Combining the results with (19) returns that

E
[
(gATT(Z) − y)2

]
− E

[
(g̃ATT(Z) − y)2

]
= E[ε2] ≥ 0 (20)

which completes the proof of (18). Therefore, we obtain

min
Wq,Wk ,Wv,v

E
[
(gATT(Z) − y)2

]
≥ min

W̃
E

[
(g̃ATT(Z) − y)2

]
= min

W
E

[
(gPGD(Z) − y)2

]
.

We conclude the proof of this lemma by showing that for any W ∈ Rd×d in gPGD, there exist Wk,Wq,Wv, v such that
gATT(Z) = gPGD(Z). Let

Wk =Wv = Id+1, Wq =

[
W 0d

0⊤d 0

]
, and v =

[
0d

1

]
.

Then we obtain

gATT(Z) = x⊤WX⊤y = gPGD(Z), (21)

which completes the proof. □

Lemma B.2. Suppose Assumptions 2.1 and 2.2 hold. Then, given the objectives in (16), we have

min
Wq,Wk ,Wv,v, f

LSSM(W) = min
W,ω
LWPGD(W). (22)

Additionally, if the examples (xi, yi)n
i=1 follow the same distribution and are conditionally independent given x and β, then

SSM/H3 can achieve the optimal loss using the all-ones filter and

min
W,ω
LWPGD(W) = min

W
LPGD(W). (23)

Proof. Recap the SSM estimator from (15d) and let

Wq =
[
wq1 wq2 · · · wq,d+1

]
,

Wk =
[
wk1 wk2 · · · wk,d+1

]
,

Wv =
[
wv1 wv2 · · · wv,d+1

]
,

where wq j,wk j,wv j ∈ R
d+1 for j ≤ d + 1, and let

v =


v1
v2
· · ·

vd+1

 , and f =


f0
f1
· · ·

fn

 .
Then we have

gSSM(Z) =
(
(z⊤Wq)⊤ ⊙ ((Z0Wk ⊙ Z0Wv) ∗ f )n+1

)
v

=

n∑
i=1

fn+1−i · v⊤




w⊤q1 z
· · ·

w⊤q,d+1 z

 ⊙


w⊤k1 ziw⊤v1 zi

· · ·

w⊤k,d+1 ziw⊤v,d+1 zi




=

n∑
i=1

fn+1−i · v⊤


w⊤q1 zw⊤k1 ziw⊤v1 zi

· · ·

w⊤q,d+1 zw⊤k,d+1 ziw⊤v,d+1 zi

 .
15



Fine-grained Analysis of In-context Linear Estimation

Next for all j ≤ d + 1, let

wq j =

[
w̄q j

wq j

]
, wk j =

[
w̄k j

wk j

]
, wv j =

[
w̄v j

wv j

]
where w̄q j, w̄k j, w̄v j ∈ R

d and wq j,wk j,wv j ∈ R. Then we have

w⊤q j zw⊤k j ziw⊤v j zi =
(
w̄⊤q jx

) (
w̄⊤k jxi + wk jyi

) (
w̄⊤v jxi + wv jyi

)
= x⊤w̄q j

(
wv jw̄⊤k j + wk jw̄⊤v j

)
xiyi +

(
w̄⊤q jx

) (
w̄⊤k jxi

) (
w̄⊤v jxi

)
+

(
wk jwv jw̄⊤q jxy2

i

)
= x⊤W′

jxiyi + δ j(x, xi, xi) + w′j
⊤xy2

i

where

W′
j := w̄q j

(
wv jw̄⊤k j + wk jw̄⊤v j

)
∈ Rd×d,

w′j := wk jwv jw̄q j ∈ R
d,

δ j(x, xi, xi) :=
(
w̄⊤q jx

) (
w̄⊤k jxi

) (
w̄⊤v jxi

)
∈ R.

Then

gSSM(Z) =
n∑

i=1

fn+1−i ·

d+1∑
j=1

v j

(
x⊤W′

jxiyi + δ j(x, xi, xi) + w′j
⊤xy2

i

)
= x⊤

d+1∑
j=1

v jW′
j

 X(y ⊙ f̃ ) +
n∑

i=1

fn+1−i ·

d+1∑
j=1

v j · δ j(x, xi, xi) +

d+1∑
j=1

v jw′j
⊤

 xy⊤(y ⊙ f̃ )

= x⊤W̃Xỹ︸   ︷︷   ︸
g̃SSM(Z)

+ δ̃(x, X, X)︸      ︷︷      ︸
ε1

+ w̃⊤xy⊤ ỹ︸   ︷︷   ︸
ε2

.

where

f̃ := [ fn · · · f1]⊤ ∈ Rn,

ỹ := y ⊙ f̃ ∈ Rn,

W̃ :=
d+1∑
j=1

v jW′
j ∈ R

d×d,

w̃ :=
d+1∑
j=1

v jw′j ∈ R
d,

δ̃(x, X, X) :=
n∑

i=1

fn+1−i ·

d+1∑
j=1

v j · δ j(x, xi, xi) ∈ R.

Next we will show that for any Wk,Wq,Wv, v,

E
[
(gSSM(Z) − y)2

]
≥ E

[
(g̃SSM(Z) − y)2

]
.

To start with, we obtain

E
[
(gSSM(Z) − y)2

]
= E

[
(g̃SSM(Z) + ε1 + ε2 − y)2

]
= E

[
(g̃SSM(Z) − y)2

]
+ E

[
(ε1 + ε2)2

]
+ 2E

[
(g̃SSM(Z) − y)(ε1 + ε2)

]
(24)

where there is decomposition

(g̃SSM(Z) − y)(ε1 + ε2) = δ̃(x, X, X) · x⊤W̃Xỹ︸                   ︷︷                   ︸
(a)

− δ̃(x, X, X)y︸       ︷︷       ︸
(b)

+ w̃⊤xy⊤ ỹ · x⊤W̃Xỹ︸                 ︷︷                 ︸
(c)

− y · w̃⊤xy⊤ ỹ︸       ︷︷       ︸
(d)

.
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In the following, similar to the proof of Lemma B.1, we consider the expectations of (a), (b), (c), (d) sequentially, which
return zeros under Assumptions 2.1 and 2.2. Note that δ j(x, xi, xi)’s and δ̃(x, X, X) are summation of monomials of entries
of (x, X,β) with order 3, and entries of y and y are summation of monomials of entries of (x, X,β) with even orders: e.g.,
y = x⊤β + ξ where ξ is of oder 0 and x⊤β is of order 2.

(a) : E
[
δ̃(x, X, X) · x⊤W̃Xỹ

]
= E

[
δ̃(x, X, X) · x⊤W̃X(Xβ ⊙ f̃ )

]
+ E

[
δ̃(x, X, X) · x⊤W̃X(ξ ⊙ f̃ )

]
= E

[
δ̃(x, X, X) · x⊤W̃X

]
E

[
ξ ⊙ f̃

]
= 0.

(b) : E
[
δ̃(x, X, X)y

]
= E

[
δ̃(x, X, X)(x⊤β + ξ)

]
= E

[
δ̃(x, X, X)x⊤β

]
+ E

[
δ̃(x, X, X)ξ

]
= 0.

(c) : E
[
w̃⊤xy⊤ ỹ · x⊤W̃Xỹ

]
= E

[
w̃⊤x(Xβ + ξ)⊤(Xβ ⊙ f̃ + ξ ⊙ f̃ ) · x⊤W̃X(Xβ ⊙ f̃ + ξ ⊙ f̃ )

]
= 0.

(d) : E
[
y · w̃⊤xy⊤ ỹ

]
= E

[
(x⊤β + ξ) · w̃⊤x(Xβ + ξ)⊤(Xβ ⊙ f̃ + ξ ⊙ f̃ )

]
= 0.

Combining the results with (24) results that

E
[
(gSSM(Z) − y)2

]
− E

[
(g̃SSM(Z) − y)2

]
= E

[
(ε1 + ε2)2

]
≥ 0.

Therefore we obtain,

min
Wq,Wk ,Wv,v, f

E
[
(gSSM(Z) − y)2

]
≥ min

W̃, f̃
E

[
(g̃SSM(Z) − y)2

]
= min

W,ω
E

[
(gWPGD(Z) − y)2

]
.

Next we show that for any choices of W and ω in gWPGD, there are Wq,k,v, v, f such that gSSM ≡ gWPGD. To this end, given
ω = [ω1 . . . ωn]⊤, let

Wq = Id+1, Wk =

[
W⊤ 0d

0⊤d 0

]
, Wv =

[
0d×d 0d

1⊤d 0

]
, v =

[
1d

0

]
and f =


0
ωn

· · ·

ω1

 .
Then we get

((Z0Wk ⊙ Z0Wv) ∗ f )n+1 =

(([
XW⊤ 0n

0d 0

]
⊙

[
y1⊤d 0n

0d 0

])
∗ f

)
n+1

=

[∑n
i=1 ωi · yiWxi

0

]
=

[
WX⊤(y ⊙ ω)

0

]
,
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and therefore
gSSM(Z) = x⊤WX⊤(y ⊙ ω) = gWPGD(Z),

which completes the proof of (22).

Next, to show (23), for any W ∈ Rd×d, let L(ω) = E
[(

x⊤WX⊤(y ⊙ ω) − y
)2
]
. Then we have

∂L(ω)
∂ωi

= E

2
x⊤W

n∑
j=1

ω jy jx j − y

 (x⊤Wyixi

)
= 2

n∑
j=1

ω j E
[
(x⊤Wy jx j)(x⊤Wyixi)

]
− 2E

[
yx⊤Wyixi

]
.

Here since (xi, yi)n
i=1 follow the same distribution and are conditionally independent given x and β, for any i , j , j′,

E
[
(x⊤Wyixi)2

]
= E

[
(x⊤Wy jx j)2

]
and E

[
(x⊤Wy jx j)(x⊤Wyixi)

]
= E

[
(x⊤Wy j′ x j′ )(x⊤Wyixi)

]
. Then let

E
[
(x⊤Wy jx j)(x⊤Wyixi)

]
=

c1, i , j
c2, i = j

and E
[
yx⊤Wyixi

]
= c3,

where (c1, c2, c3) := (c1(W), c2(W), c3(W)). We get

∂L(ω)
∂ωi

= 2c1ω
⊤1n + 2(c2 − c1)ωi − 2c3.

If c2 − c1 = 0, then ∂L(ω)
∂ωi
≡ 2c1ω

⊤1n − 2c3 for all i ≤ n and any ω ∈ Rn achieves the same performance.

If c2 − c1 , 0, setting ∂L(ω)
∂ωi
= 0 returns

ωi =
c3 − c1

∑n
j=1 ω j

c2 − c1
:= C for all i ≤ n.

Therefore the optimal loss is achieved via setting ω = C1n. Without loss of generality, we can update W → CW. Then
ω = 1n, and we obtain

min
W,ω
E

[(
x⊤WX⊤(y ⊙ ω) − y

)2
]
= min

W
E

[
(x⊤WX⊤y − y)2

]
which completes the proof of (23). □

B.2. Proof of Lemma 2.4

Proof. Recap the loss LPGD(W) in (16a) and prediction gPGD(Z) in (15a), we have

LPGD(W) = E[(y − gPGD(Z))2]

= E
[(

x⊤β + ξ − x⊤WX⊤(Xβ + ξ)
)2
]

= E
[
(x⊤β − x⊤WX⊤Xβ)2 + 2(x⊤β − x⊤WX⊤Xβ)(ξ − x⊤WX⊤ξ) + (ξ − x⊤WX⊤ξ)2

]
= E

[
(x⊤β − x⊤WX⊤Xβ)2 + (ξ − x⊤WX⊤ξ)2

]
+ 2E[(x⊤β − x⊤WX⊤Xβ)(ξ − x⊤WX⊤ξ)]

= E
[
(x⊤β − x⊤WX⊤Xβ)2 + (ξ − x⊤WX⊤ξ)2

]
(25)

= E
[
(x⊤WX⊤Xβ)2 + (x⊤WX⊤ξ)2

]︸                                     ︷︷                                     ︸
f1(W)

−2E[β⊤xx⊤WX⊤Xβ + ξx⊤WX⊤ξ]︸                                         ︷︷                                         ︸
f2(W)

+ E[(x⊤β)2 + ξ2]︸            ︷︷            ︸
constant

where (25) follows Assumption 2.2. Since f2(W) is convex, LPGD(W) is strongly-convex if and only if f1(W) is strongly-
convex, which completes the proof of strong convexity.

Next, (20) and (21) in the proof of Lemma B.1 demonstrate that the optimal loss is achievable and is achieved at ε = 0.
Subsequently, (17) indicates that g⋆ATT has the same form as g⋆PGD. Under the strong convexity assumption, g⋆PGD is unique,
which leads to the conclusion that g⋆PGD = g⋆ATT. □
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B.3. Proof of Lemma 2.5

Proof. According to Lemma 2.4, LPGD(W) is strongly-convex as long as either E[(x⊤WX⊤Xβ)2] or E[(x⊤WX⊤ξ)2] is
strongly-convex. Therefore, in this lemma, the two claims correspond to the strong convexity of E[(x⊤WX⊤ξ)2] and
E[(x⊤WX⊤Xβ)2] terms, respectively.

Suppose the decomposition claim holds. Without losing generality, we may assume (x1,β1, X1) are zero-mean because we
can allocate the mean component to (x2,β2, X2) without changing the covariance.

• Claim 1: Let Σ̄x = E[x1x⊤1 ], Σ̄β = E[β1β
⊤
1 ], and Σ̄X = E[X⊤1 X1]. If the first claim holds, using independence, observe that

we can write

E[(x⊤WX⊤ξ)2] = E[(x⊤1 WX⊤1 ξ)
2] + E[(x⊤1 WX⊤2 ξ)

2] + E[(x⊤2 WX⊤1 ξ)
2] + E[(x⊤2 WX⊤2 ξ)

2],

where the last three terms of the right hand side are convex and the first term obeys

E[(x⊤1 WX⊤1 ξ)
2] = σ2 E[x⊤1 WX⊤1 X1W⊤x1]

= σ2tr
(
E[x1x⊤1 WX⊤1 X1W⊤]

)
= σ2tr

(
Σ̄xWΣ̄XW⊤

)
= σ2

∥∥∥∥∥∥
√
Σ̄xW

√
Σ̄X

∥∥∥∥∥∥2

F
.

Since noise level σ > 0, using the full-rankness of covariance matrices Σ̄x and Σ̄X, we conclude with strong convexity of
E[(x⊤WX⊤ξ)2].

• Claim 2: Now recall that Σ̄X = E[X⊤1 X1] and set A = X⊤1 X1 − Σ̄X and B = X⊤2 X2 + Σ̄X. Observe that E[A] = 0. If
the second claim holds, E[X⊤X] = E[A + B]. Note that (A,β1, x1) are independent of each other and (B,β2, x2). Using
independence and E[A] = 0, similarly write

E[(x⊤WX⊤Xβ)2] = E[(x⊤W Aβ)2] + E[(x⊤WBβ)2].

Now using E[β1] = E[x1] = 0 and their independence from rest, these terms obeys

E[(x⊤W Aβ)2] = E[(x⊤1 W Aβ1)2] + E[(x⊤1 W Aβ2)2] + E[(x⊤2 W Aβ1)2] + E[(x⊤2 W Aβ2)2]

E[(x⊤WBβ)2] = E[(x⊤1 WBβ1)2] + E[(x⊤1 WBβ2)2] + E[(x⊤2 WBβ1)2] + E[(x⊤2 WBβ2)2].

In both equations, the last three terms of the right hand side are convex. To proceed, we focus on the first terms. Using
independence and setting ΣX = E[X⊤X] ⪰ Σ̄X ≻ 0, we note that

E[(x⊤1 W Aβ1)2] + E[(x⊤1 WBβ1)2] = E[(x⊤1 WX⊤Xβ1)2]

where x1,β1, X are independent and full-rank covariance. To proceed, note that

E[(x⊤1 WX⊤Xβ1)2] = E[(x⊤1 WΣXβ1)2] + E[(x⊤1 W(X⊤X − ΣX)β1)2].

Observing the convexity of the right hand side and focusing on the first term, we get

E[(x⊤1 WΣXβ1)2] = tr
(
Σ̄xWΣXΣ̄βΣXW⊤

)
=

∥∥∥∥∥∥
√
Σ̄xWΣX

√
Σ̄β

∥∥∥∥∥∥2

F
.

Using the fact that covariance matrices, Σ̄x,ΣX, Σ̄β, are full rank concludes the strong convexity proof of E[(x⊤WX⊤Xβ)2].
□

C. Analysis of General Data Distribution
In this section, we provide the proofs in Section 3, which focuses on solving Objective (5a). For the sake of clean notation,
let L(W) := LPGD(W) and g := gPGD in this section.
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C.1. Supporting Results

We begin by deriving the even moments of random variables.

• 2n’th moment of a normally distributed variable: Let u ∼ N(0, σ2). Then we have

E[u2n] = σ2n(2n − 1)!!. (26)

• 4’th moment: Let u ∼ N(0, Id). Then for any W,W′ ∈ Rd×d, we have

E
[
(u⊤Wu)(u⊤W′u)

]
= E


 d∑

i, j=1

Wi juiu j


 d∑

i, j=1

W ′i juiu j




= E


 d∑

i=1

Wiiu2
i


 d∑

i=1

W ′iiu
2
i


 + E


∑

i, j

Wi juiu j


∑

i, j

W ′i juiu j




=

d∑
i=1

WiiW ′ii E
[
u4

i

]
+

∑
i, j

WiiW ′j j E[u2
i ]E[u2

j ] +
∑
i, j

Wi jW ′i j E[u2
i ]E[u2

j ] +
∑
i, j

Wi jW ′ji E[u2
i ]E[u2

j ]

= 3
d∑

i=1

WiiW ′ii +
∑
i, j

WiiW ′j j +
∑
i, j

Wi jW ′i j +
∑
i, j

Wi jW ′ji

=

d∑
i, j=1

WiiW ′j j +

d∑
i, j=1

Wi jW ′i j +

d∑
i, j=1

Wi jW ′ji

= tr (W) tr
(
W′) + tr (W′W⊤

)
+ tr

(
WW′) . (27)

• 4’th cross-moment: Let u, v ∼ N(0, Id) and for any W ∈ Rd×d, let ΛW =W ⊙ Id. Then we have

E
[
(u⊤Wvv⊤u)2

]
= E


 d∑

i, j=1

Wi juiv j


2  d∑

i=1

uivi


2

= E


 d∑

i, j=1

W2
i ju

2
i v2

j +
∑
i,i′

Wi jWi′ juiui′v2
j +

∑
j, j′

Wi jWi j′u2
i v jv j′ +

∑
i′,i, j′, j

Wi jWi′ j′uiui′v jv j′


 d∑

i=1

u2
i v2

i +
∑
i, j

uiu jviv j




= E


 d∑

i, j=1

W2
i ju

2
i v2

j


 d∑

i=1

u2
i v2

i

 +
∑

i, j

Wi jW jiu2
i u2

jv
2
i v2

j




= E


 d∑

i=1

W2
iiu

2
i v2

i +
∑
i, j

W2
i ju

2
i v2

j


 d∑

i=1

u2
i v2

i


 +∑

i, j

Wi jW ji

= E


 d∑

i=1

W2
iiu

4
i v4

i +
∑
i, j

W2
iiu

2
i v2

i u2
jv

2
j


 + E


∑

i, j

W2
i ju

4
i v2

jv
2
i +

∑
i, j

W2
i ju

2
i v4

ju
2
j +

∑
i, j,k

W2
i ju

2
i v2

ju
2
kv2

k


 +∑

i, j

Wi jW ji

= 9
d∑

i=1

W2
ii + (d − 1)

d∑
i=1

W2
ii + 6

∑
i, j

W2
i j + (d − 2)

∑
i, j

W2
i j +

∑
i, j

Wi jW ji

= 3
d∑

i=1

W2
ii + (d + 4)

d∑
i, j=1

W2
i j +

d∑
i, j=1

Wi jW ji

= 3tr
(
Λ2

W

)
+ (d + 4)tr

(
WW⊤

)
+ tr

(
W2

)
. (28)

20



Fine-grained Analysis of In-context Linear Estimation

• 6’th moment: Let u ∼ N(0, Id). Then for any W,W′ ∈ Rd×d, we have

E
[
(u⊤Wu)(u⊤W′u) ∥u∥2ℓ2

]
= E


 d∑

i, j=1

Wi juiu j


 d∑

i, j=1

W ′i juiu j


 d∑

i=1

u2
i




= E


 d∑

i=1

Wiiu2
i


 d∑

i=1

W ′iiu
2
i


 d∑

i=1

u2
i


 + E


∑

i, j

Wi juiu j


∑

i, j

W ′i juiu j


 d∑

i=1

u2
i




=

d∑
i=1

WiiW ′ii E

u4
i

 d∑
i′=1

u2
i′


 +∑

i, j

WiiW ′j j E

u2
i u2

j

 d∑
i′=1

u2
i′




+
∑
i, j

Wi jW ′i j E

u2
i u2

j

 d∑
i′=1

u2
i′


 +∑

i, j

Wi jW ′ji E

u2
i u2

j

 d∑
i′=1

u2
i′




= (d + 4)

3 d∑
i=1

WiiW ′ii +
∑
i, j

WiiW ′j j +
∑
i, j

Wi jW ′i j +
∑
i, j

Wi jW ′ji

 (29)

= (d + 4)

 d∑
i, j=1

WiiW ′j j +

d∑
i, j=1

Wi jW ′i j +

d∑
i, j=1

Wi jW ′ji


= (d + 4)

(
tr (W) tr

(
W′) + tr (W′W⊤

)
+ tr

(
WW′)) , (30)

where (29) is obtained by following

E

u4
i

 d∑
i′=1

u2
i′


 = E[u6] + (d − 1)E[u4]E[u2] = 3(d + 4),

E

u2
i u2

j

 d∑
i′=1

u2
i′


 = 2E[u4]E[u2] + (d − 2)E[u2]E[u2]E[u2] = d + 4.

• 8’th moment: Let u ∼ N(0, Id). Then for any W,W′ ∈ Rd×d, we have

E
[
(u⊤Wu)(u⊤W′u) ∥u∥4ℓ2

]
= E


 d∑

i, j=1

Wi juiu j


 d∑

i, j=1

W ′i juiu j


 d∑

i, j=1

u2
i u2

j




= E


 d∑

i=1

Wiiu2
i


 d∑

i=1

W ′iiu
2
i


 d∑

i=1

u4
i +

∑
i, j

u2
i u2

j


 + E


∑

i, j

Wi juiu j


∑

i, j

W ′i juiu j


 d∑

i=1

u4
i +

∑
i, j

u2
i u2

j




=

d∑
i=1

WiiW ′ii E

u4
i

 d∑
i′=1

u4
i′ +

∑
i′, j′

u2
i′u

2
j′


 +∑

i, j

WiiW ′j j E

u2
i u2

j

 d∑
i′=1

u4
i′ +

∑
i′, j′

u2
i′u

2
j′




+
∑
i, j

Wi jW ′i j E

u2
i u2

j

 d∑
i′=1

u4
i′ +

∑
i′, j′

u2
i′u

2
j′


 +∑

i, j

Wi jW ′ji E

u2
i u2

j

 d∑
i′=1

u4
i′ +

∑
i′, j′

u2
i′u

2
j′




= (d + 4)(d + 6)

3 d∑
i=1

WiiW ′ii +
∑
i, j

WiiW ′j j +
∑
i, j

Wi jW ′i j +
∑
i, j

Wi jW ′ji

 (31)

= (d + 4)(d + 6)

 d∑
i, j=1

WiiW ′j j +

d∑
i, j=1

Wi jW ′i j +

d∑
i, j=1

Wi jW ′ji


= (d + 4)(d + 6)

(
tr (W) tr

(
W′) + tr (W′W⊤

)
+ tr

(
WW′)) . (32)
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where (31) is obtained by following

E

u4
i

 d∑
i′=1

u4
i′ +

∑
i′, j′

u2
i′u

2
j′




= E[u8] + (d − 1)E[u4]E[u4] + 2(d − 1)E[u6]E[u2] + (d − 1)(d − 2)E[u4]E[u2]E[u2]
= 105 + 9(d − 1) + 30(d − 1) + 3(d − 1)(d − 2)
= 3(d + 4)(d + 6),

E

u2
i u2

j

 d∑
i′=1

u4
i′ +

∑
i′, j′

u2
i′u

2
j′




= 2E[u6]E[u2] + (d − 2)E[u4](E[u2])2 + 2E[u4]E[u4] + 4(d − 2)E[u4](E[u2])2 + (d − 2)(d − 3)(E[u2])4

= 30 + 3(d − 2) + 18 + 12(d − 2) + (d − 2)(d − 3)
= (d + 4)(d + 6).

C.2. Independent Data with General Covariance

Proof of Theorem 3.1. Consider a general independent linear model as defined in (7) where Σx and Σβ are full-rank feature
and task convariance matrices and

x ∼ N(0,Σx), β ∼ N(0,Σβ), ξ ∼ N(0, σ2), and y = x⊤β + ξ.

Let
X = [x1 · · · xn]⊤, ξ = [ξ1 · · · ξn]⊤, and y = [y1 · · · yn]⊤ = Xβ + ξ.

To simplify and without loss of generality, let x̄ = Σ−1/2
x x, X̄ = XΣ−1/2

x , β̄ = Σ1/2
x β where we have

x̄ ∼ N(0, I), β̄ ∼ N(0,Σ1/2
x ΣβΣ

1/2
x )

and
y = x̄⊤β̄ + ξ, y = X̄β̄ + ξ.

Then recap the loss from (5a), and we obtain

L(W) = E
[
(y − g(Z))2

]
= E

[(
x⊤β + ξ − x⊤WX⊤(Xβ + ξ)

)2
]

= E
[
(x⊤β − x⊤WX⊤Xβ)2 + 2(x⊤β − x⊤WX⊤Xβ)(ξ − x⊤WX⊤ξ) + (ξ − x⊤WX⊤ξ)2

]
= E

[
(x⊤β − x⊤WX⊤Xβ)2

]
+ E

[
(x⊤WX⊤ξ)2

]
+ σ2, (33)

where the last equality comes from the independence of label noise ξ, ξ.

We first consider the following term

E
[
(x⊤WX⊤ξ)2

]
= E

[
(x̄⊤(Σ1/2

x WΣ1/2
x )X̄⊤ξ)2

]
= nσ2 · tr

(
W̄W̄⊤

)
where we define W̄ = Σ1/2

x WΣ1/2
x . Next, focus on the following

E
[
(x⊤β − x⊤WX⊤Xβ)2

]
= E

[
(x̄⊤β̄ − x̄⊤W̄X̄⊤X̄β̄)2

]
= E

[(
x̄⊤

(
I − W̄X̄⊤X̄

)
β̄
)2
]

= tr
(
E

[(
I − W̄X̄⊤X̄

)
Σ

(
I − W̄X̄⊤X̄

)⊤])
= tr (Σ) − tr

(
Σ(W̄ + W̄⊤)E[X̄⊤X̄]

)
+ tr

(
W̄⊤W̄ E[X̄⊤X̄ΣX̄⊤X̄]

)
= tr (Σ) − 2n · tr

(
ΣW̄

)
+ tr

(
W̄⊤W̄ E[X̄⊤X̄ΣX̄⊤X̄]

)
,
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where Σ := Σ1/2
x ΣβΣ

1/2
x .

Let x̄i ∈ R
n be the i’th column of X̄ and Σi j be the (i, j)’th entry of Σ. Then the (i, j) entry of matrix X̄⊤X̄ΣX̄⊤X̄ is

(X̄⊤X̄ΣX̄⊤X̄)i j =

d∑
k=1

d∑
p=1

Σkp x̄⊤i x̄k x̄⊤p x̄ j.

Then we get

i , j : E
[(

X̄⊤X̄ΣX̄⊤X̄
)

i j

]
= Σi j E[x̄⊤i x̄i x̄⊤j x̄ j] + Σ ji E[x̄⊤i x̄ j x̄⊤i x̄ j] = n2Σi j + nΣ ji

i = j : E
[(

X̄⊤X̄ΣX̄⊤X̄
)

ii

]
= Σii E

[
x̄⊤i x̄i x̄⊤i x̄i

]
+

∑
j,i

Σ j j E
[
x̄⊤i x̄ j x̄⊤j x̄i

]
= Σii E

[
(x2

i1 + · · · + x2
in)2

]
+ n

∑
j,i

Σ j j

= Σii(3n + n(n − 1)) + n
∑
j,i

Σ j j

= n

Σii(n + 1) +
d∑

j=1

Σ j j


= n (Σii(n + 1) + tr (Σ)) .

Therefore
E[X̄⊤X̄ΣX̄⊤X̄] = n(n + 1)Σ + n · tr (Σ) I.

Combining all together results in

L(W) = tr (Σ) − 2ntr
(
ΣW̄

)
+ n(n + 1)tr

(
ΣW̄⊤W̄

)
+ n(tr (Σ) + σ2)tr

(
W̄W̄⊤

)
+ σ2,

= M − 2ntr
(
ΣW̄

)
+ n(n + 1)tr

(
ΣW̄⊤W̄

)
+ nMtr

(
W̄W̄⊤

)
, (34)

where M := tr (Σ) + σ2. Setting ∇W̄L(W) = 0 returns

−2n · Σ + 2n(n + 1) · ΣW̄ + 2nMW̄ = 0 =⇒ W̄⋆ =
(
(n + 1)I + MΣ−1

)−1
.

Then we have
W⋆ = Σ−1/2

x

(
(n + 1)I + MΣ−1

)−1
Σ−1/2

x

and
L⋆ = L(W⋆) = M − ntr

(
((n + 1)Σ−1 + MΣ−2)−1

)
.

□

C.3. Retrieval Augmented Generation with α Correlation

In this section, we consider the retrieval augmented generation (RAG) linear model similar to (9), where we first draw the
query vector x and task vector β via

x ∼ N(0, I) and β ∼ N(0, I).

We then draw data (xi)n
i=1 to be used in-context according to the rule corr_coef(x, xi) ≥ α ≥ 0. Hence, for i ≤ n we sample

xi

∣∣∣ x ∼ N(αx, γ2I), ξi ∼ N(0, σ2) and yi = x⊤i β + ξi, (35)

which results in (9) by setting γ2 = 1 − α2.
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Theorem C.1 (Extended version of Theorem 3.3). Consider linear model as defined in (35). Recap the objective from (5a)
and let W⋆ := arg minW LPGD(W), and L⋆ = LPGD(W⋆). Then W⋆ and L⋆ satisfy

W⋆ = cI and L⋆ = d + σ2 − cnd(α2(d + 2) + γ2) (36)

where

c =
α2(d + 2) + γ2

α4n(d + 2)(d + 4) + α2γ2(d + 2)(d + 2n + 3) + γ4(d + n + 1) + σ2(α2(d + 2) + γ2)
.

Suppose α = O
(
1/
√

d
)
, d/n = O (1) and d is sufficiently large. Let κ = α2d + 1 and γ2 = 1 − α2. Then W⋆ and L⋆ have

approximate forms

W⋆ ≈
1

κn + d + σ2 I and L⋆ ≈ d + σ2 −
κnd

κn + d + σ2 . (37)

Proof. Here, for clean notation and without loss of generality, we define and rewrite (35) via

gi ∼ N(0, I), ξi ∼ N(0, σ2) and xi = αx + γgi, yi = (αx + γgi)⊤β + ξi.

Then we obtain

L(W) = E
[
(y − g(Z))2

]
= E

[(
x⊤β + ξ − x⊤WX⊤(Xβ + ξ)

)2
]

= E
[
(x⊤β − x⊤WX⊤Xβ)2 + 2(x⊤β − x⊤WX⊤Xβ)(ξ − x⊤WX⊤ξ) + (ξ − x⊤WX⊤ξ)2

]
= E

[
(x⊤β − x⊤WX⊤Xβ)2

]
+ E

[
(x⊤WX⊤ξ)2

]
+ σ2. (38)

To begin with, let

N1 = tr (W)2 + tr
(
WW⊤

)
+ tr

(
W2

)
, N2 = tr

(
WW⊤

)
, and N3 = tr (W) .

We first focus on the second term in (38)

E
[
(x⊤WX⊤ξ)2

]
= E


 n∑

i=1

ξix⊤W(αx + γgi)

2
= nσ2 E

[
x⊤W(αx + γg)(αx + γg)⊤W⊤x

]
= nσ2

(
α2 E[x⊤Wxx⊤W⊤x] + γ2 E[x⊤W gg⊤W⊤x]

)
= nσ2

(
α2N1 + γ

2N2

)
. (It follows (27) and independence of x, g.)

Next, the first term in (38) can be decomposed into

E
[
(x⊤β − x⊤WX⊤Xβ)2

]
= E

[
(x⊤β)2

]︸      ︷︷      ︸
(a)

+ E
[
(x⊤WX⊤Xβ)2

]︸                ︷︷                ︸
(b)

− 2E
[
x⊤βx⊤WX⊤Xβ

]︸                  ︷︷                  ︸
(c)

.

In the following, we consider solving (a)-(c) sequentially.

(a) : E
[
(x⊤β)2

]
= d.
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(b) : E
[
(x⊤WX⊤Xβ)2

]
= E


x⊤W

n∑
i=1

(αx + γgi)(αx + γgi)⊤β

2
= E


 n∑

i=1

x⊤W(α2xx⊤ + γ2 gi g⊤i + αγxg⊤i + αγgix⊤)β

2
= α4n2 E

[
(x⊤Wxx⊤β)2

]
+ γ4 E


 n∑

i=1

x⊤W gi g⊤i β
2 + α2γ2 E


 n∑

i=1

x⊤Wxg⊤i β
2 + α2γ2 E


 n∑

i=1

x⊤W gix⊤β
2

+2α2γ2n2 E
[
x⊤Wxx⊤ββ⊤ gg⊤W⊤x

]
+ 2α2γ2nE

[
x⊤Wxg⊤βx⊤W gx⊤β

]
=

(
α4n2(d + 4)N1 + γ

4n(d + n + 1)N2

)
+

(
α2γ2ndN1 + α

2γ2n(d + 2)N2

)
+

(
2α2γ2n2N1 + 2α2γ2nN1

)
=

(
α4n2(d + 4) + α2γ2n(2n + d + 2)

)
N1 +

(
α2γ2n(d + 2) + γ4n(d + n + 1)

)
N2

= A1N1 + A2N2.

(c) : E
[
x⊤βx⊤WX⊤Xβ

]
= E

 n∑
i=1

x⊤βx⊤W(αx + γgi)(αx + γgi)⊤β


= E

 n∑
i=1

x⊤βx⊤W(α2xx⊤ + γ2 gi g⊤i + αγxg⊤i + αγgix⊤)β


= α2nE

[
x⊤βx⊤Wxx⊤β

]
+ γ2nE

[
x⊤βx⊤W gg⊤β

]
= α2n(d + 2)tr (W) + γ2ntr (W)

=
(
α2n(d + 2) + γ2n

)
N3

= A3N3.

Here, (b) utilizes the 4’th and 6’th moment results (27) and (30) and we define

A1 = α
4n2(d + 4) + α2γ2n(2n + d + 2)

A2 = α
2γ2n(d + 2) + γ4n(d + n + 1)

A3 = α
2n(d + 2) + γ2n.

Then combining all together results in

L(W) = A1N1 + A2N2 − 2A3N3 + nσ2(α2N1 + γ
2N2) + d + σ2.

To find the optimal solution, set ∇L(W) = 0 and we obtain

A1∇N1 + A2∇N2 − 2A3∇N3 + nσ2(α2∇N1 + γ
2∇N2) = 0. (39)

Note that we have

∇N1 = ∇
(
tr (W)2 + tr

(
WW⊤

)
+ tr

(
W2

))
= 2tr (W) I + 2W + 2W⊤

∇N2 = ∇tr
(
WW⊤

)
= 2W

∇N3 = ∇tr (W) = I.

Therefore, (39) returns

2A1

(
tr (W) I +W +W⊤

)
+ 2A2W − 2A3 + 2nσ2(α2(tr (W) I +W +W⊤) + γ2W)I = 0, (40)

which implies that the optimal solution W⋆ has the form of cI for some constant c. Then suppose W⋆ = cI, we have
tr (W) = cd and (40) returns

2A1(d + 2)cI + 2A2cI − 2A3I + 2nσ2(α2(d + 2)cI + γ2cI) = 0
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=⇒ c =
A3

A1(d + 2) + A2 + nσ2(α2(d + 2) + γ2)

=
α2(d + 2) + γ2

α4n(d + 2)(d + 4) + α2γ2(d + 2)(d + 2n + 3) + γ4(d + n + 1) + σ2(α2(d + 2) + γ2)
.

Then the optimal loss is obtained by setting W⋆ = cI and

L⋆ = L(W⋆) = A1c2d(d + 2) + A2c2d − 2A3cd + nσ2c2d(α2(d + 2) + γ2) + d + σ2

= c2d
(
A1(d + 2) + A2 + nσ2(α2(d + 2) + γ2)

)
− 2A3cd + d + σ2

= d + σ2 − A3cd.

It completes the proof of (36). Now if assuming α = O
(
1/
√

d
)
, d/n = O (1) and sufficiently large dimension d, we have the

approximate

c ≈
α2d + 1

α4d2n + α2d(d + 2n) + (d + n) + σ2(α2d + 1)

=
α2d + 1

(α2d + 1)2n + (α2d + 1)d + σ2(α2d + 1)

=
1

(α2d + 1)n + d + σ2

and

L⋆ ≈ d + σ2 −
(α2d + 1)nd

(α2d + 1)n + d + σ2 .

□

C.4. Task-feature Alignment with α Correlation

In this section, we consider the task-feature alignment data model similar to (11), where we first draw task vector β via

β ∼ N(0, I).

Then we generate examples (xi, yi)n+1
i=1 according to the rule corr_coef(xi,β) ≥ α ≥ 0 via

xi

∣∣∣ β ∼ N(αβ, I), ξi ∼ N(0, σ2) and yi = γ · x⊤i β + ξi, (41)

which results in (11) by setting γ2 = 1/(α2d + 1).
Theorem C.2 (Extended version of Theorem 3.4). Consider linear model as defined in (41). Recap the objective from (5a)
and let W⋆ := arg minW LPGD(W), and L⋆ = LPGD(W⋆). Then W⋆ and L⋆ satisfy

W⋆ = cI and L⋆ = dγ2(∆0α
2 + 1) + σ2 − cndγ2(∆1α

4 + 2∆0α
2 + 1) (42)

where

c =
∆1α

4 + 2∆0α
2 + 1

∆2α6 + ∆3α4 + ∆4α2 + (d + n + 1) + σ2(∆0α4 + 2α2 + 1)/γ2

and 

∆0 = d + 2
∆1 = (d + 2)(d + 4)
∆2 = (d + 2)(d + 4)(d + 6)n
∆3 = (d + 2)(d + 4)(3n + 4)
∆4 = (d + 2)(3n + d + 3) + (d + 8).

Suppose α = O
(
1/
√

d
)
, d/n = O (1) and d is sufficiently large. Let κ = α2d + 1 and γ2 = 1/κ. Then W⋆ and L⋆ have

approximate forms

W⋆ ≈
1

κn + (d + σ2)/κ
and L⋆ ≈ d + σ2 −

κnd
κn + (d + σ2)/κ

. (43)
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Proof. Here, for clean notation and without loss of generality, we define and rewrite (41) via

gi ∼ N(0, I), ξi ∼ N(0, σ2) and xi = αβ + gi, yi = γx⊤i β + ξi = γ · (αβ + gi)⊤β + ξi.

Recap the loss function from (5a), we obtain

L(W) = E
[
(y − g(Z))2

]
= E

[(
γx⊤β + ξ − x⊤WX⊤(γXβ + ξ)

)2
]

= E
[
γ2(x⊤β − x⊤WX⊤Xβ)2 + 2γ(x⊤β − x⊤WX⊤Xβ)(ξ − x⊤WX⊤ξ) + (ξ − x⊤WX⊤ξ)2

]
= γ2 E

[
(x⊤β − x⊤WX⊤Xβ)2

]
+ E

[
(x⊤WX⊤ξ)2

]
+ σ2. (44)

Similar to Appendix C.3, to begin with, let

N1 = tr (W)2 + tr
(
WW⊤

)
+ tr

(
W2

)
, N2 = tr

(
WW⊤

)
, and N3 = tr (W) ,

and additionally, given ΛW =W ⊙ I, let

N4 = 3tr
(
Λ2

W

)
+ (d + 4)tr

(
WW⊤

)
+ tr

(
W2

)
.

We first focus on the second term in (44)

E
[
(x⊤WX⊤ξ)2

]
= E


(αβ + g)⊤W

n∑
i=1

ξi(αβ + gi)

2
= nσ2 E

[(
(αβ + g)⊤W(αβ + g′)

)2
]

= nσ2
(
α4 E

[
(β⊤Wβ)2

]
+ 2α2 E

[
(β⊤W g′)2

]
+ E

[
(g⊤W g′)2

])
= nσ2

(
α4

(
tr (W)2 + tr

(
W2

)
+ tr

(
WW⊤

))
+ (2α2 + 1)tr

(
WW⊤

))
= nσ2

(
α4N1 + (2α2 + 1)N2

)
. (It follows (27) and independence of β, g, g′.)

Next, the first term of (44) (omitting γ2) returns the following decomposition:

E
[
(x⊤β − x⊤WX⊤Xβ)2

]
= E

[
((αβ + g)⊤(β −WX⊤Xβ))2

]
= E

[(
αβ⊤β − αβ⊤WX⊤Xβ + g⊤β − g⊤WX⊤Xβ

)2
]

= α2 E[(β⊤β)2] + α2 E[(β⊤WX⊤Xβ)2] + E[(g⊤β)2] + E[(g⊤WX⊤Xβ)2]

− 2α2 E[β⊤ββ⊤WX⊤Xβ] − 2E[β⊤ gg⊤WX⊤Xβ]

= α2d(d + 2) + α2E[(β⊤WX⊤Xβ)2]︸                ︷︷                ︸
(a)

+ d + E[(g⊤WX⊤Xβ)2]︸                ︷︷                ︸
(b)

− 2α2E[β⊤ββ⊤WX⊤Xβ]︸                  ︷︷                  ︸
(c)

− 2E[β⊤ gg⊤WX⊤Xβ]︸                  ︷︷                  ︸
(d)

.

Consider solving (a)-(d) sequentially as follows:

To begin with, we use the following decomposition for all (a)-(d):

X⊤Xβ =
n∑

i=1

xix⊤i β

=

n∑
i=1

(αβ + gi)(αβ + gi)⊤β

=

n∑
i=1

α2ββ⊤β + αβg⊤i β + αgiβ
⊤β + gi g⊤i β.
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Then, we have

(a) : E[(β⊤WX⊤Xβ)2]

= E


 n∑

i=1

α2β⊤Wββ⊤β + αβ⊤Wβg⊤i β + αβ
⊤W giβ

⊤β + β⊤W gi g⊤i β
2

= α4n2 E
[(
β⊤Wββ⊤β

)2
]
+ α2 E


 n∑

i=1

β⊤Wβg⊤i β
2 + α2 E


 n∑

i=1

β⊤W giβ
⊤β

2 + E

 n∑

i=1

β⊤W gi g⊤i β
2

+2α2nE

 n∑
i=1

β⊤Wββ⊤ββ⊤W gi g⊤i β
 + 2α2 E

 n∑
i=1

β⊤Wβg⊤i ββ
⊤W giβ

⊤β


= α4n2 E

[(
β⊤Wββ⊤β

)2
]
+ α2nE

[(
β⊤Wβg′⊤β

)2
]
+ α2nE

[(
β⊤W g′β⊤β

)2
]
+ E


 n∑

i=1

β⊤W gi g⊤i β
2

+2α2n2 E
[
β⊤Wββ⊤ββ⊤W g′ g′⊤β

]
+ 2α2nE

[
β⊤Wβg⊤i ββ

⊤W giβ
⊤β

]
= α4n2(d + 4)(d + 6)N1 + α

2n(d + 4)N1 + α
2n(d + 2)(d + 4)N2 (45)

+ n(n − 1)N1 + nN4 (46)

+ 2α2n2(d + 4)N1 + 2α2n(d + 4)N1 (47)

=
(
α2n(d + 4)(α2n(d + 6) + 2n + 3) + n(n − 1)

)
N1 + α

2n(d + 2)(d + 4)N2 + nN4 (48)

= B1N1 + B2N2 + nN4,

where (45) and (47) utilize (30) and (32), and (46) is obtained via

E


 n∑

i=1

β⊤W gi g⊤i β
2 = nE

[(
β⊤W g′g′⊤β

)2
]
+ n(n − 1)E

[
β⊤W g′ g′⊤ββ⊤W g′′g′′⊤β

]
= nN4 + n(n − 1)N1,

which follows (27) and (28).

(b) : E
[
(g⊤WX⊤Xβ)2

]
= E


 n∑

i=1

α2 g⊤Wββ⊤β + αg⊤Wβg⊤i β + αg⊤W giβ
⊤β + g⊤W gi g⊤i β

2
= α4n2 E

[(
g⊤Wββ⊤β

)2
]
+ α2 E


 n∑

i=1

g⊤Wβg⊤i β
2 + α2 E


 n∑

i=1

g⊤W giβ
⊤β

2 + E

 n∑

i=1

g⊤W gi g⊤i β
2

+2α2nE

 n∑
i=1

g⊤Wββ⊤βg⊤W gi g⊤i β
 + 2α2 E

 n∑
i=1

g⊤Wβg⊤i βg⊤W giβ
⊤β


= α4n2 E

[(
g⊤Wββ⊤β

)2
]
+ α2nE

[(
g⊤Wβg′⊤β

)2
]
+ α2nE

[(
g⊤W g′β⊤β

)2
]
+ E


 n∑

i=1

g⊤W gi g⊤i β
2

+2α2n2 E
[
g⊤Wββ⊤βg⊤W g′g′⊤β

]
+ 2α2nE

[
g⊤Wβg⊤i βg⊤W giβ

⊤β
]

= α4n2(d + 2)(d + 4)N2 + α
2n(d + 2)N2 + α

2nd(d + 2)N2 + n(d + n + 1)N2 (49)

+ 2α2n2(d + 2)N2 + 2α2n(d + 2)N2 (50)

=
(
α2n(d + 2)(α2n(d + 4) + 2n + d + 3) + n(d + n − 1)

)
N2

= B3N2,

where (49) and (50) are obtained using (27), (30) and

E


 n∑

i=1

g⊤W gi g⊤i β
2 = nE

[(
g⊤W g′g′⊤β

)2
]
+ n(n − 1)E

[
g⊤W g′g′⊤βg⊤W g′′ g′′⊤β

]
= n(d + 2)N2 + n(n − 1)N2 = n(n + d + 1)N2.
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(c) : E
[
β⊤ββ⊤WX⊤Xβ

]
= nE

[
β⊤ββ⊤W(αβ + g′)(αβ + g′)⊤β

]
= α2nE

[
β⊤ββ⊤Wββ⊤β

]
+ nE

[
β⊤ββ⊤W g′g′⊤β

]
= α2n(d + 2)(d + 4)tr (W) + n(d + 2)tr (W)

=
(
α2n(d + 2)(d + 4) + n(d + 2)

)
N3

= B4N3.

(d) : E
[
β⊤ gg⊤WX⊤Xβ

]
= nE

[
β⊤ gg⊤W(αβ + g′)(αβ + g′)⊤β

]
= α2nE

[
β⊤ gg⊤Wββ⊤β

]
+ nE

[
β⊤ gg⊤W g′g′⊤β

]
= α2n(d + 2)tr (W) + ntr (W)

=
(
α2n(d + 2) + n

)
N3

= B5N3.

Here we define

B1 = α
2n(d + 4)(α2n(d + 6) + 2n + 3) + n(n − 1)

B2 = α
2n(d + 2)(d + 4)

B3 = α
2n(d + 2)(α2n(d + 4) + 2n + d + 3) + n(d + n − 1)

B4 = α
2n(d + 2)(d + 4) + n(d + 2)

B5 = α
2n(d + 2) + n.

Then combining all together results in

L(W) = γ2
(
α2d(d + 2) + d + α2(B1N1 + B2N2 + nN4) + B3N2 − 2α2B4N3 − 2B5N3

)
+ nσ2(α4N1 + (2α2 + 1)N2) + σ2

= γ2
(
α2B1N1 + (α2B2 + B3)N2 − 2(α2B4 + B5)N3 + α

2nN4

)
+ nσ2(α4N1 + (2α2 + 1)N2) + γ2d

(
α2(d + 2) + 1

)
+ σ2

and differentiating it results in

∇L(W) = γ2
(
α2B1∇N1 + (α2B2 + B3)∇N2 − 2(α2B4 + B5)∇N3 + α

2n∇N4

)
+ nσ2(α4∇N1 + (2α2 + 1)∇N2).

Similar to the proof in Appendix C.3, W⋆ has the form of W⋆ = cI and we have

∇N1 = ∇
(
tr (W)2 + tr

(
WW⊤

)
+ tr

(
W2

))
= 2tr (W) I + 2W + 2W⊤ = 2c(d + 2)I

∇N2 = ∇tr
(
WW⊤

)
= 2W = 2cI

∇N3 = ∇tr (W) = I

∇N4 = ∇
(
3tr

(
Λ2

W

)
+ (d + 4)tr

(
WW⊤

)
+ tr

(
W2

))
= 6 · diag (ΛW) + 2(d + 4)W + 2W⊤

= 2c(d + 8)I.

Therefore, setting ∇L(W) = 0 returns

γ2
(
2c(d + 2)α2B1 + 2c(α2B2 + B3) − 2(α2B4 + B5) + 2c(d + 8)α2n

)
+ 2cnσ2(α4(d + 2) + 2α2 + 1) = 0

=⇒ c =
α2B4 + B5

(d + 2)α2B1 + (α2B2 + B3) + (d + 8)α2n + nσ2(α4(d + 2) + 2α2 + 1)/γ2

=
α4n(d + 2)(d + 4) + 2α2n(d + 2) + n

α6n2(d + 2)(d + 4)(d + 6) + α4n(d + 2)(d + 4)(3n + 4) + α2n((d + 2)(3n + d + 3) + (d + 8)) + n(d + n + 1) + nσ2(α4(d + 2) + 2α2 + 1)/γ2

=
α4(d + 2)(d + 4) + 2α2(d + 2) + 1

α6n(d + 2)(d + 4)(d + 6) + α4(d + 2)(d + 4)(3n + 4) + α2((d + 2)(3n + d + 3) + (d + 8)) + (d + n + 1) + σ2(α4(d + 2) + 2α2 + 1)/γ2 .
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Then the optimal loss is obtained by setting W⋆ = cI and

L⋆ = L(W⋆) = γ2d(α2(d + 2) + 1) + σ2 − γ2(α2B4 + B5)cd.

It completes the proof of (42). Now if assuming α = O
(
1/
√

d
)
, d/n = O (1), γ2 = 1/(α2d + 1) and sufficiently large

dimension d, we have the approximate

c ≈
α4d2 + 2α2d + 1

nα6d3 + 3nα4d2 + (3n + d)α2d + d + n + σ2(α4d + 2α2 + 1)/γ2

≈
(α2d + 1)2

n(α2d + 1)3 + d(α2d + 1) + σ2(α2d + 1)

≈
1

(α2d + 1)n + (d + σ2)/(α2d + 1)

and

L⋆ ≈ γ
2d(α2d + 1) + σ2 −

γ2(α2d + 1)2nd
(α2d + 1)n + (d + σ2)/(α2d + 1)

= d + σ2 −
(α2d + 1)nd

(α2d + 1)n + (d + σ2)/(α2d + 1)
.

□

D. Analysis of Low-Rank Parameterization
D.1. Proof of Lemma 3.5

Proof. Recall the loss function from (34)

L(W) = M − 2ntr
(
ΣW̄

)
+ n(n + 1)tr

(
ΣW̄⊤W̄

)
+ nMtr

(
W̄W̄⊤

)
where W̄ = Σ1/2

x WΣ1/2
x , Σ = Σ1/2

x ΣβΣ
1/2
x and M = tr (Σ) + σ2. For any W̄, let us parameterize W̄ = UEU⊤ where U ∈ Rd×r

denotes the eigenvectors of W̄ and E ∈ Rr×r is a symmetric square matrix. We will first treat U as fixed and optimize E. We
will then optimize U. Fixing U, setting Σ̄ = U⊤ΣU, we obtain

L(E) = M − 2ntr
(
Σ̄E

)
+ n(n + 1)tr

(
Σ̄E2

)
+ nMtr

(
E2

)
.

Differentiating, we obtain
0.5n−1∇L(E) = −Σ̄ + (n + 1)Σ̄E + ME.

Setting ∇L(E) = 0 returns

E⋆ = (MI + (n + 1)Σ̄)−1Σ̄. (51)

Let λ̄i denote the i’th largest eigenvalue of Σ̄. Plugging in this value, we obtain the optimal risk as a function of U is given by

L⋆(U) = M − n · tr
(
Σ̄E⋆

)
= M − n · tr

(
(MI + (n + 1)Σ̄)−1Σ̄2

)
(52)

= M − n
r∑

i=1

λ̄2
i

(n + 1)λ̄i + M
= M − n

r∑
i=1

λ̄i

n + 1 + Mλ̄−1
i

. (53)

Now observe that, the right hand side is strictly decreasing function of the eigenvalues λ̄i of Σ̄ = U⊤ΣU. Thus, to minimize
L⋆(U), we need to maximize

∑r
i=1

λ̄i

n+1+Mλ̄−1
i

. It follows from Cauchy interlacing theorem that λ̄ j ≤ λi where λi is the i’th

largest eigenvalue of Σ since Σ̄ is an orthogonal projection of Σ on U. Consequently, we find the desired bound where

L⋆ = M − n
r∑

i=1

λi

n + 1 + Mλ−1
i

.

The equality holds by setting U to be the top-r eigenvectors of Σ and E = E⋆(U) to be the diagonal matrix according to
(51). □
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