
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MASTER SKILL LEARNING WITH POLICY-GROUNDED
SYNERGY OF LLM-BASED REWARD SHAPING AND
EXPLORING

Anonymous authors
Paper under double-blind review

ABSTRACT

The acquisition of robotic skills via reinforcement learning is crucial for advanc-
ing embodied intelligence, but designing effective reward functions for complex
tasks remains challenging. Recent methods that use large language models to
generate reward functions from language instructions can reduce manual effort,
but they often produce overly goal oriented rewards that neglect state exploration
and cause agents to get stuck in local optima. Traditional RL addresses this by
adding exploration bonuses, but these are typically generic and inefficient, wast-
ing resources on exploring task-irrelevant areas. To address these limitations, we
propose Policy-grounded Synergy of Reward Shaping and Exploration (PoRSE),
a unified framework that uses large language models to generate task-aware goal
rewards and to construct an abstract affordance state space that guides structured
and relevant exploration. PoRSE integrates these components through an in-policy
improvement process that continuously proposes, evaluates, and filters reward and
exploration configurations without requiring policies to train from scratch. This
synergy enables more efficient policy learning and stabilizes continual optimiza-
tion. Experiments across 24 robotic manipulation and locomotion tasks show that
PoRSE consistently outperforms prior state-of-the-art LLM-based reward-design
methods and achieves the first successes on several previously unsolved challeng-
ing tasks.

1 INTRODUCTION

Training embodied robots with deep reinforcement learning (DRL) has achieved promising results
in acquiring specific skills Celik et al. (2024); Tang et al. (2024), with applications in autonomous
driving Coelho et al. (2024), robotic arm manipulation Wen et al. (2025), and legged locomotion
control Liang et al. (2024). For example, in legged robot walking tasks, speed rewards encourage
forward movement, while stability rewards penalize posture deviations Liang et al. (2024). How-
ever, designing effective reward functions typically requires extensive domain knowledge and man-
ual tuning by human experts, making the process time-consuming and labor-intensive Booth et al.
(2023).

The recent success of large language models (LLMs) Liang et al. (2023); Minaee et al. (2024);
Brohan et al. (2023) and their ability to perform logic reasoning opened new possibilities for reward
design in robotic skill learning Zeng et al. (2024); Fu et al. (2024); Venuto et al. (2024). Language
to Reward (L2R) Yu et al. (2023) generates modular reward function compositions based on natural
language instructions and then uses Model Predictive Control (MPC) to solve robot actions online.
Eureka Ma et al. (2023) employs an evolutionary search framework to iteratively optimize reward
functions, outperforming human-designed rewards across various robotic tasks. To enhance training
efficiency, ROSKA Huang et al. (2025) proposes a reward-policy co-evolution strategy that leverages
the knowledge of previously trained policies without the need to start from scratch when rewards
are adjusted.

Current LLM-driven approaches, though advanced, rely solely on task-specific textual descriptions
for reward design, leading to goal-oriented preferences while neglecting state exploration Chen et al.
(2022); Devidze et al. (2022). This limitation is particularly problematic in high-degree-of-freedom

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Eureka ROSKA PoRSE (Ours)

 LLM
Design

Affordance State
Mapping Function

Goal-oriented Reward
Function

 LLM
Trade off

Goal-Oriented Rewards

Exploration Bonuses

Exploration Bonuses

s1 s2 sg

counts

0

 LLM
Design

Generation

Feedback

Evaluation

RL Training

Goal-oriented Reward
Function

Performance

Random Policy

 Train from Scratch

LLM
Design

Generation

Feedback

Evaluation

RL Training

Goal-oriented Reward
Function

Previous Policy

 Train from Previous Policy Previous Policy

 Train from Previous Policy

Generation

Feedback

Evaluation

Performance

Performance
Goal Explore

Performance

Figure 1: Comparison of PoRSE with prior methods. Eureka Ma et al. (2023) uses LLMs to design
reward functions and optimizes them via RL feedback. ROSKA Huang et al. (2025) co-evolves
rewards and policies based on historical policies. Our PoRSE guides LLMs to create task-aware
rewards and constructs an abstract functional space for efficient exploration.

robotic tasks, such as dexterous manipulation involving object throwing and catching, where the
policy search space is vast and target states are sparse, causing agents to get stuck in local optima.
While exploration bonuses can partially address this issue Pathak et al. (2017); Tang et al. (2017),
existing methods Ostrovski et al. (2017) do not link exploration to task objectives, resulting in in-
efficient exploration of irrelevant states Wang et al. (2024). Moreover, conventional RL methods
require manual tuning of the trade-off ratio between goal-oriented behavior and state-space explo-
ration for each task, with this ratio fixed from the start of policy training regardless of subsequent
policy progress.

To tackle the previously discussed challenges, we introduce Policy-grounded Synergy of Reward
Shaping and Exploration (PoRSE), a novel, unified framework, as shown in Fig. 1. PoRSE em-
powers LLMs to create task-specific reward functions and simultaneously constructs an abstract
affordance state space (AFS) for efficient exploration. In particular, PoRSE goes beyond traditional
task-unrelated exploration bonus methods. It harnesses LLMs to design an affordance state space,
which condenses high-dimensional environmental states into a low-dimensional, discrete space rele-
vant to the task at hand. By tracking the frequency of visits to these task-relevant AFS, we formulate
a curiosity-driven exploration bonus that is tightly aligned with the task objectives as well as the
policy behavior.

Given the near-infinite combinatorial space of goal-oriented reward functions and affordance state
spaces, exhaustively training policies for each combination to find the best combination as well as its
trade-off ratio is infeasible. To address this, PoRSE employs an in-policy-improvement grounding
process (IPG), which leverages real-time policy performance feedback to guide LLMs in refining
reward-bonus configurations and dynamically balancing their trade-offs. Firstly, IPG incorporates
an LLM-bootstrapping elimination-expansion filtering mechanism to efficiently search for optimal
reward-bonus combinations and ratio trade-offs across policy improvement stages. Such a filter-
ing mechanism is achieved via coordinate optimization—fixing one variable while optimizing an-
other. By doing so, it simplifies the complex and intertwined search process, greatly reducing the
search space and difficulty. Secondly, to effectively integrate the new knowledge acquired dur-
ing the IPG process into the existing policy, IPG adopts a policy fusion approach similar to that
in ROSKA Huang et al. (2025). However, we enhance it by using fast LLM-aided optimization
to streamline the determination of the fusion ratio, eliminating the need for cumbersome Bayesian
optimization.

Our PoRSE framework masters skill acquisition by integrating goal-oriented reward functions and
affordance state space into the IPG process, creating a self-reinforcing cycle where reward shap-
ing, exploration, and policy refinement enhance each other. Experiments on 24 robotic tasks, from
dexterous manipulation to legged locomotion, show PoRSE achieves significant average return im-
provements and gains breakthroughs in two previously unsolved complex manipulation tasks, setting
new milestones in robotic skill acquisition.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Reward Design for Robot Skill Learning. Designing effective reward functions remains a core
challenge in reinforcement learning (RL) Eschmann (2021). Traditional approaches heavily rely on
manual design, requiring extensive domain expertise Booth et al. (2023); Eschmann (2021). Re-
cent studies have explored leveraging large language models (LLMs) to automate reward design
Kwon et al. (2023); Zhou et al. (2024); Cao et al. (2024). The Eureka framework Ma et al. (2023)
employs LLMs to generate executable reward codes, achieving human-level performance across
diverse robotic tasks. ROSKA Huang et al. (2025) enhances data efficiency through reward-policy
co-evolution. REvolve Hazra et al. (2024) proposes an evolutionary framework that leverages LLMs
and human feedback to iteratively refine reward functions. However, the rewards designed by exist-
ing methods lack a certain exploration mechanism. In contrast, our method introduces an efficient
exploration reward that can dynamically adjust between rewards as the policy is optimized, achiev-
ing efficient training of the policy.

Curiosity-driven exploration. In sparse reward tasks, direct policy learning faces challenges of
insufficient exploration Ng et al. (1999); Hare (2019); Li et al. (2020). Traditional solutions rely
on manually designing dense reward functions, but this process is both time-consuming and brittle.
Count-based intrinsic reward mechanisms incentivize exploration by rewarding less-visited states
based on visitation frequency statistics Kolter & Ng (2009); Tang et al. (2017). Existing methods set
exploration bonuses independently of task objectives, causing agents to waste resources exploring
task-irrelevant states. In contrast, PoRSE employs task-relevant state exploration rewards, effec-
tively addressing this limitation by directing exploration toward states that genuinely contribute to
task performance.

3 PRELIMINARY

RL-based Robot Skills Acquisition. Skill learning for robots via reinforcement learning can be
formalized as a Markov Decision Process (MDP), where the agent interacts with the environment
E. The MDP is defined by a quintuple (S,A, P,R, γ), consisting of the state space S, action space
A, transition probability P , reward R, and discount factor γ ∈ (0, 1]. At each time step t, the
robot observes state st ∈ S, selects action at ∈ A according to policy π(st), transitions to st+1 ∼
P (·|st, at), and receives reward rt = R(st, at, st+1). The return for state st is the cumulative γ-
discounted reward:

∑T
i=t γ

i−tri. The objective of policy optimization is to maximize the expected
cumulative return. We define θp as the policy parameters after p updates: θp = I(R, θ0, p), where
θ0 are the randomly initialized policy parameters, and I(R, θ, p) represents the policy improvement
process given reward function R over p environment steps.

Reward Function Generation via LLMs. Large Language Models (LLMs) have shown strong
capabilities in code generation and reasoning for robotic learning tasks, enabling automated reward
function generation in reinforcement learning. The Eureka framework Ma et al. (2023) uses LLMs
to design reward functions Rg based on task goal descriptions Id and environment code Ie. Eureka
employs a multi-iteration optimization approach: in the n-th iteration, the best reward function
Rn−1

g, best from the previous iteration and the sparse reward evaluation V (π) of the trained policy π are
fed back to the LLM to generate optimized reward functions, as shown in Eq. equation 1:

Rn
g = LLM(Id, Ie, R

n−1
g,best, V (π)), (1)

where V (π) is a sparse reward array reflecting the policy’s optimization trend. Each generated
reward function trains a policy from scratch for Tmax epochs, and the reward function yielding the
highest task performance is selected as the best for this iteration, as shown in Eq. equation 2:

Rn
g, best = argmax

Rn
g,k∈Rn

g

V
(
I(Rn

g,k, θ0, Tmax)
)
. (2)

Through this iterative process, the LLM improves reward functions based on feedback, enhancing
robotic skill learning performance.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Affordance State
Exploration Bonuses

Goal-oriented
Rewards

EvaluationTask Description

Prompt to deepseek-v3: To banlance State
Exploration and Goal-oriented Reward ... LLM

Trade-off

Weighting Parameter
Filtering the Best
Reward Function������

�

������
�

������
�

RL Training

... ...

Update

Best
Policy ��

Random
 Policy ��

New
Policy ��

Initialize Policy Network

Evaluation of the Best Policy

Position-based reward

Velocity-based reward

Goal-Oriented Rewards

Dist object to goal

Avg distance

State-Exploration Bonuses

Model Score0.17 0.32
0.51 0.66

Policy Training Performance

Score

Policy
fusion

Prompt to deepseek-v3:To
write reward functions to solve
R L t a s k s a s e f f e c t i v e a s
possible, the key is to craft
rewards that precisely align
with the desired objectives…

LLM

Feedback

0 countss1 sg s2

bonus ��

Goal-oriented Reward Function

sg

s1

s2

s3
s4

Policy-Grounded Synergy of Reward Shaping and Exploring

��

� − ��

��

� − ��

��

� − ��

������
� = �� ∗ �� + (� − ��) ∗ ��

��

� − ��

��

� − ��

s1 s2 sg

counts

0

Position-based Reward:
For each object, compute exponential distance
reward:

����
� = ��� (−��/����)

Velocity-based Reward:
For each object, compute velocity stability reward:

����
� = ��� (−��/����)

...

Prompt to deepseek-v3: To
identify the affordances that
are maximally relevant for
measuring progress in the
task ...LLM

Affordance State Mapping Function

Dist object to goal :
Measure the distance between the current position
and the goal position:

����� = ||������� − �����||�
Avg distance:
Measure average distance from ...
...

Affordance State Space

Score

Training Epochs

������
�

������
�

������
�

������
�

������
�

Best
Policy

������
�’

������
�’

Figure 2: Overview of PoRSE. It leverages LLMs to generate goal-oriented rewards while building
an affordance mapping function for exploration bonuses. These rewards are dynamically combined
to optimize policies. An iterative feedback loop continuously refines rewards and affordance state
space, creating a co-evolutionary system.

4 METHOD

The methodology section is organized as follows: Sec . 4.1 introduces an abstract affordance state
space for an efficient state-exploration bonus, which is combined with goal-oriented rewards for pol-
icy training. Sec . 4.2 proposes a dynamic exploration-exploitation adjustment mechanism guided
by policy feedback. To avoid costly training of numerous reward-bonus combinations, we employ
policy inheritance and a tournament elimination mechanism. Sec . 4.3 deepens the interplay between
goal-oriented behavior, state exploration, and policy learning, showing how their collaborative opti-
mization accelerates skill acquisition. The overall framework of the method is shown in Fig. 2. The
following sections detail each component.

4.1 GOAL-RELEVANT EXPLORATION BONUS GENERATION

4.1.1 AFFORDANCE STATE VISITING COUNT AS EXPLORATION BONUS.

To prevent the robot from exploring irrelevant states and ensure efficient policy optimization, we
introduce a task-relevant exploration bonus based on a curiosity-driven method Pathak et al. (2017);
Tang et al. (2017). As shown in Fig. 2, we map the robot’s state space S to a low-dimensional
Affordance State Space (AFS) So using a mapping function M : S → So. Each dimension of
So quantifies the distance between the robot’s current state and the goal state based on specific
behavioral affordances. For example, in the DoorOpenInward task, So = [sdo, s

l
a], where sdo is

the Euclidean distance to the door handle, and sla is the door’s angular displacement. We design the
exploration bonus by computing the agent’s visitation frequency to each state in the AFS. Frequently
visited states receive lower bonuses, while less-explored states receive higher bonuses. To facilitate
counting, we discretize the continuous AFS using a function D(So), resulting in C discrete states
So,d = D(So). Accordingly, our exploration bonus Re is defined as follows:

Re(so) =
λ√∑T

t=1 I(sto,d = sco,d)
. (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Here,
∑T

t=1 I(sto,d = sco,d) counts the number of times the state sco,d has been visited, and λ is the
weight parameter that regulates the exploration bonus.

However, defining the affordance state space for each robotic task is undoubtedly time-consuming
and labor-intensive. To address this, we leverage the task-parsing capabilities of LLMs, using task
descriptions as instructions to guide the model in automatically setting the state mapping function
M for each robotic task. This can be defined as: Mn = LLM(Id, Ie).

Given that the exploration bonus is inherently grounded in the affordance state space, which is
closely associated with the task, this effectively encourages the agent to explore task-relevant states
while mitigating excessive exploration of goal-irrelevant states. We then combine the exploration
bonus with the goal-oriented reward Rg from Eq equation 1 , the total reward function is formulated
as follows:

Rk
total(s) = Rk

e +Rk
g , Rg ∈ Rn

g . (4)

4.1.2 REWARD-BONUS REFINEMENT.

To enhance the quality of goal-oriented reward and state-exploration bonus, following the previous
method Eureka Ma et al. (2023), we feed the evaluation data of the policy back to LLMs and perform
multi-iteration refinement of the reward and bonus. Specifically, we adopt the iterative optimization
approach shown in Equ. (1) to optimize the goal-oriented reward function Rg . For the exploration
bonus, we similarly guide LLMs to adjust the mapping function Mn of the AFS based on policy
feedback. The key difference lies in the LLM prompt design: instead of using the best reward
function from the previous iteration as instructions, we now use the best AFS mapping function
Mn−1

best from the previous iteration as a reference sample. Formally:

Mn = LLM(Id, Ie,Mn−1
best , V (θ)), (5)

This iterative process enables co-evolution between the reward functions and mapping functions,
progressively improving the exploration efficiency of the RL agent.

4.2 IN-POLICY-IMPROVEMENT GROUNDING PROCESS (IPG)

To balance the state-exploration bonuses Re and goal-oriented rewards Rg for policy improvement,
we employ a weighted summation approach, formulating the total reward as follows:

Rk
total = β ∗Rk

e + (2− β)Rk
g , β ∈ [0, 2], Rg ∈ Rn. (6)

where β serves as the weighting parameter to balance the contributions of the two components. Con-
sequently, the weighting parameter β plays a critical role in balancing the agent’s exploration and
exploitation behaviors. To determine an proper value for β, we leverage the data analysis capabilities
of LLMs to evaluate the policy performance feedback V (θ), thereby generating a set of potential β
values: Bn = LLM(Id, V (θ)). Bn denotes a set comprising K distinct β values, formally defined
as: Bn = [βn

1 , β
n
2 , . . . , β

n
K].

4.2.1 LLM-BOOTSTRAPPING ELIMINATION-EXPANSION FILTERING (LEF).

Since each β consumes resources during the continuous optimization of the policy, we introduce an
elimination mechanism to reduce the computational resources required for policy optimization, as
shown in the top of Fig. 2. We define an exploration-goal reward pair as a combination of a state-
exploration bonus Re, a goal-oriented reward Rg , and a reward weight coefficient β. A set of such
pairs is denoted as N = {(β1, Re,1, Rg,1), · · · , (βN , Re,N , Rg,N)}. During the parallel training
of N exploration-goal reward pairs, we conduct an elimination process after every H epochs of
all policy training, removing the lowest-performing pair based on the current policy’s performance.
This process is similar to the linear population reduction mechanism in the L-SHADE algorithm
Tanabe & Fukunaga (2014). To further improve the quality of β, we incorporate an expansion
mechanism inspired by the PSO algorithm Priyadarshi & Kumar (2025). Specifically, after the
elimination process, the best-performing reward-bonus combination among the survivors is used as
the base for expansion, introducing J new mutated β values. This cycle of elimination and expansion
alternates iteratively, enabling continuous exploration for better β configurations.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Pen DoorOpenOutward Scissors DoorCloseInward BottleCap GraspAndPlace CatchOver2 Over

LiftUnderarm CatchUnderarm BlockStack CatchAbreast Anymal Quadcopter Humanoid FrankaCabinet

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

-0.5

-1

0

-0.5

-1.3

0

5

10

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Sparse Human Eureka ROSKA PoRSE

M
T
S

Figure 3: MTS Performance Comparison on Moderate-Difficulty Manipulation Tasks. Compared to
other baselines, PoRSE achieved the best results on 15 tasks.

4.2.2 LEVERAGE PREVIOUS KNOWLEDGE VIA POLICIES INHERITANCE.

To address the inefficiency of retraining policies from scratch for each reward-bonus refinement
iteration, we adopt a strategy similar to ROSKA Huang et al. (2025), blending the best previous
policy parameters θbest with a stochastic policy θrandom:

θf (α) = α · θbest + (1− α) · θrandom, (7)

where α ∈ [0, 1] is the fusion ratio. ROSKA uses Bayesian optimization to find the optimal α, which
is computationally expensive due to repeated policy training and data collection.

Instead, we dynamically adjust α using the LEF method: αnew = LLM(Id, V (θ)), where α is op-
timized via elimination and mutation strategies. This approach avoids the need for collecting ratio-
performance sample pairs, reducing computational cost while maintaining an effective exploration-
exploitation balance.

4.3 POLICY-GROUNDED SYNERGY OF REWARD SHAPING AND EXPLORATION

In the PoRSE framework, goal-oriented rewards and state-exploration bonus, and policies are syner-
gistically optimized to facilitate efficient robot skill acquisition. The goal-oriented reward (Rg) pro-
vides precise guidance for achieving task objectives through reward signals. The state-exploration
bonus (Re) is designed within an affordance state space, encouraging the policy to explore unvisited
state regions. These two components are fused using a weighting coefficient β, and dynamically
adjust the weighting coefficient β based on the real-time performance of the policy. When the pol-
icy’s performance stagnates or deteriorates, β increases to emphasize the exploration bonus, helping
the policy escape local optima. Conversely, when the policy demonstrates effective optimization
and progressively achieves the task objectives, β decreases to strengthen the goal-oriented reward,
accelerating the attainment of the target state. Through iterative cycles of synergistic optimization
among these three components, the PoRSE framework enables efficient learning of complex skills.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Training Setting. In all experiments, we used the PPO algorithm Schulman et al. (2017); Makovi-
ichuk & Makoviychuk (2021) for policy training with the DeepSeek-V3 model Liu et al. (2024).
Our approach runs N = 5 iterative rounds, each generating K = 6 reward-mapping pairs for train-
ing. In each round, after every H = 500 epochs, the lowest-performing policy is eliminated. At
the 1500-epoch mark, J = 5 mutated pairs are introduced, and the lowest-performing 6 pairs are
eliminated. Subsequently, every H = 500 epochs, the worst pair is removed. Only one policy
completes the full 3000 epochs per round. We alternate between reward coefficient β-based and
policy inheritance coefficient α-based mutation searches across iterations. For comparison, Eureka
and ROSKA also generate 6 reward functions per round over 5 rounds, with each trained for 3000
epochs. Sparse rewards and human-designed rewards follow the same setup. We record the best

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

DoorCloseOutward SwingCupKettle TwoCatch PushBlock DoorOpenInward ReOrientation Switch

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

Sparse Human Eureka ROSKA PoRSE

M
T
S

Figure 4: MTS Performance Comparison on Hard Manipulation Tasks. PoRSE achieved the best
results on all 8 difficult tasks.

result per experiment using 5 random seeds. The computational cost for our method, Eureka, and
ROSKA is nearly identical across experiments. Additional settings are detailed in the appendix.

Benchmark. We conducted experimental evaluations on 24 robotic skill learning tasks across two
simulation environments: Bi-DexHands Chen et al. (2022) and Isaac Gym Makoviychuk et al.
(2021). Specifically, 20 tasks originated from Bi-DexHands, while the remaining 4 were from
Isaac Gym. Bi-DexHands serves as a benchmark environment for dexterous bimanual manipulation
tasks, focusing on evaluating robotic systems’ capability to perform complex manipulation using
both hands. In contrast, Isaac Gym provides a benchmark for continuous control in robotics, en-
compassing skill learning tasks involving legged robots and manipulator arms, among other robotic
platforms. In order to improve readability, we have adopted abbreviations for some tasks, and the
complete task names are provided in the appendix.

Evaluation Metrics. In our experiments, we utilized Maximum Training Success (MTS) as the
principal evaluation metric. MTS quantifies the highest sparse reward attained during training, serv-
ing as a critical indicator of policy efficacy.

Baseline Methods. We compared the performance of our method against four baseline approaches:
Sparse rewards Ma et al. (2023), human-designed rewards Makoviychuk et al. (2021), Eureka Ma
et al. (2023), and ROSKA Huang et al. (2025). Sparse Rewards refers to reward settings that
express the task objective,and are defined in EurekaMa et al. (2023). Human Expert-Designed
Rewards are carefully designed by human experts, and more refined compared to sparse rewards.
Eureka is a general framework that automatically generates reward functions leveraging LLM Ma
et al. (2023). ROSKA is a robot skill learning framework Huang et al. (2025). PoRSE is our
method.

5.2 COMPARISON RESULTS.

We categorized the 24 reinforcement learning tasks in this study into two difficulty levels—moderate
and hard—based on training scores using human-designed rewards. Results for each level are pre-
sented in separate tables.

Performance Comparison on Moderate-Difficulty Manipulation Tasks. Experimental results in
Fig. 3 demonstrate PoRSE’s superiority in Maximum Training Success (MTS). PoRSE achieved
perfect MTS (1.000) in 5/16 tasks (e.g., Pen, Scissors), outperforming the human baseline by 1.6%-
3.5%. In GraspAndPlace, PoRSE reached MTS 0.984 (25.3% better than human baseline 0.785).
The only exception was Humanoid locomotion, where Roska (8.917) slightly outperformed PoRSE
(8.454, +5.2%), due to bipedal tasks favoring goal-oriented rewards. However, PoRSE excelled
in Anymal (MTS -0.012, +42% vs. human baseline -0.021). Overall, PoRSE achieved leading
performance in 15/16 tasks, confirming its effectiveness across diverse robotic scenarios.

Performance on Hard Manipulation Tasks. In challenging manipulation tasks, PoRSE demon-
strated superior performance through its integrated optimization mechanism, as shown in Fig. 4. It
achieved perfect MTS (1.000) in DoorCloseOutward and Kettle tasks, outperforming Eureka (0.553,
0.742). As shown in Fig. 4, PoRSE attained a significant improvement over the human baseline
in DoorOpenInward, and was the first to solve TwoCatch (MTS 0.349). In BlockStack, PoRSE
achieved MTS 0.753, significantly surpassing ROSKA (0.148). These results validate PoRSE’s ef-
fectiveness in sparse reward scenarios and high-dimensional action spaces.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

LiftUnderarm

TwoCatch

Figure 5: Results show that all methods can guide the policy to optimize in simple tasks, but PoRSE
achieved the best results. For complex tasks, only PoRSE can effectively guide policy optimization,
and both Eureka and ROSKA methods are ineffective.

Iterative Training Performance Comparison. As shown in Fig. 5, we compare PoRSE’s with
Eureka and ROSKA on LiftUnderarm (simple) and TwoCatch (complex) tasks. In LiftUnderarm,
PoRSE reached a 0.97 success rate by Iteration 5 (1500 episodes), outperforming Eureka (0.6) and
ROSKA (0.8) and converging faster. In TwoCatch, where Eureka and ROSKA failed (success=0),
PoRSE achieved a 0.4 success rate by Iteration 5, with a tenfold increase from Iteration 1, highlight-
ing its effectiveness in handling sparse rewards and refining policies.

5.3 ABLATION STUDIES

Ablation Study Questions. This section conducts ablation experiments to investigate: (1) How
goal-oriented rewards, state-exploration bonuses, and policy inheritance in PoRSE, and their indi-
vidual contributions? (2) The roles of reward-bonus coefficient β and policy inheritance coefficient
α, and whether their alternating iteration is necessary? (3) How do different β values affect policy
optimization, and the relative importance of reward components? (4) Is PoRSE’s iterative reward
optimization process necessary? (5) How robust is PoRSE when the Affordance State Space is noisy
or randomly assembled?

Component-wise Ablation Analysis. This ablation study examines the roles of goal-oriented re-
wards (Rg), exploration-oriented bonuses (Re), and dynamic policy fusion inheritance (θfusion) in
PoRSE. As shown in Tab. 1, removing Rg significantly degrades performance in precision tasks
like TwoCatch (0.349 → 0.190) while retaining reasonable performance in manipulation tasks like
FrankaCabinet (0.883, -7.7%). Removing Re reduces performance in exploration-requiring tasks,
with BlockStack dropping from 0.753 to 0.393 and TwoCatch from 0.349 to 0.193. Eliminating
θfusion causes severe performance drops in long-term optimization tasks, with FrankaCabinet de-
creasing from 0.957 to 0.671 and TwoCatch plummeting from 0.349 to 0.017. The synergistic
effects of all components are critical, as removing any single component reduces PushBlock success
rates by 7.2%-25.8%, while the complete PoRSE framework achieves optimal performance through
collaborative optimization.

Optimization Strategy Ablation Study. This study investigates the effects of alternating reward
fusion (β) and policy inheritance (α) coefficients during iterative optimization. Fixing either co-
efficient degrades MTS across tasks. As shown in Tab. 1 and Tab. 2, with fixed policy fusion
inheritance (PoRSE w/o θfusion), the ”TwoCatch” MTS drops from 0.349 to 0.276 due to reduced
adaptability. Fixing reward fusion (Rratio) disrupts exploration-exploitation balance, as seen in the
”PushBlock” task where MTS falls from 0.318 to 0.243. The complete PoRSE method, alternat-
ing both coefficients, achieves optimal reward-policy coordination, delivering the best performance
across all tasks.

Ablation Analysis of β. We evaluated different reward ratios (Rg : Re) for DoorOpenInward and
TwoCatch tasks. Configurations included Eureka (Rg-only), LLMCountSarukkai et al. (2024) (Re-
only), and PoRSE ratios (0.5:1.5, 0.8:1.2, 1.2:0.8, 1.5:0.5, 1.0:1.0), all trained for 3000 epochs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: Training curves of different β values. It is evident that only by employing appropriate
ratios can the policy be successfully trained to attain better performance.

Table 1: The MTS results show that both the architectural components and optimization strategy
contribute to the final performance.

Method
Anymal Quadcopter Franka

MTS Gap MTS Gap MTS Gap

PoRSE w/o Rg −0.128 ↓ 0.116 −0.040 ↓ 0.026 0.883 ↓ 0.074

PoRSE w/o Re −0.097 ↓ 0.085 −0.038 ↓ 0.024 0.912 ↓ 0.045

PoRSE w/o θfusion −0.346 ↓ 0.334 −0.034 ↓ 0.020 0.671 ↓ 0.286

PoRSE w/o Rratio −0.066 ↓ 0.054 −0.019 ↓ 0.005 0.946 ↓ 0.011

PoRSE w/o θratio −0.020 ↓ 0.008 −0.015 ↓ 0.001 0.940 ↓ 0.017

PoRSE −0.012 −0.014 0.957

As shown in Fig. 6, results show single-reward approaches failed completely (0% success), while
optimal fusion ratios achieved significant improvements. PoRSE (1.5:0.5) reached 97% success on
DoorOpenInward and 25% on TwoCatch, outperforming prior methods (∼ 0%).

Ablation Study on Reward Refinement. This study examines the impact of reward and bonus
refinement during policy optimization. Using LLMCount Sarukkai et al. (2024) as a baseline, which
generates a fixed exploration bonus, we compare its performance against PoRSE. As shown in Tab.
3, results show PoRSE significantly outperforms LLMCount across all tasks, demonstrating that
static rewards inadequately address complex skill learning needs. For example, in the TwoCatch
task, LLMCount’s fixed bonuses failed to adapt to policy performance changes, while PoRSE’s
collaborative optimization loop dynamically adjusted Re and Rg ratios, effectively guiding training
through different learning stages and highlighting the benefits of dynamic reward refinement.

Ablation Study on AFS Robustness. This study evaluates the impact of replacing the LLM-
generated task-aware AFS with a randomly assembled AFS. As shown in Tab. 10, the variant
PoRSE-AFS-Random remains clearly stronger than Sparse, Human, Eureka, and ROSKA on the
representative manipulation tasks BlockStack, PushBlock, and LiftUnderarm. For example, it
achieves 0.680 ± 0.080 on BlockStack versus 0.254 ± 0.119 for Eureka and 0.148 ± 0.154 for
ROSKA, and reaches 0.324 ± 0.034 on PushBlock where the best baseline is 0.069 ± 0.049. Al-
though it is below the full PoRSE that uses task-relevant AFS, the elimination mechanism prunes
unhelpful dimensions and the LLM adapts the exploration coefficient, which preserves strong perfor-
mance despite noisy AFS and confirms that PoRSE is robust to imperfect affordance specifications.

6 CONCLUSION

We propose Policy-grounded Synergy of Reward Shaping and Exploration (PoRSE), a novel frame-
work for balancing reward design and state exploration in robotic skill learning. PoRSE integrates
LLM-generated affordance state spaces with a dynamic curiosity-driven bonus mechanism, en-
abling efficient exploration aligned with task objectives without manual reward tuning. The in-
policy-improvement grounding process (IPG) optimizes reward configurations via real-time policy

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: The MTS results show that both the architectural components and optimization strategy
contribute to the final performance.

Method
BlockStack PushBlock TwoCatch

MTS Gap MTS Gap MTS Gap

PoRSE w/o Rg 0.328 ↓ 0.425 0.295 ↓ 0.023 0.190 ↓ 0.159

PoRSE w/o Re 0.393 ↓ 0.360 0.306 ↓ 0.012 0.193 ↓ 0.156

PoRSE w/o θfusion 0.603 ↓ 0.150 0.236 ↓ 0.082 0.017 ↓ 0.332

PoRSE w/o Rratio 0.296 ↓ 0.457 0.243 ↓ 0.075 0.297 ↓ 0.052

PoRSE w/o θratio 0.590 ↓ 0.163 0.309 ↓ 0.009 0.276 ↓ 0.073

PoRSE 0.753 0.318 0.349

Table 3: MTS comparative results of PoRSE and LLMCount baselines across six representative
manipulation tasks. PoRSE achieves apparent improvement in task success rates.

Method Pen TwoCatch Franka BlockStack PushBlock DoorOpenInward

LLMCount 0.412 0.000 0.706 0.140 0.127 0.025

PoRSE 1.000 0.349 0.957 0.753 0.318 0.250

feedback, using fast LLM-aided methods instead of manual Bayesian optimization. Experiments
on diverse robotic tasks show PoRSE’s superiority, achieving significant performance gains over
state-of-the-art methods. By unifying reward shaping, exploration, and policy refinement in a self-
reinforcing loop, PoRSE sets a new paradigm for autonomous robotic skill acquisition.

REFERENCES

Serena Booth, W Bradley Knox, Julie Shah, Scott Niekum, Peter Stone, and Alessandro Allievi.
The perils of trial-and-error reward design: misdesign through overfitting and invalid task speci-
fications. In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding
language in robotic affordances. In Conference on robot learning. PMLR, 2023.

Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua
Zhao, Jinyue Yan, and Yun Li. Survey on large language model-enhanced reinforcement learning:
Concept, taxonomy, and methods. IEEE Transactions on Neural Networks and Learning Systems,
2024.

Onur Celik, Aleksandar Taranovic, and Gerhard Neumann. Acquiring diverse skills using curricu-
lum reinforcement learning with mixture of experts. arXiv preprint arXiv:2403.06966, 2024.

Table 4: MTS Performance Comparison of PoRSE-AFS-Random and Baseline Methods on Repre-
sentative Manipulation Tasks (mean ± standard deviation).

Task BlockStack PushBlock LiftUnderarm

Sparse 0.000 ± 0.001 0.003 ± 0.004 0.000 ± 0.000
Human 0.600 ± 0.229 0.011 ± 0.003 0.348 ± 0.140
Eureka 0.254 ± 0.119 0.025 ± 0.008 0.739 ± 0.166
Roska 0.148 ± 0.154 0.069 ± 0.049 0.608 ± 0.211

PoRSE-AFS-Random 0.680 ± 0.080 0.324 ± 0.034 0.802 ± 0.029
PoRSE 0.753 ± 0.210 0.378 ± 0.022 0.952 ± 0.015

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuanpei Chen, Tianhao Wu, Shengjie Wang, Xidong Feng, Jiechuan Jiang, Zongqing Lu, Stephen
McAleer, Hao Dong, Song-Chun Zhu, and Yaodong Yang. Towards human-level bimanual dex-
terous manipulation with reinforcement learning. Advances in Neural Information Processing
Systems, 35, 2022.

Daniel Coelho, Miguel Oliveira, and Vitor Santos. Rlfold: Reinforcement learning from online
demonstrations in urban autonomous driving. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2024.

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping
for reinforcement learning under sparse rewards. Advances in Neural Information Processing
Systems, 35, 2022.

Jonas Eschmann. Reward function design in reinforcement learning. Reinforcement learning algo-
rithms: Analysis and Applications, 2021.

Yuwei Fu, Haichao Zhang, Di Wu, Wei Xu, and Benoit Boulet. Furl: Visual-language models as
fuzzy rewards for reinforcement learning. arXiv preprint arXiv:2406.00645, 2024.

Joshua Hare. Dealing with sparse rewards in reinforcement learning. arXiv preprint
arXiv:1910.09281, 2019.

Rishi Hazra, Alkis Sygkounas, Andreas Persson, Amy Loutfi, and Pedro Zuidberg Dos Martires.
Revolve: Reward evolution with large language models using human feedback. arXiv preprint
arXiv:2406.01309, 2024.

Changxin Huang, Yanbin Chang, Junfan Lin, Junyang Liang, Runhao Zeng, and Jianqiang Li. Effi-
cient language-instructed skill acquisition via reward-policy co-evolution. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2025.

J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In Proceedings of
the 26th annual international conference on machine learning, 2009.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

Jing Li, Xinxin Shi, Jiehao Li, Xin Zhang, and Junzheng Wang. Random curiosity-driven explo-
ration in deep reinforcement learning. Neurocomputing, 2020.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation. IEEE, 2023.

William Liang, Sam Wang, Hung-Ju Wang, Osbert Bastani, Dinesh Jayaraman, and Yecheng Jason
Ma. Eurekaverse: Environment curriculum generation via large language models. arXiv preprint
arXiv:2411.01775, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv:2310.12931, 2023.

Denys Makoviichuk and Viktor Makoviychuk. rl-games: A high-performance framework for rein-
forcement learning. Denys88/rl games, 2021.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. Large language models: A survey. arXiv preprint arXiv:2402.06196,
2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml. Citeseer, 1999.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International conference on machine learning. PMLR, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning. PMLR, 2017.

Rahul Priyadarshi and Ravi Ranjan Kumar. Evolution of swarm intelligence: a systematic review of
particle swarm and ant colony optimization approaches in modern research. Archives of Compu-
tational Methods in Engineering, 2025.

Vishnu Sarukkai, Brennan Shacklett, Zander Majercik, Kush Bhatia, Christopher Ré, and
Kayvon Fatahalian. Automated rewards via llm-generated progress functions. arXiv preprint
arXiv:2410.09187, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ryoji Tanabe and Alex S Fukunaga. Improving the search performance of shade using linear popu-
lation size reduction. In 2014 IEEE congress on evolutionary computation. IEEE, 2014.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. Advances in neural information processing systems, 30, 2017.

Yao Tang, Zhihui Xie, Zichuan Lin, Deheng Ye, and Shuai Li. Learning versatile skills with cur-
riculum masking. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

David Venuto, Sami Nur Islam, Martin Klissarov, Doina Precup, Sherry Yang, and Ankit
Anand. Code as reward: Empowering reinforcement learning with vlms. arXiv preprint
arXiv:2402.04764, 2024.

Yiming Wang, Kaiyan Zhao, Furui Liu, et al. Rethinking exploration in reinforcement learning with
effective metric-based exploration bonus. Advances in Neural Information Processing Systems,
37, 2024.

Yongyan Wen, Siyuan Li, Rongchang Zuo, Lei Yuan, Hangyu Mao, and Peng Liu. Skilltree: Ex-
plainable skill-based deep reinforcement learning for long-horizon control tasks. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2025.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Are-
nas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to
rewards for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023.

Yuwei Zeng, Yao Mu, and Lin Shao. Learning reward for robot skills using large language models
via self-alignment. arXiv preprint arXiv:2405.07162, 2024.

Hao Zhou, Chengming Hu, Ye Yuan, Yufei Cui, Yili Jin, Can Chen, Haolun Wu, Dun Yuan, Li Jiang,
Di Wu, et al. Large language model (llm) for telecommunications: A comprehensive survey on
principles, key techniques, and opportunities. IEEE Communications Surveys & Tutorials, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ALGORITHM DESCRIPTION

In this section, we present the Policy-grounded Synergy of Reward Shaping and Exploration
(PoRSE) framework, as detailed in Algorithm 1.

The algorithm operates through N = 5 iterations of policy optimization. In each iteration, the
large language model (LLM) generates K = 6 combinations containing goal-oriented reward
functions Rn and state-exploration affordance mapping functions Mn, where n denotes the iter-
ation index. The exploration bonus is calculated using a parameter λ=0.01 to scale the reward
derived from state visitation counts. Each candidate combination trains parallel policies via Prox-
imal Policy Optimization (PPO) for up to Tmax = 3000 epochs, using dynamically fused rewards
Rk

total = βkRk
goal+(2−βk)Rk

explore. Here, the reward coefficient β (default: 1) balances goal-oriented
rewards and state-exploration bonuses, while the policy inheritance ratio α (default: 0.8) controls
fusion with prior policies. During training, an LLM-boostrapping elimination-expansion mecha-
nism prunes candidates: the worst-performing policies are removed every 500 epochs, while at the
1500-epoch mid-stage, PoRSE generates J = 5 mutated variants of either β (odd iterations) or α
(even iterations) to expand the candidate pool. After mutation, the bottom 6 policies are eliminated,
and pruning continues every 500 epochs until only the best policy θnbest remains at 3000 epochs.

Algorithm 1 Policy-grounded Synergy of Reward Shaping and Exploration (PoRSE)
Require: Task description Id, environment code Ie, iterations N = 5, candidates per iteration

K = 6, max epochs Tmax = 3000, initial policy θ0
1: for n = 1 to N do
2: if n = 1 then
3: // Reward and mapping functions initialization via LLM
4: Rn ← LLM(Id, Ie), Mn ← LLM(Id, Ie)
5: else
6: // Reward and mapping functions refinement via LLM
7: Rn+1

g ← LLM(Id,Rn
best, V (θnbest)), Mn+1 ← LLM(Id,Mn

best, V (θnbest))
8: end if
9: // Construct goal-oriented rewards and state-exploration bonuses

10: for k = 1 to K do
11: Rn

g,k ← Rn
k (s, a), Rn

e,k ← λ/
√

count(D(Mn
k (s)))

12: end for
13: // Parallel policy training using fused rewards
14: for (Rn

g,k, R
n
e,k) ∈ Nn do

15: Rk
total ← βRn

e,k + (2− β)Rn
g,k, θkf ← αθn−1

best + (1− α)θ0 {Default α and β}
16: Train θkf with PPO
17: end for
18: // LLM-bootstrapping Elimination-expansion Filtering
19: for t=500,1000,. . . ,Tmax do
20: if t = 1500 then
21: Generate J = 5 mutated α or β via PSO, Remove the worst 6 policy θf
22: else
23: Remove the worst policy θf
24: end if
25: end for
26: end for
27: return θbest

In later iterations (n ≥ 2), the LLM refines new reward functions Rn+1 and affordance mappings
Mn+1 based on sparse reward evaluations V (θnbest) from the current best policy. This cycle repeats
for all 5 iterations, with β and α alternately mutated to diversify exploration. The final output is an
optimized policy θbest that synergistically balances goal achievement and state-space exploration.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 EXTENDED EXPERIMENT RESULTS

A.2.1 DETAILED EXPERIMENT RESULTS

As shown in Tab. 5 and Tab. 6, we present the detailed results of all experimental data involved in
this paper in the form of mean ± standard deviation, with each result derived from experiments with
5 different random seeds.

Table 5: MTS performance comparison on moderate-difficulty tasks. MTS (mean ± std) showing
PoRSE’s superiority over baselines in manipulation and locomotion tasks.

Task name Sparse Human Eureka Roska PoRSE

Pen 0.061±0.108 0.984±0.016 0.634±0.460 0.111±0.077 1.000±0.000
DoorOpenOutward 0.000±0.000 0.813±0.418 0.971±0.061 0.638±0.303 1.000±0.000

Scissors 0.387±0.529 0.996±0.001 1.000±0.000 0.992±0.011 1.000±0.000
DoorCloseInward 0.400±0.547 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

BottleCap 0.901±0.033 0.886±0.056 0.424±0.145 0.348±0.175 0.988±0.011
GraspAndPlace 0.001±0.001 0.785±0.298 0.667±0.079 0.284±0.084 0.984±0.008

CatchOver2 0.000±0.000 0.854±0.013 0.001±0.001 0.100±0.221 0.973±0.008
Over 0.019±0.042 0.925±0.011 0.725±0.377 0.579±0.388 0.965±0.013

LiftUnderarm 0.000±0.000 0.348±0.140 0.739±0.166 0.608±0.211 0.952±0.015
CatchUnderarm 0.000±0.000 0.544±0.250 0.000±0.000 0.271±0.370 0.894±0.038

BlockStack 0.000±0.001 0.600±0.229 0.254±0.119 0.148±0.154 0.753±0.210
CatchAbreast 0.000±0.000 0.369±0.213 0.000±0.000 0.000±0.000 0.745±0.073

FrankaCabinet 0.000±0.010 0.100±0.050 0.778±0.175 0.850±0.329 0.957±0.049
Anymal -0.863±0.017 -0.021±0.005 -0.235±0.306 -0.314±0.540 -0.012±0.005

Quadcopter -1.382±0.083 -0.067±0.029 -0.023±0.007 -0.019±0.007 -0.014±0.005
Humanoid 5.691±0.880 7.235±1.152 6.534±1.933 8.917±0.512 8.454±0.343

Table 6: MTS performance comparison on hard manipulation tasks. Results demonstrate PoRSE’s
breakthroughs in hard skill learning tasks where existing methods fail completely.

Task name Sparse Human Eureka Roska PoRSE

DoorCloseOutward 0.279±0.348 0.244±0.424 0.553±0.340 0.491±0.467 1.000±0.000
Kettle 0.001±0.002 0.046±0.077 0.742±0.419 0.534±0.448 1.000±0.000

SwingCup 0.001±0.003 0.025±0.026 0.353±0.407 0.076±0.043 0.995±0.002
TwoCatchUnderarm 0.000±0.000 0.000±0.000 0.001±0.001 0.000±0.000 0.349±0.063

PushBlock 0.003±0.004 0.011±0.003 0.025±0.008 0.069±0.049 0.378±0.022
DoorOpenInward 0.000±0.000 0.004±0.004 0.007±0.010 0.002±0.002 0.283±0.386

ReOrientation 0.021±0.004 0.028±0.003 0.107±0.019 0.060±0.027 0.149±0.026
Switch 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

A.2.2 RESULT COMPARISON OF HNS

In our experiments, we introduce the Human Normalized Score (HNS) as the second evaluation
metrics. HNS assesses a method’s performance relative to human-engineered reward functions and
is computed as:

HNS =
MTSMethod −MTSSparse

MTSHuman −MTSSparse
. (8)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Sparse Human Eureka ROSKA PoRSE

Anymal FrankaCabinet Quadcopter Humanoid LiftUnderarmPen SwingCup CatchUnderarm

CatchAbreast BlockStack PushBlock Kettle BottleCap CatchOver2 CloseInward Scissors

OpenOutward GraspAndPlace Over CloseOutward OpenInward ReOrientation TwoCatch Switch

3
2
1
0

H
u

m
an

 N
o

rm
al

iz
e

d
 S

co
re

3
2
1
0

3
2
1
0

Figure 7: HNS score comparison across 24 robotic tasks. PoRSE significantly outperformed other
methods in 23 (all 24) robot skill learning tasks, achieving the best experimental results.

where MTSMethod represents the score achieved by a particular method, MTSSparse denotes the base-
line sparse reward, and MTSHuman corresponds to expert human performance.

From the experimental results and the corresponding visualization chart, with Human (human-
engineered rewards, HNS = 1) and Sparse (sparse reward baseline, HNS = 0) as references, the
proposed method (Ours/PoRSE) demonstrates significant advantages in most tasks: On the one
hand, in tasks requiring complex operations or fine-grained control (e.g., FrankaCabinet, SwingCup,
PushBlock, Kettle), the HNS of Ours far exceeds that of Human (for instance, the HNS of Ours in
SwingCup reaches 41.42, which is much higher than Human’s 1 and the performance of other meth-
ods), demonstrating that it can learn better reward strategies than human-engineered ones and drive
policies to achieve performance far beyond expert-level. On the other hand, in relatively simple
tasks or those with mature solutions (e.g., Quadcopter, Scissors), the HNS of Ours is comparable
to that of Human or other state-of-the-art methods, reflecting its adaptability to different types of
tasks. In contrast, comparative methods Eureka and ROSKA even yield negative HNS in tasks like
BottleCap, while Ours still achieves positive and excellent performance — this further reflects that
Ours is superior in the stability and effectiveness of reward learning, can guide policy learning more
efficiently, and possesses stronger capabilities of performance generalization and optimization in
various robotic manipulation tasks.

A.2.3 DETAILED EXPERIMENTAL RESULTS OF LLMCOUNT

We conducted extensive experiments on the LLMCountSarukkai et al. (2024) method on 24 rein-
forcement learning tasks, with 5 different random seed results collected and averaged for each task.
The detailed comparison between LLMCount method and PoRSE method is as follows.

As shown in Tab. 7, the PoRSE method significantly outperforms the LLMCount benchmark method
on 23 of the 24 robot skill learning tasks. Specifically, in the Quadruped Robot Motion Control task
(Anymal), PoRSE improves the Mean Training Success (MTS) from -1.226 in LLMCount to -0.012,
which is close to the expert human-designed level of -0.021. As for the TwoCatch task, which re-
quires precise operation, LLMCount fails completely (MTS=0), while PoRSE achieves a success
rate of 0.349 through the dynamic reward weight adjustment mechanism, indicating that it can ef-
fectively solve the exploration-exploitation dilemma under sparse rewards. The experimental results
comprehensively validate the combined advantages of the PoRSE framework by synergistically op-
timizing the goal-oriented reward and state-exploration bonus mechanisms.

A.2.4 MAPPING FUNCTION ABLATION EXPERIMENT AND ANALYSIS

To evaluate the actual contribution of the Mapping Function to the PoRSE framework, we employed
an alternative mapping function—simhashTang et al. (2017). This function can directly map similar
high-dimensional environmental state information into the same interval, serving as the foundation
for count-based rewards. Unlike the Mapping Function in this paper, simhash lacks any semantic

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

SwingCup Over Scissors CloseIn OpenOut OpenIn CloseOut LiftUnder

SimHash PoRSE

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Figure 8: Success rate comparison of SimHash and PoRSE methods

Table 7: MTS Comparison of LLMCount and PoRSE methods, PoRSE method achieved higher
MTS on 23 tasks.

Method Anymal Franka Quadcopter Humanoid LiftUnderarm Pen

LLMCount -1.226 0.706 -0.092 7.737 0.649 0.412

PoRSE -0.012 0.957 -0.014 8.454 0.952 1.000

Method SwingCup CatchUnder CatchAbreast BlockStack PushBlock Kettle

LLMCount 0.993 0.000 0.238 0.140 0.127 1.000

PoRSE 0.995 0.894 0.745 0.753 0.378 1.000

Method BottleCap CatchOver2 CloseIn Scissors OpenOut GraspPlace

LLMCount 0.985 0.387 1.000 1.000 0.998 0.906

PoRSE 0.988 0.973 1.000 1.000 1.000 0.984

Method Over CloseOut OpenIn ReOrientation TwoCatch Switch

LLMCount 0.594 0.905 0.025 0.098 0.000 0.000

PoRSE 0.965 1.000 0.283 0.149 0.349 0.000

Table 8: MTS Comparison of SimHash and PoRSE methods, PoRSE method achieved higher MTS
in 8 robot skill learning tasks.

Method SwingCup Over Scissors CloseIn OpenOut OpenIn CloseOut LiftUnder

SimHash 0.454 0.782 1.000 1.000 1.000 0.000 0.958 0.000

PoRSE 0.995 0.965 1.000 1.000 1.000 0.250 1.000 0.952

connection to the task goal and relies solely on the similarity of high-dimensional environmental
state data to partition intervals and perform counting. Thus, this comparative experiment is designed
to validate the effectiveness of the Mapping Function adopted in this paper.

As shown in Tab. 8, experiments reveal that the SimHash mapping function, devoid of task se-
mantics, underperforms PoRSE across all tasks. Semantic state abstraction via language mod-
els markedly enhances exploration efficiency. PoRSE’s task-relevant state mapping directs agents
to focus on key behavioral features, unlike SimHash’s count-based mechanism reliant on high-
dimensional state similarity, which struggles to escape local optima. This validates the necessity
of task-driven abstract state space design for complex skill learning.

A.2.5 LLM ABLATION EXPERIMENT AND ANALYSIS

To verify the robustness of our framework to the output quality of large language models (LLMs),
we design this ablation study. Specifically, we replace the LLM used in the original method with

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

a more lightweight GPT-4o-mini model (denoted as PoRSE-GPT-4o-mini) and compare its perfor-
mance with the original method and other baselines across multiple tasks. The core purpose of
this experiment is to investigate whether the proposed co-optimization paradigm can still maintain
its effectiveness when the quality of the underlying LLM changes, thereby demonstrating that the
advantage of the framework does not rely on a specific high-performance LLM, but rather on its
inherent and dynamic optimization mechanism.

Table 9: Performance Comparison of PoRSE-GPT-4o-mini with Baselines on Representative Tasks
Task BlockStack PushBlock LiftUnderarm CatchUnderarm

Sparse 0.000 ± 0.001 0.003 ± 0.004 0.000 ± 0.000 0.000 ± 0.000
Human 0.600 ± 0.229 0.011 ± 0.003 0.348 ± 0.140 0.544 ± 0.250
Eureka 0.254 ± 0.119 0.025 ± 0.008 0.739 ± 0.166 0.000 ± 0.000
Roska 0.148 ± 0.154 0.069 ± 0.049 0.608 ± 0.211 0.271 ± 0.370

PoRSE-GPT-4o-min 0.618 ± 0.165 0.360 ± 0.051 0.869 ± 0.07 0.907 ± 0.015
PoRSE 0.753 ± 0.210 0.378 ± 0.022 0.952 ± 0.015 0.894 ± 0.038

As can be observed from the experimental results (shown in the table below), even when using the
less performant GPT-4o-mini model, PoRSE-GPT-4o-mini significantly outperforms all baseline
methods except the original PoRSE on the four tasks: BlockStack, PushBlock, LiftUnderarm, and
CatchUnderarm. For instance, in the PushBlock task, its performance (0.36±0.051) far exceeds that
of Roska (0.069±0.049) and Eureka (0.025±0.008); in the CatchUnderarm task, its success rate even
reaches 0.907±0.015. This fully demonstrates that although the initial output quality of the LLM
decreases, the strategy can still be guided to converge to a high-performance level through multiple
rounds of dynamic optimization within the framework. This result strongly verifies the robustness
of the framework to the variability of LLM outputs, and its core value lies in establishing a “goal-
exploration-policy” co-optimization paradigm that is not strongly tied to a specific LLM and can
continuously self-improve.

A.2.6 AFS ABLATION EXPERIMENT AND ANALYSIS

Table 10: MTS Performance Comparison of PoRSE-AFS-Random and Baseline Methods on Rep-
resentative Manipulation Tasks (mean ± standard deviation)

Task BlockStack PushBlock LiftUnderarm

Sparse 0.000 ± 0.001 0.003 ± 0.004 0.000 ± 0.000
Human 0.600 ± 0.229 0.011 ± 0.003 0.348 ± 0.140
Eureka 0.254 ± 0.119 0.025 ± 0.008 0.739 ± 0.166
Roska 0.148 ± 0.154 0.069 ± 0.049 0.608 ± 0.211

PoRSE-AFS-Random 0.680 ± 0.080 0.324 ± 0.034 0.802 ± 0.029
PoRSE 0.753 ± 0.210 0.378 ± 0.022 0.952 ± 0.015

To verify the fault tolerance of the PoRSE framework to invalid/inefficient affordance state space
(AFS) dimensions generated by large language models (LLMs), as well as the core supporting role
of the built-in elimination mechanism in task adaptability, this ablation study designs a control group
with ”randomly assembled AFS” (denoted as PoRSE-AFS-Random). Although the original PoRSE
framework leverages LLMs to generate task-relevant AFS dimensions for guiding efficient explo-
ration, in practical applications, LLMs may generate goal-irrelevant dimensions due to task com-
prehension biases or lead to degraded AFS quality due to initial design flaws. To simulate this
worst-case scenario, the experiment constructs invalid AFS by randomly splicing environmental
state variable dimensions. The aim is to explore whether the framework can dynamically screen
dimensions valuable for policy optimization through the elimination mechanism, while verifying
whether the framework can still maintain performance superior to baselines even when the initial
AFS quality is poor—thereby demonstrating its core advantage of strong robustness that does not
rely on specific high-quality LLM outputs.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

As shown in Table 10, even with the randomly assembled invalid AFS (PoRSE-AFS-Random),
its Maximum Training Success (MTS) on three representative tasks (BlockStack, PushBlock, and
LiftUnderarm) is still significantly superior to that of baseline methods including Sparse, Hu-
man, Eureka, and Roska. Specifically, in the BlockStack task, the MTS of PoRSE-AFS-Random
(0.680±0.080) is 2.67 times and 4.59 times that of Eureka (0.254±0.119) and Roska (0.148±0.154),
respectively. In the PushBlock task, its performance (0.324±0.034) far exceeds all baselines (the
highest-performing baseline, Roska, only achieves 0.069±0.049). In the LiftUnderarm task, its MTS
(0.802±0.029) is also better than that of Eureka (0.739±0.166) and Roska (0.608±0.211). Mean-
while, although PoRSE-AFS-Random is slightly inferior to the original PoRSE (which relies on
valid AFS generated by LLMs), during the experiment, the framework dynamically eliminates in-
valid dimensions through the elimination mechanism and adaptively reduces the exploration reward
coefficient via the LLM to avoid interfering with policy training. Ultimately, it still maintains signif-
icant performance advantages in the scenario of random AFS, fully verifying the framework’s fault
tolerance to AFS dimension invalidity and the critical role of the elimination mechanism.

A.2.7 DIVERSITY OF DIMENSIONS IN AFS ABLATION EXPERIMENT AND ANALYSIS

Table 11: Maximum Training Success (MTS) Comparison of PoRSE and PoRSE-Prompt on AFS
Dimension Diversity Experiments

Method FrankaCabinet OpenInward OpenOutward

PoRSE-Prompt 0.951 ± 0.031 0.264 ± 0.044 1.000 ± 0.000

PoRSE 0.957 ± 0.049 0.283 ± 0.386 1.000 ± 0.000

To investigate the regulatory effect of Prompt design on the scope of affordance state space (AFS)
dimensions generated by large language models (LLMs), as well as the impact of including dimen-
sions not directly related to the task goal on policy training, this ablation study designs a ”Prompt-
guided group” (denoted as PoRSE-Prompt). In the original PoRSE framework, the AFS dimensions
generated by LLMs are mostly centered on the task goal (e.g., focusing on task-directly relevant
dimensions such as ”door handle distance” in door control tasks). However, in practical applica-
tions, it is necessary to verify two key points: first, whether LLMs can expand the scope of AFS
dimensions (to include dimensions not directly related to the task, such as ”exploration of the un-
known position of the handle”) through Prompt guidance; second, whether this dimension diversity
will interfere with task completion. The core motivation of the experiment is to clarify the abil-
ity of Prompt design to regulate AFS composition, while verifying the framework’s compatibility
with AFS dimension redundancy—i.e., whether task-irrelevant dimensions will impair task success
rate—thereby providing experimental support for the flexibility of AFS design.

As shown in Table 11, there is no significant difference in Maximum Training Success (MTS) be-
tween PoRSE-Prompt and the original PoRSE across three representative tasks (FrankaCabinet,
OpenInward, and OpenOutward). Specifically, in the FrankaCabinet task, the MTS of PoRSE-
Prompt (0.951±0.031) only shows a slight decrease of 0.6 percentage points compared to the orig-
inal PoRSE (0.957±0.049). In the OpenInward task, its MTS (0.264±0.044) is close to that of the
original PoRSE (0.283±0.386), with weaker data volatility. Notably, in the OpenOutward task, both
methods achieve a 100% success rate (1.0±0.0). These results indicate that after adding guiding
statements (e.g., ”explore the unknown position of the handle”) to the Prompt, the AFS generated
by LLMs includes dimensions not directly related to the task; however, these redundant dimensions
do not interfere with policy training, as reflected by the insignificant change in task success rate.
This finding not only verifies the regulatory role of Prompt design in the scope of AFS dimensions
but also proves that the PoRSE framework has good compatibility with AFS dimension diversity,
providing an experimental basis for the flexible design of AFS in subsequent studies.

A.2.8 BIN COUNTS ABLATION EXPERIMENT AND ANALYSIS

To clarify the rationality of the ”bin count” parameter in the exploration bonus generation process
and address potential ambiguity regarding this parameter, this ablation study conducts verification
on the bin count during Affordance State Space (AFS) discretization. As shown in the main text,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 12: Maximum Training Success (MTS) Comparison of PoRSE with Different Bin Counts for
Exploration Bonuses

Method BlockStack PushBlock LiftUnderarm

PoRSE (1000 bins) 0.753 ± 0.210 0.378 ± 0.022 0.952 ± 0.015
PoRSE (2000 bins) 0.708 ± 0.056 0.335 ± 0.103 0.950 ± 0.023

PoRSE (3000 bins) 0.763 ± 0.266 0.321 ± 0.027 0.922 ± 0.079

the calculation of the exploration bonus (Re) relies on converting the continuous AFS into discrete
states via the discretization functionD(So), and the bin count directly determines the discretization
granularity. Although the default bin count was explicitly stated as 1000 in the previous supple-
mentary materials, the impact of this parameter on performance had not been verified. Three bin
counts (1000, 2000, and 3000) were selected as variables in the experiment, with core motivations
as follows: on the one hand, to confirm whether the bin count significantly affects the task success
rate (Maximum Training Success, MTS) and avoid result biases caused by subjective parameter se-
lection; on the other hand, to provide experimental evidence for adopting 1000 bins as the default
setting, ensuring the scientific validity and reproducibility of the framework parameters.

As shown in Table 12, different bin counts have no significant impact on the MTS of PoRSE across
the three tasks (BlockStack, PushBlock, and LiftUnderarm). Specifically, in the BlockStack task,
the MTS values of PoRSE with 1000 bins (0.753±0.210), 2000 bins (0.708±0.056), and 3000 bins
(0.763±0.266) fluctuate within the range of 0.708 to 0.763, with no obvious performance superi-
ority or inferiority. In the PushBlock task, although PoRSE with 1000 bins achieves the optimal
performance (0.378±0.022), the performance gaps between 2000 bins (0.335±0.103) and 3000 bins
(0.321±0.027) are all within 0.05, and there is no statistical significance in these differences. In the
LiftUnderarm task, the MTS values of all three settings maintain a high level of 0.922 to 0.952, with
only PoRSE with 3000 bins (0.922±0.079) showing slight fluctuations due to excessively fine bin-
ning granularity. This result confirms that the bin count within the range of 1000 to 3000 does not
exert a critical impact on policy training effectiveness. Therefore, selecting 1000 bins as the default
setting not only meets the requirement of AFS discretization but also avoids computational resource
waste caused by excessive bins, achieving a balance between performance and efficiency.

A.2.9 NORMILIZATION ABLATION EXPERIMENT AND ANALYSIS

Table 13: Maximum Training Success (MTS) Comparison of PoRSE with Different Reward Coeffi-
cient Sum Scales

Method BlockStack PushBlock LiftUnderarm

PoRSE (Normalized-to-1) 0.744 ± 0.201 0.353 ± 0.077 0.957 ± 0.020
PoRSE 0.753 ± 0.210 0.378 ± 0.022 0.952 ± 0.015

To explain the rationality of the design where ”the sum of coefficients is fixed to 2” in the total
reward formula and verify the impact of reward coefficient scale selection on performance, this
ablation study designs a control group with ”coefficient sum normalized to 1” (denoted as PoRSE-
Normalized-to-1). As shown in the main text, the total reward formula of the PoRSE framework is
Rk

total = β · Rk
e + (2 − β) · Rk

g (where β is the weight of the exploration bonus Re, 2 − β is the
weight of the goal-oriented reward Rg , and the sum of the coefficients is fixed to 2). This design
is essentially a matter of scale selection. The experiment has two core motivations: first, to verify
whether there is a significant difference in Maximum Training Success (MTS) when the sum of
coefficients is ”1” versus ”2”, eliminating the risk of scale dependence; second, from the perspective
of optimization efficiency, to prove that ”independent optimization of two coefficients (including a
scale variable)” is mathematically equivalent to ”single-coefficient optimization (fixed scale, only
optimizing β)”. If the scale has no significant impact, the scale variable can be omitted and only a
single coefficient optimized, greatly simplifying the framework’s optimization process.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

As shown in Table 13, the impact of the coefficient sum being 2 (original PoRSE) versus 1 (PoRSE-
Normalized-to-1) on MTS is minimal. Specifically, in the BlockStack task, their MTS values are
0.753±0.210 and 0.744±0.201 respectively, with a difference of only 0.009 and no substantial perfor-
mance gap. In the PushBlock task, although the original PoRSE (0.378±0.022) is slightly superior
to the normalized group (0.353±0.077), the gap is within 0.03 and there is no statistical significance.
In the LiftUnderarm task, the normalized group (0.957±0.020) even slightly outperforms the origi-
nal PoRSE (0.952±0.015). This result fully confirms that the sum of reward coefficients, within the
scale range of ”1” or ”2”, does not exert a critical impact on policy training effectiveness. Therefore,
the design of the original PoRSE—”fixing the sum to 2 and only optimizing the single coefficient
β”—not only ensures performance stability but also avoids computational redundancy caused by
multi-variable optimization, achieving a balance between performance and optimization efficiency.

A.2.10 COMPONENTS OF PORSE ABLATION EXPERIMENT AND ANALYSIS

To verify the necessity of the three core components of the PoRSE framework—goal-oriented re-
ward, exploration bonus, and reward-policy co-optimization—and to demonstrate that the frame-
work is not a simple superposition of existing modules, this ablation study systematically com-
pares PoRSE with representative methods in the field (Eureka, ROSKA, ROSKA+CE) in terms
of component composition and performance. As stated in the main text, the core innovation of
PoRSE lies in using ”dynamic policy feedback” as a link to integrate the three components into
an organic whole, rather than treating them as isolated parts. In contrast, existing methods ei-
ther lack exploration bonuses (Eureka, ROSKA) or only achieve simple component aggregation
through ”traditional count-based exploration (CE) + ROSKA” (ROSKA+CE), with neither realiz-
ing inter-component synergy. Three tasks—BlockStack, PushBlock, and LiftUnderarm—covering
both ”complex manipulation” and ”high-efficiency exploration requirements” were selected for the
experiment. The core objectives are: to prove the simplicity (only three core components) and neces-
sity of PoRSE’s component composition through performance differences caused by the presence
or absence of components; and to highlight the critical role of ”component synergy” (rather than
”simple superposition”) in achieving performance breakthroughs by comparing with ROSKA+CE.

Table 14: Component Composition Comparison of PoRSE with State-of-the-Art Methods

Methods Goal Reward Exploration Bonus Reward-Policy Co-optimization

Eureka √ × ×
ROSKA √ × √

ROSKA+CE √ √ √

PoRSE √ √ √

As seen from the component composition (Table 14), PoRSE adopts a minimalist ”three-component
architecture,” with each component being indispensable for efficient skill learning. Firstly, the goal-
oriented reward serves as the foundation for task guidance—all compared methods include this
component (marked with √), and its absence would result in no clear optimization direction, a
consensus in robotic RL tasks. However, Eureka, which relies solely on goal-oriented rewards
(lacking exploration and co-optimization), only achieves an MTS of 0.025±0.008 in the PushBlock
task, struggling to escape local optima. Secondly, the exploration bonus is key to efficient explo-
ration—ROSKA, which lacks this component, achieves an MTS of 0.608±0.211 in the LiftUnderarm
task, significantly lower than PoRSE (0.952±0.015) which includes an exploration bonus. Although
ROSKA+CE adds an exploration bonus, it adopts traditional count-based exploration irrelevant to
the task, leading to performance far inferior to PoRSE. Thirdly, reward-policy co-optimization is
central to performance enhancement—Eureka, without co-optimization, cannot dynamically adjust
the adaptability between rewards and policies, resulting in the worst performance in complex tasks
(e.g., BlockStack). These three components together form a minimalist yet necessary component
system for PoRSE; the absence of any one component makes efficient skill learning unattainable.

The core advantage of PoRSE lies not in the ”presence or absence” of components, but in the mutu-
ally reinforcing effect formed between components through ”dynamic policy feedback”—an effect

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 15: MTS Performance Comparison of PoRSE with State-of-the-Art Methods (mean ± standard
deviation)

Methods BlockStack PushBlock LiftUnderarm

Eureka 0.254 ± 0.119 0.025 ± 0.008 0.739 ± 0.166

ROSKA 0.148 ± 0.154 0.069 ± 0.049 0.608 ± 0.211

ROSKA+CE 0.217 ± 0.056 0.129 ± 0.040 0.664 ± 0.072

PoRSE 0.753 ± 0.210 0.378 ± 0.022 0.952 ± 0.015

clearly reflected in the experimental results. On the one hand, goal-oriented rewards anchor the
direction for exploration bonuses: PoRSE’s exploration bonus is based on task-relevant Affordance
State Space (AFS) generated by LLMs, rather than the ”goal-agnostic count-based exploration” of
ROSKA+CE. This focuses exploration resources on task-critical dimensions (e.g., ”block stacking
height” in BlockStack), avoiding ineffective exploration. On the other hand, exploration bonuses
expand the optimization space for goal-oriented rewards: in the PushBlock task, PoRSE discov-
ers the ”optimal state for bimanual collaborative pushing” through exploration bonuses, improving
the optimization efficiency of goal-oriented rewards. Its MTS (0.378±0.022) is 2.93 times that
of ROSKA+CE (0.129±0.040). Meanwhile, reward-policy co-optimization (via the IPG process)
dynamically balances the two components: it adjusts the β coefficient based on real-time policy
performance, enabling adaptive matching between goal-oriented behavior and exploration as the
policy evolves. This positive cycle of ”goal-anchored exploration, exploration feeding back to goal-
oriented rewards, and co-optimization maintaining balance” allows PoRSE to significantly outper-
form existing methods relying on simple component superposition across all tasks, fully verifying
the irreplaceability of component synergy.

A.2.11 ABLATION EXPERIMENTAL DROP RESULTS

Table 14 16 summarizes the percentage performance drop of each ablation relative to the full PoRSE
configuration across six representative tasks. The largest degradations arise when the fusion mech-
anism (θfusion) is removed, with particularly severe declines on locomotion tasks such as Anymal
(↓ 2783.33%) and Quadcopter (↓ 142.86%), and a marked decrease on the long horizon sparse ma-
nipulation task TwoCatch (↓ 95.13%). This pattern indicates that policy grounded fusion is central
to PoRSE, since the dynamic blending of goal oriented rewards (Rg) and exploration bonuses (Re)
stabilizes learning and sustains final performance. Eliminating either (Rg) or (Re) also harms out-
comes across domains. On Anymal the absence of (Rg) leads to (↓ 966.67%) and the absence of
(Re) to (↓ 708.33%), which highlights the complementary roles of goal shaping and count based
exploration provided by the AFS space and the IPG loop.

The ratio related terms (Rratio) and (θratio) have a milder yet meaningful effect. Their removal pro-
duces moderate declines on manipulation tasks, for example BlockStack (↓ 60.70%) without (Rratio)
and PushBlock (↓ 23.58%), suggesting that ratio based normalization helps calibrate reward magni-
tudes and maintain comparability of AFS counts when scenes involve multiple objects or changing
contact phases. Overall, the ablations support three conclusions that are consistent with the design
goals of PoRSE. The policy grounded fusion is the dominant contributor to robustness and efficiency,
both (Rg) and (Re) are necessary to realize the intended synergy, and the ratio based components
further stabilize learning in compositional settings.

A.2.12 REVOLVE-AUTO EXPERIMENT CONFIGURATION AND ANALYSIS

To ensure fair comparison with PoRSE, the Revolve-AutoHazra et al. (2024) variant was aligned
with PoRSE’s core experimental settings: it generates 6 reward functions per iterative round and
runs for 5 total iterative rounds. Table. 17 (Experimental comparison of PoRSE with SOTA frame-
works including REvolve) supplements the experimental results of the REvolve framework on four
representative tasks (Humanoid, Liftunderarm, BlockStack, TwoCatch) to further verify PoRSE’s
superiority over state-of-the-art (SOTA) reward-design frameworks. For fair comparison, we made

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 16: Performance drop (%) of each ablation compared with the full PoRSE framework.
Method Anymal Quadcopter Franka BlockStack PushBlock TwoCatch

PoRSE w/o Rg 966.7% 185.7% 7.740% 56.44% 7.230% 45.56%
PoRSE w/o Re 708.3% 171.4% 4.700% 47.80% 3.770% 44.70%

PoRSE w/o θfusion 2783% 142.8% 29.89% 19.92% 25.79% 95.13%

PoRSE w/o Rratio 450.0% 35.71% 1.150% 60.70% 23.58% 14.90%
PoRSE w/o θratio 66.67% 7.140% 1.780% 21.64% 2.830% 20.92%

Table 17: MTS (mean ± std) across four tasks.

Method Humanoid Liftunderarm BlockStack TwoCatch

Eureka 6.534± 1.933 0.739± 0.166 0.254± 0.119 0.001± 0.001

ReVolve 7.894± 0.635 0.814± 0.079 0.342± 0.054 0.000± 0.000

PoRSE 8.454± 0.343 0.952± 0.015 0.753± 0.210 0.349± 0.063

key adjustments to the original REvolve setup: since the original REvolve relies on human partici-
pation in its reward optimization loop, we removed human intervention and migrated the complete
Auto-REvolve framework into the Eureka pipeline (denoted as Revolve-Auto). This adaptation
retains the evolutionary processes and prompt information exactly as described in the original RE-
volve paper, while aligning evaluation metrics (Maximum Training Success, MTS) with those used
for PoRSE.

The table includes three methods for comparison: Eureka (LLM-driven reward generation),
Revolve-Auto (human-free REvolve adaptation), and PoRSE (our proposed framework). The re-
sults show that PoRSE comprehensively outperforms the other two methods across all tasks: In the
Humanoid task, PoRSE achieves an MTS of 8.454±0.343, surpassing Revolve-Auto (7.894±0.635)
and Eureka (6.534±1.933); in Liftunderarm, PoRSE’s MTS (0.952±0.015) outperforms Revolve-
Auto (0.814±0.079) and Eureka (0.739±0.166) by a notable margin; in BlockStack, PoRSE’s per-
formance (0.753±0.210) is more than twice that of Eureka (0.254±0.119) and nearly double that
of Revolve-Auto (0.342±0.054); most notably, in the highly challenging TwoCatch task (requiring
synchronized bimanual coordination), PoRSE achieves a breakthrough MTS of 0.349±0.063, while
both Revolve-Auto and Eureka fail to make meaningful progress (MTS = 0 and 0.001±0.001, re-
spectively).

This performance gap stems from core design differences: Revolve-Auto, like the original RE-
volve, focuses primarily on evolutionary goal-oriented reward design but lacks task-aware explo-
ration mechanisms, limiting its effectiveness in high-dimensional or sparse-reward tasks. In contrast,
PoRSE’s In-Policy-Improvement Grounding (IPG) mechanism dynamically adjusts rewards and ex-
ploration bonuses based on real-time policy performance, while its Affordance State Space (AFS)
enables task-relevant exploration—these synergistic designs drive sustained policy optimization.

A.2.13 INTUITION FOR LLM-CHOSEN

This section elaborates on the reasoning underlying the large language model (LLM)-predicted pol-
icy fusion coefficient α and reward weight coefficient β in the PoRSE framework, as well as the
numerical evolutionary trends of these coefficients across training iterations.

The intuition for leveraging LLMs to predict α and β originates from the model’s inherent reasoning
and data analysis capabilities—strengths validated in prior work focused on LLM-driven decision-
making [1], self-composed reasoning structures [2], and enhanced mathematical reasoning via code
integration [3]. In the PoRSE framework, we input time-series training data (e.g., Maximum Train-
ing Success (MTS) over epochs) of the current policy to the LLM, allowing the model to assess
the policy’s training state (e.g., whether it is trapped in a local optimum or nearing convergence).
Rather than generating a single numerical value for α and β, the LLM produces a set of candidate

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

outputs; this multi-candidate design mitigates biases from isolated predictions, thereby improving
the stability of coefficient selection. The full prompt template guiding LLM predictions of α and β
is documented later in this section.

To characterize the evolutionary patterns of α and β (as noted in the main text L302–304), we col-
lected their values across training iterations for representative robotic tasks. Since PoRSE alternates
between optimizing α (policy fusion coefficient) and β (reward weight coefficient) across iterations,
we tracked 6 total iterations: α data were gathered at Iterations 1, 3, 5, while β data were collected
at Iterations 0, 2, 4. The collected values for each task are presented in Table 18:

Tasks Iteration1 α Iteration3 α Iteration5 α Iteration0 β Iteration2 β Iteration4 β

Humanoid 0.142 0.473 0.815 1.725 1.363 0.784
Anymal 0.137 0.468 0.809 1.572 1.191 0.793
Quadcopter 0.214 0.562 0.863 1.734 1.462 0.831
BlockStack 0.218 0.571 0.872 1.673 1.184 0.842
Liftunderarm 0.275 0.644 0.893 1.845 1.763 0.872
CatchAbreast 0.281 0.652 0.901 1.881 1.282 1.064
PushBlock 0.332 0.715 0.934 1.823 1.371 0.893
TwoCatchUnderarm 0.341 0.723 0.942 1.942 1.684 1.085

Table 18: Numerical values of α and β across training iterations for representative tasks.

Analysis of Table 18 reveals consistent evolutionary trends across all tasks: α values increase mono-
tonically across iterations, indicating that PoRSE increasingly prioritizes inheriting parameters from
the best-performing historical policy as training progresses—strengthening policy consistency and
leveraging prior effective learning progress. In contrast, β values decrease across iterations, re-
flecting a strategic adjustment: early stages use higher β to emphasize exploration bonuses (aiding
escape from local optima), while later stages reduce β to prioritize goal-oriented rewards (refining
task completion performance).

A.3 EXPERIMENTAL SETUP

In this section, we present the detailed experimental parameter setup for all methods in this paper,
provide an introduction to the IsaacGym tasks, outline the computing infrastructure, and detail the
calculation of total training epochs (TTE). The PoRSE code will be released at the following URL:
https://anonymous.4open.science/r/PoRSE-1C5E.

A.3.1 DETAILED EXPERIMENT PARAMETER SETTING

Table 19: Comparison of key parameters among different methods in the paper.

Method Iterations
Reward Functions

per Iteration

Total Training

Epochs (TTE)

Max Policy Training

Epochs per Iteration

PoRSE 5 6 90,000 3,000

ROSKA 5 6 90,000 3,000

Eureka 5 6 90,000 3,000

LLMCount 1 6 90,000 15000

The specific configurations for all methods in this paper are as follows:

ROSKA: The ROSKAHuang et al. (2025) method also conducts 5-iteration optimization, gener-
ating 6 reward functions in each iteration and training the corresponding policies in parallel. To
ensure fairness in computational resources, we increased the number of Bayesian optimization sam-
ples from the default 12 to 14, while other parameters remain as per the original paper.

23

https://anonymous.4open.science/r/PoRSE-1C5E

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Anymal FrankaCabinet Quadcopter Humanoid Pen LiftUnderam SwingCup CatchUnderarm

CatchAbreast BlockStack PushBlock Kettle BottleCap CatchOver2 CloseInward Scissors

OpenOutward GraspAndPlace Over CloseOutward OpenInward ReOrientation TwoCatch Switch

Figure 9: The 24 reinforcement learning task example images selected in the experimental section
of this paper.

Euereka: The EurekaMa et al. (2023) method employs the same 5-iteration structure, generating
6 reward functions per iteration and allocating 3000 training epochs to each policy for thorough
optimization.

LLMCount: The LLMCountSarukkai et al. (2024) method used in the ablation study generates 6
progress functions zero-shot through the large language model, with each function allocated 15,000
training epochs to ensure balanced computational resources.

Human and Sparse: For the HumanMakoviychuk et al. (2021) and SparseMa et al. (2023) meth-
ods, we used their default experimental configurations, conducting policy training for 3000 epochs.

PoRSE: The detailed parameter configuration of our method has been explained in section 1.

A.3.2 CALCULATION OF TTE

We have detailed statistics on the TTE for the different methods discussed in this paper. For each
task, we use epoch as the statistical unit to measure each method. For the same reinforcement
learning task, the policy will interact with the environment in the same epoch for the same number
of environment steps. We count the total number of epochs spent on each method during the iteration
process to ensure fairness in computing resources.

All compared methods—Eureka, ROSKA, LLMCount, and PoRSE—are designed to use a simi-
lar computational budget, each totaling 90,000 training epochs. While their approaches differ in
iteration counts, reward function generation, and progressive training schemes, they maintain com-
putational parity to ensure a fair comparison in evaluation.

A.3.3 COMPUTING PLATFORM

All experiments in this study were conducted on a computer system running Ubuntu 22.04.4 LTS,
equipped with eight RTX 4090 GPUs. Since the training time required for training on different tasks
is different, for intuitive comparison, we use the total training epochs in each task for comparison.
The detailed comparison of Total Training Epochs(TTE) calculations between Eureka, ROSKA, and
PoRSE methods is as follows.

A.3.4 BENCHMARK DESCRIPTION

In this paper, our experiments involve 24 robot skill learning tasks, including 4 tasks from IsaacGym
and 20 tasks from Bi-DexHands. The environment task names, task description, and task fitness
function F of the 24 tasks are shown in the table 20.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 20: The introduction to 24 tasks in the experiments of this paper.

IsaacGym Environments
Environment Name(obs dim, action dim)
Task description
Task fitness function F

Quadcopter (21, 12)

To make the quadcopter reach and hover near a fixed position

-cur dist

FrankaCabinet (23, 9)

To open the cabinet door

1[cabinet pos > 0.39]

Anymal (48, 12)

To make the quadruped follow randomly chosen x, y, and yaw target velocities

-(linvel error + angvel error)

Humanoid (108, 21)

To make the humanoid run as fast as possible

cur dist - prev dist

Over (398, 40)

This class corresponds to the HandOver task. This environment consists of two shadow hands with
palms facing up, opposite each other, and an object that needs to be passed. In the beginning, the
object will fall randomly in the area of the shadow hand on the right side. Then the hand holds
the object and passes the object to the other hand. Note that the base of the hand is fixed. More
importantly, the hand which holds the object initially can not directly touch the target, nor can it
directly roll the object to the other hand, so the object must be thrown up and stays in the air in the
process

1[dist < 0.03]

DoorCloseInward (417, 52)

This class corresponds to the DoorCloseInward task. This environment requires a closed door to be
opened and the door can only be pushed outward or initially open inward. Both these two environ-
ments only need to do the push behavior, so it is relatively simple.

1[door handle dist < 0.5]

DoorCloseOutward (417, 52)

This class corresponds to the DoorCloseOutward task. This environment also requires a closed door
to be opened and the door can only be pushed inward or initially open outward, but because they
can’t complete the task by simply pushing, they need to catch the handle by hand and then open or
close it, so it is relatively difficult.

1[door handle dist < 0.5]

DoorOpenInward (417, 52)

This class corresponds to the DoorOpenInward task. This environment also requires an opened door
to be closed and the door can only be pushed inward or initially open outward, but because they
can’t complete the task by simply pushing, they need to catch the handle by hand and then open or
close it, so it is relatively difficult.

1[door handle dist > 0.5]

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

DoorOpenOutward (417, 52)

This class corresponds to the DoorOpenOutward task. This environment requires an opened door
to be closed and the door can only be pushed outward or initially open inward. Both these two
environments only need to do the push behavior, so it is relatively simple.

1[door handle dist < 0.5]

Scissors (417, 52)

This class corresponds to the Scissors task. This environment involves two hands and scissors; we
need to use two hands to open the scissors.

1[dof pos > -0.3]

SwingCup (417, 52)

This class corresponds to the SwingCup task. This environment involves two hands and a dual-
handled cup; we need to use two hands to hold and swing the cup together.

1[rot dist < 0.785]

Switch (417, 52)

This class corresponds to the Switch task. This environment involves dual hands and a bottle; we
need to use dual hand fingers to press the desired button.

1[1.4 - (left switch z + right switch z) > 0.05]

Kettle (417, 52)

This class corresponds to the PourWater task. This environment involves two hands, a kettle, and a
bucket; we need to hold the kettle with one hand and the bucket with the other hand, and pour the
water from the kettle into the bucket. In the practice task in Isaac Gym, we use many small balls to
simulate the water.

1[|bucket - kettle spout| < 0.05]

LiftUnderarm (417, 52)

This class corresponds to the LiftUnderarm task. This environment requires grasping the pot handle
with two hands and lifting the pot to the designated position. This environment is designed to
simulate the scene of lift in daily life and is a practical skill.

1[dist < 0.05]

Pen (417, 52)

This class corresponds to the Open Pen Cap task. This environment involves two hands and a pen;
we need to use two hands to open the pen cap.

1[5 * |pen cap - pen body| > 1.5]

Bottle Cap (422, 52)

This class corresponds to the Bottle Cap task. This environment involves two hands and a bottle; we
need to hold the bottle with one hand and open the bottle cap with the other hand. This skill requires
the cooperation of two hands to ensure that the cap does not fall.

1[dist > 0.03]

CatchAbreast (422, 52)

This class corresponds to the Catch Abreast task. This environment consists of two shadow hands
placed side by side in the same direction and an object that needs to be passed. Compared with
the previous environment which is more like passing objects between the hands of two people, this
environment is designed to simulate the two hands of the same person passing objects, requiring
more hand translation and rotation techniques.

1[dist < 0.03]

CatchOver2Underarm (422, 52)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

This class corresponds to the Over2Underarm task. This environment is similar to Catch Under-
arm, but with an object in each hand and the corresponding goal on the other hand. Therefore, the
environment requires two objects to be thrown into the other hand simultaneously, which demands
higher manipulation techniques than single-object environments.

1[dist < 0.03]

CatchUnderarm (422, 52)

This class corresponds to the Catch Underarm task. In this task, two shadow hands with palms facing
upwards are controlled to pass an object from one palm to the other. The difficulty is increased by
unfreezing the hands’ translation and rotation degrees of freedom in the action space.

1[dist < 0.03]

ReOrientation (422, 40)

This class corresponds to the ReOrientation task. This environment involves two hands and two
objects. Each hand holds an object and we need to reorient the object to the target orientation.

1[rot dist < 0.1]

GraspAndPlace (425, 52)

This class corresponds to the GraspAndPlace task. This environment consists of dual hands, an
object, and a bucket. The task requires picking up the object and placing it into the bucket.

1[|block - bucket| < 0.2]

BlockStack (428, 52)

This class corresponds to the Block Stack task. This environment involves dual hands and two
blocks; we need to stack the blocks into a stable tower structure.

1[goal dist 1 < 0.07 and goal dist 2 < 0.07 and z dist 1 < 0.05]

PushBlock (428, 52)

This class corresponds to the PushBlock task. This environment involves two hands and two blocks;
we need to use both hands to reach and push each block to its designated goal position simultane-
ously.

1[left dist <= 0.1 and right dist <= 0.1]

TwoCatchUnderarm (446, 52)

This class corresponds to the TwoCatchUnderarm task. This environment extends the Catch Under-
arm task with dual-object manipulation: each hand holds an object and must throw it to the opposite
hand’s target position, requiring synchronized bimanual coordination.

1[goal dist 1 + goal dist 2 < 0.06]

A.3.5 ENVIRONMENT STEP AND PPO UPATE COUNTS

Table 21 (Training budget and compute parity across tasks) is designed to verify the consistency of
training resources and computational costs across PoRSE and baseline methods (Eureka, ROSKA),
ensuring the fairness of training efficiency comparisons. The table includes 5 representative robotic
tasks (Humanoid, FrankaCabinet, Anymal, Quadcopter, Liftunderarm) and the average metrics
across all tasks, with columns covering key training budget indicators and GPU time costs.

In terms of training budget uniformity: The ”Total epochs” column shows that all tasks maintain
a fixed total of 90,000 training epochs for all methods, which aligns with the earlier statement that
”PoRSE incorporates mutation and elimination mechanisms but still maintains the same total train-
ing epochs as other baselines.” For ”Total env steps” and ”Total PPO updates” (core indicators of
training resource input), 4 tasks (Humanoid, FrankaCabinet, Anymal, Quadcopter) share identical
values (1,440,000 env steps and 7,200,000 PPO updates), while Liftunderarm uses half the steps

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 21: Training budget and compute parity across tasks.
Tasks Total env

steps
Total PPO

updates
Total

epochs
GPU time
(Eureka)

GPU time
(ROSKA)

GPU time
(PoRSE)

Humanoid 1,440,000 7,200,000 90,000 7.0 7.1 7.0
FrankaCabinet 1,440,000 7,200,000 90,000 4.5 4.4 4.6
Anymal 1,440,000 7,200,000 90,000 3.5 3.5 3.6
Quadcopter 1,440,000 7,200,000 90,000 3.5 3.4 3.4
Liftunderarm 720,000 3,600,000 90,000 5.6 5.6 5.6

All tasks – – – 5.5 5.7 5.8

(720,000) and updates (3,600,000) — this difference is task-specific (due to Liftunderarm’s lower
state dimensionality) and applied uniformly to all methods, ensuring no bias in resource allocation.

In terms of computational cost parity: The ”GPU time [h]” columns for Eureka, ROSKA, and PoRSE
demonstrate minimal differences across tasks. For example, in the Humanoid task, GPU times are
7.0h (Eureka), 7.1h (ROSKA), and 7.0h (PoRSE); in FrankaCabinet, they are 4.5h, 4.4h, and 4.6h
respectively. Even at the average across all tasks, the gap remains negligible (5.5h for Eureka, 5.7h
for ROSKA, 5.8h for PoRSE). This confirms that PoRSE does not incur additional computational
overhead despite its mutation and elimination mechanisms. Combined with the earlier note that
”PoRSE’s algorithmic complexity scales linearly with the number of iterations (O(n))”, the table
further validates that PoRSE achieves superior performance without sacrificing training efficiency.

A.4 DISCUSSION

A.4.1 DISCUSSION ON DEPLOYMENT

The deployment of the PoRSE framework on physical robots is centered on the core design principle
of ”decoupling of state representation in the training phase and decision-making in the deployment
phase,” ensuring the framework can adapt to physical systems without relying on structured state
inputs from simulation environments. The Affordance State Space — a core component of the
framework — functions exclusively in the training phase, where it is used to construct task-relevant
exploration bonus models and low-dimensional state representations to facilitate efficient policy
learning. When the policy is deployed on physical robots, however, it can directly take raw sensor
data from the robot as inputs for decision-making; typical examples of such raw sensor data include
RGB-D images captured by vision cameras and torque and angle information from joint proprio-
ceptive sensors. Discrepancies in dynamics and sensor noise between simulation and real-world
environments can be addressed through transfer learning: a specific approach for this adaptation
is to fine-tune the trained policy with a small amount of physically collected data. For core AFS
features potentially required in real-world scenarios, examples of these features include relative dis-
tances between objects and grasping posture angles, and mature existing perception technologies
offer efficient solutions to obtain them. For instance,intel RealSense series depth cameras can be
used to accurately estimate the spatial positions of objects, while tactile sensors at the robot end
or joint torque feedback can infer grasping stability — this means no additional complex feature
extraction modules need to be designed. If real-time reward adjustment is required during physical
deployment, a lightweight AFS can also be dynamically constructed based on the aforementioned
perception data. Furthermore, to enhance the framework’s adaptability to unstructured real-world
scenarios, common cases of such scenarios include multi-object manipulation in cluttered environ-
ments and object occlusion scenarios. Lightweight vision-language models can be integrated into
the existing framework pipeline in future work. Representative models of these lightweight vision-
language models are CLIP and Grounding DINO, and their integration enables the system to parse
task semantics from real-time visual observations of physical robots. This parsing process helps
generate reward rules and AFS dimensions that better align with real-world needs, thereby laying a
technical foundation for the application of the PoRSE framework on various physical robots. Exam-
ples of these physical robots include robotic arms and dexterous hands.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

A.4.2 DISCUSSION ON REPRODUCIBILITY

The reproducibility of the PoRSE framework is ensured through multi-dimensional design and infor-
mation transparency, providing a clear pathway for the verification and extension of subsequent re-
search. At the experimental level, the framework achieves stable performance improvements across
24 tasks covering dexterous manipulation and legged locomotion. The effectiveness of core mech-
anisms, such as AFS construction and IPG dynamic optimization, has been validated through con-
sistent experimental results, avoiding reproducibility biases caused by task specificity. The settings
of key parameters are clearly justified: for example, AFS’s default number of bins is set to 1000,
this number is used for exploration bonus calculation, and ablation experiments have confirmed that
2000 or 3000 bins have no significant impact on performance; configurations like the number of
IPG iterations and the number of reward functions per iteration are detailed in the supplementary
materials, and parameter sensitivity analysis results are also provided alongside to guide adaptive
adjustments under different scenarios. At the implementation level, the framework will open-source
complete code and experimental configuration files, including standardized prompt templates for
interactions between LLMs and the framework—such templates require no task-specific tuning,
and only task goal descriptions and environmental state variable codes need to be modified—setup
scripts for simulation environments like Isaac Gym and Bi-DexHands, and complete process code
for policy training and evaluation. This ensures researchers can quickly reproduce the experimental
environment. Meanwhile, to address LLM dependency, the framework has verified that lightweight
models like GPT-4o-mini can replace the original LLM while maintaining performance advantages,
reducing reproducibility barriers caused by model access restrictions or computational resource lim-
itations. In addition, core modules, such as the screening mechanism for reward-exploration com-
binations and policy fusion logic, are implemented through modular design, with each component
having independent functions and clear interfaces. Researchers can verify the functionality of each
module individually, further enhancing the traceability of the reproducibility process.

A.4.3 DISCUSSION ON THE GENERALITY OF AFS

The generality of the Affordance State Space (AFS) in the PoRSE framework stems from the dual
guarantee of ”semantically driven design + dynamic adaptive mechanism,” enabling it to function
stably across different types of robotic tasks without extensive customization. From the perspective
of interaction logic, AFS construction adheres to standardized prompt template specifications: when
interacting with LLMs, only task goal descriptions and environmental state variable codes need to
be replaced, while core components such as semantic mapping rules and dimension selection logic
remain fixed. No task-specific prompt optimization is required, avoiding repeated development costs
caused by task differences. Its built-in dynamic elimination mechanism further enhances task adapt-
ability: this mechanism continuously tracks the actual contribution of each AFS dimension to policy
performance, automatically selecting the exploration directions most aligned with task requirements
in the current training phase. Even for unseen new tasks, such as collaborative multi-object sort-
ing, or high-complexity tasks, such as dexterous hand grasping of irregularly shaped objects, it can
quickly identify key state dimensions without manual intervention in dimension selection. Mean-
while, AFS exhibits strong fault tolerance toward invalid dimensions generated by LLMs: when
LLMs propose task-irrelevant dimensions due to semantic understanding biases, the framework dy-
namically reduces the weight of such dimensions through policy performance feedback, and com-
bines adaptive adjustment of the exploration reward coefficient β to minimize the interference of
ineffective exploration on training. Experiments show that even when using randomly assembled
AFS dimensions—this setup is to simulate extreme noise scenarios—the framework’s performance
on typical tasks such as BlockStack and PushBlock remains significantly superior to that of tra-
ditional baseline methods. Furthermore, the consistent performance of AFS across different task
types, including dexterous manipulation tasks like LiftUnderarm and legged locomotion tasks like
Anymal walking, confirms that it can not only adapt to differences in task semantics but also be
compatible with the state space characteristics of different robotic systems, providing core support
for the cross-task expansion of the framework.

A.4.4 DISCUSSION ON EXPANDING PORSE.

The method extensions of the PoRSE framework focus on addressing the adaptability challenges
of complex real-world scenarios and further enhancing the framework’s scalability, efficiency, and

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

stability, with several promising directions worth exploring. First, expanding the Affordance State
Space (AFS) to multi-modal state representations is a key priority—by integrating multi-source
sensory data such as RGB images, depth information, and tactile feedback, and combining vision-
language models, such as CLIP or Grounding DINO, which are referred to as VLMs for short, the
framework can automatically extract task-relevant affordance features from unstructured environ-
mental inputs. For example, in cluttered domestic scenes with object occlusion, multi-modal AFS
can fuse visual semantics, which involves identifying ”mug” vs. ”book”, and tactile cues, which
entail distinguishing ”hard” vs. ”soft” surfaces, to avoid over-reliance on pre-defined environmental
semantics, enabling more robust exploration for dexterous manipulation tasks. Second, extending
the in-policy-improvement grounding process—referred to as IPG—to hierarchical reinforcement
learning architectures, or HRL for short, can effectively tackle long-horizon tasks that require se-
quential subtask decomposition, such as the ”fetching ingredients, cutting, and cooking” process
for a kitchen robot. By embedding IPG’s dynamic reward-exploration optimization into each sub-
task layer, the framework can adjust the trade-off between global goal alignment and local subtask
exploration—for instance, prioritizing exploration in the ”cutting” subtask to find optimal knife an-
gles while maintaining goal orientation in the ”fetching” subtask, thereby improving the scalability
of complex sequential tasks. Third, enhancing the elimination-expansion mechanism with meta-
learning strategies can reduce computational overhead: by leveraging experience from historical
tasks, the framework can meta-learn the optimal mutation rate adaptation rule—for simple single-
object grasping tasks, a low mutation rate is used to stabilize policy optimization, while for complex
multi-object collaborative tasks, a higher mutation rate is adopted to explore diverse reward-bonus
combinations, minimizing trial-and-error costs. Finally, integrating uncertainty quantification into
LLM-generated reward functions can mitigate instability in policy updates: by introducing Bayesian
LLMs to estimate the confidence of reward rules—a typical case is that LLM-generated rewards in
novel tasks with ambiguous semantics have lower confidence. Based on this, the framework can dy-
namically adjust the weight of exploration bonuses—when reward uncertainty is high, it increases
exploration to collect more state feedback for reward refinement; when uncertainty is low, it fo-
cuses on goal-oriented optimization—avoiding policy oscillation caused by unreliable reward sig-
nals. These extension directions are mutually supportive: multi-modal state representations provide
accurate state foundations for hierarchical RL, while meta-learning and uncertainty quantification
jointly enhance the framework’s efficiency and stability, ultimately enabling PoRSE to adapt to more
complex real-world scenarios such as industrial assembly and home service robotics.

FrankaCabinet LiftUnderarm Pen SwingCup CatchUnder CatchAbreast BlockStack PushBlock Kettle BottleCap CatchOver2 CloseIn

Scissors OpenOut GraspPlace Over CloseOut OpenIn ReOrientation TwoCatch Switch Anymal Quadcopter Humanoid

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

-1.3

0

-0.1

-0.5

0

0

5

10

-0.5

LLMCount PoRSE

Figure 10: MTS Comparison of LLMCount and PoRSE methods, PoRSE method achieved higher
MTS on 23 tasks.

A.4.5 DISCUSSION ON BROADER IMPACT.

The development of PoRSE has broader implications for the field of robotics and AI. On the posi-
tive side, PoRSE’s ability to efficiently acquire complex robotic skills using LLM-generated reward
functions and directed exploration can accelerate the deployment of robots in various industries, in-
cluding manufacturing, healthcare, and logistics. This can lead to increased automation, improved
productivity, and enhanced safety in work environments. Moreover, the reduced need for manual
reward design makes robotic skill learning more accessible to researchers and practitioners without
extensive domain knowledge. However, there are also potential negative impacts and ethical con-
siderations. The reliance on LLMs raises concerns about the transparency and interpretability of the

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

reward functions and exploration strategies. There is a risk of inheriting biases present in the LLM
training data, which could lead to unfair or unsafe robotic behaviors.

A.5 LIMITATION

Similar to other works utilizing large language models (LLMs) for content generation, our approach
is also affected by the inherent instability commonly seen in LLM outputs. Even with identical
prompts, the quality of generated functions can vary significantly, and in some cases, non-executable
code may be produced. This instability is a prevalent limitation of LLMs rather than an issue unique
to our approach, which can lead to a situation where, in each generation iteration (N=6 functions),
only a part of functions may be successfully usable for guiding policy optimization. However, with
the rapid development and iterative updating of LLM technology, it is anticipated that the instability
in reward design and code generation will be progressively mitigated, and the capabilities of LLMs
in these aspects will be steadily enhanced. By adopting the latest LLMs, frameworks like ours have
the potential to achieve better robot skill learning outcomes.

To address this common limitation and ensure the fairness of comparison results in this paper, we
have implemented the following measures for the Eureka, ROSKA, LLMCount, and PoRSE meth-
ods. For each iteration of functions generated by the LLM, we conduct code running correctness
tests to ensure that all six functions generated in each iteration of the above methods can run cor-
rectly. This helps avoid result deviations caused by the instability of LLM responses and ensures
that the comparison results are fair and reliable.

A.6 PROMPT DETAIL

Reward Function Initial Prompt Example
You are a reward engineer trying to write reward functions to solve reinforcement learning
tasks as effective as possible. Your goal is to write a reward function for the environment that
will help the agent learn the task described in text. Your reward function should use useful
variables from the environment as inputs. As an example, the reward function signature
can be: {task reward signature string} Since the reward function will be decorated with
@torch.jit.script, please make sure that the code is compatible with TorchScript (e.g., use
torch tensor instead of numpy array). Make sure any new tensor or variable you introduce is
on the same device as the input tensors.

The output of the reward function should consist of two items:
(1) the total reward,
(2) a dictionary of each individual reward component.
The code output should be formatted as a python code string: ”“‘python ... “‘”.

Some helpful tips for writing the reward function code:
(1) You may find it helpful to normalize the reward to a fixed range by applying transforma-
tions like torch.exp to the overall reward or its components
(2) If you choose to transform a reward component, then you must also introduce a temper-
ature parameter inside the transformation function; this parameter must be a named variable
in the reward function and it must not be an input variable. Each transformed reward com-
ponent should have its own temperature variable
(3) Make sure the type of each input variable is correctly specified; a float input variable
should not be specified as torch.Tensor
(4) Most importantly, the reward code’s input variables must contain only attributes of the
provided environment class definition (namely, variables that have prefix self.). Under no
circumstance can you introduce new input variables.

Reward Function Refinement Prompt Example
Please carefully analyze the policy feedback and provide a new, improved reward function
that can better solve the task. Some helpful tips for analyzing the policy feedback:
(1) If the success rates are always near zero, then you must rewrite the entire reward function
(2) If the values for a certain reward component are near identical throughout, then this means
RL is not able to optimize this component as it is written. You may consider

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

(a) Changing its scale or the value of its temperature parameter
(b) Re-writing the reward component
(c) Discarding the reward component
(3) If some reward components’ magnitude is significantly larger, then you must re-scale its
value to a proper range
Please analyze each existing reward component in the suggested manner above first, and then
write the reward function code.

Mapping Function Initial Prompt Example
You are a reinforcement learning engineer trying to write mapping functions to solve rein-
forcement learning tasks as effectively as possible. Your goal is to identify the variables for
the environment that are maximally relevant in the task described in text. Some tasks may
have only a single stage, and some tasks may have two separate stages.

You will be provided with a definition of the observation space for a reinforcement learning
environment, and also provided with a small set of helper functions that can be used to
transform the variables in the observation space. Write a function that returns the variable
most associated with task for each stage of the task.

This function can take as input any member of self defined in compute observations, and can
apply any of the helper functions to any variables from self.obs buf to generate new derived
features (ex. computing the distance between object and goal). If a single stage requires
multiple mapping variables, average the variables.

Also return a bool for each variable that is True if task goal requires the variable to increase,
and False if it requires the variable to decrease.

Mapping vars name stores the string names of the corresponding variables in order.

Mapping Function Refinement Prompt Example
Please carefully analyze the policy feedback and provide an improved mapping function to
better solve the task. Here are some tips for analyzing the policy feedback:

If the success rates are consistently near zero, you must rewrite the entire mapping function.

If the values of a mapping variable remain nearly identical throughout training, it means that
the variable failed to effectively capture the task progress dynamics of the agent

You may consider:

(a) If one of the mapping variables in the current mapping function changes weakly during
training and may not effectively quantify task progress, you should analyze its sensitivity
and focus on whether the variable is strongly correlated with the task goal?
(b) If one of the mapping variables has not changed at all during the training process,
indicating that the mapping variable cannot reflect the progress of the task. Please redesign
a more sensitive alternative variable. requirement:
1. Strong correlation with task objectives
2. It can be decomposed into multi-stage indicators
(c) If one of the mapping variables does not significantly contribute to task performance,
please analyze its necessity. If there is redundancy, please propose alternative mapping
variables or directly eliminate the mapping variable
First, analyze each existing mapping variable using the guidelines above, then write an
optimized mapping function.

Policy Fusion α Search Prompt
You are an expert in reinforcement learning, skilled in analyzing training data for policy
models.

As we all know, in reinforcement learning, the policy continuously learns under the guidance
of rewards to eventually achieve the task objective.

Currently, we train a policy over multiple stages. In each stage, corresponding rewards are
used to guide the learning process. However, directly using the parameters of a policy trained

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

with the rewards of the previous stage as the initial parameters for the next stage often leads
to learning issues due to changes in the rewards.

To mitigate this problem, we use a policy fusion method. Specifically, we perform a weighted
sum of the parameters of the entire policy model and a random model:

fusion = α · policy + (1− α) · random.

The current problem is determining the fusion ratio α. I will provide you with the training
data of the policy model from the previous stage. Please analyze the training results to
determine the appropriate fusion ratio for the policy model.

Your task is to effectively analyze the training data of the current policy model. Here are
some analysis techniques:

1. If the policy scores from the previous stage are consistently close to 0, it indicates that the
rewards in the previous stage were ineffective in guiding the policy to achieve the reinforce-
ment learning task objective. In this case, the fusion ratio α should be set lower to ensure
higher plasticity in the policy model, allowing it to better adapt to the rewards in the next
stage.

2. If the policy scores from the previous stage consistently increase, it indicates that the
policy model was well-guided by the rewards to achieve the task objective. In this case, the
fusion ratio α should be set higher to ensure the policy retains more effective experience.

3. If the policy scores from the previous stage remain constant but are not zero, it indicates
that the rewards did not improve the existing policy. In this case, the fusion ratio α should be
slightly reduced to increase the model’s plasticity.

Since a single fusion ratio may not be completely accurate, you will have five opportunities
to design this parameter. In these five attempts, you should:

1. Propose the most likely optimal fusion ratio α.
2. Ensure the ratios α are distributed as evenly as possible in the range from 0 to 1, avoiding
clustering all five fusion ratios within a narrow range.

reward balance β Search Prompt
You are an expert in reinforcement learning, skilled in analyzing training data for policy
models. As we all know, the training of a policy model requires effective guidance from
rewards. At different stages of policy model training, adjustments should be made based on
the characteristics of different tasks.

Currently, we have two types of rewards jointly guiding the training of the policy model, so
the coefficient ratio between these two rewards is crucial.

The first reward is the dense reward designed by the large model (LLM Reward Ratio). This
reward directly comes from the reward function designed by the large model, and its primary
focus is always on achieving the task objective to guide policy training. However, whether
the reward function designed by the large model can effectively guide the policy training is
uncertain. But the goal of this reward is known: to always guide the policy to achieve the
corresponding reinforcement learning task objectives.

The second reward is the progress-based exploration reward (Progress Reward Ratio). By
utilizing the progress function designed by the large model for different reinforcement learn-
ing tasks, the progress function converts high-dimensional environmental state information
into low-dimensional progress variable information related to task completion.

This progress variable measures the task completion progress. By dividing the continuous
progress variable into multiple numerical intervals, exploration rewards are based on the
number of visits to each interval. That is, the fewer visits to a certain progress interval, the
higher the exploration reward. Conversely, the more visits, the lower the reward.

This encourages the policy model to continuously advance the task completion progress.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Now, I will provide you with the training data of the current policy model over a recent
period. This training data includes each component of the reward function designed by the
large model, each progress variable of the progress function, and the current task scores.

These data are presented in array format. During this training period, your task is to analyze
the training data effectively. Here are some analysis techniques:

1. If the current reinforcement learning task scores remain nearly the same, it indicates
that the reward function designed by the large model cannot effectively guide the policy to
achieve the task objective. Therefore, the coefficient of the LLM Reward component should
be slightly reduced.

2. If the reinforcement learning task scores increase gradually during the training process,
it indicates that the reward function designed by the large model, combined with the explo-
ration reward, can effectively guide the policy to achieve the task objective. In this case, the
coefficient of the LLM Reward component can be slightly increased.

Please determine the optimal ratio of these two reward components based on the information
provided. The coefficient range for both rewards should be controlled between 0 and 2. Since
a single attempt may not be precise, you will have five opportunities to design parameters.

In these five attempts, you must not only propose the most likely optimal reward parameter
ratios but also maintain a relatively uniform search distribution, avoiding concentrating all
five designs in the same parameter interval.

34

	Introduction
	Related Work
	Preliminary
	Method
	Goal-Relevant Exploration Bonus Generation
	Affordance State Visiting Count as Exploration Bonus.
	Reward-bonus Refinement.

	In-Policy-Improvement Grounding Process (IPG)
	LLM-bootstrapping Elimination-expansion Filtering (LEF).
	Leverage Previous Knowledge via Policies Inheritance.

	Policy-grounded Synergy of Reward Shaping and Exploration

	Experiment
	Experimental Settings
	Comparison Results.
	Ablation Studies

	Conclusion
	Appendix
	Algorithm Description
	Extended Experiment Results
	Detailed Experiment Results
	Result Comparison of HNS
	Detailed experimental results of LLMCount
	Mapping function ablation experiment and analysis
	LLM ablation experiment and analysis
	AFS ablation experiment and analysis
	Diversity of dimensions in AFS ablation experiment and analysis
	Bin counts ablation experiment and analysis
	Normilization ablation experiment and analysis
	Components of PORSE ablation experiment and analysis
	Ablation Experimental drop Results
	Revolve-Auto experiment configuration and analysis
	Intuition for LLM-Chosen

	Experimental Setup
	Detailed Experiment Parameter Setting
	Calculation of TTE
	Computing Platform
	Benchmark Description
	Environment step and PPO upate counts

	Discussion
	Discussion on deployment
	Discussion on reproducibility
	Discussion on the generality of AFS
	Discussion on expanding PoRSE.
	Discussion on broader impact.

	Limitation
	Prompt Detail

