Enhancing Robot Safety via MLLM-Based Semantic
Interpretation of Failure Data

Aryaman Gupta'*, Yusuf Umut Ciftci’?*, Somil Bansal
IStanford University, 2University of Southern California
*Equal Contribution
Correspondence: aryamann@stanford.edu
https://mllm-failure-clustering.github.io/

Abstract—As robotic systems become increasingly integrated
into real-world environments—ranging from autonomous vehicles
to household assistants—they inevitably encounter diverse and
unstructured scenarios that lead to failures. While such failures
pose safety and reliability challenges, they also provide rich
perceptual data for improving future performance. However,
manually analyzing large-scale failure datasets is impractical. In
this work, we present a method for automatically organizing
large-scale robotic failure data into semantically meaningful
clusters, enabling scalable learning from failure without human
supervision. Our approach leverages the reasoning capabilities
of Multimodal Large Language Models (MLLMs), trained on
internet-scale data, to infer high-level failure causes from raw
perceptual trajectories and discover interpretable structure within
uncurated failure logs. These semantic clusters reveal latent
patterns and hypothesized causes of failure, enabling scalable
learning from experience. We demonstrate that the discovered
failure modes can guide targeted data collection for policy
refinement, accelerating iterative improvement in agent policies
and overall safety. Additionally, we show that these semantic
clusters can be employed for online failure detection, offering a
lightweight yet powerful safeguard for real-time adaptation. We
demonstrate that this framework enhances robot learning and
robustness by transforming real-world failures into actionable
and interpretable signals for adaptation.

I. INTRODUCTION

Autonomous systems—ranging from self-driving vehicles
to household robots—are increasingly deployed in open,
dynamic environments. In such unstructured settings, even
state-of-the-art robotic systems are prone to failures due to
unexpected interactions, unmodeled dynamics, and long-tail
edge cases that deviate from training distributions. Traditional
validation pipelines, often grounded in simulation or controlled
testing, struggle to capture the full complexity of real-world
deployment, leaving many failure modes undetected until
operation.

A promising direction for improving robustness is to Sys-
tematically learn from failures that occur during deployment.
Robots naturally collect large volumes of perceptual data,
including traces of both successful and failed interactions.
These failure trajectories can provide valuable insights about the
underlying conditions that led to safety violations, brittleness, or
policy errors. However, manually curating and analyzing large-
scale failure data is time-consuming, brittle, and fundamentally
unscalable.
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Fig. 1. A closed-loop framework for interpretable failure analysis of
autonomous systems. Our method automatically discovers semantically mean-
ingful failure modes from perception recordings without supervision, distilling
them into human-understandable clusters annotated with natural language.
These clusters support targeted data collection, policy fine-tuning, and real-
time semantic failure detection—enabling scalable and continuous safety
improvement.

In this work, we propose a framework for automatically
organizing failure trajectories into semantically meaningful
clusters, enabling scalable, unsupervised learning from failures.
Our method leverages the reasoning capabilities of Multimodal
Large Language Models (MLLMs)—pretrained on internet-
scale vision-language data—to infer high-level failure causes di-
rectly from raw observations. By applying prompted reasoning
over sequences of perceptual inputs, we identify latent structure
in uncurated failure logs, grouping them into interpretable
categories described in natural language. Importantly, our
framework operates in a completely unsupervised manner,
obviating the need for costly human annotation while still
isolating nontrivial keywords and cues associated with specific
error causes.

The resulting semantic clusters offer multiple downstream
benefits. First, they guide targeted data collection, enabling
developers to focus training on critical or underrepresented
failure modes. Second, these clusters can be integrated directly
into online monitoring systems, providing a layer of semantic
failure detection that acts as an early-warning mechanism for
potential system safety violations during runtime. The semantic
failure modes of the system can have many more downstream
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applications and use cases, e.g., targeted stress testing.

Our framework not only supports large-scale, structured
analysis of failure data but also emphasizes interpretability —
crucial for deployment in safety-critical domains. By revealing
a structured understanding of failure causes in terms that are
amenable to human interpretation, we offer actionable insights
that can help stakeholders better assess the weaknesses of
deployed systems and iterate more effectively.

To summarize, our key contributions are: (a) we propose a
novel framework that uses MLLMs to cluster robotic failure
data into semantically meaningful groups; (b) our method
infers failure causes directly from raw perceptual sequences,
eliminating the need for manual annotation or supervision; (c)
we demonstrate the effectiveness of our approach on large-scale
failure datasets, as well as showcase its potential for supporting
downstream applications, including targeted data collection
and online failure detection; (d) our framework emphasizes
interpretability, generating natural language summaries and
keywords for each failure mode to support human-in-the-loop
diagnosis.

II. RELATED WORKS

a) Semantic Clustering of Images with LLMs.: Recent
research has demonstrated the effectiveness of Vision Language
Models (VLMs) and Large Language Models (LLMs) for
semantic grouping of images. For example, [24]] clusters images
using human-specified language criteria, while [26] removes
the need for manual input by discovering clustering criteria
directly from unstructured image collections. Other approaches
like [[16] highlight key semantic differences between image sets,
and [29] and [37]] focus on identifying important subpopulations
or selecting semantically diverse subsets for training. Our work
builds on this line of research by leveraging VLMs for semantic
clustering; however, we focus specifically on failure trajectories
in autonomous systems rather than static images, introducing
a richer temporal and causal structure to the clustering task.

b) Text Clustering and Topic Modeling.: Recent topic
modeling methods can be broadly grouped into three categories.
First, extensions of classical topic modeling techniques [40, 44,
235, 18] like Latent Dirichlet Allocation (LDA) integrate word
embeddings to enhance semantic representation [35} 38 32} 27].
Second, fully embedding-based approaches [7, [L1} |41} 6] that
can leverage contextualized representations from pre-trained
language models. Third, methods that separate the generation
of the clusters from the generation of the topic representation,
allowing for a flexible topic model [39} 12, 21]. BERTopic [21]],
extends this approach by incorporating a class-based variant of
Term Frequency-Inverse Document Frequency (TF-IDF). Our
work differs in that we use multimodal reasoning to discover
semantic failure clusters directly from visual data and language-
based explanations.

c) Failure Mining in Autonomous Systems.: Falsification
has emerged as a prominent methodology for uncovering
failures in autonomous systems. A variety of approaches
(23 118 [12L (19} [14} [45] have been proposed, wherein systems
are tested in simulated environments with varied conditions

designed to provoke failures. Such controlled testing allows
researchers to identify the specific environmental parameters
responsible for system breakdowns. However, while these
methods effectively reveal failure scenarios tied to controlled
variables, they fall short in capturing semantic failure modes
of the system that require nuanced interpretation, requiring a
human to manually go through the failure scenarios to identify
failure modes of the system. In contrast, our approach leverages
readily collected failure data to automatically discover semantic
failure modes, bypassing the need for manual human inspection.
d) Language-based Failure Reasoning in Robotics.:
Recently, several studies have begun to integrate LLMs into
robotic systems to generate language-based explanations of
failures. For instance, [[15] demonstrates the use of LLMs
to generate explanations for failures in manipulation tasks,
thereby improving system diagnostic capabilities. Similarly,
[28]] presents an LLM-based framework that not only produces
informative failure explanations but also guides a language-
based planner in correcting those failures for manipulation tasks.
Our work extends these concepts to the domain of failure mode
analysis, where the goal is to automatically cluster and interpret
semantically rich descriptions from raw failure data, ultimately
supporting downstream applications like enhanced monitoring
and targeted data collection.

ITI. PROBLEM FORMULATION: FINDING FAILURE
CLUSTERS FROM PERCEPTION RECORDINGS

We consider the problem of discovering semantic failure
clusters from perception data collected during robotic failures.
These clusters provide interpretable structure over uncurated
failure logs and can be used for downstream tasks such as
(1) targeted data collection to improve safety, and (2) online
failure detection for real-time reliability.

Formally, we are given a dataset of N sequences, each
consisting of K perceptual observations leading up to a failure:

D= {0?:1( } 7];[:1
where of. = (of,0%,...,0%) denotes the observation se-
quence for the n-th failure case. The final observation 0%
corresponds to the failure event. For example, in autonomous
driving, o7, might be an image showing a rear-end collision.
Our goal is to construct a system H that maps this dataset
to a set of L semantic clusters:

H : D — {Cl - (SlaDl)}lL:l )

where each cluster C; is characterized by a natural lan-
guage summary s; and a subset of sequences D; C D
that share a common failure mode. These clusters reflect
high-level failure themes derived from raw observations. For
instance, a cluster might be: C; = Rear-End Collisions:
Insufficient Following Distance, in which case
each sequence in D); corresponds to a failure where the
autonomous car did not maintain a safe following distance
from the vehicle in front. This formulation enables unsuper-
vised discovery of interpretable failure modes directly from
perceptual logs, providing a scalable mechanism for structuring
real-world failure data and guiding robust, adaptive learning.
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Fig. 2. Overview of our method. (1) Failure reason inference: A multimodal
large language model (MLLM) analyzes sequences of perceptual observations
(e.g., RGB images) to infer high-level failure reasons. (2) Failure cluster
discovery: An ensemble of prompts is used to group failure reasons into
interpretable semantic clusters via a reasoning model, with descriptive keywords
and explanations. (3) Assignment: Each trajectory is mapped to one of the
discovered failure clusters based on its inferred failure reason.

IV. METHOD
A. Failure Cluster Discovery

Inferring the cause of failure in a robot trajectory is a complex
task that requires understanding the robot’s environment,
the agent’s actions, interactions with other agents, and their
consequences. Doing so at scale across diverse failure episodes
calls for automated systems capable of extracting and reasoning
over semantic patterns in raw failure data. Our approach
proceeds in three stages: (1) inferring failure reasons from
perception sequences using an MLLM, (2) discovering semantic
failure clusters via prompted reasoning over inferred causes,
and (3) assigning each trajectory to one of the discovered
clusters. The resulting clusters support both targeted retraining
and online failure detection (Sec. [[V-B).

a) Observation Downsampling: To represent the failure
event compactly, we downsample the tail of each sequence.
Specifically, from each failure trajectory of.,, we select the
final T" frames, sampled from ox 7. at a reduced frame rate.
This balances the need to understand the temporal context of
the failure with the limitations of the MLLM’s context window.

b) Step 1: Inferring Failure Reasons with MLLMs:
Each downsampled sequence is fed to an MLLM along with a
structured prompt. The prompt first asks the model to describe
the scene and agent behavior, then to infer a plausible cause of
failure. We adopt a Chain-of-Thought (CoT) prompting strategy
[43] to improve grounding and interpretability of the inferred
reasons.

c) Step 2: Discovering Semantic Failure Clusters: To
uncover structure across failures, we provide all N inferred
failure reasons to a reasoning model that is tasked with
clustering them into L semantic failure modes. Each cluster C}
is annotated with: a natural language name s; for the cluster,
a short description of the failure type, keywords capturing

representative situations in the cluster, and an estimated
frequency of occurrence in the dataset. These annotations serve
both interpretability and downstream usage in safety-critical
settings.

d) Automated Prompt Ensemble and Cluster Aggregation:
Since LLM outputs are sensitive to prompt phrasing [46], we
generate a prompt ensemble to improve robustness inspired
by [34]. Given an initial prompt, an LLM proposes three
other prompts using good practices for prompting. We use
these ensemble of prompts to infer multiple failure clustering
results. The resulting clusterings are merged by an aggregation
model that consolidates overlapping clusters and unifies labels
and descriptions into a single set of failure clusters C'. This
approach generates a more comprehensive set of failure clusters
by capturing diverse interpretations of the failure reasons and
compiling them into one set of clusters.

e) Step 3: Assigning Trajectories to Failure Clusters:
Finally, each inferred failure reason is assigned to one of the
L discovered clusters by prompting a reasoning model with
the cluster names s;, keywords, and descriptions generated in
the previous step, and asking it to map each failure reason to
one of the clusters. Sequences that do not match any cluster
are flagged as outliers, which may indicate rare or complex
failure modes.

B. Safety Enhancement

The discovered failure clusters support two key mechanisms
for enhancing safety in autonomous systems.

a) Online Failure Detection.: Clusters, along with their
associated keywords and explanations, form the foundation for
semantic failure monitoring in our MLLM-based detection
system. Rather than simple pattern matching, the system
leverages this structured taxonomy of failure types and contexts
to semantically interpret perceptual inputs. When the system
recognizes potential failure conditions that align with known
failure categories, it can raise warnings or trigger appropriate
safeguard policies. This semantic understanding enables more
nuanced and accurate failure detection as events unfold. The
structured knowledge provided by clusters improves recognition
of failures, enhancing the overall safety and reliability of the
autonomous system.

b) Targeted Data Collection and Policy Refinement.:
Semantic clusters enable targeted data augmentation by iden-
tifying classes of failures that require additional supervision.
This allows practitioners to collect expert demonstrations or
counterfactual data in these high-risk regimes and retrain the
policy accordingly. Prior work has shown that specification-
guided or failure-aware data collection improves robustness in
previously unsafe scenarios [10l 22} [13] [36].

V. EXPERIMENTS

To evaluate our framework for discovering semantic failure
clusters, we present two case studies spanning distinct robotic
domains. The first involves real-world dashcam footage of
traffic incidents, and the second focuses on autonomous
indoor navigation in office environments. In both cases, we



aim to extract interpretable clusters of failure modes from
raw perceptual sequences and demonstrate their utility for
downstream tasks such as safety monitoring and targeted data
collection.

We use Gemini 2.5 Pro [20] as the MLLM for failure reason
inference, and OpenAl 04-mini [33] as the reasoning model for
semantic cluster discovery, trajectory assignment, and failure
monitoring. Prompt structures and implementation details are
provided in the Appendix.

A. Case Study 1: Real-World Car Crash Analysis from Dash-
cam Videos

We apply our framework to the Nexar driving dataset [30],
which includes 1,500 dashcam videos (each approximately 40
seconds, 1280x720 resolution at 30 fps), half of which involve
collisions or near-misses involving the ego vehicle. While these
recordings are from human-driven vehicles, they serve as a
proxy for autonomous driving failures in the absence of large-
scale public AV failure datasets. However, our framework is
directly applicable to autonomous vehicle logs as well.

1) Failure Cluster Discovery: The box lists the discovered
semantic failure clusters {C'} from Nexar dataset.

(35%) Rear-End Collisions: Insufficient Following Distance
(25%) Intersection Right-of-Way Violations

(18%) Unsafe Cut-In / Lane-Change Intrusions

(8%) Lane Departure & Lateral-Clearance Errors

(7%) Visibility-Impaired Perception Failures

(4%) Pedestrian & Cyclist Detection Failures

(1%) Static-Obstacle & Sudden Intrusion Collisions

(1%) Infrastructure & Clearance Errors

(1%) Other Rare / Long-Tail Cases

Each cluster C) includes a natural language name s,
estimated frequency, representative keywords, and a short
description. See full output list with keywords and description
in Appendix [B3] and examples in Fig. [I0]

Our system successfully discovers a diverse set of inter-
pretable failure clusters from the driving dataset, as shown
in the box above. Qualitative inspection (Fig. [3) shows that
these clusters correspond to meaningful and recurring traffic
incident types, such as rear-end collisions, unsafe lane changes,
or intersection misjudgments. Notably, the discovered clusters
closely align with the U.S. DOT Volpe Center’s pre-crash
typology [31]], capturing most major failure types observed
in real-world driving. This highlights our method’s ability to
recover semantically grounded failure categories directly from
unstructured video data in a way that aligns with expert-defined
taxonomies.

a) Baselines and Results: To evaluate the quality of the
failure clusters discovered by our method, we compare against
BERTopic [21]], a state-of-the-art topic modeling method that
combines transformer embeddings with unsupervised clustering
and keyword extraction. We apply BERTopic to the same set of
failure reasons produced in Step 1 of our pipeline to ensure a
direct and fair comparison. We also evaluate a stronger variant,

Rear-End Collisions: Insufficient Following Distance

Fig. 3.
clusters.

Representative scenes from the top three discovered driving failure

BERTopic-LLM, where a language model summarizes each
discovered topic using representative keywords and samples.

(83) lead, vehicle, to, failed, in, rearend

(62) suv, the, ego, into, lane, occurred

(46) safe, distance, maintain, following, rearend, andor
(40) to, lead, rearend, in, react, resulting

(39) parked, stationary, its, car, to, failed

(39) another, lane, ego, the, vehicle, collision

(38) ego, the, its, to, failed, vehicle

(32) light, the, green, occurred, because, vehicle
(25) safe, maintain, following, distance, failure, lead
(23) silver, the, lane, ego, occurred, of

(19) pedestrian, yield, who, crosswalk, crossing, car
(19) sun, glare, severe, drivers, the, impaired

(18) light, red, traffic, stop, intersection, with

(17) failure, conditions, nighttime, and, lead, during
(16) white, the, lane, ego, sedan, vehicles

(14) truck, pickup, the, occurred, into, collision

The box shows clusters by BERTopic represented by key-
words and item count in parentheses.

(192) Traffic accident causes
(108) Vehicle collision failures
(79) Rear-end collision mechanics
(48) Driving safety violations
(39) Autonomous vehicle failures
(19) Traffic signal violations

(19) Impact of Sun Glare

(13) Autonomous vehicle failures

The box shows clusters by BERTopic-LLM and item count
in parentheses.

Standard BERTopic struggles to generate semantically co-
herent and interpretable clusters. Key failure modes — e.g.,
Rear-End Collisions— are diluted across vague or syn-
tactically noisy topics (e.g., lead_vehicle_to_failed,
white_the_lane_ego). BERTopic-LLM partially im-
proves interpretability, recovering some valid modes such
as Rear—-end collision mechanics, but still includes
vague or tautological categories such as Driving safety
violations, which do not add diagnostic value or clearly



TABLE I
FAILURE DETECTION METRICS (%AGE) FOR DASHCAM DRIVING DATASETS. THE LEFT AND RIGHT HALF COMPARES THE METRICS FOR THE IID AND OOD
TESTS, RESPECTIVELY. THE LAST COLUMN REPRESENTS THE (AVERAGE) LEAD DETECTION TIME OF THE FAILURE IN MILLISECONDS. THE BEST METHOD
IS HIGHLIGHTED IN BOLD.

In-Distribution Trajectories

Out-of-Distribution Trajectories

Method TPR TNR FPR FNR  Fl TPR TNR FPR FNR F1 Time
Ours 714 725 275 286 714 | 830 70.0 30.0 17.0 779 610

NoContext 428 8.3 147 572 541 | 640 80.0 200 360 69.6 | 473.3
VLM-AD 7.1 91.1 8.9 929 123 | 350 940 6.0 65.0 49.7 | 166.6
Leaderboard | 52.0  93.1 6.9 480 653 | 180 750 250 820 252 | 506.6

differentiate failure modes. In contrast, our method consistently
yields sharper, failure-relevant clusters.

2) Failure Monitoring Leveraging Discovered Clusters: We
evaluate runtime failure detection by prompting a multimodal
reasoning model with recent image history and the learned
failure clusters and reasoning about any possible near-future
collision (see Appendix [AZ] for more details).

a) Baselines: We compare our method against VLM-
Based Anomaly Detection (VLM-AD) methods [17]. These
methods provide scene descriptions to an LLM and ask it to
detect any possible anomalies in the current observation. We
also compare against Leaderboard Method — the top-performing
failure video classifier on the Kaggle Nexar challenge, based
on fine-tuned VideoMAEvV2-giant [42]].

b) Results: We compare all methods on a set of 200
held-out driving trajectories. As shown in Table [I, our method
consistently achieves the highest F1 score and outperforms
baselines in both True Positive Rate (TPR) and False Negative
Rate (FNR), showcasing its ability to detect the actual failures
both robustly and reliably. These results also indicate that
the system failures are not always the same as anomalies or
out-of-distribution inputs; in-distribution scenarios, like those
specified in our failure clusters, can also lead to system failures
that are hard to capture with VLM-AD. We also test all
methods on an unseen dashcam dataset of 200 trajectories (see
Table [l (Middle)). The proposed method demonstrates strong
generalization. This suggests our method captures structured
semantic patterns beyond dataset-specific cues, unlike the
leaderboard classifier, which lacks generalizability.

Finally, we compare the lead failure detection time of
different methods (Table [I| (Right)). Our method detects failures
earlier than others, indicating a stronger ability to anticipate
failures by correlating the scene observation with the failure
clusters.

c) Ablations: We also compare the performance of the
proposed failure detection method on removing the failure
cluster information from the prompt (NoContext). All other
implementation details, such as processing a history of past
observations and CoT reasoning, remain the same as our
method. This results in significant performance degradation,
highlighting the utility of failure clusters information in better
detection across environments.

B. Case Study 2: Indoor Robot Navigation

We apply our framework to a vision-based ground robot,
navigating unknown indoor office environments [4]]. The
robot uses a CNN-based policy with a model-based low-level
controller. It receives RGB images, ego-velocities, and a goal
position, and outputs acceleration commands for the robot. We
record robot rollouts in the Stanford office environment [3]
and extract front-view image sequences. Colliding trajectories
comprise our failure dataset D, which we use for clustering.

1) Failure Cluster Discovery: Our method discovers a set
of interpretable failure clusters from the collision trajectories.
Notably, clusters such as walls and chairs were previously
identified by manual inspection and reachability analysis in [[10].
This validates our method’s ability to automatically recover
known failure types and uncover new semantic patterns.

(40-45%) Thin—Protruding Objects

(20-25%) Uniform/Featureless Surfaces

(15-20%) Narrow—Gap/Clearance Misjudgment
(9-12%) Low—Height Clutter & Small Floor Obstacles
(8-10%) Box-Like Equipment & Carts

(8-10%) Structural Edges

(5-7%) Bins & Waste Receptacles

(3-5%) Transparent & Reflective Surfaces

(<2%) Overhead & Ceiling Fixtures

The box shows the discovered semantic failure clusters {C'}
for the indoor navigation robot. See the detailed output list in
Appendix [B3] and examples in Fig. [T1]

2) Targeted Data Collection and Policy Fine-Tuning for
Enhanced Safety: Following Sec. [V-B| we use the discovered
clusters to guide expert data collection in targeted regions of the
environment. The robot policy is fine-tuned on this augmented
dataset. The failure rate in sampled trajectories drops from
46% to 18%, demonstrating enhanced safety in previously
failure-prone situations. This forms a closed-loop pipeline of
failure discovery, targeted intervention, and policy refinement
for continuously enhancing the safety of an autonomous system.

3) Failure Monitoring: We use the same runtime monitoring
approach as in Case Study 1. The monitor reasons over the
scene, past trajectory, and known failure clusters to preemp-
tively identify any potential failure. As evident in Fig. 4] due
to the confined and cluttered nature of the indoor environment,
the failure monitor can easily misinterpret static background



TABLE II
FAILURE DETECTION METRICS (% AGE) FOR VISION-BASED INDOOR NAVIGATION. THE LEFT AND RIGHT HALF COMPARES THE METRICS FOR THE IID
AND OOD TESTS, RESPECTIVELY. THE LAST COLUMN REPRESENTS THE (AVERAGE) LEAD DETECTION TIME OF THE FAILURE IN SECONDS. THE BEST
METHOD IS HIGHLIGHTED IN BOLD.

In-Distribution Trajectories Out-of-Distribution Trajectories

Method TPR TNR FPR FNR F1 TPR TNR FPR FNR F1 Time
Ours 65.0  99.0 1.0 35.0 77.2 67.6 86.2 138 324 50.0 | 1.21
NoContext  51.7 99.6 0.4 483 6737 | 459 89.0 101 541 405 | 0.76
VLM-AD 833 500 500 16.7 40.0 62.2 60.1 399 378 272 | 1.38
ENet-BC 65.0 100.0 0.0 35.0 78.8 100.0 6.3 93.7 0.0 224 | 1.01

elements with prior failure contexts, leading to a high false
positive rate. To mitigate this, we introduce a simple temporal
consistency rule: a failure is flagged only if it persists for three
consecutive frames. This helps reduce conservativeness while
preserving responsiveness. See Appendix [BZ] for more details.

a) Baselines: We compare against VLM-AD, where we
adapt the prompt from by giving examples relevant to
an indoor office environment in the prompt. We additionally
compare against ENet-BC, a vision-based runtime failure
monitor based on EfficientNet-BO, trained on labeled collision
data from the same environment [[10]. Note that, unlike our
method and VLM-AD, ENet-BC requires environment-specific
training and does not generalize to unseen layouts.

b) Results: On an in-distribution (IID) test set of 326 tra-
jectories, our method outperforms all LLM-based baselines in
F1 score (Table[l] Left). ENet-BC achieves similar performance
to the proposed method, as expected given its environment-
specific training.

To test generalization, we evaluate on an out-of-distribution
(OOD) set of 300 trajectories from a different building. The
performance of all methods degrades as expected, but the
proposed method maintains the highest F1 score, while ENet-
BC fails entirely to generalize. This again demonstrates the
generalization capabilities of our method.

Our method also detects failures earlier on average, high-
lighting its ability to reason about impending collisions before
impact. Full metrics are in Table |LIl Although VLM-AD has a
slightly higher average time, it is because it fails entirely and
detects everything as anomalous, evident from its high FPR.

c) Engaging the Safeguard Policy: We integrate our
failure monitor with a reactive safeguard controller that activates
upon a failure detection. Fig. ] shows an example where the
nominal policy leads to a collision, while the monitor detects the
failure and invokes the safeguard, enabling successful recovery.

VI. CONCLUSION AND LIMITATIONS

We present a closed-loop framework for interpretable failure
analysis in autonomous systems. Our method automatically dis-
covers semantically meaningful failure modes from perception
recordings without supervision, distilling them into human-
understandable clusters annotated with natural language. These
clusters support targeted data collection, policy fine-tuning, and
semantic failure detection—enabling scalable and continuous
safety improvement. By leveraging the reasoning capabilities of

Fig. 4. First-person view images along the robot trajectory while colliding
under the nominal policy (top) and safely traversing under the safeguarded
policy (bottom). Red and green borders denote failure and safe predictions by
the runtime monitor.

MLLMs, our approach provides a foundation for understanding,
organizing, and responding to failures in complex, unstructured
environments.

While our framework enables interpretable and actionable
failure analysis, it has several limitations. First, there is no
canonical “correct” way to cluster failure trajectories. Different
clustering strategies may highlight different operational insights.
Future work could integrate formal techniques like STPA
(Systems-Theoretic Process Analysis) or FRAM (Functional
Resonance Analysis Method) to complement unsupervised
clustering. Second, MLLMs can generate plausible-sounding
but incorrect failure explanations, or miss the true cause entirely.
Future work could incorporate simulation-based counterfactual
testing or causal world models to verify and refine inferred
explanations. Finally, while we demonstrate results on datasets
of ~700 trajectories, our pipeline can scale to larger datasets
and temporally extended events with appropriate batching and
model throughput optimization.
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APPENDIX

The appendix offers additional details, such as prompts,
about our implementation. Sections [A] and [B] provide the details
for dashcam driving datasets and indoor ground navigation,
respectively.

A. Case Study 1: Real-World Car Crash Analysis from Dash-
cam Videos

Section [AT] contains all the details of discovering the failure
clusters, and Section [A2)] lists all the details about runtime
monitoring for the driving case study. The grey boxes contain
prompts.

1) Failure Cluster Discovery:

a) Step 1: Inferring Failure Reasons with MLLMs.:

Describe the trajectory of a car from
the sequence of images it observed along
its path, knowing that it undergoes

a collision. After that, provide the
visual semantic reason behind its
failure in brief. Pay attention to the
surrounding objects, other vehicles, and
environmental conditions.

You must provide your answer in the
following format -—-

trajectory: trajectory_description
failure_reason: semantic_failure_reason

where trajectory_description is the
description of its trajectory and
semantic_failure_reason is the semantic
reason behind failure.

b) Step 2: Discovering Semantic Failure Clusters.: We
generate an ensemble of prompts from an LLM (OpenAl 04-
mini) to infer multiple failure clustering results, which are then
aggregated into the final list of clusters. Here are the three
prompts generated by the LLM:

Prompt 1:

These are semantic failure reasons

for different trajectories of a car.
Your job is to analyze all of them and
come up with clusters of different
semantic failure reasons. Generate
cluster centers based on the types of
visual semantic failures present so that
these reasons can be assigned to those
clusters.

Return the cluster names and the list of
characteristics, keywords which belong
to each cluster. Make sure to include
long tail/rare clusters. Report the
occurrence frequency of each cluster.

You are a domain expert in automotive
collision analysis. Given a list

of semantic failure reasons for car
trajectories that resulted in crashes,
perform the following steps:

1. Identify and define distinct clusters
of semantic failure types, covering
both common incidents and long{tail/rare
scenarios.

2. For each cluster, provide:

« cluster_name: a concise, descriptive
label

+ keywords: a list of characteristic
terms or phrases

« frequency: the count or percentage of
occurrences in the input

« failure modes: a list of specific
failure modes or examples

3. Assign each failure reason to its
corresponding cluster.

4. Output the final result as a
JSON array of objects with keys
‘cluster_name’, ‘keywords’, and
‘frequency’ .

Prompt 2:

You are an expert in automotive semantic
failure classification. Given a list of
trajectory failure reasons that resulted
in car crashes, perform the following:

1. Identify distinct clusters of
semantic failure types, including both
frequent and long{tail/rare cases.

2. For each cluster, define:

+ cluster_name: concise label

+ keywords: list of representative terms
- count: number of occurrences

« failure modes: specific examples

3. Assign each failure reason to one of
the clusters.

4. Output a single JSON object with two
keys:

« clusters: an array of cluster objects
({‘cluster_name’, ‘keywords’,

‘count’ })



+ assignments: a mapping from each input
reason to its cluster_name

Prompt 3:

You are an AI{driven taxonomy engineer
for car collision analysis. Given
semantic failure descriptions of
trajectories that ended in crashes:

+ Group descriptions into semantically
coherent clusters (include rare

edge{cases) .

« For each cluster, provide:
- Name (short label)
« Key characteristics (list of keywords)

+ Example descriptions
representative samples)

(up to 3

« Frequency (% of total)

Present your results as a Markdown table
with columns: Cluster Name | Keywords
Examples | Frequency

Each of these prompts is appended with a list of all the
failure reasons from the previous step. Finally, we query the
LLM again to consolidate these individual lists and generate
the final clusters.

c) Step 3: Assigning Trajectories to Failure Clusters.:

You are classifying car trajectory
descriptions into predefined clusters
based on failure types.

Assign the trajectory to one or more of
the following clusters:

{list_of_clusters}

Analyze the trajectory
identify which type(s)
occurred. Consider the
notes for each cluster to help with
your classification. Use the "Other"
category only when the trajectory
doesn’t reasonably fit into any of the
existing clusters.

description and
of failures
keywords and

We compare the distribution of discovered clusters to their
actual assignments across trajectories (Fig.[5). Most frequencies
align closely. The largest discrepancies appear for the visibility
and sudden intrusion clusters. Visibility failures show higher
reported than assigned frequency in single-label settings, but
match under multi-label assignment—suggesting co-occurrence
with other failures. Similarly, sudden intrusions is under-
assigned due to ambiguity with intersection or cut-in cases.

768
257 Primary Assignment
40 Al Assignments
Reported

Percentage (%)

4
Cluster Name

Fig. 5. Reported cluster occurrence frequency during cluster discovery vs the
frequency of the assigned clusters with single cluster assignment and multiple
cluster assignment.

2) Failure Monitoring Leveraging Discovered Clusters: As
described in Sec. we directly use the obtained failure
clusters to safeguard the system through runtime monitoring.
The reasoning model takes a history of past image observations
as input and tries to reason about any possible near-future
collision while leveraging the knowledge about the most
common failures of that system from given clusters in a Chain-
of-Thought (CoT) manner. Adding the cluster information
in the runtime monitor’s prompt helps in zero-shot failure
detection for timely executing a safe action, and generalizing
across different agents and environments without requiring any
specialized training. Here is the prompt:

You are a runtime failure monitor for
the ego car navigating outdoors.

Your task is to analyze a sequence of
forward-facing camera images ending
at the car’s current position, and
determine whether the car is:

a) SAFE | confidently following a
collision—-free trajectory, or

b) UNSAFE | likely to collide with
another vehicle or an object

Operational Context:
— The car must keep on moving without
any physical collisions.

— You are provided with a time-ordered
sequence of image frames at 3 frames
per second, ending at the car’s current
position.

— Any collision is considered a failure.

Reasoning Procedure:



1. Trajectory Inference:

From the image sequence, estimate the
car’s likely near—-future motion: Is it
continuing straight, braking, turning,
or maneuvering sharply?

2. Scene Understanding:

Examine the latest image for road
layout, obstacles, other vehicles,
pedestrians, and environmental
conditions.

Pay extra attention to:

— Objects within or near the ego
vehicle’s predicted path

— Occluded or partially visible road
users

— Adverse visibility (glare, fog, night)
affecting perception of relevant objects

3. Collision Risk Assessment:
Determine if a collision is likely.

— Prioritize risks that intersect the
ego path

— Ignore objects that are clearly
outside the trajectory or do not pose
an interaction risk

4. Semantic Failure Matching:

- You are given a list of Known Semantic
Failure Reasons of this car (list below)
that can lead to collisions.

If the current scenario aligns with any
of the known failure reasons, mark it
unsafe and return the exact name of
known failure reason.

— If the failure reason does not match a
listed type but a collision is likely,
briefly describe the new semantic
reason.

— Return SAFE only if you are confident
that the car will safely pass through
the scene without any possible
collision.

- Err on the side of caution, i.e.,
failure, when you are not sure.

Known Semantic Failure Reasons:
{list of clusters}
Output Instructions:

Return only one of the following:

— Name of a known semantic failure
reason (exactly as written above)

— A brief description of a new failure
type
— The word SAFE

Rules:

— Do not provide explanations,
justifications, or degrees of certainty.
definitive

a new concise

— Output must be a single,
label: one listed reason,
reason, or SAFE.

The prompt first outlines the main task for the LLM to act as
a runtime failure monitor and detect if the system is currently
SAFE or UNSAFE based on the observation history. Further,
it provides more information about the system, such as what is
meant by a failure here and the frequency of observations.
Then, we ask it to sequentially reason about the possible
future motion of the system, the surrounding environment,
and any possible risk of failure given the most common failure
modes of that system through clusters. 1ist of clusters
contains all the generated clusters along with their keywords
and descriptions.

We report the failure detection metrics on both In-
Distribution (IID) Trajectories and Out-of-Distribution Tra-
jectories (OOD) in Table [I} For IID testing, we took a held-out
set of 200 trajectories from the same Nexar dataset, which
we used for clustering analysis. For OOD testing, we took
another open-source dashcam dataset [5]] containing ego car
crash videos.

Fig. [6] shows a few examples for True Positives and
False Negatives predictions from our method. Rows 1,2 are
successfully detected as unsafe. Rows 3,4 are failures, but
are detected as safe because the failure event is not evident
in those images. Note that the last image in the sequence is
taken 1 sec before the collision, and since car driving is a
high-speed system, the actual failure sometimes starts even
after that, which leads to false safe predictions.

Fig. 6.

(Row-1,2) True Positives, i.e. failures detected correctly by our
method. (Row-3,4) False Negatives, i.e., actual failures detected as safe by
our method.

a) Baselines.: VLM-AD is an LLM-based few-shot run-
time anomaly detection method, where the current image
observation is first processed through a scene descriptor, such as



an object detector, which further feeds into an LLM. The LLM
is asked to find any possible anomalous scenario in the current
scene, by providing it with a description of some Normal
and Anomalous examples in the prompt. For the driving case
study, we directly take the prompt from [[L7] and use the same
reasoning LLM as our method to prevent any model-specific
performance difference and perform a fair comparison of the
methods. It should also be noted that this method requires
manually writing few-shot examples in the prompt to provide
contextual information about the system, which in our method
is automated with the generated clusters.

For the Leaderboard-Method baseline, since the Nexar
dataset is also hosted as a Crash Prediction Challenge on
Kaggle, we take the best publicly available method [1]] as per
leaderboard scores to compare with our method. It takes a
pre-trained VideoMAEv2-giant model as the backbone and
trains a Linear binary classification MLP layer to predict
crash. VideoMAEv2-giant [42]] is trained on a large amount
of video datasets, such as action recognition datasets, sports
videos, instructional videos, etc. We tested their trained model
on our test dataset for both the IID and OOD cases. Being
a classical vision-based classification approach, this method
requires environment-specific training and fails to generalize.

B. Case Study 2: Indoor Robot Navigation

Section [BI] contains all the details of discovering the
failure clusters, and Section [B2] lists all the details about
runtime monitoring and policy refinement for the indoor robot
navigation case study. The grey boxes contain prompts.

1) Failure Cluster Discovery:

a) Step 1: Inferring Failure Reasons with MLLMs.: We
randomly sample initial states in the environment and trajectory
rollouts with a fixed goal location. For each rollout, we record
the front-view image observations and a binary label denoting
Failure or Success. Further, we filter out the failure trajectories
for our purpose. The following clustering analysis is performed
on 228 failure trajectories.

Provide a description of the trajectory
of a robot from the sequence of images
it observed along its path, knowing

that it collides in the last image.
After that, provide the visual semantic
reasons behind its failure in brief. Pay
attention to the surrounding objects.

You must provide your answer in the
following format --

trajectory: trajectory_description

failure_reason: semantic_failure_reason

where trajectory_description is the
description of its trajectory and
semantic_failure_reason is the semantic
reason behind failure.

b) Step 2: Discovering Semantic Failure Clusters.: Here
is the ensemble of prompts given by the LLM. Each of these
prompts is appended with a list of all the failure reasons from
the previous step.

Prompt 1:

These are semantic failure reasons of a
robot navigating indoors based on images
that fails due to collision. Generate
cluster centers based on the types of
visual semantic failures present so that
these reasons can be assigned to those
clusters. Return the cluster names and
the list of characteristics, keywords
which belong to each cluster. Make sure
to include long tail/rare clusters.
Report the occurrence frequency of each
cluster.

vision
list of
an indoor
leads to

You are an expert in robotic
failure analysis. Below is a
semantic failure reasons for
robot navigation system that
collisions.

Your tasks:

1. Identify distinct cluster centers
representing each type of visual
semantic failure.

2. Assign each failure reason to the
appropriate cluster.

3. Include long{tail/rare clusters as
separate entries.

4. For each cluster, report:
+ cluster_name

+ defining keywords or traits
+ occurrence_frequency
+ example descriptions (up to 3)

5. Present the output as a JSON array
of objects with fields ‘cluster_name’,
‘keywords’, and ‘frequency’.

Prompt 2:

Act as a taxonomy engineer analyzing
semantic failure reasons of an indoor
vision{based robot that collides. Given
the following descriptions, perform
these steps:

+ Group reasons into clusters based on
shared semantic features.



« Capture both common patterns and
rare/long{tail failure types.

« For each cluster, provide:

{ name (a concise label)

{ terms (list of characteristic
keywords)

{ count (number of examples in that
cluster)

{ failure modes

+ Output the final result as valid JSON:

an array of objects with keys ‘name’,
‘terms’, and ‘count’.
Prompt 3:

You are a domain expert in robotic
vision failure analysis. Given a list
of semantic failure reasons for an

indoor navigation robot that lead to

collisions, perform the following steps:

1. Identify and define distinct clusters
of semantic failure types, including

both common and long{tail/rare cases.
2. For each cluster, provide:

« cluster_name:
label

a concise, descriptive

+ keywords: list of characteristic terms

or phrases

- frequency: count or percentage of

occurrences in the input

« failure modes: list of specific
failure modes or examples

3. Assign each failure description to
its appropriate cluster.

4. Output the result as a JSON array
of objects with fields
‘keywords’, and

‘cluster_name’,
‘frequency’.

c) Step 3: Assigning Trajectories to Failure Clusters.:

You are classifying robot trajectory
descriptions into predefined clusters
based on failure types.

Assign the trajectory to one or more of
the following clusters:

{list_of_clusters}

Analyze the trajectory description and
identify which type(s) of failures
occurred. Consider the keywords and
notes for each cluster to help with
your classification. Use the "Other"
category only when the trajectory
doesn’t reasonably fit into any of the
existing clusters.

We compare the distribution of discovered clusters to
their actual assignments across trajectories (Fig. [3). Most
frequencies align closely. The largest discrepancies appear
for the Narrow-Gap/Clearance Misjudgment and
Low-Height Clutter Small Floor Obstacles
clusters.

They show higher reported than assigned frequency in
single-label settings, but match under multi-label assignment—
suggesting co-occurrence with other failures. Similarly,
Bins Waste Receptacles is under-assigned due to
ambiguity with Low{Height Clutter Small Floor
Obstacles or Box-Like Equipment Carts.

a% Primary Assignment
Al Assignments
w0 Reported

Percentage (%)

Cluster Name

Fig. 7. Reported cluster occurrence frequency during cluster discovery vs the
frequency of the assigned clusters with single cluster assignment and multiple
cluster assignment.

2) Failure Monitoring Leveraging Discovered Clusters: We
perform runtime failure detection in the same way as described
in [A2] for the indoor navigation robot. The prompt is tailored
to an indoor robot with its list of clusters. Here is the detailed
prompt:

You are a runtime failure monitor for a
vision-based autonomous robot navigating
in an indoor environment.

Your task is to analyze a sequence of
recent image observations, ending at the



robot’s current position, and determine
whether the robot is:

- SAFE | confidently continuing in free
space on a collision-free path, or

— UNSAFE | no free space ahead and
at significant and credible risk of

collision, based on observable evidence.

Operational Context:

— The robot must reach a predefined goal
without any physical collisions.

— You are provided with a time-ordered

sequence of image frames, each after 0.5

seconds, ending at the robot’s current
location.

— The robot is moving with a maximum
speed of 0.6 m/s.

Evaluation Procedure:

1. Predict Short-Term Trajectory

— Based on the image sequence, estimate
the robot’s likely immediate direction
of movement (e.g., straight, turning,
drifting) .

— Incorporate temporal cues for better
motion understanding.

2. Identify Relevant Obstacles
— Inspect the final image for physical

objects that may intersect the predicted

path.

- Focus only on nearby, collision-range
elements that could plausibly interfere
with the robot’s trajectory.

3. Determine Collision Risk

- Mark the situation as unsafe if there
is a visual alignment between the
projected path and an obstacle, else
mark it SAFE.

4. Classify the Risk

- You are given the most common failure
modes of this robot in the list below.
— If the risk matches one of the Known
Semantic Failure Reasons listed below,
return name of that exact label.

- If a new type of visible risk is
present, briefly describe it in concise
terms.

— If no substantial risk is wvisible
along the projected path, mark it as
SAFE.

Known Semantic Failure Reasons:
{list_of_clusters}

Output Instructions:

Return only one of the following:

— Name of a known semantic failure
reason (exactly as written above)

— A brief description of a new failure
type
— The word SAFE

Rules:

— Do not provide explanations,
Justifications, or degrees of certainty.

- Output must be a single, definitive
label: one listed reason, a new concise
reason, or SAFE.

We report the failure detection metrics on both IID and
OOD test sets [[Il The IID test set was taken from the same
environment, but the OOD test set was taken from a different
building with very different semantics, but an indoor office
environment in the dataset.

Fig. [§] shows a few examples for True Positives and
False Negatives predictions from our method. Rows 1,2 are
successfully detected as unsafe. Rows 3,4 are failures, but are
detected as safe because the monitor is getting confused seeing
some free space ahead, and the temporal consistency rule gives
false safe outputs.

a) Baselines.: For the VLM-AD baseline, we adapt the
prompt from [17]] for an indoor robot and test it in the same
way as described in Here is the prompt:

I am the fault monitor for a vision
based autonomous robot. My job is to
analyze the robot’s observations and
identify anything that could cause the
robot to take actions that are unsafe,
unpredictable or lead to collision. For
each object that the robot observes,

I will reason about whether the object
constitutes a normal observation or

an anomaly. Normal observations do

not detrimentally affect the robot’s
performance, whereas anomalies might.



Finally, I will classify whether the
overall scene is normal or abnormal.

For example, "The robot is navigating
indoors and observes:

— free space ahead in its path

— a chair or desk right in front of it
in its path

Free space ahead:

1. Is this common to see while
navigating? Yes, robot can often have
free space in the room for navigation.

2. Can this influence the robot’s
behavior? No, it is good to have free
space.

3. Can the robot navigate safely here?
Yes, robot should be able to navigate
safely there.

4. Can this cause the robot to make
unpredictable or unsafe maneuvers? No,
it is safe path.

Classification: Normal.

Chairs or desks right in front of the
robot in its path:

1. Is this common to see while
navigating? Yes, it is common to see
chairs or desks in the room. However,
being very close to them can cause
collision.

2. Can this influence the robot’s
behavior? Yes, the robot might collide
with them if it is too close.

3. Can the robot navigate safely in its
presence? No, if they are in the path,

but if they are in the surrounding and

doesn’t block the path, then yes.

4. Can this cause the robot to make
unpredictable or unsafe maneuvers?

Yes, this could cause the robot into
colliding with them if it is too close.

Classification: Anomaly.

Get the robot’s current observation and
reason about the environmental context.
Finally, try to reason if there is
anything anomalous or not.

If yes, return the word UNSAFE, else
return the word SAFE. Only return the
word UNSAFE or SAFE and nothing else.

Fig. 8. (Row-1,2) True Positives, i.e. failures detected correctly by our
method. (Row-3,4) False Negatives, i.e., actual failures detected as safe by
our method.

For the ENet-BC baseline, we follow [9] and first compute
the Backward Reach-Avoid Tube (BRAT) for our environment.
Further, we collect a dataset of 3000 images with 1500 safe and
1500 unsafe images labeled using the BRAT and follow [22] to
train the EfficientNet-BO model for binary classification. Similar
to the Leaderboard method in the driving example, it is based
on environment-specific training, and there’s no opportunity for
generalization across environments, where LLM-based methods
shine.

3) Targeted Data Collection and Policy Fine-Tuning for
Enhanced Safety: For targeted data collection around the
mined failure modes of the robot, we identify regions in the
environment corresponding to each cluster. In each failure
region, for some starting states and a goal state, we use a
Model Predictive Control (MPC) scheme to find a sequence
of dynamically feasible waypoints [4]. The collected dataset
around all the failure modes comprised approximately 40K
training samples, which were then augmented with the original
training data. Lastly, we fine-tuned the trained checkpoint for
only 20 iterations on the augmented dataset and compared the
performance on the previous policy and the retrained policy
by rolling out trajectories for 50 initial states in the same
environment.

Fig. 0] shows a few examples from the targeted dataset.

Fig. 9. Expert data collected around identified clusters.



Generated clusters with keywords and their descriptions for driving dashcam
datasets.

1. Name: Rear-End Collisions: Insufficient Following Distance

Keywords: rear-end, following distance, tailgating, braking, delayed reaction,
deceleration ahead

Description: The vehicle ahead brakes or stops and the ego car fails to leave
adequate gap or react in time, leading to a rear-end impact|often exacerbated by
poor visibility or road conditions.

2. Name: Unsafe Cut-In / Lane-Change Intrusions

Keywords: lane change, cut-in, merge, encroachment, insufficient clearance, drift,
sideswipe

Description: Another vehicle abruptly merges or drifts into the ego car’s lane
without providing room, cutting off the ego car and causing a collision.

3. Name: Intersection Right-of-Way Violations

Keywords: left turn, yield, right-of-way, red light, signal violation,
cross—traffic, stop sign

Description: A vehicle fails to yield when turning (especially unprotected left
turns) or runs a red/yellow light or stop sign, colliding with lawful through
traffic.

4. Name: Lane Departure Lateral-Clearance Errors

Keywords: lane departure, drift, misjudged gap, narrow lane, lateral clearance,
sideswipe

Description: The ego car drifts out of its lane or misjudges space beside
parked/static vehicles, grazing or sideswiping them.

5. Name: Visibility-Impaired Perception Failures

Keywords: glare, night, rain, fog, wet road, low visibility, windshield occlusion
Description: Sun glare, darkness, heavy rain or other occlusions hide a
hazard|vehicle, pedestrian or signal|delaying detection and proper reaction.

6. Name: Pedestrian Cyclist Detection Failures

Keywords: pedestrian, cyclist, bicycle, crosswalk, jaywalking

Description: The car fails to detect or yield to a vulnerable road user entering or
crossing the roadway, often in a crosswalk or turning path.

7. Name: Static-Obstacle Sudden Intrusion Collisions

Keywords: parked vehicle, door opening, driveway pull-out, backing/reversing,
sudden obstacle

Description: A parked car door opens or a vehicle emerges from a driveway/parking
stall unexpectedly into the ego car’s path.

8. Name: Infrastructure Clearance Errors

Keywords: pillar, attenuator, underpass, overpass, vertical clearance, sign
structure

Description: The ego car clips or crashes into fixed road or bridge infrastructure,
or a vehicle’s height exceeds overhead clearance.

9. Name: Other Rare / Long-Tail Cases

Keywords: wrong-way, camera tilt/misalignment, construction equipment, forklift,
oversized load, extreme/edge-case

Description: Extremely infrequent scenarios such as head-on wrong-way collisions,
sensor/camera failures, or rare large obstacles.



Generated clusters with keywords and their descriptions for indoor robot
navigation.

1. Name: Thin-Protruding Objects

Keywords: folding chair, foldable chair, thin metal legs, chair frame, chair legs,
chair base, chair seat, office chair, casters, wheels, central post, desk leg,
table leg, desk support

Description: Robot fails to detect or underestimates thin, low-contrast legs and
bases, colliding with folding or office chairs, table/desk legs, etc.

2. Name: Uniform/Featureless Surfaces

Keywords: white cabinet, filing cabinet, locker/lockers, cabinet, uniform surface,
featureless wall, light-colored surface, wall base, panel

Description: Robot treats large flat, light-colored walls or cabinets as free space
due to poor depth cues and lack of texture or edges.

3. Name: Narrow-Gap/Clearance Misjudgment

Keywords: narrow space, tight passage, narrow passage, misjudged gap, insufficient
clearance, turning radius, misjudged space

Description: Robot squeezes through tight passages|between obstacles or
underestimates turning radius|leading to collisions in narrow spaces.

4. Name: Low—-Height Clutter Small Floor Obstacles

Keywords: backpack, cables, wires, power brick, small debris, equipment debris,
low-1lying object, floor clutter, soft object

Description: Robot runs into low-profile items on the floor (backpacks, cables,
small debris) that blend into the background.

5. Name: Box-Like Equipment Carts

Keywords: computer tower, server, server cabinet, grey box, box-like object,
equipment, pedestal, cart, machinery

Description: Robot fails to detect or underestimates clearance around bulky,
rectangular objects such as computer towers, servers, carts or pedestal-type
furniture.

6. Name: Structural Edges: Door Frames, Jambs Wall Corners

Keywords: door frame, door jamb, wooden frame/panel, frame edge, threshold, open
door edge, corner, wall corner, external corner, protruding corner

Description: Robot collides with rigid vertical edges like door frames, jambs,
wooden panels or cuts corners too sharply on wall intersections.

7. Name: Bins Waste Receptacles

Keywords: trash bin, recycling bin, bin 1id, blue-lidded bin, green bin, waste
receptacle

Description: Robot collides with trash bins, recycling bins or their lids in tight
spaces.

8. Name: Transparent Reflective Surfaces

Keywords: glass door, glass panel, mirror, reflective surface, transparent panel,
reflection, deceptive surface

Description: Robot mistakes glass doors, panels or mirrors for free space or is
deceived by reflections.

9. Name: Overhead Ceiling Fixtures

Keywords: ceiling, low ceiling, fixture, overhead, overhead obstacle, piping,
ceiling fixture

Description: Robot drives into low-hanging fixtures or ceiling obstructions due to
upward blind spots in its sensors.



Rear-End Collisions: Insufficient Following Distance

Intersection Right-of-Way Violations
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Unsafe Cut-In/ Lane-Change Intrusions

Fig. 10. Example recording for each cluster in the driving dashcam dataset.



Narrow—Gap/Clearance Misjudgment
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Structural Edges: Door Frames, Jambs & Wall Corners

Fig. 11. Example recording for each cluster in indoor robot navigation.



	Introduction
	Related Works
	Problem Formulation: Finding Failure Clusters from Perception Recordings
	Method
	Failure Cluster Discovery
	Safety Enhancement

	Experiments
	Case Study 1: Real-World Car Crash Analysis from Dashcam Videos
	Failure Cluster Discovery
	Failure Monitoring Leveraging Discovered Clusters

	Case Study 2: Indoor Robot Navigation
	Failure Cluster Discovery
	Targeted Data Collection and Policy Fine-Tuning for Enhanced Safety
	Failure Monitoring


	Conclusion and Limitations
	Acknowledgements
	Appendix
	Case Study 1: Real-World Car Crash Analysis from Dashcam Videos
	Failure Cluster Discovery
	Failure Monitoring Leveraging Discovered Clusters

	Case Study 2: Indoor Robot Navigation
	Failure Cluster Discovery
	Failure Monitoring Leveraging Discovered Clusters
	Targeted Data Collection and Policy Fine-Tuning for Enhanced Safety



