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Abstract

Self-supervised learning (SSL) enables effective representation learning from unlabeled data.
There has been significant interest in transitioning SSL techniques to medical imaging anal-
ysis. An important consideration in SSL is the choice of data augmentation, which often
depends on the specific domain. It is unclear whether commonly used augmentation policies
for general image types are suitable for surgical applications. In this work, we automate
the search for suitable augmentation policies through a new method called Dimensionality
Driven Augmentation Search (DDA). DDA leverages the local dimensionality of deep rep-
resentations as a proxy target, and differentiably searches for suitable data augmentation
policies in contrastive learning. We demonstrate the effectiveness and efficiency of DDA
in navigating a large search space and successfully identifying an appropriate data aug-
mentation policy for laparoscopic surgery. We systematically evaluate DDA across three
laparoscopic image classification and segmentation tasks, where it significantly improves
over existing baselines. Furthermore, DDA’s optimised set of augmentations provides in-
sight into domain-specific dependencies when applying contrastive learning in medical ap-
plications. For example, while hue is an effective augmentation for natural images, it is not
advantageous for laparoscopic images.

Keywords: differentiable augmentation search, contrastive learning, laparoscopic imaging

1. Introduction

Self-supervised learning (SSL) has recently shown its potential for generating representa-
tions from large-scale datasets without human supervision (Chen et al., 2020a; Grill et al.,
2020; Bardes et al., 2022; He et al., 2022). In this approach, a model typically conducts
representation learning using a data-generated objective on unlabeled datasets. The learned
representations can subsequently be transferred to downstream tasks with limited annota-
tions. In medical domains such as endoscopic or laparoscopic surgery, data can be readily
generated from surgical recordings. This contrasts with obtaining high-quality annotations,
which can be prohibitively expensive in terms of human expert time, particularly for appli-
cations like segmentation (Ward et al., 2021). In such cases, SSL is highly attractive as it
allows effective utilisation of unlabeled data, thereby reducing the demand for annotations.

Contrastive learning is a type of SSL where the model minimizes the distance between
feature representations of augmented views from the same image and maximizes the distance
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to different images. This can be achieved either explicitly (Chen et al., 2020a) in the loss
function or implicitly (Grill et al., 2020; Bardes et al., 2022). The augmentation policy that
generates augmented views significantly influences the representation learning quality, and
consequently the transferred performance on downstream tasks (Wagner et al., 2022; Huang
et al., 2023). Existing augmentation search methods that automatically select the “optimal”
policy are usually conducted with supervised learning and require access to annotations
(Cubuk et al., 2019; Lim et al., 2019; Ho et al., 2019; Hataya et al., 2020). Reed et al.
(2021) proposed SelfAugment for augmentation policy search in contrastive learning. It
requires training additional projectors with proxy SSL tasks for each candidate and uses
Bayesian optimisation for selection. It is very time-consuming if the search space is large.

Given that the most effective augmentation policy is domain dependent (Xiao et al.,
2021; Bendidi et al., 2023), the transferability of policies that have been developed for
natural images (Deng et al., 2009; Chen et al., 2020a; Grill et al., 2020; Garrido et al., 2023)
to medical datasets remains uncertain. Van der Sluijs et al. (2023) explored contrastive
learning augmentation policies on Chest X-ray datasets by conducting a grid search on
a predefined space of 8 augmentations with varying strengths. The 82 search space poses
challenges for replication due to the exponential growth in computational resources required
for SSL (Chen et al., 2020b). This challenge is further pronounced when extending findings
to other medical applications.

To address these limitations, we propose Dimensionality Driven Augmentation (DDA)
to streamline augmentation policy selection in contrastive learning. Based on the differen-
tiable augmentation search framework (Hataya et al., 2020), DDA incorporates the augmen-
tation pool, the number of augmentations in a policy, their probabilities and strengths of
application as differentiable parameters. Instead of optimizing performance on downstream
tasks, which is often infeasible, we optimise a proxy objective function. DDA considers the
optimisation of geometric characteristics of the deep representation in contrastive learn-
ing (the intrinsic dimension). As a result, DDA does not require access to an annotated
dataset or additional training. We demonstrate that DDA can explore a large search space,
encompassing up to 108 different choices, with an optimizable augmentation strength.

To summarize, the contributions of this paper are:

• We show that commonly used augmentations for natural images are sub-optimal when
used for laparoscopic images.

• We propose a novel approach called DDA to search for an optimal contrastive learning
augmentation policy. DDA can efficiently explore both the choice and strength of
augmentations without any additional finetuning on annotated datasets.

• DDA effectively identifies a suitable augmentation policy for laparoscopic surgery
across various tasks with constant time complexity. The selected augmentations pro-
vide valuable insights into which techniques are most effective for medical applications.

2. Method

In this section, we first provide the background regarding contrastive learning and its aug-
mentation policy in Section 2.1. Then, we outline the DDA framework in Section 2.2,
followed by a detailed discussion on our proxy objective function in Section 2.3.
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2.1. Problem Definition

Contrastive Learning. We consider a typical two-stage semi-supervised setting, a popular
SSL application. Given a dataset, D, comprised of an unlabelled subset Du for contrastive
pretraining, and a labelled subset Dl for finetuning, where D = Du ∪ Dl.

In the first stage, for each x̄ ∈ X in a batch of N images from Du, we generate two
positive samples x,x+ from the augmentation policy T (x̄), and M = 2(N−1) independent
negative samples {x−

m}Mm=1 = {T (x)|x ̸= x̄} from the other N − 1 images. An encoder f(·)
maps input images to the representation space X → Rd with the representation z = f(x),
and projector g(·) obtains embedding e = g(z) ∈ Re. A classical optimisation objective for
contrastive learning (Chen et al., 2020a) is the following,

LNTXent = Ex,x+,{x−
m} − ln

exp(sim(e, e+)/η)∑M
m=1 exp(sim(e, em)/η)

, (1)

where sim(·) is the cosine similarity, and η > 0 is the temperature that controls the smooth-
ness of distance distribution.

In the second stage, after the encoder is trained, an additional classifier or segmentation
model h(·) can be attached to the encoder as h ◦ f , for simplicity, we denote this as f

′
. The

f
′
learns to map the input image to the label space X → Y using {(x,y)} ∈ Dl following a

typical supervised learning setup by minimizing the following objective,

LSupervised = Ex∼Dl
L(f ′(x),y), (2)

where L is the objective function for supervised downstream tasks (e.g., cross-entropy).
Augmentation Policy. The optimal policy for contrastive learning is defined as,

T ∗ = argmin
T

Ex∼DV al
L(f ′

(x),y), (3)

where DV al is the unseen validation data. Note that the above objective is defined with
respect to a specific downstream task. However, in contrastive learning, we are really
interested in obtaining the optimal T ∗ that is suitable for a wide range of tasks.

2.2. DDA Search Framework

Each round of a two-stage learning framework mentioned in the previous section is time con-
suming. This challenge makes it impossible to apply a thorough grid search, especially for
a large search space with a diverse number of operations and choices in each augmentation
policy. To tackle these challenges, we propose a streamlined search framework, DDA.

Specifically, we setup the augmentation search in a differentiable fashion following ex-
isting works (Liu et al., 2019; Hataya et al., 2020). Let O be a set of K image augmentation
operations Ok ∈ O : X → X , and X is input space. Each operation Ok( · ; pk, λk) has
two parameters: the probability pk, and the augmentation magnitude λk, for applying the
operation. For an input image, x ∈ X , an augmentation policy Ō is defined as,

Ō(x;p,λ) =

{
Ok(x;λk) with probability pk

{Oj(x;λj)|j ̸= k} with probability 1− pk.
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Let S be the set of augmentation policies where each sub-policy τ = {Ō1, . . . ¯ONτ } ∈ S
contains Nτ consecutive operations. The augmented image is obtained by x′ = τ(x) =
( ¯ONτ ◦ · · · ◦ Ō1)(x;pn,λn), n = 1, . . . Nτ . The final policy T is a collection of NT sub-
policies. During searching, the output of the nth operation Ōn(x) is the weighted sum of
all possible operation choices,

Ōn(x) =

K∑
k=1

ση(wk)Ok(x;λk), (4)

where, Ok is an operation in O. The probability pk is convert from learnable real-number
parameter, wk, using the softmax function as pk = ση(wk) =

exp(wk/η)∑
K exp(wj/η)

, with temperature

η > 0. Low temperature will generate the distribution of pk as a one-hot like vector.
The components of the augmentation policy thus become learnable parameters and can

be updated by backpropagation. To learn the augmentation policy T ∗, we further propose
a suitable proxy objective in Section 2.3 for the augmentation search, which optimises the
contrastive representation. The illustration of DDA is in Figure 1.

Encoder
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Evaluation (Existing Works)

Augmentation 
Policy

Representation 
Optimization (Ours)

Policy Sampler

Contrast operation

Identical

Applied with 
magnitude DDA

Contrastive 
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Projectior

Supervised Evaluation 
(Existing Works)

1

Augmentation Policy (with K=3, N=2)

2

Backpropagation
Feed-forward

Exhaustive Search

Figure 1: Illustration of differentiable augmentation policy search and DDA framework for
contrastive learning on the right (highlighted in blue). Dash lines indicate the gradient-
guided augmentation selection, and solid lines indicate feed-forward contrastive learning.

2.3. DDA Search with Representation Dimensionality

Equation (3) can’t be directly optimised due to lacking validation data, and the two-stage
training is hard to optimise differentially. We propose a novel objective as a proxy so that
the differentiable search only involves contrastive pretraining.

In contrastive learning, the deep representation z ∈ Rd extracted from a surgical image
needs to be distinguishable from the representations of other images. Our focus lies in
understanding the local distribution of deep representations in vicinty of a query image.
We define a local neighbourhood-of-interest as a d-dimensional sphere with a small radius
r centered at the query. Any data within the neighbourhood has a smaller distance than
r from the query, and likely has similar visual content as the query. An illustration of the
deep representation for a local neighbourhood is shown in Figure 4, in Appendix A.

To evaluate the properties of a query image’s neighborhood, one can estimate the growth
rate in the number of nearby data points encountered as the distance from the query in-
creases. This growth rate provides an estimation of the local intrinsic dimensionality (LID)
of the query data located in the high-dimensional subspace (Houle, 2017). Intuitively, the
LID assesses the effective number of dimensions (the intrinsic dimension) needed to charac-
terize the local neighbourhood of a query point. If the LID equals 2, the local neighbourhood
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surrounding the query point behaves like it has two dimensions. LID is thus like a complex-
ity measure and assesses the space-filling properties around a query point. In our scenario,
we will assess the LID of each point in the deep representation produced by SSL.

Let z be the query point, and s denotes any nearby representation of a different image
within its vicinity. The distance between z and s is denoted as rs = d(z, s), where d
represents a distance measurement. We define the cumulative distribution function (CDF),
F (r), of the number of data points concerning the local distance distribution with respect
to z as the probability of the sample distance lying within a threshold r, F (r) ≜ Pr[rs ≤ r].

Theorem 1 (Houle (2017)) If F is continuously differentiable at r, then

LIDF (r) ≜
r · F ′(r)

F (r)
.

The local intrinsic dimension (LID) at z defined as the limit, when the radius r tends to
zero as,

LID∗
F ≜ lim

r→0+
LIDF (r) .

In practice, LID∗
F needs to be estimated, and it is not an integer. For simplicity, for the

rest of the paper, we denote ‘LID’ as the quantity of LID∗
F .

In our scenario, we will wish to optimise the LID of each data sample, encouraging it
to be large. Work by Huang et al. (2024) has shown that it is theoretically desirable to
optimise the log transform of the LID in deep learning, rather than the LID. Intuitively, if
a query point has a large (log) LID, then its neighbourhood requires more dimensions to
characterise. This is a desirable property for SSL, where a key objective is to avoid what is
known as dimensional collapse (Jing et al., 2022).

This makes LID a suitable proxy objective for the augmentation search. Since 1) it
does not require finetuning on downstream tasks, and 2) optimising the LID distribution
of samples in the deep space can easily be integrated into a gradient descent framework.
Following Huang et al. (2024), to obtain a representation with higher LIDs, we can optimise
the Fisher-Rao distance between the LID of the representations z and a uniform distance
distribution (with LID of 1) using the following loss function as,

LDDA = min− 1

N

N∑
i

ln LID∗
Fi
, (5)

where N is the number of samples in the batch, and LID∗
Fi

can be estimated using any
popular estimator for LID in the encoder’s output representation z.

Different from existing work (Huang et al., 2024) that investigated optimisation of model
parameters to produce a better contrastive representation, in our work we optimise the
augmentation policy with a fixed encoder f . We find this simple but important shift in
perspective is highly significant. More concretely, our augmentation policy is designed
as a block of plug-in-and-play operation layers as T with parameters w,λ described in
Section 2.2. We first obtain an encoder f that is trained with the most basic augmentation
(e.g. image cropping) and then apply differentiable augmentation search to optimise the
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parameters of the policy with Equation (5). as the objective. We provide a sketch of the
pseudo-code of DDA in Algorithm 1 in the Appendix A. The resulting optimal policy T ∗

is used to obtain the final pre-trained model. Although it is also possible to apply other
proxy functions instead of using LID for DDA, we empirically find that using LID is highly
suitable for the augmentation search. To our knowledge, ours is the first work to consider
the use of LID as a measure for optimising augmentations.

3. Experiments

We evaluate the performance of the augmentation policy found by DDA in terms of rep-
resentation quality following standard evaluation protocols such as linear evaluations and
finetuning. We use ResNet-50 (He et al., 2016) and SimCLR (Chen et al., 2020a) as the
contrastive learning framework. All hyperparameters closely follow the original papers. We
perform the pretraining on two datasets: our private dataset SVHM and the public dataset
Cholec80 (Twinanda et al., 2016). For downstream evaluations, we use the Cholec80 Tool
(Twinanda et al., 2016), CholecSeg8K (Hong et al., 2020) and our annotated private dataset
(denoted as SVHM Seg). For the augmentation search, we set N = 5 by default. We search
across the following augmentation operations: Identical, Brightness, Contrast, Hue, Satura-
tion, Solarize, GaussianBlur, Posterize, Gray, Sharpness, with further details in Appendix
B.2. We set the temperature η in Equation (4). to 0.1. For LID estimation, we use the
method of moments estimator (Amsaleg et al., 2018), with the neighbourhood size 16. We
compare with the original augmentation policy used by SimCLR, a Base policy (only with
crop and horizontal flip), a randomly generated one using our search space (Random), a
manually selected one based on domain experts (Manual), and SelfAugment (Reed et al.,
2021) with differentiable adaptations. For SelfAugment, we use its min-max strategy as it
showed the best performance. We use categorical sampling of the final policy as default.
Additional results for the Argmax sampling can be found in Appendix B.4. A description
of our private dataset, technical details, computing infrastructure and sample source code is
provided in Appendix B. The augmentation search using DDA takes 8 hours for our private
dataset and 3 hours for Cholec80.

3.1. Evaluations

As shown in Table 1, compared against the original SimCLR augmentation, a large 6%
improvement can be observed for our DDA on the linear evaluations. The original SimCLR
policy performs similarly to the Base policy (crop and resize) on laparoscopic cholecystec-
tomy datasets. For finetuning on segmentation tasks, augmentations found by our method
can outperform the original SimCLR policy by 1-3%. This can be considered as a signifi-
cant improvement in the context of SSL evaluation (He et al., 2020; Bardes et al., 2022).
Without the augmentation search, using randomly selected operations with our search space
results in a complete collapse of the representations, where the model outputs a constant
vector (Jing et al., 2022). It has been shown in existing work (Jing et al., 2022) that ex-
cessive augmentations could cause dimension or complete collapse. It is worth noting that
the augmentation policy found by DDA avoids selecting an excessive number of operations
by selecting Identical, as shown in Figure 2(c) and 2(d). Compared with SelfAugment,
our method also demonstrated consistently superior performance. On our private SVHM
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Table 1: All results are based on using ResNet-50 as encoder and SimCLR as contrastive
pretraining. Results of the linear probing are reported using mean Average Precision (mAP)
(%), and finetuning on downstream segmentation tasks is reported using mIoU (%). The
best results are in boldface.

Pretraining Dataset Augmentation Sampling
Linear Prob

(Classification)
Finetune

(Segmentation)
Cholec80 Tool SVHM Seg CholecSeg8K

None Supervised - - 55.77 57.79

SVHM

SimCLR N/A 60.00 57.28 56.18
Base N/A 59.01 57.15 58.71

Manual N/A 47.97 54.09 57.11
Random Categorical Complete Collapse N/A N/A

SelfAugment Categorical Complete Collapse N/A N/A
DDA Categorical 65.95 58.29 57.86

Cholec80

SimCLR N/A 67.59 58.29 56.02
Base N/A 67.78 58.36 57.04

Manual N/A 59.00 55.12 59.01
Random Categorical Complete Collapse N/A N/A

SelfAugment Categorical 60.24 58.41 55.86
DDA Categorical 73.59 59.31 59.40

dataset, the augmentation policy found by SelfAugment caused a complete collpase. For
pretraining with Cholec80, DDA outperforms SelfAugment by 13% in the linear evaluations.

3.2. Analysis of the Augmentation Policy Found by DDA
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Figure 2: (a-b) Linear probing accuracy on the Cholec80 Tool dataset with different numbers
of augmentation operations (N). Each data point is an individual run of the experiment,
from augmentation search to pretraining and evaluations. (c-d) Distributions of different
augmentation operations found by our method. In subfigures (a) and (c), results are ob-
tained by pretraining on our private SVHM dataset. In subfigures (b) and (d), results are
obtained by pretraining on the public dataset Cholec80.

In this subsection, we investigate the effect of the different numbers of operations in the
policy for the representation quality. We also examine the policy found by DDA. As shown
in Figure 2(a) and 2(b), the representation quality evaluated by the linear probing shows
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a consistent improvement over the augmentation used by SimCLR and the Base policy.
Similar results for finetuning can be found in Appendix B.4. This consistent improvement
indicates that the commonly used augmentations on natural images appear suboptimal for
a medical dataset such as laparoscopic cholecystectomy (LC).

Semantically 
Different

Semantically 
Similar

DDA

SimCLR 
Augment

Image 1 Image 2

DDA

SimCLR 
Augment

Augmented View 1 Augmented View 2

Figure 3: Illustration of DDA and SimCLR augmented images on SVHM dataset.

To further investigate the difference between the optimal policy for natural images and
policies found by DDA, which are suitable for the medical datasets, we plotted the dis-
tributions of selected operations in Figure 2(c) and 2(d). It can be observed that despite
the different pretraining datasets (our private dataset SVHM and Cholec80), the resulting
policy is similar. Detailed results for each policy are in Appendix B.3. The policy found by
DDA prefers selecting Gaussian Blur, Saturation, Posterize, and Sharpness. One common
characteristic regarding these operations is that they do not change the colour profile of the
image. In the existing literature, it has been shown that an augmentation resulting in an
overlapping view of two different images and semantically similar to each other is beneficial
for contrastive learning (Cai et al., 2020; Wang et al., 2022; Huang et al., 2023; Joshi and
Mirzasoleiman, 2023). In the context of LC images, randomly changing the colour profile to
other random colours is not ideal for creating such an overlapping view, since the majority
of the contents in the images are red. On the other hand, the Gaussian Blur and Pos-
terize could create a blurring effect or decrease the image quality of the image that could
easily create an overlapping view. This is because in LC surgery, motion movement of the
camera and fog generated during anatomy dissection by diathermy hook can degrade image
quality. Similarly, the effect of Sharpness and Saturation could also inherently appear in
the dataset. In Figure 3, we provide a visualisation of augmented images using DDA and
SimCLR augmentation, where DDA can create semantically similar views while SimCLR
augmentation produces different and unrealistic views. Additional augmented images can
be found in Appendix C. In summary, the augmentation policy found by DDA is more
effective (verified by linear probing and finetuning) and well suited to the LC dataset.

4. Conclusion

In this study we introduced DDA, an automatic augmentation search method explicitly
tailored for contrastive learning which considers dimensionality characteristics of the deep
representation. DDA showcases both efficiency and effectiveness in identifying inherently
optimised augmentation policies for laparoscopic images. Our findings emphasize that aug-
mentation policies commonly designed for natural images are suboptimal for the medical
domain. Beyond its application to laparoscopic images, DDA has the potential to be used
in other contexts, particularly in representation learning for medical images.
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Appendix A. DAA Algorithm
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Figure 4: The figure shown on the left is a representation learned by training a SimCLR
model with DDA. These representations are projected onto a 2D space using t-SNE. In this
visualization, the radius, r, indicates the maximum distance from the query to the relevant
neighbourhood, while r1 and r2 represent the distances from the query to the first (NN-1)
and second (NN-2) nearest data points, respectively. The third nearest neighbour (NN-3)
lies on the sphere at the same distance from the query as r.

In Figure 4, we provide an intuitive example of LID, which describes the relative rate at
which its cumulative distance function (CDF), the F (r) increases as the distance r increases
from 0. We use the representation learned by SimCLR and project it into a 2D space using
t-SNE as an example. Considering a radius r for the query point (the red dot), the LID
measures the rate of growth in the number of data objects (blue dots) encountered as the
radius r increases. The LID can be estimated by calculating the distances to its k-nearest
neighbourhoods (orange dots), such as Maximum Likelihood Estimator (MLE) (Levina and
Bickel, 2004) and the Method of Moments (MoM) (Amsaleg et al., 2018).

In Algorithm 1, we present the pseudo-code for applying DDA. On a high level, we use
basic augmentation to train a contrastive learning encoder and then use this encoder to ob-
tain representations of the data. We optimize a differentiable augmentation policy T ∗

w∗,λ∗

with randomly initialized parameters that can maximize the LID of the representations.
The optimized policy can then be used to train the final encoder with contrastive learning.
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Algorithm 1: DDA

Data: Encoder f(·), Dataset Du, policy Tw,λ, learning rate α, neighbourhood size k, number
of epochs E, basic augmentation Tbasic

Result: Optimal policy T ∗
w∗,λ∗

Conduct contrastive learning for f(·) on Du with Tbasic
for e← 1 to E do

for i← 1 to Number of Batches do
x = Sample(Du) ; /* Random sample batch of images */

x′ = Tw,λ(x) ; /* Augment images */

z = f(x′) ; /* Obtain representations */

LIDx′ = estimations(z, k) ; /* LID estimations */

L = - log(LIDx′) ; /* Follow Equation (5) */

(w, λ)
i+1

= (w, λ)
i
- α∇L((w, λ)

(i)
) ; /* Gradient descent on T parameters */

end

end

Appendix B. Experiments

We conducted our experiments on Nvidia A100 GPUs with PyTorch implementation, with
each experiment distributed across 4 GPUs. We used automatic mixed precision due
to its memory efficiency. The implementation of the differentiable search following ex-
isting work (Hataya et al., 2020) and their official code base, as well as the Kornia li-
brary1. A sample of our implementation is available in this anonymous code repository:
https://anonymous.4open.science/r/midl-paper-17.

B.1. Experiment Settings

In this section, we provide details regarding our experiment settings.

Pretraining. For contrastive pretraining, we use SimCLR (Chen et al., 2020a) and ResNet-
50 (He et al., 2016), pretraining for 50 epochs, with a base learning rate of 0.075 with the
square root scaling rule. We use LARS (You et al., 2017) as the optimiser and weight decay
of 1× 10−6. We use batch size of 192 for all experiments.

We constructed a large-scale in-house dataset (SVHM) by prospectively recording 70
laparoscopic cholecystectomy (LC) videos, each for an operative case with diverse disease
severity and anatomical variability (Madni et al., 2018), over three major teaching hospitals
in Australia, the Epworth HealthCare, St Vincent’s Hospital Melbourne public and private
sectors. Procedures followed the same supine approach (Carroll, 1995), and we only con-
sidered data from the initial grasping of the gallbladder up to the cutting of the cystic duct
in 1, 960× 1, 080 pixels.

We perform the pretraining with public datasets Cholec80 (Twinanda et al., 2016), and
our private SVHM dataset. Cholec80 has 400,000 frames from 80 videos at 2 fps. We use
70 videos for the pretraining and resevering the rest 10 vidoes for downstream evaluations.
For our private SVHM dataset, we use 300,000 images dissected at 4 frame-per-second (fps)

1. https://github.com/kornia/kornia
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from 50 videos. We use image size of 480 × 854 pixels for pretraining with Cholec80 and
432× 784 for our private dataset.

Linear Probing and Finetuning. For downstream evaluations, we use the Cholec80 tool
classification dataset (Twinanda et al., 2016) for linear probing, CholecSeg8k (Hong et al.,
2020) and our private labelled dataset (SVHM Seg).

Cholec80 tool dataset (Twinanda et al., 2016) is a multi-class classification task to
determine if the sugical tool is presence in the image. We use 70 videos for training and
the rest 10 videos for evaluations. There is no overlap between the videos for evaluations
and training/pretraining.

CholecSeg8k (Hong et al., 2020) is a labeled subset of Cholec80 where 8,080 frames of
480 × 854 at 25 fps are extracted from 17 videos in Cholec80. We removed frames from
training set that are presence in the test set to ensure no leakage.

Our SVHM Seg dataset is collected from 20 videos and yielded 1,975 frames with a
training dataset of 1,583 frames from 16 videos and a test set of 392 frames from 4 videos
unseen in the training set. The dataset was annotated with 20 classes and validated by
our surgeons, details are in Table 2. There is no overlap between the SVHM Seg test set,
the SVHM Seg training set, or the pretraining SVHM dataset since they are split based on
videos (distinctive operating case).

Table 2: Class description of our SVHM Seg dataset.

Class name Description

Abdominal wall abdominal wall
Background black background beyond circular visual field

Cholangiogram catheter instrument to apply dye-enhanced imaging for bile ducts visulization (includes shaft, trip and catheter)
Clip applicator instrument to apply clips to close cystic artery and duct (includes shaft, trip and catheter)

Common bile duct bile duct drain from hepatic ducts to duodenum
Cystic artery blood supply to the gallbladder
Cystic duct duct draining bile from gallbladder to common bile duct

Diathermy hook shaft diathermy hook instrument - shaft
Diathermy hook tip diathermy hook instrument - tip

Duodenum dection of gastrointestinal tract where common bile duct drains, distal to stomach
Gallbladder gallbladder
Grasper shaft grasping instrument of any kind - shaft
Grasper tip grasping instrument of any kind - tip

Liver all other liver segments
Omentum intra-abdominal fat, includes small bowel

Rouviere’s sulcus cleft on the right side of the liver; important landmark
Scissors shaft instrument to cut tissues and structures
Scissors tip instrument to cut tissues and structures
Segment iv segment of liver to the patient left side of gallbladder

Sucker irrigator cylindrical instrument for suction and irrigation

For linear probing, we follow the standard protocol that adds a linear classification layer
on top of the frozen encoder. Following Ramesh et al. (2023), for the Cholec80 tool dataset,
we use weighted binary cross entropy loss. We use SGD as an optimiser with a learning
rate of 0.1, weight decay of 1.0× 10−4, and batch size of 256 and 80 epochs.

For finetuning on the segmentation task, DeepLabV3+ (Chen et al., 2017) is used for
the segmentation head. For all datasets, we use AdamW (Loshchilov and Hutter, 2019) as
the optimiser with a learning rate of 0.005, weight decay of 0.05, and batch size of 32 and
100 epochs. We use the same image size as used in pretraining.
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B.2. Search Space of the Augmentation

We summarized all selected operations for the search space in Table 3. The augmentation
policy used by SimCLR (Chen et al., 2020a) on ImageNet (Deng et al., 2009) is summarized
in Table 4. For easy comparison, we converted the strength used by SimCLR into the same
scale as our search space. We perform the search for 10 epochs with a learning rate of 0.01,
and Adam (Kingma and Ba, 2014) as the optimiser. This takes around 8 hours for our
private dataset and 3 hours for Cholec80.

For comparison with the Manual, it is manually selected augmentation based on domain
expert. In supervised learning, existing works (Tokuyasu et al.; Silva et al., 2022; Scheikl
et al., 2020; Owen et al., 2022) have shown that rotation by 30 degrees, contrast, Gaussian
noise, and Gaussian blur are commonly used for supervised segmentation tasks. Based
on this domain knowledge, we constructed an additional manual selection policy using
these popular augmentations from the literature. We set the probability of applying each
augmentation to 0.8. The strength for rotation is 30 degrees, the strength for contrast and
Gaussian noise is randomly sampled, and the sigma is set to 0.1 to 2.0 for Gaussian blur
based on the settings from the above-mentioned literature.

For comparison with the baseline method, the SelfAugment (Reed et al., 2021), for
fair comparison and efficiency, we use our differentiable framework instead of the original
Bayesian optimisation. This is more efficient because only one additional proxy linear layer
is required. We adopt the original proxy SSL task, rotation for the proxy linear layer, and
Min-Max (minimize LSS and maximize LNTXent) loss objective defined as the following:

argmin
T

LSS − LNTXent, (6)

where the LSS is the rotation objective function, and LNTXent is following Equation (1).
More simply, instead of applying Equation (5) of the DDA, we apply Equation (6) for the
SelfAugment to compare within our experiment. All other hyperparameters are kept the
same.

We summarize the augmentation policy found by SelfAugment in Tables 5 and 6.

Table 3: List of all image augmentations that the policy can choose from during the search.

Operation Name Description Range of magnitudes

Identical No augmentation N/A

Brightness
Adjust the brightness of the image. A magnitude of 0 does not modify the input image,

whereas magnitude of 1 gives the white image.
[0.0, 1.0]

Contrast
Control the contrast of the image. A magnitude of 0 generates a completely black image,

1 does not modify the input image, while any other non-negative number modifies
the brightness by this factor.

[0.0, 1.0]

Hue
The image hue is adjusted by converting the image to HSV and cyclically shifting the

intensities in the hue channel (H). A magnitude of π and −π give complete reversal of hue
channel in HSV space in positive and negative directions, respectively. 0 means no shift.

[−π, π]

Saturation
Adjust the saturation of the image. A magnitude of 0 will give a black-and-white image,

1 will give the original image, and 2 will enhance the saturation by a factor of 2.
[0.0, 2.0]

Solarize Invert all pixels above a threshold value of magnitude. [0.0, 1.0]

Gaussian Blur
Blurs image with randomly chosen Gaussian blur. The kernel size is kept fixed at (23, 23),

and the magnitude controls the standard deviation to be used for creating a kernel to perform
blurring.

[0.0, ∞ ]

Posterize Reduce the number of bits for each pixel to magnitude bits. [0, 8]
Gray Convert the image to a grey scale. No magnitude parameters. N/A

Sharpness
Adjust the sharpness of the image. Adjust the sharpness of the image. A magnitude of 0

gives the original image, whereas a magnitude of 1 gives the sharpened image.
[0.0, 1.0]
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(1) Identical (2) Brightness (3) Contrast (4) Saturation (5) Hue

(6) Gray (7) GaussianBlur (8) Posterize (9) Solarize (10) Sharpness

Figure 5: Illustration of 10 augmentation operations (1)-(10) in our search space.

Table 4: The augmentation policy used by SimCLR

Augmentations Strengths

Operation No.1 Brightness (80%), Identical (20%) 0.8
Operation No.2 Contrast (80%), Identical (20%) 0.8
Operation No.3 Saturation (80%), Identical (20%) 0.8
Operation No.4 Hue (80%), Identical (20%) 1.26
Operation No.5 Gray (20%), Identical (80%) N/A
Operation No.6 GaussianBlur (50%), Identical (50%) [0.0, 2.0]

Table 5: The augmentation policy was found by SelfAugment(with N = 5) using our private
SVHM dataset as the pretraining dataset.

Augmentations Strengths

Operation No.1 Hue (2%) 1.11
Operation No.2 Contrast (97%), Hue (2%), Saturation (1%) 0.01, 1.06, 1.98
Operation No.3 Brightness (95%), Hue (5%) 0.32, 0.73
Operation No.4 Hue (100%) 1.66
Operation No.5 Saturation (91%), Hue (7%), Brightness (1%), Contrast (1%) 2.00, 1.11, 0.71, 0.25

Table 6: The augmentation policy was found by SelfAugment(with N = 5) using Cholec80
as the pretraining dataset.

Augmentations Strengths

Operation No.1 Saturation(100%) 2.00
Operation No.2 Saturation(100%) 2.00
Operation No.3 Hue (100%) 1.54
Operation No.4 Saturation (89%), Solarize (11%) 2.00, 0.03
Operation No.5 Saturation (54%), Hue (25%), Solarize (14%) Contrast (7%) 2.00, 2.57, 0.79, 0.09
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B.3. Augmentation Policy found by DDA

In this section, we summarize the augmentation policy found by our DDA. For our default
choice N = 5, the found augmentation policy is summarized in Tables 7 and 8. The
augmentation policies corresponding to Figure 2 are summarized in Figures 6 to 10.

Table 7: The augmentation policy was found by DDA(with N = 5) using our private SVHM
dataset as the pretraining dataset.

Augmentations Strengths

Operation No.1 Identical (89%), Posterize (8%), GaussianBlur (2%) N/A, 0.96, [0.22, 0.28]
Operation No.2 Saturation(66%), Sharpness (20%), Posterize (10%) 1.07, 0.06, 0.99
Operation No.3 Identical (93%), Posterize (7%) N/A, 1.00
Operation No.4 Identical (99%) N/A
Operation No.5 GaussianBlur (100%) [0.17, 0.98]

Table 8: The augmentation policy was found by DDA(with N = 5) using Cholec80 as the
pretraining dataset.

Augmentations Strengths

Operation No.1 Identical (54%), GaussianBlur (34%), Posterize (8%) N/A, [0.16, 0.53], 1.00
Operation No.2 Saturation(90%), GaussianBlur (5%), Hue (4%) 1.12, [0.14, 0.17], -1.32
Operation No.3 Identical (100%) N/A
Operation No.4 Identical (100%) N/A
Operation No.5 GaussianBlur (100%) [0.17, 0.79]
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on each cell indicates the probability of such augmentation being selected in corresponding
operation.
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Figure 7: Augmentation policy found by DDAwith N = 4 on the Cholec80 dataset. The
operation number is indicated on y-axis, and augmentation choices on x-axis. The number
on each cell indicates the probability of such augmentation being selected in corresponding
operation.
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Figure 8: Augmentation policy found by DDA with N = 5 on the Cholec80 dataset. The
operation number is indicated on y-axis, and augmentation choices on x-axis. The number
on each cell indicates the probability of such augmentation being selected in corresponding
operation.
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Figure 9: Augmentation policy found by DDA with N = 6 on the Cholec80 dataset. The
operation number is indicated on y-axis, and augmentation choices on x-axis. The number
on each cell indicates the probability of such augmentation being selected in corresponding
operation.
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Figure 10: Augmentation policy found by DDA with N = 8 on the Cholec80 dataset. The
operation number is indicated on y-axis, and augmentation choices on x-axis. The number
on each cell indicates the probability of such augmentation being selected in corresponding
operation.
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B.4. Additional Results

Table 9: Extended table of Table 1 with Argmax sampling. All results are based on using
ResNet-50 as encoder and SimCLR as contrastive pretraining. Results of the linear probing
are reported using mean Average Precision (mAP) (%), and finetuning on downstream
segmentation tasks is reported using mIoU (%). The best results are in boldface.

Pretraining Dataset Augmentation Sampling
Linear Prob

(Classification)
Finetune

(Segmentation)
Cholec80 Tool SVHM Seg CholecSeg8K

SVHM

SimCLR N/A 60.00 57.28 56.18
Base N/A 59.01 57.15 58.71

Random Argmax Complete Collapse N/A N/A
Random Categorical Complete Collapse N/A N/A

SelfAugment Argmax Complete Collapse N/A N/A
SelfAugment Categorical Complete Collapse N/A N/A

DDA Argmax 60.13 57.64 56.19
DDA Categorical 65.95 58.29 57.86

Cholec80

SimCLR N/A 67.59 58.29 56.02
Base N/A 67.78 58.36 57.04

Random Argmax Complete Collapse N/A N/A
Random Categorical Complete Collapse N/A N/A

SelfAugment Argmax 62.28 58.41 58.07
SelfAugment Categorical 60.24 58.41 55.86

DDA Argmax 72.02 58.86 55.09
DDA Categorical 73.59 59.31 59.40
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Figure 11: (a-b) Pretraining on our private dataset. Each data point is an individual run of
the experiment, from augmentation search to pretraining and evaluations. (c-d) Pretraining
on the public the dataset Cholec80. In subfigures (a) and (c), results are showing finetuning
on our private SVHM Seg dataset. In subfigures (b) and (d), results are showing finetuning
on the public dataset CholecSeg8k.

In Table 9, we present extended results for using the Argmax sampling for the final
policy. It can be observed that sampling from categorical distributions results in better
performance. As a result, we use sampling from categorical distributions as default for
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Table 10: Extended table of Table 1 with MOCO contrastive pretraining. All results are
based on using ResNet-50 as encoder. Results of the linear probing are reported using
mean Average Precision (mAP) (%), and finetuning on downstream segmentation tasks is
reported using mIoU (%). The best results are in boldface.

Pretraining Dataset Loss Objective Augmentation
Linear Prob
(Classification)

Finetune
(Segmentation)

Cholec80 Tool SVHM Seg CholecSeg8K

SVHM

SimCLR SimCLR 60.00 57.28 56.18
SimCLR DDA 65.95 58.29 57.86
MoCo MoCo 53.94 57.03 58.60
MoCo DDA 57.35 57.81 58.91

Cholec80

SimCLR SimCLR 67.59 58.29 56.02
SimCLR DDA 73.59 59.31 59.40
MoCo MoCo 61.75 57.89 55.89
MoCo DDA 61.83 58.29 57.20

our DDA. Note that the SimCLR augmentation policy also uses sampling from categorical
distributions (see Table 4).

In Figure 11, we plotted additional results for finetuning on CholecSeg8k and our Private
Seg dataset. All details are the same as in Figure 2. It can be observed that it can either
outperform or be on par with the SimCLR policy. We believe that the result in Figure
11(b) that slightly under-perform to the Base policy is due to the data distribution difference
between our SVHM dataset and Cholec80. It is worth noting that slightly under-performing
in a few finetuning tasks is common in SSL evaluations, and the main evaluation metric
is the linear evaluations (Bardes et al., 2022; Huang et al., 2024). The goal of the SSL
is learning general representations; on average, DDA demonstrates solid improvement over
existing methods.

B.5. Ablation Study on the Basic Augmentation for the Initial Encoder

For the initial encoder, we used image cropping due to its importance and effectiveness
in contrastive learning. This has been studied in existing works on both natural images
(Chen et al., 2020a) and X-ray images (Van der Sluijs et al., 2023). Other augmentations
are also plausible. We performed an experiment with rotation as the initial augmentation
choice. The experiment is conducted with the public dataset Cholec80, and the downstream
evaluations are the same as the main paper. Results are in Table 11. It can be observed
that using rotation can also outperform the baseline methods. However, image cropping as
base for DDA is indeed more effective compared to rotation.

B.6. Application on Other Datasets

Although in this paper, we mainly focused on the laparoscopic images, DDA can also be
applied in other domains. In this subsection, we perform an experiment with an X-ray
image dataset, CheXpert (Irvin et al., 2019) and the natural image dataset, CIFAR10
(Krizhevsky and Hinton, 2009). All experimental settings are the same as our main paper.
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Table 11: All results are based on using ResNet-50 as encoder and SimCLR as contrastive
pretraining. Results of the linear probing are reported using mean Average Precision (mAP)
(%), and finetuning on downstream segmentation tasks is reported using mIoU (%). The
best results are in boldface.

Initial Augmentation Augmentation
Linear Prob (Classification) Finetune

Cholec80 Tool SVHM Seg CholecSeg8K

N/A SimCLR 67.59 58.29 56.02
N/A Base 67.78 58.36 57.04

Image Cropping DDA 73.59 59.31 59.40
Rotation DDA 72.38 58.02 59.26

For CheXpert, we removed the operation converting to gray scale from the search space
since X-ray images are already gray scale. Results reported using macro area under the
ROC Curve (AUROC) with linear probing. For CIFAR10, the search space is the same as
our main paper, and results are reported as classification accuacy. Results are in Table 12

Table 12: For CIFAR10, the results are reported with classification accuracy. For CheXpert,
the results are reported as macro AUROC.

Dataset Augmentation Linear Prob

CheXpert
SimCLR 72.4
DDA 71.5

CIFAR10
SimCLR 92.2
DDA 91.6

It can be observed that DDA performs similarly with SimCLR on X-ray images. This
does not indicate that DDA is not effective. This is because SimCLR policy is already
performing in the optimal range. This dataset is also used by Van der Sluijs et al. (2023).
They conducted a grid search for the optimal augmentation policy on X-ray images. By
conducting grid-search, they tried different combinations to find the best one. They reported
Macro AUROC with optimal augmentation operations on this dataset is in the range of 68.8
to 73.6. This indicates that the SimCLR augmentation policy behaves differently with X-
ray images compared to laparoscopic images. This result also indicates that DDA can find
suitable augmentation for X-ray images. In the SimCLR paper (Chen et al., 2020a), the
authors also conducted a grid search on CIFAR10 to find the optimal policy. It can be
observed that DDA can also find suitable augmentation for natural images.

In existing works (Chen et al., 2020a; Van der Sluijs et al., 2023) that conduct a grid
search, one needs to perform the pretraining on every possible combination of the augmenta-
tion. For DDA, it just needs the pretraining once, regardless of the number of combinations.
Although the DDA result might not be the best one, it is very close to the best-performing
one. The efficiency of DDA makes it very suitable for other medical images, which often
have different characteristics.
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Appendix C. Visualisations of the Augmented Images

In this section, we show the augmented images. For a batch of randomly selected images
with no augmentation applied in Figure 12, Figure 13 shows the augmented images using
our DDA, Figure 14 shows the augmented images using SimCLR policy, Figure 15 shows the
augmented images using SelfAugment augmentation, and Figure 16 shows the augmented
images using random augmentation. To demonstrate the overlapping view we discussed in
Section 3.2, for every image shown in Figures 13 and 14, considering how easily to find
another image that is visually similar to itself. Since laparoscopic cholecystectomy (LC)
dataset contents are predominantly red in colour, a green gallbladder in the first row, the
second and third columns from the top left corner of Figure 14, is very unlikely to match
with other images. As a result, augmentation operations like Hue that change colour profiles
are unsuitable in LC. Augmentation policies found by DDA(summarized in Section B.3) are
inherently more suitable for the dataset it is searched on.

Figure 12: Visualisations of the images in our private dataset with no augmentation applied.
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Figure 13: Visualisations of the images in our private dataset with the augmentation policy
found by DDA(N = 5).

Figure 14: Visualisations of the images in our private dataset with the SimCLR augmenta-
tion policy.
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Figure 15: Visualisations of the images in our private dataset with the SelfAugment aug-
mentation applied.

Figure 16: Visualisations of the images in our private dataset with random augmentation
applied.
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