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Abstract

Information on trees at the individual level is crucial for monitoring forest ecosys-
tems and planning forest management. Current monitoring methods involve ground
measurements, requiring extensive cost, time and labor. Advances in drone remote
sensing and computer vision offer great potential for mapping individual trees from
aerial imagery at broad-scale. Large pre-trained vision models, such as the Segment
Anything Model (SAM), represent a particularly compelling choice given limited
labeled data. In this work, we compare methods leveraging SAM for the task of
automatic tree crown instance segmentation in high resolution drone imagery in
three use cases: 1) boreal plantations, 2) temperate forests and 3) tropical forests.
We also study the integration of elevation data into models, in the form of Digital
Surface Model (DSM) information, which can readily be obtained at no additional
cost from RGB drone imagery. We present BalSAM, a model leveraging SAM and
DSM information, which shows potential over other methods, particularly in the
context of plantations. We find that methods using SAM out-of-the-box do not
outperform a custom Mask R-CNN, even with well-designed prompts. However,
efficiently tuning SAM end-to-end and integrating DSM information are both
promising avenues for tree crown instance segmentation models.

1 Introduction

Data on individual trees are important for understanding forest ecosystems and supporting sustainable
forest management. Such data are essential, for example, to answer questions about forest compo-
sition, tree growth, and tree health and mortality. They are also particularly relevant in the context
of biodiversity assessments or natural climate solutions, in measuring the carbon stored in forests
and evaluating the success of afforestation, reforestation and revegetation policies [1, 2]. Specifically,
access to species identity and individual tree crown delineation data is crucial, as different tree species
have different allometries [3, 4, 5]. Indeed, carbon stored in a tree can be recovered with allometries
using information about the crown surface area, the species and the height of the tree [6].

Individual trees are still largely monitored by conducting ground surveys [7], requiring extensive
cost, time and labour. However, recent advances in deep learning, alongside the decreasing cost of
drones with high-resolution cameras, open up possibilities for automatically performing individual
tree crown delineation. Popular deep learning methods, such as Mask R-CNN [8] and RetinaNet [9],
have been extensively used in the context of vegetation monitoring using remote sensing data, but
they most often do not focus on identifying tree species [10, 11]. Despite the success of deep learning
methods for tree mapping at scale using remote sensing imagery [12, 13], instance segmentation of
tree crowns remains understudied, in large part because of the lack of annotated data at the individual
tree level.
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In contexts where task-specific data are not abundant, practitioners often resort to pre-trained models
from large datasets. The Segment Anything Model (SAM) [14], for example, is designed to segment
any object in an image either in a zero-shot setting or when given prompts in the form of points,
boxes, masks or text. SAM has been used out-of-the-box for a wide variety of applications, such as
medical imaging [15] and river water segmentation from remote sensing imagery [16]. However,
despite its zero-shot capabilities, SAM has been found to perform poorly in certain segmentation
tasks when used directly in its automatic mode [17] and, consequently, a number of methods have
been developed to adapt SAM to specific tasks without requiring that it be fine-tuned fully [18, 19].
In particular, RSPrompter [20] proposed to learn how to generate appropriate prompts for SAM in
order to segment objects of interest in remote sensing imagery. Keeping the image encoder and mask
decoder frozen, a learnable prompter taking as input the image embeddings from the image encoder
is trained to produce task-relevant prompts for the mask decoder.

The integration of task-specific information from the Digital Surface Model (DSM) into tree crown
instance segmentation models has also been underexplored. The DSM provides a surface elevation
map including above-ground objects, and is a product that is always readily available at no additional
cost from the drone RGB imagery acquisition. Indeed, Structure-from-Motion (SfM) photogrammetry,
which is used to create RGB orthomosaics from high-resolution drone imagery, generates 3D
photogrammetry dense point clouds, from which the DSM is derived. Thus, the DSM provides
complementary 3D structural information without additional data collection overhead.

In this work, we assess the potential of SAM and the value of auxiliary DSM data for the problem
of tree crown instance segmentation from high-resolution drone imagery, through three realistic use
cases: boreal plantations, temperate forests and tropical forests. We introduce BalSAM, a model
building on RSPrompter that allows SAM to incorporate DSM information through parameter-efficient
prompt learning . We evaluate the effectiveness of BalSAM, as compared to SAM’s automatic mode
and RSPrompter. Our study highlights the limitations of SAM in its intended use as an out-of-the-box
and user-friendly tool. However, we find that methods that learn task-specific prompts in a module
integrated to SAM outperform custom-trained CNN models. We also find that integrating DSM
representations within SAM or CNN-based approaches generally improves model performances for
tree crown instance segmentation, with the benefits being dependent on the structural complexity of
the canopy.

In summary, our contributions are: 1) assessing SAM’s capacities for tree crown instance segmentation
from high-resolution drone imagery, 2) introducing new methods leveraging the DSM within both
SAM-based and convolutional architectures, and 3) analyzing the performances of these methods
across three different forest types. This work proposes the first benchmark of instance segmentation
methods on the Quebec Plantations [21], Quebec Trees [22] and BCI [23] datasets. We release project
code at https://github.com/melisandeteng/BalSAM.

2 Related work

Tree segmentation Recent advances in remote sensing and machine learning have enabled the
mapping of trees at scale, including both detection and semantic segmentation tasks [11, 24, 10].
However, many ecological use cases (e.g. monitoring phenology, biomass, and species distributions)
require fine-grained information on tree species and crown size, calling for instance segmentation of
tree crowns by species. This task has remained understudied due to the limited availability of labelled
high-resolution datasets. Brandt et al. [25] and Tucker et al. [13] successfully mapped individual trees
from satellite imagery, but insufficient resolution hindered classification of tree species. In works
considering tree segmentation with higher resolution data [26, 27, 28], the majority either do not
classify trees or consider only a limited set of classes. Such works [29, 30, 31, 32, 33] typically rely
on popular architectures such as Mask R-CNN [8] and U-Net [34], though several studies propose
modified versions of Mask R-CNN to segment and classify individual tree crowns [35, 36, 37]
and Firoze et al. [32] explore advanced transformer-based architectures. Classical computer vision
[38, 39, 40] and machine learning [41, 42] approaches have also been explored.

Algorithms incorporating tree height data Canopy height maps (CHM) derived from airborne or
drone LiDAR laser returns provide complementary structural information to 2D RGB imagery and
have previously been estimated [43, 44, 45, 46, 47, 48] or integrated [49] in methods developed for
satellite and drone [36, 30, 50] remote sensing data. Pixel-based approaches from classical computer
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vision such as watershed segmentation, region-growing and edge detection [51, 52, 53] have been
used on CHM data [54] for individual tree crown delineation. However, these methods often rely on
rules and careful parameter tuning, making it challenging to use them in multi-species contexts. CHM
information has also been explored for individual tree crown segmentation — including relying on a
custom Mask R-CNN architecture [36, 55], using the CHM as an additional input channel to a Mask
R-CNN [56] or directly using raw LiDAR with point cloud-based approaches [30]. While CHMs
derived from LiDAR offer high structural resolution, the digital surface model (DSM) produced by
photogrammetry avoids the cost of specialized sensors and is more readily aligned with drone imagery.
In addition, the DSM from photogrammetry gives an equally accurate 3D surface representation of
forest canopies as LiDAR [57]. Schiefer et al. [58] found using DSM information alongside RGB
drone imagery to be a promising avenue for the task of semantic segmentation of trees in drone
imagery, but this work did not tackle the task of instance segmentation.

SAM in Earth observation Foundation models for computer vision offer promising avenues
for Earth observation tasks. In particular, the Segment Anything Model (SAM) [14] has achieved
effective visual segmentation in images across a range of use cases. Several methods for adapting
SAM to Earth observation have been proposed, including delineating crop field boundaries [59],
classifying land cover [60] and identifying urban villages [61]. Khazaie and Wang [19] proposed a
toolkit to adapt SAM to custom datasets and applied it for semantic segmentation of trees in satellite
imagery. Osco et al. [18] proposed a method based on SAM, using text prompts to segment instances
of a given class. However, the method requires iterative updates which would be computation and
time intensive when many instances are present in an image. Further, the pre-trained text prompt
encoder could be limited in its ability to capture fine-grained classes, such as different tree species.
Grondin et al. [62] trained a detector to better prompt SAM to segment tree trunks from ground level
imagery, but did not consider classification of species. Chen et al. [20] proposed RSPrompter, a
method that learns how to generate appropriate prompts to SAM, to segment objects of interest in
remote sensing imagery (see Section 4.1).

In this work, we aim to use the DSM to improve RGB-based tree crown instance segmentation, as
well as enabling SAM to leverage the DSM by building upon insights from RSPrompter [20]. To
our knowledge, SAM has neither been used to segment and classify individual tree crowns, nor been
leveraged with height information.

3 Datasets

We compare methods on three datasets repre- Annotations
senting different realistic application contexts:
boreal plantations, temperate forests and tropical
forests. As we discuss further in Section 5, each
case presents different data characteristics. Plan-
tations (created for timber production or carbon
sequestration) typically consist of trees planted
in orderly rows around the same time, while
forests do not, as shown in Figure 1. In this sec-
tion, we present each dataset and detail the data
pre-processing. Further details are presented in
Appendix A.

Normalized DSM

Quebec plantations

Quebec trees

Quebec Plantations dataset We use RGB
orthomosaics, photogrammetry digital surface
models (DSMs), tree crown delineation and
species labels in plantation sites from the UAV
Canadian (Quebec) Plantations dataset [21].
The imagery has a resolution of 5 mm/pixel.
We exclude the Serpentinl and Serpentin2 sites
from our study because they contain respectively
only 25 and 39 annotated trees and keep 15 sites
of interest. We consider tree species that have more than 20 trees across all sites, and group the
remaining species into an “Other” category, resulting in a total of 9 classes. The annotations corre-

Figure 1: Examples of the raw image, annotations
and DSM (normalized for the purpose of visualiza-
tion) on each of the datasets under consideration.



spond to the plantations’ trees, but other trees may be visible in the imagery — e.g. , trees outside a
plantation’s area on the border of the orthomosaic. We manually delineated areas of interest (AOIs)
in QGIS to exclude trees that do not have a corresponding annotation in the imagery. We split the
data spatially into training, validation and test sets, defining polygonal regions corresponding to
geographical blocks to avoid spatial autocorrelation, and we ensure that each class is represented in
all sets. Orthomosaics are either assigned entirely to a split or assigned to different splits by manually
delineating areas in QGIS. We detail further the splitting strategy in Appendix A.1.

SBL dataset We consider the Quebec Trees dataset [22] which covers a temperate forest site and
use the RGB imagery and corresponding DSM from date 2021-09-02, for which 22, 933 tree crowns
were manually labelled. In this paper, we refer to it as SBL dataset, for Station de Biologie de
Laurentides, the site where the imagery was collected, to avoid confusion with the Quebec Plantations
dataset. The resolution of the imagery is 1.9 cm/pixel. We use the AOIs defined in Ramesh et al. [63]
for training, validation and testing. Since annotations are not always available at the species level, we
consider 18 classes of interest — 11 tree species, 4 genera, 2 families, a class corresponding to dead
trees and an “Other” class.

BCI dataset We use the 2022 imagery of the Barro Colorado Island crown maps dataset [23],
covering a 50-ha rectangular plot of tropical forest at a resolution of 4 cm/pixel with corresponding
“improved version” of the crown map data. This version contains 112 species with 2, 280 tree crown
delineations that were obtained by manually delineating tree crowns and further refining them with
SAM with human supervision. The corresponding DSM is provided as a fourth channel to the
imagery in 8-bit encoding, therefore at 1 m-height resolution. As noted by Vasquez et al. [23], there
are missing annotations from undetected tree crowns. We manually correct for missing annotations by
masking out parts of the imagery that contain unannotated trees. Given the large number of species,
the long-tailed distribution and challenging nature of fine-grained classification of trees in this context,
we group the trees by taxonomic family. Due to the low number of instances in certain classes and
the spatial split to avoid geospatial auto-correlation, we further group certain families into an “Other”
class so that all families are represented in the training and test sets, leaving 31 classes of interest.

Pre-processing We use the geodataset v0.2.2' Python package to divide the orthomosaics into
1024 x 1024 tiles with 50% overlap. We exclude tiles without labels and tiles with more than 80%
black pixels at the border of the AOIs. We also exclude annotations where less than 20% of the tree
appears in the tile. We detail class codes, corresponding scientific names and the number of trees
per class for the different datasets in Appendix A, as well as details on the composition of the train,
validation and test splits.

4 Methods

We extensively study the performance of SAM and the informativeness of the DSM for tree crown
instance segmentation. We compare different methods, including models with the DSM used as input
along with the RGB imagery and present several ablations and variations of our main methods. We
detail choices of backbones and hyperparameters in Section 4.3 and Appendix B.6.

4.1 Methods description

SAM out-of-the-box We first assess to what extent SAM can segment tree crowns in our dataset
without additional training or tuning. We benchmark SAM in the automatic mask generation mode
(denoted SAM). Following classical approaches such as watershed segmentation, we also test the use
of local maxima of the DSM, potentially corresponding to treetops in the RGB image, to prompt
SAM (denoted SAM+DSM prompts). Further details on this method in Appendix B.2. An overview
of SAM+DSM prompts is shown in Figure 6 along with sample images and prompts from each
dataset. For both models we apply Non-Maximum Suppression (NMS) on the segmented instances.
We also considered using the DSM image as a dense prompt, but obtained very poor segmentation
masks, as dense prompts are intended to be binary masks (see Appendix B.3).
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Figure 2: Overview of our BalSAM method.

Mask R-CNN and variations We consider Mask R-CNN as a comparison, since this architecture
has previously been successfully used for tree crown instance segmentation on aerial imagery
[35, 36, 11, 37]. We compare Mask R-CNN trained from scratch and initialized with weights from a
model pre-trained on ImageNet.We also consider an additional variant that stacks the DSM with the
RGB input as a fourth channel (Mask R-CNN+DSM).

Faster/Mask R-CNN-+SAM and variations Motivated by SAM’s high quality segmentation
when given human input prompts, we consider training models to predict boxes and masks in an
attempt to better prompt SAM and refine the predictions. We train a Faster R-CNN for tree crown
detection on each dataset to provide box prompts to SAM (Faster R-CNN+SAM). This corresponds
to the SAM-det method presented in Chen et al. [20]. We also train a Mask R-CNN on each dataset
to prompt SAM with predicted boxes and/or masks (Mask R-CNN+SAM). Similarly to the Mask
R-CNN baseline, we also consider stacking the DSM modality to its corresponding RGB image as a
fourth channel for both Faster R-CNN+SAM and Mask R-CNN+SAM.

Mask2Former We include comparisons with the transformer-based architecture Mask2Former [64],
which was developed for universal image segmentation tasks. We fine-tune Mask2Former models that
were pre-trained on the COCO instance segmentation dataset [65], using the Swin-base or Swin-L
backbone, and using RGB or RGB+DSM as input, stacking the DSM to its corresponding RGB
image as a fourth channel.

RSPrompter The size of SAM makes it challenging to fully fine-tune it on small datasets. SAM’s
image encoder has 632M parameters and fine-tuning SAM would require considerable compute re-
sources, rendering its training process inaccessible to most forest-monitoring practitioners. Therefore,
we consider lightweight methods leveraging components of SAM without requiring full fine-tuning.
We leverage RSPrompter [20] in our study, as this method was originally developed specifically for
instance segmentation tasks in remote sensing imagery. We choose the RSPrompter-anchor version,
as the architecture of the prompter is built on Faster R-CNN, and other methods in this benchmark
are R-CNN-based. We train it following Chen et al. [20].

BalSAM  We propose a method leveraging RSPrompter by integrating DSM embeddings to enhance
SAM image representations. Our method, named BalSAM (in reference to the tree species balsam fir)
aims at learning to better prompt SAM thanks to height information and canopy structures captured by
the DSM modality. Since SAM was designed to use dense prompts with binary segmentation masks
on top of point prompts, we investigate whether integrating the DSM to RSPrompter in a similar way
helps guiding the segmentation and the classification. We introduce a trainable DSM encoder module
to fuse DSM and image embeddings with an element-wise sum. This global embedding is then fed as
input to the SAM decoder, similarly to dense prompts. An overview of BalSAM is provided in Fig. 2.

4.2 Evaluation

We evaluate our instance segmentation models with mean Average Precision (mAP). Given the class
imbalance in our dataset, we also consider a weighted mAP (wmAP), where the weights are defined



| Single-class | Multi-class

Model DSM Pre-trained [ mAP mloU [ mAP wmAP
SAM (100 pps) X - 8.05 35.06 - -
SAM (10 pps) X - 10.11 34.01 - -
SAM v (prompts) - 11.17 50.91 - -
X X 59.36 +0.12  79.63 +0.31 | 42.69 +1.63 55.75 +0.87
Mask R-CNN X v 63.65 +0.25  81.82 +0.21 | 46.51 +0.65 58.30 +0.71
v v 64.64 +0.40  81.89 +0.35 | 48.96 +0.61 60.32 +0.42
X X 53.56 +0.12 7622 +0.12 | 33.52 +t0.25 45.79 +0.39
Faster R-CNN+-SAM X v 57.85 +0.38  78.00 +0.32 | 39.79 +0.68  50.30 +0.87
v v 58.00 +0.14 7827 +0.43 | 40.14 +o0.81  52.08 +1.00
X v 57.60 +0.11  78.18 +0.18 | 39.76 +0.69 50.46 +0.30
Mask R-CNN+SAM v/ v 57.83 £0.06  77.65 £0.29 | 41.13 £0.65 51.33 +0.49
. . . X v 3390+039  42.24+058 | 54.01 +070 69.80 +0.83
Mask2Former (Swin-base) v v 37364116 47.15 455 | 58.56 4005 72.95 +0.21
. X v 61.77+ 039 7341 +038 | 44334038  52.92 +0.49
Mask2Former (Swin-L) v v 6143404 73380173 | 4117 £045  51.72+ 105
RSPrompter X - 66.37 +0.53  82.58 +0.94 | 52.77 +0.59 62.37 +1.41
BalSAM v - 65.03 +1.01  83.24 £0.24 | 54.40 +2.31 64.84 +o0.86

Table 1: Results on the Quebec Plantations test dataset, averaged over 3 seeds. All metrics are multiplied by 10?
and reported with standard errors. The column Pre-trained refers to ImageNet pre-training for the backbones
of the Mask R-CNN, Faster R-CNN and Mask2Former models (SAM is always pre-trained); “—" denotes not
applicable. We bold and underline the best and second best scores.

by the proportion of examples of each class in the test set. Since SAM out-of-the-box provides
segmentation masks of each instance but no associated class label, we also evaluate the models with
mAP considering the single class “trees”. Finally, we consider the mean Intersection over Union
(mloU) with the single class “trees”, by matching each ground truth instance to the predicted instance
with the highest associated IoU. We then average IoU scores over all instances in the dataset. Note
that mIoU does not reflect false positive instances, as it only compares each ground truth instance
with a single predicted instance — namely, the best matching one in terms of IoU. This metric reflects
only the quality of the segmentation if the object has been correctly detected in a setting where we
only consider a single class for all trees.

4.3 Implementation details

In all experiments, we use the ViT-Huge version of SAM. For the Faster R-CNN+DSM and Mask
R-CNN+DSM methods, we initialize the ResNet-50 backbone of Faster R-CNN+DSM/Mask R-
CNN-+DSM with ImageNet weights. To allow for stacking the DSM to the image input, we randomly
initialize the first layer to allow for 4 input channels. Then, we copy back the ImageNet pre-trained
backbone’s weights of the first layer onto the RGB channels. For all trained models, we apply
RandomFlip augmentations during training and normalize the DSM by its maximum value per
sample. We select the best model based on the validation segmentation mAP value (over all classes).
For BalSAM, the DSM encoder follows the architecture of the dense prompt encoder in SAM and is
a 3-layer CNN with layer normalization and GeL U activation. We provide further details on training
hyperparameters and model architectures in App. B.6. Our methods are all trained on a single GPU
with 24GB CPU memory and 48GB GPU memory.

5 Results

Tables 1, 2 and 3 summarize the model performances in terms of single-class “tree" metrics and
aggregated mAP metrics over the classes for each dataset. We report per class mAP performance
in Appendix C. The BCI dataset is the most challenging setting as it consists of a large number of
classes with high visual similarity. Therefore, for this dataset, we only compared the methods that
were most competitive on the Quebec Plantations and SBL datasets. We also show examples of
predictions from different models in Figure 3.



| Single-class | Multi-class

Model DSM Pre-trained | mAP mloU | mAP wmAP
SAM (100 pps) X - 6.56 35.70 - -
SAM (10 pps) X - 5.63 21.19 - -
SAM v (prompts) 8.24 41.90 -

26.16 +0.35  60.07 +0.80 | 19.10 +0.23 22.45 +o0.22

X X
Mask R-CNN X v 3244 +0.12  65.08 +0.44 | 21.38 +0.17 27.27 +0.18
v v 32.37 +0.18  64.08 +0.17 | 20.87 £0.13  26.82 +0.15
X v 27.38 £0.13  61.40 +0.11 | 19.72 +0.10 23.23 +0.06
Faster R-CNN+SAM v v 28.00 4000 61.49 £020 | 20.52 <010 23.89 +0.08
X v 26.21 +0.17  61.67 +0.36 | 18.23 +0.17  21.83 +0.19
Mask R-CNN+SAM v v 2594 4012 61.19 <017 | 17.73 2014 21.36 <010
RSPrompter X - 33.59 £1.02  64.25 +2.64 | 24.94 +0.52  29.44 +0.83
BalSAM v 33.55 +0.93  66.02 +1.49 | 24.88 +0.63 29.12 +0.81

Table 2: Results on the SBL test dataset, averaged over 3 seeds. All metrics are multiplied by 10? and reported
with standard errors. The column Pre-trained refers to ImageNet pre-training for the backbones of the Mask
R-CNN and Faster R-CNN models (SAM is always pre-trained); “~" denotes not applicable. We bold and
underline the best and second best scores.

| Single-class | Multi-class
Model DSM Pre-trained | mAP mloU [ mAP wmAP
SAM (100 pps) X - 8.19 43.13 - -
SAM (10 pps) X — 7.01 28.51 - -
SAM v (prompts) - 11.86 59.76 - -

. X v 30.39 +0.82  61.74 +0.16 | 5.52 +0.01  10.33 +o0.27
Mask R-CNN v v 31.93 1041 6338 £0.9 | 634 1002 10.500.23
Mask R-CNN + DSM encoder v v 32.62 +0.69 63.20 +0.68 | 8.30 +0.29 11.86 +0.27
RSPrompter X - 35.55 +0.76  60.72 to.85 | 8.44 +0.13  11.53 +0.34
BalSAM v - 34.66 +0.39 61.60 +2.32 | 8.48 +0.29 10.42 +0.27

Table 3: Results on the BCI test dataset, averaged over 3 seeds. All metrics are multiplied by 10? and reported
with standard errors. The column Pre-trained refers to ImageNet pre-training for the backbones of the Mask
R-CNN models (SAM is always pre-trained); “~ denotes not applicable. We bold and underline the best and
second best scores.

5.1 Discussion

Overall, we find that RSPrompter and BalSAM perform better than Mask R-CNN methods and
that including the DSM as additional input information improves predictions. In the following,
we prioritize wmAP to assess the performance of the models—for those that can be evaluated with
class-wise mAP-as our datasets have significantly unbalanced classes.

Using SAM out-of-the-box is suboptimal, even with carefully designed prompts. Qualitatively,
we observe that in many cases, SAM automatic fails to separate overlapping crowns into separate
masks and confidently segments the background or tiny plants, leading to many false positives. It also
misses trees in areas where tall herbaceous vegetation occurs. We show qualitative results in Fig. 3
and Fig. 5 (App. B.1). We find that SAM+DSM, in which SAM is prompted with local maxima in
the DSM, is only somewhat more performant. When a prompt corresponding to an overall treetop
is given, SAM is generally able to correctly segment the tree crown, explaining the modest boost
in mloU compared to SAM automatic. However, local maxima corresponding to small plants or
different parts of a single tree crown can be given as prompts to the mask decoder as shown in Fig. 7
(App. B), often leading to false positives.

Interestingly, prompting SAM with boxes or masks output by a trained Mask R-CNN degrades
performance compared to the predictions of that same trained Mask R-CNN. We observe that SAM
sometimes focuses on very small details and artifacts in the imagery, degrading the quality of the
original segmentation. Qualitative results are shown in Figure 9 (Appendix B.4). Similarly, we find
that Faster R-CNN+SAM models perform significantly worse than Mask R-CNN.

Initializing R-CNN backbones with pre-trained ImageNet weights helps. Mask R-CNN is
competitive on all datasets, and initializing the ResNet-50 backbone with ImageNet weights of Mask
R-CNN improves performance, compared to training from scratch. We make the same observation
with the Faster R-CNN backbone of the Faster R-CNN+SAM method.



State-of-the-art Mask2Former does not outperform Mask R-CNN While we find that using
RGB+DSM improves performance compared to using RGB alone as input, Mask2Former baselines
(using Swin-base or Swin-L backbones) do not outperform Mask R-CNN on the task of tree crown
instance segmentation on the Quebec Plantations dataset (Table 1), despite their higher capacity. This
is in line with prior works that have highlighted limitations of Mask2Former in the context of forest
monitoring from remote sensing imagery [66, 63].

Methods learning to prompt SAM end-to-end outperform the other methods. RSPrompter and
BalSAM models outperform Mask R-CNN-based models (integrating or not the DSM) in terms
of multi-class mAP and wmAP on all three datasets. We show qualitative results of our models’
predictions on the Quebec Plantations and BCI datasets in Figure 3. Looking at class-wise metrics,
we also find that RSPrompter and BalSAM generally perform significantly better than Mask R-CNN-
based methods on less prevalent classes on the Quebec Plantations and SBL datasets (Table 11 in
Appendix C.1 and Tables 12 and 13 in Appendix C.2).

Integrating the DSM can improve predictions, but challenges remain for classification in dense
forests with many species. Importantly, we observe that the benefit of using the DSM is highly
dependent on the structure of forested area. Intuitively, the DSM is relevant for two main reasons: (1)
it captures the vertical structure of individual trees which can improve classification, (2) it represents
the spatial structure of trees relative to one another, which can improve segmentation. The Quebec
Plantations dataset, where the DSM impact is the greatest and most consistent across methods, is
composed of well-separated young trees with visible ground. The SBL and BCI datasets are more
challenging, both in terms of classification and segmentation, given the larger number of classes,
overlapping tree crowns and noisy annotations. In the dense, closed canopies of the SBL dataset,
individual trees hardly stand out in the DSM, as can be seen in Figure 1. The DSM is thus less
informative, and models integrating the DSM perform comparably to their counterpart without DSM.
We demonstrate this numerically by training a Mask R-CNN with only the DSM as input (no RGB
imagery) on the Plantations and SBL datasets. We see a much larger drop in mIoU on the SBL dataset
when comparing to Mask R-CNN models using image inputs, while on the Plantations dataset, mloU
remains high (see Table 14 Appendix D.1).

In the tropical forest of the BCI dataset, there are large differences between tree heights and structures,
even with dense and closed canopies. Adding the DSM information improves predictions of Mask
R-CNN-based models on the BCI dataset, even though it is only available at a coarse 1 m-vertical
resolution. We additionally report the performance of a model encoding the DSM with a CNN module
before stacking it to the RGB image and passing it as input to a Mask R-CNN (Mask R-CNN+DSM
encoder in Table 3), and find that adding capacity to process the DSM information can improve
further on Mask R-CNN-+DSM showing great potential for future work. We provide implementation
details in Appendix D.3.

Class-wise analysis on the Quebec Plantations dataset reveals patterns aligned with challenges
known to ecologists. Looking more closely into the per-class performance for instance segmentation
models (i.e. excluding SAM out-of-the-box based methods) on the Quebec Plantations dataset, we
observe performance generally increases with the number of examples for a given class, as shown in
Fig. 11 (App. C.1). However, all methods perform relatively well on Acer saccharum (acsa), despite
there being few examples of this class, which can be attributed to this class having very different
visual features than the rest of the species. The performance of the different models differs most on
the Picea mariana (pima) class. In fact, it is a very similar species to the most common class in our
dataset, Picea glauca (pigl). In ground field surveys, these two species are most easily distinguished
by looking at the shapes of the cones rather than characteristics visible in drone imagery. In our
models, incorrect classifications of Picea mariana tend to be for Picea glauca (Fig. 12 in App. C.1).

5.2 Ablation studies

We test several ablations and variations of our main methods using the SBL and BCI datasets.

Mask R-CNN prompts to SAM SAM can be prompted with both dense prompts in the form of
binary masks and point prompts in the form of bounding boxes, points or text. We compare using
Mask R-CNN output segmentation masks, detection boxes, or both as prompts to SAM. We find
that feeding masks only yields poorer results. Additionally, computation of the mAP metric requires
scores which usually correspond to detection scores for predicted boxes. We compare using boxes
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Figure 3: Qualitative results comparing methods presented in Sec. 4 on the Quebec Plantations and BCI test
sets. Samples were chosen at random in the test set. For the SAM and SAM+DSM prompts columns, colours do
not correspond to particular classes since SAM does not classify instances. Colours in other columns correspond
to classes and are consistent across columns. BalSAM is able to produce higher quality segmentations following
more closely the shape of tree crowns, and methods integrating the DSM produce fewer misclassifications.

scores from Mask R-CNN, masks scores from SAM or the average of both for the computation of
the mAP. While we do not observe a significant impact on performance for different choices on the
Quebec Plantations dataset, the best performance is achieved for box prompts only with boxes-+masks
scores on the SBL dataset (see Table 15 in Appendix D.2).

Incorporating DSM information in Mask R-CNN Observing that Mask R-CNN+DSM does
not perform significantly better than Mask R-CNN on the SBL dataset, we explore other ways of
including the DSM. We use the DSM vertical and horizontal gradient maps as two additional channels
stacked to the image input. We also consider adding capacity in the Faster R-CNN module of Mask
R-CNN by adding an extra fully connected layer to the bounding box predictor and the classification
head. We do not observe significance improvement in the performance as reported in Table 16 (App.
D.3). Finally, we test the effect of encoding the DSM before combining it with the image — first
processing the DSM through a CNN and stacking the DSM embedding to the image as a fourth
channel before passing it to Mask R-CNN. We provide more details about these models in App. D.3.

Losses The SBL dataset classes are highly imbalanced and we compare three losses with the
standard cross-entropy used in our experiments: 1) a weighted cross-entropy loss using the inverse
frequency of class occurrences in the training set as weights and 2) a hierarchical loss based on the
trees taxonomy, which is a weighted sum of loss at the species, genus and family level. We define
this loss in Appendix D.4.1, 3) a focal loss [9]. The gamma parameter was set to 2 for the focal loss.
We find that the weighted cross entropy yields poor performance, due to the high-class imbalance,
and that the model trained with focal loss does not perform as well as the cross-entropy loss. We also
find that the hierarchical loss does not significantly improve performance compared to the regular
cross-entropy setup (see Table 17 in Appendix D.5).

Additional post-processing The default NMS in Mask R-CNN is not class agnostic, as it removes
overlapping predictions only if they have the same class. Unlike in autonomous driving datasets, on
which Mask R-CNN is often used and pre-trained, we do not encounter occlusions in our dataset and
we expect only one object to be visible at a given location. Therefore, we consider a class-agnostic
NMS, but do not observe significant improvements on the SBL or BCI datasets. This is likely because
the chosen metrics favour having multiple candidate predictions for an instance — including the correct
label, even if it does not have the highest score — over missing the correct class entirely.



Variations on BalSAM We consider variations on how the DSM information is integrated into
BalSAM. We first consider a version in which the prompt encoder receives the encoded DSM added
to the image embedding as input, instead of the image embedding alone. Second, we consider
a modified setup in which the mask decoder receives DSM information only through the prompt
encoder. We evaluate these methods on the BCI dataset, but do not observe significant improvements
from the original BalSAM model. We detail these variations in Appendix B.5.

5.3 Recommendations

Our study shows that using the DSM along with the RGB imagery consistently improves segmentation
and classification results for the plantation use case. Therefore, we recommend that practitioners
looking to quantify the carbon stored in boreal plantations include the DSM information in their
models. We leave it to practitioners to decide, based on their application and available data, which
models to use. For example, if only bounding box annotations are available, we showed that Faster
R-CNN+SAM is a reasonable baseline, and that including the DSM helped. We also report the
inference speed and the number of trainable parameters of different models in Table 10. Tropical
forests remain a difficult case, with known challenges related to obtaining ground truth species labels,
and to the structural and spectral similarity of forests of different taxonomic composition [67]. This
poses the broader question of framing a task that meets user needs and is feasible in tropical forests,
where individual tree carbon mapping might not be possible. For example, as the largest trees store
the vast majority of forest carbon [68], a first step for carbon estimation in tropical forests could be to
focus on large trees only, which might reduce the complexity in the number of species.

6 Conclusion

In this work, we investigate the potential of SAM for tree crown instance segmentation from high-
resolution drone imagery, considering the settings of tree plantations, boreal forests and tropical
forests. We show that methods using SAM out-of-the-box, even with well designed prompts,
are suboptimal compared to the widely used architecture Mask R-CNN. However, we find that
methods that learn to prompt SAM through further tuning are promising for this task. Finally,
we also demonstrate that using DSM information can improve predictions. With the growing
number of available drone imagery datasets for forest monitoring, the release of DSM data alongside
orthomosaics may be a low-hanging fruit, as such data can be obtained directly from RGB imagery.

We highlight several limitations of the present work. On the methodological side, we find that while
RSPrompter and BalSAM demonstrate superior performance to other methods, they also show higher
variance. Our work does not fully address the classification challenges associated with long-tailed
training data (beyond experiments with hierarchical, weighted and focal losses); further exploration
through e.g. class rebalancing could improve performance. On the application level, we note that
users building on this work should demonstrate care in regard to potential dual uses, such as risks
associated with the release of models trained to identify species commonly targeted in illegal logging.

We hope our work will help advance the impactful use of machine learning in biodiversity protection
and nature-based climate solutions, via improved tools for forest monitoring. Promising future
directions include exploring different architectures for the DSM encoder of BalSAM, improving the
methods’ robustness (e.g. stabilising the training process with regularization and augmentations), and
evaluating the effectiveness of different methods in a low-data regime or few-shot setting. Indeed, in
practice, experts might be able to provide a few manual labels of species of interest. This work opens
the door to other ways of using height information, for instance, predicting DSM as an auxiliary task
rather than using the DSM as an input, or using the 3D point clouds obtained from SfM directly. Using
a depth or canopy height map model, could also be explored. Another potential direction is adding
contextual metadata into our models in the form of spatial or spectral priors, or the type of forest, to
improve the classification performance. Indeed, location metadata could prove helpful, as shown in
species distribution modelling contexts [69]. Spectral information, available through e.g. satellite
open-source programs, could also be added as additional input signal into the models. Additionally,
while we have so far trained models separately on each dataset, as more high-resolution drone imagery
data becomes available, learning representations on combined datasets at different resolutions could
provide a foundation for models that can generalize to local contexts and trees species. Developing
easily adaptable methods to different forest ecosystems has considerable potential for impact.
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A Dataset

In this section, we provide more details about the composition of the datasets and the splits that we
used in this study.
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piba | Pinus banksiana

pima | Picea mariana

pist | Pinus strobus

pigl | Picea glauca

thoc | Thuya occidentalis

ulam | Ulmus americana

beal | Betula allegnaniensis

acsa | Acer Saccharum

other | Other, Larix laricina, Pinus
resinosa, Populus tremu-
loides, Betula papyrifera,
Quercus rubra

Table 4: Species codes for considered classes and corresponding scientific names in the Quebec
Plantations dataset.

piba pima pist pigl thoc ulam beal acsa other total
cbpapinas 0 136 121 1437 182 142 11 5 32 2076
cbblackburnl 1440 215 102 100 O 0 1 0 7 1865
cbblackburn2 573 18 50 993 0 1 0 0 67 1702
cbblackburn3 0 0 0 140 3 0 0 0 2 145
cbblackburn4 278 0 0 11 355 125 0 0 6 775
cbblackburn5 86 0 0 514 0 0 0 0 3 603
cbblackburn6 3002 273 122 1746 216 149 2 0 3 5513
cbbernardl 0 0 0 221 0 0 0 0 14 235
cbbernard2 0 0 14 ol 0 0 0 0 0 75
cbbernard3 0 283 377 531 7 2 8 73 19 1300
cbbernard4 0 0 206 1193 0 0 1 0 2 1402
afcamoisan 0 0 0 628 0 0 0 0 2 630
afcahoule 0 0 0 1004 0O 0 0 0 1 1005
afcagauthmelpin | 0 0 0 0 0 0 0 0 1674 | 1674
afcagauthier 0 0 0 500 O 0 0 0 0 500
Total [ 5379 925 992 9079 763 419 23 78 1842 | 19500

Table 5: Number or trees per species per site of the Quebec Plantations dataset.

A.1 Quebec Plantations dataset

We summarize the classes considered in our study in Table 4, break down the composition of each
site in the dataset in Table 5 and present the distribution of species per split in Table 6.

The training, validation and test sets were defined such that all classes were represented in the training
and train and test set. There are neither image pixels, nor annotations that belong to two different
splits. While some sites are represented in both the testing and training sets in the Quebec Plantations
dataset, we tried as much as possible to assign sites fully to splits and limit spatial autocorrelation.
The only reason why some orthomosaics were divided into both the training and test sets was ensuring
that species of interest were both in the train and test sets. This is the only time when we manually
drew AOIs. However, as much as possible, the train/val/test regions were kept as spatially separate
“blocks” ensuring no overlap between the splits. Table 7 shows site assignment to splits. Only the
sites afcagauthmelpin and afcagauthier were split into the train and test sets.

A.2 SBL dataset

While Ramesh et al. [63] and Cloutier et al. [22] conducted previous studies on the SBL dataset in
the context of semantic segmentation, we modify some of the classes used these studies, noting that
some classes in the annotations were ignored. As much as possible, we group those classes into ones
already considered in the study. Some annotations are only provided at the genus or family level.
For example, classes of interest include Acer saccharum, Acer rubrum and Acer pensylvanicum.
but some instances only have the label “Acer”. We choose to keep genus level classes as separate
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piba pima | pist | pigl thoc | ulam | acsa | beal | other | total

train | 19869 | 1377 | 2224 | 32496 | 1079 | 709 | 179 | 51 3343 | 61327
val | 6978 | 2046 | 2447 | 6710 | 573 | 245 | 116 | 40 3713 | 22868
test | 1471 1056 | 544 | 6519 | 1946 | 1050 | 56 19 1601 | 14262

Table 6: Tree species annotations distribution in the different Quebec Plantations splits. Note the
values for each set and species are higher than the number of trees because tiles have 50% overlap.

Site Train | Val | Test
cbpapinas v v
cbblackburnl v
cbblackburn2 v
cbblackburn3 v
cbblackburn4 v
cbblackburn5
cbblackburn6
cbbernard1
cbbernard2
cbbernard3
cbbernard4
afcamoisan
afcahoule
afcagauthmelpin
afcagauthier

AR

AN
AN

4 v
v v

SSNANNS

Table 7: Assignment of sites of the Quebec Plantations dataset to splits.

classes instead of grouping them all into an “Other” category as it would end up being composed of
many different species. Certain species only have very few instances and we group them into two
supercategories “Pinopsida” and “Magnoliopsida” for conifers and non-conifers, which are also the
level at which some annotations are provided.

We summarize the classes we consider for the task on the SBL dataset, with the corresponding names
in the original annotations in Table 8. We also show the number of instances per class per split in
Table 9.

A.3 BCI dataset

The BCI dataset contains annotations for 2280 tree crowns covering 112 species. Given the long-
tailed distribution of tree species and the need to split the orthomosaic spatially to avoid spatial
auto-correlation, we decide to consider classes at the family level. We group further group some
families into the “Other” class, such that all families are present in the train and test sets. We
show the distribution of trees from the BCI dataset family classes considered in our study in 4.
The “Other” class contains the following families: Clusiaceae, Polygonaceae, Malpighiaceae, Myr-
taceae, Erythropalaceae, Vochysiaceae, Erythroxylaceae, Sapindaceae, Staphyleaceae, Lythraceae,
Elaeocarpaceae, Rhizophoraceae, Monimiaceae, Violaceae, Solanaceae and Other.

B Models

B.1 SAM automatic

We provide more examples of predictions of SAM in its automatic mode on the Quebec Plantations
dataset in Figure 5.

B.2 SAM+DSM prompts

In Figure 6, we show an overview of the SAM-+DSM prompts method described in Section 4. Details
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Class Corresponding annotation codes

Dead Dead
Conifere
Feuillus, QURU (Quercus rubra L.), OSVI (Ostrya virginiana
(Mill.) K.Koch), PRPE (Prunus pensylvanica L.fil.), FRNI (Frax-
inus nigra Marshall)

Thuja occidentalis L. THOC (Thuja occidentalis)

Abies balsamea (L.) Mill. ABBA (Abies balsamea)

Larix laricina (Du Roi) K.Koch | LALA (Larix laricina)

Tsuga canadensis (L.) TSCA (Tsuga canadensis)

Betula L. Betula, BEPO (Betula populifolia Marshall)

Fagus grandifolia Ehrh. FAGR (Fagus grandifolia)

Populus L. Populus, POBA (Populus balsamifera L.), POGR (Populus gran-
didentata Michx), POTR (Populus tremuloides Michx.)

Acer L. Acer

Acer pensylvanicum L. ACPE (Acer pensylvanicum)

Acer saccharum Marshall ACSA (Acer saccharum)

Acer rubrum L. ACRU (Acer rubrum)

Pinus strobus L. PIST (Pinus strobus)

Betula alleghaniensis Britton BEAL (Betula alleghaniensis)

Betula papyrifera Marshall BEPA (Betula papyrifera)

Picea A.Dietr. Picea, PIGL (Picea glauca (Moench) Voss), PIMA (Picea mari-
ana (Mill.) Britton et al.), PIRU (Picea rubens Sarg.)

Table 8: Classes considered in the SBL dataset, as well as corresponding codes and scientific names
in the original annotations. In are classes at the family level, and in teal are classes at the
genus level.

dead Pinopsida Magnoliopsidla THOC ABBA LALA TSCA Betula TAGR. Populus Acer ACPE ACSA ACRU. PIST BEAL BEPA Piceca Total
Train 2434 21 389 3160 5174 481 37 8 363 4423 1138 2297 3905 17693 2102 289 19474 1367 64755
Val 642 68 169 1561 2970 6 129 12 125 952 466 81 330 3746 680 673 3632 1101 17343
Test 800 149 76 1964 4622 282 92 0 582 403 538 1081 803 5934 129 485 5125 1958 25023

Table 9: Number of instances per class per split in the SBL dataset. Note that the number of instances

is higher than the number of trees since we have overlapping tiles.

on how local maxima are obtained are provided in Appendix B.6. Figure 7 shows some examples
of local maxima that are fed as prompts to the mask decoder. One limitation of this method is in
the case where there are a lot of small plants sticking out of the ground, giving many local maxima
prompts that do not correspond to a tree (third row of the Quebec Plantations column). The case of
SBL shows that manual tuning of a single neighborhood size parameter to define the height prompts
has its limitations. While the chosen parameter is suited for areas with smaller trees (rows 1 and 2), it
leads to many prompts on the same object for larger trees. The many prompts on the BCI dataset
images are due to the fact that the DSM is only given at 1 m-height resolution, so clustered points
often correspond to points with the same DSM value. Note that having too many DSM prompts
on tree crowns even if they are not in the center is not a major limitation of this method, aside
from computation time. Indeed, each point is fed independently to SAM, and we apply NMS to the
predictions, so if segmented objects overlap, only the object with highest confidence score is kept.
While there are many ways to manually refine rules for filtering local maxima, we did not do any
filtering. We originally experimented with setting thresholds on the DSM or tuning further the size of
the neighbourhood to define local maxima. However, there is tall herbaceous vegetation in some sites,
and well-tuned parameters on a site would not necessarily transfer well to other sites within the same
dataset. Also, the DSM does not provide height with respect to the ground but rather relative height
between objects in the image, and does not account for differences in terrain elevation. While it could
be possible to normalize the DSM with respect to the lowest point in a site, if we have imagery from
a site on a very angled slope, filtering local maxima based on a threshold would not necessarily bring
much improvement.
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Figure 4: Distribution of trees of each of the considered families in the BCI dataset, ordered by

decreasing prevalence.

B.3 SAM+DSM mask prompts

We also tried feeding a normalized DSM to SAM as a mask prompt. SAM normally calls for binary
mask prompts, and feeding the DSM as a mask prompt would give gridded segmentations which
were not satisfactory enough to be included in this study, as shown in Figure 8.

B.4 Mask R-CNN+SAM

Figure 9 shows examples of predictions of Mask R-CNN and Mask R-CNN+SAM (in which boxes
and masks of the former are fed to SAM). While SAM can refine Mask R-CNN segmentations
successfully in some cases (see first row), it also leads to gridded segmentation patterns, derading the

segmentations overall (second and third row).

B.5 BalSAM variations

We also propose variations on BalSAM, using the addition of the image embedding and the output of
the DSM encoder as input to the prompt encoder. We show overviews of these variations in Figure

10.

B.6 Implementation details

We first evaluate SAM in its automatic mode on the test set tiles with a points per side (pps) value
of 100 (default parameter) and 10. For SAM+DSM prompts, the local maxima in the DSM are
obtained with skimage.feature.peak_local_max function, setting the parameter for minimal
allowed distance separating peaks to 50 for the Quebec Plantations dataset and 20 for the SBL and
BCI datasets. We also tried using scipy.ndimage.maximum_filter to find the local maxima
but this led to poorer performance. For all SAM out-of-the-box methods, NMS is applied on the

predictions with a score threshold of 0.5 and overlap IoU threshold of 0.5.

All Mask R-CNN-based models use the torchvision implementation of Mask R-CNN and are
trained with SGD optimizer with learning rate 0.0001, momentum 0.9, and weight decay 0.0005, and
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Image Ground truth Prediction Image Ground truth Prediction

Figure 5: Examples of SAM automatic predictions: (a) A success case. (b) SAM segments everything,
including the background, and merging two touching crowns into a single instance in the top right
corner. (c) SAM segments only the background, i.e., everything but the objects of interest. (d) A lot
of tiny isolated objects are segmented. (¢) SAM completely misses the objects of interest. (f) SAM
segments the trees and also the large bushes around.

image
Image embedding .
SAM SAM
—»| image mask
= B -
DSM
get local Feed as point Predictions
maxima prompts
[ frozen

Figure 6: Overview of our SAM+DSM prompts method.

linear warmup starting at 10~5. Models are trained for a maximum of 100, 200, and 300 epochs on
the Quebec Plantations, SBL and BCI datasets respectively. Batch size is 32 for Mask R-CNN and 8
for Mask R-CNN+DSM. NMS is applied with the default parameters. We initialize the ResNet-50
backbone of Mask R-CNN-+DSM with ImageNet weights, and for the first layer, copy the weights to
the channels corresponding to the RGB input.

All Faster R-CNN-based models use the torchvision implementation of Faster R-CNN are trained
for a maximum of 100 epochs on the Quebec Plantations dataset, and Adam optimizer with learning
rate 0.0001 for finetuning and 0.0005 when trained from scratch, betas of 0.9 and 0.999, weight
decay of 0.0005, and using an exponential decay scheduler updating the learning rate each 10 epochs.
Batch size is 32 for Faster R-CNN and 16 for Faster R-CNN+DSM. NMS is applied with the default
parameters. We initialize the ResNet-50 backbone of Faster R-CNN+DSM with ImageNet weights,
and for the first layer, copy the weights to the channels corresponding to the RGB input.

For Faster R-CNN+SAM and Mask R-CNN-+SAM methods, the scores used to compute the mAP
metrics are the average of the output scores of Faster R-CNN/Mask R-CNN and SAM predicted IoU
scores.

For the Mask2Former models, we used the Swin-base and the Swin-large versions of the model, and
initialized the models with COCO-pretrained weights, using the implementation available through
Transformers. The default preprocessing and postprocessing for evaluation were left unchanged.
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Quebec plantations SBL BClI

Figure 7: Examples of images with overlayed local maxima prompts for the Quebec Plantations (left
column), SBL (middle column) and BCI (right column) datasets.

Input Prediction

Figure 8: Examples of image and prediction when the DSM is fed as a mask prompt to SAM.

Batch size is 8 for the Swin-base and 4 for Swin-large Mask2Former models. Swin-base models are
trained for a maximum of 100 epochs, Swin-large models are trained for a maximum of 50 epochs,
as these models tend to overfit on our datasets.

Following Chen et al. [20], the RSPrompter based methods are trained with input images of size
1024 %1024, normalized with ImageNet statistics, and learning rate scheduler strategy of linear
warmup followed by cosine annealing. The models are trained with batch size 2 (as in Chen et al.
[20]’s experiments), base learning rate of 0.00001 with linear warmup starting at 108 for one
epoch followed by cosine annealing. We use AdamW optimizer with weight decay 0.1. Models are
trained for a maximum of 50, 100 and 200 epochs on the Quebec Plantations, SBL and BCI datasets
respectively. The DSM encoder of BalSAM is a 3-layer CNN with layer normalizations and GeLU
activations. The CNN layers are defined as following:

* First layer: Kernel size (2, 2), with 192 output channels, and a stride of (2, 2).
* Second layer: Kernel size (8, 8), with 768 output channels, and a stride of (8, 8).
* Third layer: Kernel size (1, 1), with 256 output channels, and a stride of (1, 1).

All the models were trained on a single RTX8000 or A100 GPU, requiring up to 48GB GPU memory
and 24GB CPU memory. Only the Mask R-CNN+DSM encoder model and the variations on BalSAM,
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Ground truth Mask R-CNN Mask R-CNN+SAM

Figure 9: Examples of ground truth, Mask R-CNN and Mask R-CNN+SAM predictions on the
Quebec Plantations dataset.

prompt
encoder
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image

Image embedding

[ trainable
’ l:l frozen Predictions
] [ trainable (b) In this variation, the prompt encoder receives the
added image embedding and DSM embedding, and
(a) In this variation, the prompt encoder receives the no prompt is fed in the dense prompt branch of the
added image embedding and DSM embedding. mask decoder.

Figure 10: Variations on BalSAM

presented in the Ablations required a larger GPU, and were trained on a A100 GPU with 80GB
GPU memory and 48GB CPU memory. Experiments took between one and five days to complete,
depending on models and batch size.

While RSPrompter and BalSAM use a batch size of 2 due to the large input image size of 1024x1024
pixels, following [20], and the models were left to train until the maximum number of epochs was
reached, the best model (selected with the validation set mAP) is usually trained for fewer epochs
than Mask R-CNN-based models.

We report average inference speed per sample for different models using the same V100-SXM2-32GB
GPU in Table 10. While we did not control for the type of GPU used across experiments and therefore
training cost figures would be misleading, we report the number of trainable parameters in each
model (this includes the final layer for the Plantations dataset, which has 9 classes). For models that
can also take the DSM as a 4th channel along the RGB images as input, the addition of the DSM
does not lead to a significant increase in number of parameters.
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Model Inference speed (s/image) | Number of trainable parameters
SAM automatic 15.3 0
SAM+ height prompts 1.97 0
Mask R-CNN 0.34 43. 7™M
Mask2Former Swin-base* 0.27 106.9M
Mask2Former Swin-large* 0.30 215.5M
RSPrompter 1.00 117M
BalSAM 1.04 126M
Table 10: Comparison of average inference speed on the Plantations test dataset and number of

trainable parameters of different models (*note that Mask2Former models used images that are
384x384 pixels inputs when all the other models used 1024x1024)

C Results

C.1 Class-wise performance on the Quebec Plantations dataset

Figure 11 shows the per-class mAP performance of different models on the Quebec Plantations test
set.

% 0.4
£ =
0.3 "
Model
0.2 Mask R-CNN
Mask R-CNN+DSM
0.1 Mask R-CNN+SAM

Mask R-CNN+DSM+SAM
RSPrompter
BalSAM

pigl thoc other piba pima ulam pist acsa beal
Class

Figure 11: Per class mAP performance on the Quebec Plantations test set. For each model, the performance
is averaged on 3 seeds and we show standard deviations. Tree species on the x-axis are ordered by decreasing
prevalence in the dataset from left to right. Mask R-CNN is pre-trained on ImageNet. Numerical results are
provided in Table 11.

In Table 11, we report the per class mAP on the test set for the different methods in our study, to the
exception of the SAM out-of-the-box methods which do not classify the predicted masks. We also

Model DSM  pre-trained \ piba pima pist pigl thoc ulam other beal acsa

Mask R-CNN X X 45.88 4008 13.31 +587  73.60 +030 69.75 +063 60.08 043 30.90 +135 41.82 +0.12  7.64 +6.80 41.23 +3.67
Mask R-CNN X v 51.55 029  10.59+075  74.67 020 73.14 +0.02 61.53 +077 35.49 +1.15 4594 +028 9.81 +5.18 55.78 +1.88
Mask R-CNN v v 53.08 +0.10  21.56 +368 76.97 043  73.29 +029 62.57 +061 38.30 £043 46.43 +040 10.78 +542  57.69 +0.76
Faster R-CNN+SAM X X 60.56 +0.05 56.28 +0.51  28.96 +0.53  24.53 +o0.81  3.32 4031 26.26 £1.13  60.51 +0.84 41.2 £3.97 0.0 0.0
Faster R-CNN+SAM X v 64.11 065 61.03 +080 34.93 +059 31.57 +037 3.61 +2.28 33.58 £237  66.65 +0.10 49.82 +230 12.84 +2.90
Faster R-CNN+SAM v v 66.04 068 61.38 027 35.46 +006 30.78 +0.18  17.26 +786 31.94 £039 66.37 +035 51.86 +087 0.15 +0.15
RSPrompter X - 53.03 £029 29.17 +953  76.83 £047 73.23 +145 69.43 toss 44.40 x0.12 47.33 +037 16.00 £7.99  65.43 +2.65
BalSAM v - 51.17 069  50.97 615  75.07 035 76.47 +061 67.93 +057 43.07 £1.12  46.87 054 13.93 4932 64.23 +553

Table 11: mAP per class [102] with standard errors on the Quebec Plantations test set for the instance
segmentation models in our study.

show a confusion matrix for predictions of a Mask R-CNN model on the Quebec Plantations dataset
in Figure 12.

C.2 Class-wise performance on the SBL dataset

We report per-class mAP on each of the classes in the SBL test set in Tables 12 and 13. We order
classes in the tables by decreasing prevalence in the training set. We observe that RSPrompter and
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Figure 12: Confusion matrix for the Mask R-CNN model predictions on the Quebec Plantations test
set. Picea mariana (pima) is most often confused with Picea glauca (pigl), which is a very similar
looking species, and the most common in the dataset.

BalSAM significantly improve on Mask R-CNN methods on less common classes in the dataset, in
particular for Picea, Fagus grandifolia (FAGR) and Tsuga canadensis (TSCA) classes.

Model \ BEPA ACRU ABBA Populus ACSA THOC Dead ACPE PIST
Mask R-CNN 33.87 +019 21.84 +012 3559 +013  40.47 008  19.64 +048  29.65 +o46 18.30 +o.66 993 +072 44.63 +0.14
Mask R-CNN+DSM | 33.61 +002 21.74 025 35.31 £039 41.55+008 17.99 +027 28.68 +045 17.85 +0.03 9.72 +033 44.90 £ 148
RSPrompter 3498 +067 23.08 064 3648 +110 4377 +050 2092 +085 33.14 +047 22.63 081 10.90 +o064 48.12 +2.17
BalSAM 3476 +1.02 2212 +075 3653 +043 4573 +152 20.96 £105 3258 £073 2138 +£171 1046 +025 47.53+ 146
Table 12: Per-class mAP on the SBL dataset for the most prevalent classes in the training set (ordered from left
to right in decreasing order of prevalence)
Model \ Picea Acer LALA Magnoliopsida FAGR. BEAL TSCA Pinopsida
Mask R-CNN 31.93 +075  0.00 £001  40.23 +1.69 0.00 £0.00 15.09 +069 21.66 +035  0.53 £043  0.00 +0.00
Mask R-CNN+DSM | 30.92 +098  0.00 +0.00 40.76 +1.09 0.00 £0.00 11.68 +o0.15 20.11 +1.39 0.00 £0.00  0.00 +0.00
RSPrompter 40.83 050  1.01 030  43.92 +0.79 0.86 043  18.17 4165 21.67 +129 23.50 +1.88  0.02 +o0.01
BalSAM 40.73 +096  1.11 +005 45.13 +1.15 0.25 4007  17.69 +0.09 22.62 +093 23.38 £368 0.00 +0.00

Table 13: Per-class mAP on the SBL dataset for the least prevalent classes in the training set (ordered from left
to right in decreasing order of prevalence)

D Ablations

D.1 Informativeness of the DSM

We trained a Mask R-CNN with DSM inputs only (no RGB image) to assess its informativeness on
the Plantations dataset vs the SBL dataset and report results in Table 14. When looking at the drop
in performance compared to the Mask R-CNN models using RGB images as inputs, we observe a
much larger drop on the SBL dataset compared to the Plantations dataset. In fact, single-class mIoU
remains high, which is another way to see that tree crowns are distinguishable from the background
and from each other using the DSM only, and points to the usefulness of the DSM in plantation
contexts.

D.2 Mask R-CNN+SAM prompts and scores
We explore using mask predictions, box predictions or both, output by a trained Mask R-CNN, as

prompts to SAM. Additionally we consider different prediction scores, using either box scores only
from the Mask R-CNN, or the average of the IoU scores of SAM and the box scores of the Mask
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Dataset | single-class mAP | mloU | mAP
Plantations 0.464 0.734 | 0.178
SBL 0.092 0.289 | 0.023
Table 14: Test set performance of Mask-R-CNN (pre-trained on ImageNet) using DSM only as input

R-CNN for computing the evaluation metrics. We report performance on the SBL dataset for different
combinations of scores and prompts in Table 15.

Single-class Multi-class
box prompts mask prompts  box score mask+box score | mAP mloU mAP wmAP

v v 24.59 +0.14  61.62 +0.34 | 17.38 +0.18  20.69 +0.18

. v v 26.21 +0.17  61.67 +0.36 | 18.23 +0.17  21.83 +0.19
Mask R-CNN+SAM 4 4 v 20.46 £0.14 58.59 +0.35 | 14.73 0.6  17.24 +o0.16
v v v 2295 +0.17  58.58 +0.35 | 16.06 +0.08  19.00 +0.17

v v 25.94 +0.12  61.19 +0.17 | 17.73 +0.14  21.36 +0.10

v v v 20.47 +0.13  58.16 £0.20 | 14.49 +0.11  17.05 +o0.12

Mask R-CNN+SAM+DSM v v v 22.83 4009 58.15 020 | 15.77 2000 18.71 +0.08

Table 15: Comparison of using different mask and box prompts and scores for the Mask R-CNN+SAM-based
models on the SBL test set. We highlight the best combination of prompts and scores in bold for Mask
R-CNN+SAM and Mask R-CNN+SAM+DSM.

D.3 Incorporating DSM information

We report results for different Mask R-CNN-based models incorporating DSM information on the
SBL test set in Table 16.

To obtain DSM gradients, we used numpy . gradient with spacing 1 to get vertical and horizontal
gradient maps. Some tiles at the border of AOIs have black pixels, which would lead to very high
gradient values between the black areas and the image area. In this case, we paste a mask of of zeros,
covering to the black pixels area, onto the DSM gradient maps.

For the model with extra capacity in the Faster R-CNN head of Mask R-CNN, we added an extra
Linear layer followed by ReLU activation before the output layers of the bounding box predictor and
the classifier of Faster R-CNN.

For the model with an added DSM encoder, the DSM encoder architecture is 3-layer CNN with layer
normalizations and GeLU activations. The CNN layers are defined as following:

* First layer: Kernel size (2, 2, with 192 output channels, and same padding.
* Second layer: Kernel size (2, 2), with 768 output channels, and same padding.
* Third layer: Kernel size (1,1), with 1 output channel.
The output is the same size as the original DSM. This setup was used on the SBL and BCI datasets.

Note that the Mask R-CNN+DSM encoder models were trained on a single GPU with 80G GPU
memory and 48G CPU memory.

| Single-class | Multi-class
Model | mAP mloU | mAP wmAP
DSM 32.37 +0.18  64.08 +0.17 | 20.87 +0.13  26.82 +0.15
DSM gradients 32.43 +0.41  64.55 +0.35 | 20.68 +0.17  26.91 +0.29
Extra capacity in Faster R-CNN head | 32.37+0.26  64.55 +0.35 | 20.82 +0.08 26.95 +0.16
DSM encoder 32.35 +0.17  64.80 +0.20 | 20.54 +0.20 26.76 +0.16

Table 16: Results for different Mask R-CNN-based models incorporating DSM information on the SBL test set.

Metrics are multiplied by 10? and reported with standard errors. We highlight the best model for each metric in
bold.
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D.4 Losses

D.4.1 Hierarchical loss

We define a hierarchical loss, modifying it from [63] since we consider different classes of interest.
Similarly to [63], we consider 3 losses, "species”, "genus" and "family"-level. When computing
the species loss, we exclude instances that have ground truth labels in [Betula, Acer, Magnolop-
sida,Pinopsida]. In other words, only instances that have a species-level label or that do not have any
subcategory at the species-level in the annotations contribute to the loss. For example, we include
Picea as a class contributing to the species loss, because there is no class that corresponds to a finer
Picea species-level. When computing the genus level loss, exclude instances that have ground truth
labels in [Magnolopsida,Pinopsida]. We use the same weights as [63] for species, genus and family
losses in the final loss.

D.5 Results for different losses

We summarize results for Mask R-CNN models trained with different losses in Table 17. Hierarchical
loss improves slightly but not significantly on the cross-entropy used in all our experiments.

| Single-class | Multi-class
Loss | mAP mloU | mAP wmAP

Cross-entropy 3244 +0.12  65.08 +o0.44 | 21.38 +0.17 27.27 +0.18
Weighted loss 13.23 +0.17  62.05 +0.17 | 8.10 +0.18 12.32+0.31
Hierarchical loss | 32.76 +0.16 64.70 +0.25 | 21.42 +0.15 27.51 +o0.10
Focal loss 30.79 +0.39  64.55 +0.25 | 14.63 +0.21  23.49 +0.30

Table 17: Results for different Mask R-CNN the SBL test set using different losses. We highlight the best
model for each metric in bold.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We highlight contributions in the abstract and introduction. This is the first
benchmark of instance segmentation methods and assessment of the difficulty of this task on
the three considered datasets. Experimental results support the claims that integrating DSM
information into models can improve predictions and that methods learning to prompt SAM
end-to-end are advantageous over SAM out-of-the-box and Mask R-CNN-based models.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations of this work are highlighted in the conclusion section of the paper.
We also discuss computational efficiency in Appendix B.6.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors

should reflect on how these assumptions might be violated in practice and what the

implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Processing details of the dataset, implementation details of the models and
choices of hyperparameters are provided in Sections 3 and 4 of the paper and in Appendices
A and B.6.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use existing, publicly available datasets, described in Section 3. Data
preparation steps details are provided in the paper, as well as training details to reproduce
the experiments. Code to pre-process the open-source datasets used in this study and
train different methods presented in this paper will be available at https://github. com/
melisandeteng/BalSAM.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details on training and test details are provided in Section 4 and Appendix
B.6. We also share the AOIs used to define the splits in the Supplemental material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Standard error or the mean is provided for all reported metrics for all models.
Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify compute requirements for our experiments in Section 4 and
Appendix B.6.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work does not involve human subjects or participants. The data used is
open-source and terms of their licenses have been respected. Societal impact and potential
harmful consequences are outlined in the conclusion section of the paper. Models and code
will be released publicly responsibly upon paper decision.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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11.

12.

Answer: [Yes]

Justification: Both potential positive and negative societal impacts of the work are discussed
in the conclusion section.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not releases new data and the models presented in the study do
not have a high risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Creators of assets on which the paper is built on (code, data and models) are
properly credited in the paper, and their licenses and terms of use are properly respected. We
share code at https://github.com/melisandeteng/BalSAM. Part of the code is based
on a fork of RSPrompter[20]’s original implementation, available at https://github.
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14.

15.

com/KyanChen/RSPrompter. Names of licenses for existing assets are also explicitly
mentioned in the code.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide a representative sample of the code in the Supplementary material
with supporting documentation. A full version of the code with further documentation will
be released upon paper decision.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not include crowdsourcing experiments or research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This work does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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