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Abstract001

Uncovering hidden symbolic laws from time002
series data, as an aspiration dating back to Ke-003
pler’s discovery of planetary motion, remains a004
core challenge in scientific discovery and ar-005
tificial intelligence. While Large Language006
Models show promise in structured reason-007
ing tasks, their ability to infer interpretable,008
context-aligned symbolic structures from time009
series data is still underexplored. To system-010
atically evaluate this capability, we introduce011
SymbolBench, a comprehensive benchmark012
designed to assess symbolic reasoning over013
real-world time series across three tasks: multi-014
variate symbolic regression, Boolean network015
inference, and causal discovery. Unlike prior016
efforts limited to simple algebraic equations,017
SymbolBench spans a diverse set of symbolic018
forms with varying complexity. We further pro-019
pose a unified framework that integrates LLMs020
with genetic programming to form a closed-021
loop symbolic reasoning system, where LLMs022
act both as predictors and evaluators. Our em-023
pirical results reveal key strengths and limita-024
tions of current models, highlighting the impor-025
tance of combining domain knowledge, context026
alignment, and reasoning structure to improve027
LLMs in automated scientific discovery.028

1 Introduction029

Centuries ago, Johannes Kepler revolutionized our030

understanding of the cosmos by discovering the031

laws of planetary motion (Gentner, 2002). Through032

meticulous analysis and rigorous reasoning over as-033

tronomical observations, captured as time series034

data of planetary positions, Kepler derived precise035

mathematical relationships that explained the com-036

plex, time-dependent dynamics of celestial orbits.037

Automating such a challenging process, where hid-038

den symbolic laws are extracted from time se-039

ries, is a long-standing aspiration in artificial in-040

telligence (Reddy and Shojaee, 2025). However,041

achieving this automation presents fundamental042

reasoning-driven challenges, as time series data 043

encapsulates dynamic behaviors and temporal de- 044

pendencies that demand abstraction, generalization, 045

and reasoning beyond mere pattern recognition to 046

uncover underlying symbolic structures. 047

Recent advances in Large Language Mod- 048

els (LLMs) and Multimodal LLMs (MLLMs) 049

show strong performance in complex reasoning 050

tasks (Wang et al., 2024), but their ability to extract 051

symbolic laws from time series remains underex- 052

plored. Traditional methods in symbolic regression, 053

such as genetic programming (Makke and Chawla, 054

2024), often prioritize data fit at the expense of in- 055

terpretability. Meanwhile, recent attempts (Merler 056

et al., 2024; Li et al., 2024; Shojaee et al., 2024) to 057

use LLMs in this domain have been limited; they 058

employ them merely as domain-agnostic function 059

generators, overlooking the models’ core potential 060

for deeper, theory-aligned reasoning. This shallow 061

integration often results in proposed equations that 062

lack contextual relevance. Additionally, most work 063

focuses on algebraic expressions, neglecting other 064

symbolic forms like logical formulas (Zhang et al., 065

2024) and causal relations (Assaad et al., 2022). 066

To address these gaps and provide further in- 067

sights into the symbolic reasoning ability of LLMs 068

for time series, a comprehensive benchmark is 069

urgently required. Our work is guided by four 070

key objectives: (a) Real-world relevance: To use 071

real-world time series with ground-truth symbolic 072

structures. (b) Task difficulty: To incorporate a 073

diverse form of symbolic structures with varying 074

complexity. (c) Scale and balance: To ensure a 075

sufficiently large and balanced sample distribution 076

across tasks. (d) Unified framework: To provide 077

a unified framework to execute various tasks and 078

establish connections with task-specific baselines. 079

To realize these objectives, we present three pri- 080

mary contributions. 081

(I) SymbolBench, a comprehensive benchmark de- 082

signed to rigorously evaluate the symbolic reason- 083
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ing capabilities of LLMs over time series with084

rich real-world contextual descriptions. It uniquely085

spans three core tasks covering major types of086

time series data: (a) Multivariate symbolic regres-087

sion for continuous data to recover complex equa-088

tions like coupled Ordinary Differential Equations089

(ODEs). (b) Boolean network inference (Zhang090

et al., 2024) for discrete systems to identify logical091

rules. (c) Causal discovery (Assaad et al., 2022)092

for multivariate data to uncover structured causal093

graphs. Each task includes challenging, real-world094

examples from domains such as biology, physics,095

and healthcare, with varying dimensionality and096

difficulty. To ensure both quality and coverage, we097

curate representative subsets from large databases,098

yielding a benchmark that is broader, more chal-099

lenging, and more balanced than prior efforts.100

(II) Unified Symbolic Reasoning Framework that101

enables the context-aware and knowledge-rich102

LLMs to play the dual role of predictors and judges103

in the process of hypothesis generation, testing,104

and refinement, while optionally including efficient105

genetic programming tools in a hybrid way.106

(III) Critical empirical insights into the current107

strengths and limitations of LLMs and MLLMs108

in temporal symbolic reasoning. (a) LLMs sur-109

pass traditional baselines on multivariate symbolic110

regression and causal discovery, but fall short on111

Boolean network inference; (b) LLMs are able to112

perform a certain level of reasoning on the three113

tasks, with properly increasing test-time compute114

bringing moderate improvement. (c) Introducing115

context not only improves performance but also116

potentially guides the selection of generalizable117

symbolic structures. (d) Combining LLMs in com-118

plementary roles with genetic programming further119

boosts performance.120

2 Related Work121

Symbolic Expression Discovery. Symbolic re-122

gression (SR) aims to recover interpretable equa-123

tions from time series data. Classical methods124

like Genetic Programming and sparse optimization125

(e.g., SINDy (Brunton et al., 2016), PySR (Cran-126

mer, 2024)) prioritize accuracy and parsimony but127

face scalability challenges. Recent deep learning128

models (e.g., ODEformer (d’Ascoli et al., 2023),129

TPSR (Shojaee et al., 2023)) improve efficiency130

by treating SR as a translation task, though they131

require pretraining and lack iterative refinement.132

Related fields like Boolean network inference and133

causal discovery also seek symbolic structures from 134

time series. More details are in Appendix A. 135

LLM Symbolic Reasoning. Due to the strong 136

in-context learning and reasoning ability of LLMs 137

that allow them to adapt to various tasks, they are 138

able to perform logical inference(Ahn et al., 2024; 139

Wang and Chen, 2023), and temporal symbolic 140

reasoning (Fang et al., 2024). Despite the strong 141

ability of LLMs, current research for SR tasks only 142

applies them as function generators without a rea- 143

soning process. Though the generated functions 144

may achieve a high fitting score, the reasoning pro- 145

cess remains unknown to us and may fail to align 146

with the context, with little real-world meaning. In 147

addition, the current research focus has also skewed 148

toward algebraic equations, with logical rules or 149

causal relations remaining underexplored. 150

3 SymbolBench Dataset 151

To rigorously evaluate the reasoning abilities of 152

LLMs on time series related science discovery, 153

we introduce SymbolBench, a curated benchmark 154

that aims to uncover symbolic structures from time 155

series. The dataset spans diverse domains (e.g., 156

physics, biology) and is structured around three 157

core categories of symbolic structures. More de- 158

tails of the dataset are provided in Appendix B. 159

Coupled Differential Equations (CDEs). CDEs 160

represent dynamic systems, yielding continuous 161

and multivariate time series data. Let xi denote the 162

i-th variable of a multivariate time series, a cou- 163

pled differential equation can be described as the 164

following: dxi
dt = fi(x1, x2, ..., xn), i = 1, ..., n, 165

where the symbolic structures fi describe dynamic 166

interactions among state variables. The correspond- 167

ing time series data consists of numerical solutions 168

{xi(t)} over time, generated from initial condi- 169

tions and system parameters. This setting reflects 170

real-world dynamical systems in physics and engi- 171

neering, where the complexity arises from variable 172

interdependence. While the previous benchmark 173

dataset, ODEbench (d’Ascoli et al., 2023), contains 174

coupled ODEs from 1 dimension to 4 dimensions, 175

the number of samples is small, and the class of 176

dimensions is heavily imbalanced, with only three 177

4-dimensional ODEs. In this study, we further en- 178

rich ODEbench with more high-dimensional ODEs 179

and provide a balanced dataset with over 156 sam- 180

ples. Each sample is accompanied by the variable 181

descriptions and the domain name if available, as 182

shown in Appendix B. 183
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Boolean Networks (BNs). Multivariate time se-184

ries with discrete values are also seen in the sci-185

entific domains. Derived from models used in186

systems biology, particularly in gene regulatory187

and signaling networks, Boolean networks repre-188

sent each variable as a binary node whose state189

evolves according to logical expressions: x(t+1)
i =190

fi(x
(t)
1 , x

(t)
2 , ..., x

(t)
n ), xi ∈ {0, 1}, where fi is a191

logical function composed of AND, OR, NOT, etc.192

The time series data is a sequence of binary vectors193

over discrete time steps, representing the dynamic194

evolution of the system. This setup emphasizes195

symbolic logic reasoning, state transitions, and rule196

discovery from temporal traces of binary states.197

In this study, we provide a curated subset of 65198

Boolean networks from BioDivine (Pastva et al.,199

2023). For each sample, we provide a short descrip-200

tion of the domain and the name of each variable.201

Structured Causal Models (SCMs). Beyond spec-202

ifying a specific data-generating process (e.g., via203

mathematical functions), studying causal depen-204

dencies among time series variables is valuable for205

uncovering interdependencies directly from raw206

data, akin to the broader task of causal discovery in207

temporal settings. This approach models systems208

using Structural Causal Models (SCMs), which209

can be expressed as a directed graph. For each210

variable xi, the goal is to identify its parent vari-211

ables xj along with their corresponding time lags212

l, such that xj at time t− l causally influences xi213

at time t: xi ← {(xj , l) | xj ∈ X, ; l ∈ [1,M ]},214

where X denotes the set of all variables and M215

is the maximum considered lag. As the number216

of variables and potential lag intervals increases,217

the search space for an optimal SCM grows expo-218

nentially, making discovery more challenging. In219

this work, we extract SCMs from the CDEs in our220

curated dataset, as well as from additional CDEs in221

the Physiome database involving more than three222

variables, using functional analysis. Each sample223

is annotated with its corresponding SCM, resulting224

in 190 samples.225

4 SymbolBench Reasoning Framework226

Given an input time series with T time points227

{xi}Ti=1, where xi ∈ RD and D is the number228

of dimensions, our framework aims to generate a229

subset of symbolic structures for each time series.230

Figure 1 sketches the closed-loop workflow that231

combines LLMs into the automatic pipeline. The232

process starts with Proposal Generation (Sec. 4.1),233

Table 1: Comparison of SymbolBench with existing
benchmarks for LLMs across symbolic structures, eval-
uation setups, contextual data types, and reasoning.

Feature LLM-SRBench ODEBench RealTCD Ours

Symbolic Structures
Scientific Eq. 128 63 – 156
Logical Exp. – – – 65
SCM – – 2 190

Evaluation
ID/OOD ✓ ✓ – ✓
Reasoning – – – ✓

Context
Textual ✓ – – ✓
Multimodal – – – ✓

which generates candidate expressions alongside 234

their reasoning path if available. Then, the raw out- 235

put is cleaned and used for Verification (Sec. 4.2), 236

which assigns scores for each candidate. Candi- 237

dates are then stored in a history pool. Finally, 238

before the next round of generation, the Context 239

Manager (Sec. 4.3) extracts candidates from the 240

history pool based on certain rules and provides 241

them as the context for the next round proposal gen- 242

eration. The loop repeats until either the stopping 243

criterion is met or the budget exceeds the limit. 244

4.1 Proposal Generation 245

LLM-as-Predictor. To leverage the knowledge 246

embedded in LLMs, recent studies have explored 247

the direct generation of equations. In this work, we 248

frame this approach as LLM-as-Predictor. To thor- 249

oughly assess both the capabilities of LLMs and 250

the impact of iterative refinement, external context, 251

and chain-of-thought reasoning, we introduce four 252

distinct prompting strategies to evaluate the per- 253

formance of LLMs/MLLMs comprehensively. (a) 254

Naive prompt instructs the model to generate math- 255

ematical expressions without providing any con- 256

textual or historical information. (b) Base prompt 257

builds upon the Naive prompt by incorporating 258

previously generated expressions from the history 259

pool, filtered by the context manager. (b) Context 260

prompt further enhances the Base prompt by adding 261

relevant contextual information, such as variable 262

descriptions. (c) CoT prompt extends the Con- 263

text prompt by enabling the model to perform step- 264

by-step reasoning. The reasoning process is also 265

recorded and subjected to qualitative verification. 266

Details of all prompts are provided in Appendix I. 267

Hybrid Method. While the generation of symbolic 268

structures is central to the pipeline, this part can 269

also be addressed using operations from traditional 270

genetic programming. In the context of CDEs and 271

BNs, this involves applying operations like muta- 272
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Figure 1: Iterative refinement framework. Candidate proposals are generated using either an LLM-as-Predictor
or genetic programming operations. Each round of candidates undergoes quantitative and qualitative evaluation
via validation tools and an LLM-as-Judge. Scored candidates are stored in a history pool, and a context manager
decides contextual information for the next round.

tion and crossover on expression trees to produce273

new candidates. Since LLMs may still contribute274

to other components of the framework, e.g., verifi-275

cation, we phrase such a combination as the Hybrid276

Method, and further discuss it in Appendix F.277

4.2 Verification278

Verification in symbolic structure discovery as-279

sesses three key aspects: numerical fitness, sym-280

bolic fitness, and context alignment. While nu-281

merical fitness can be quantified, symbolic fitness282

and context alignment are harder to measure with-283

out ground truth. To address this, we introduce a284

dual-verification strategy combining standard quan-285

titative metrics with rubric-based qualitative evalu-286

ation by LLMs-as-Judges.287

4.2.1 Quantitative Verification288

(a) For CDEs, we simulate time series data using289

the predicted functions and assess their numeri-290

cal fitness using the averaged coefficient of deter-291

mination: R2 = 1/D
∑D

j (1 −
∑T

t=1 ∥xt
j−x̂t

j∥2∑T
t=1 ∥xt

j−x̄j∥2
),292

where xtj denotes the ground truth at time t for293

time series j, x̂tj the model prediction, and x̄j294

the empirical mean of the observed data. We295

also evaluate expression complexity based on sym-296

bolic structure, defined as the number of oper-297

ations. (b) For Boolean networks, we simu-298

late transitions from the predicted Boolean net-299

works and evaluate predictive performance using300

the macro-averaged F1 score over T transitions:301

F1 = 1
D∗T

∑T
j=1

∑D
i=1

2·TPj
i

2·TPj
i+FPj

i+FNj
i

, where 302

TPj
i , FP

j
i , and FNj

i are the true positives, false 303

positives, and false negatives for node i at tran- 304

sition j, respectively. Expression complexity is 305

computed analogously to CDEs. (c) For struc- 306

tural causal models, where the true data-generating 307

process is typically unknown, we adopt a Condi- 308

tional Independence score (CI-score) as a proxy 309

for structural fidelity. This metric captures the 310

strength of dependence between each child node 311

and its parents, conditioned on the remaining par- 312

ents. Let the parent set of Xi defined as Pi = 313

{(xj , ℓ)|j ∈ D, ℓ ∈ ℓmax} where ℓmax is the maxi- 314

mum time lag. For each directed edge (xj , ℓ)→ i 315

in the edge set E, we compute the partial corre- 316

lation: rj→i=Corr
(
Xt−ℓ

j , Xt
i

∣∣∣ {xt−ℓ′
k :(xk,ℓ

′)∈Pi, k ̸=j
})

. 317

The CI-score for a candidate graph G is then given 318

by: CI-score(G) = 1
|E|

∑
(xj ,ℓ)→i∈E |rj→i| . A 319

lower CI-score suggests stronger conditional in- 320

dependence and thus better structural plausibility. 321

4.2.2 Qualitative Verification 322

To assess the symbolic quality of the generated 323

expressions, we employ a rubric-based scoring sys- 324

tem ranging from 1 (poor) to 5 (excellent). Each 325

qualitative score is assigned by an LLM acting 326

as a judge (Hao et al., 2024), using a standard- 327

ized evaluation rubric. The rubric consists of four 328

core criteria: (a) Context alignment: Alignment 329

with provided time series data and contextual de- 330

scriptions; (b) Scientific plausibility: Alignment 331

with possible physical laws or domain-specific con- 332
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straints; (c) Conciseness and clarity: The read-333

ability and succinctness of the reasoning path; (d)334

Logical coherence: The consistency and step-by-335

step soundness of the derivation process.336

4.3 Context Manager337

The Context Manager is responsible for deliver-338

ing relevant contextual information to the Proposal339

Generator during iterative refinement. Based on340

the chosen refinement strategy, the Context Man-341

ager selects and provides appropriate context for342

the next round of proposal generation. Through-343

out the process, the Context Manager maintains a344

history poolH, which stores previously generated345

expressions, reasoning paths, and their associated346

verification scores in a structured DataFrame, while347

removing duplicates. In this study, we adopt a naive348

ranking-based strategy by only selecting the top-k349

highest-scoring candidates for further refinement.350

5 Experiment351

5.1 Experimental Setup352

Baseline Models. For CDEs, we include the353

following baselines: PySR (Cranmer, 2024), a354

GP-based method; ProGED (Omejc et al., 2024),355

a probabilistic grammar-based approach; and356

ODEformer (d’Ascoli et al., 2023), a pretrained357

transformer-based model. For BNs, we evalu-358

ate LogicGep (Zhang et al., 2024), a GP-based359

method tailored for Boolean Network inference.360

For SCMs, we adopt several time-series causal dis-361

covery methods, including PCMCI (Runge et al.,362

2019), LPCMCI (Gerhardus and Runge, 2020), and363

j-PCMCI+ (Günther et al., 2023).364

Evaluation Metrics. SymbolBench evaluates365

models on both in-distribution (ID) and out-of-366

distribution (OOD) data by applying new initial367

conditions. For CDEs, we report symbolic re-368

gression score: SR2 = 1
N

∑N
i=1R

2
i · I(R2

i >369

0), and accuracy for R2 > 0.9: ACC0.9. For370

BNs, we assess numerical similarity via preci-371

sion, recall, F1, and bookmaker informedness:372

recall + specificity − 1. For SCMs, structural373

accuracy is measured using classification metrics374

and Structural Hamming Distance (SHD). Sym-375

bolic similarity (for CDEs and BNs) is evaluated376

via expression tree edit distance, and expression377

complexity via sympy’s count_ops (Meurer et al.,378

2017). For BNs and SCMs, we also report accuracy379

for samples with F1 above a threshold: ACCthesh.380

5.2 Experimental Results 381

Across all three tasks, we select LLMs with var- 382

ious sizes and architectures, including Qwen2.5- 383

14B (Team, 2024), Llama-3.2B (Dubey et al., 384

2024), Mathstral-7B (Jiang et al., 2023), GPT-4o- 385

mini (Achiam et al., 2023), and ChatTS-14B (Xie 386

et al., 2024). For GPT-4o-mini and ChatTS-14B, 387

we use inputs with visual and temporal modalities. 388

We present the results in Table 2, 3, and 4. 389

Obs. 1: LLMs demonstrate superior capabil- 390

ity compared to baselines on CDEs and SCMs 391

datasets, while failing to compete against 392

baselines in Boolean network inference. For 393

Boolean network inference, while LLMs consis- 394

tently achieve positive bookmaker informedness 395

scores, indicating performance better than random 396

guessing, the genetic programming-based model, 397

LogicGep, significantly outperforms all evaluated 398

LLMs across nearly all evaluation metrics in both 399

ID and OOD scenarios. This could be explained 400

by both the symbolic and numerical fitting process. 401

(a) Symbolic fitting Unlike CDEs, BN inference 402

does not involve coefficient optimization. Com- 403

pared with CDEs, even if the symbolic structure is 404

not precisely correct, adjusting coefficients can still 405

yield good numerical accuracy. Compared with 406

SCMs, SCM inference focuses only on discovering 407

causal relationships, which is a less stringent goal 408

than recovering the full dynamics as in BN infer- 409

ence. (b) Numerical fitting: CDEs and SCMs are 410

inferred from continuous time series, which form a 411

consistent chains of state transitions, whereas BN 412

inference uses state transitions with various initial 413

conditions, forming graphs of state transitions, as 414

shown in Appendix B and H.1, which can be hard 415

to identify trends and summarize patterns. 416

Obs. 2: LLMs’ performance degrades with 417

problem difficulty. Across all models, perfor- 418

mance consistently declines as the dimensional- 419

ity of the system increases. While conventional 420

methods such as PySR remain competitive in low- 421

dimensional systems (e.g., dim = 1), baseline mod- 422

els tend to exhibit a steeper performance drop com- 423

pared to LLMs. Similarly, there is a notable drop 424

in accuracy when models are evaluated on OOD 425

data, underscoring the increased complexity and 426

generalization challenges posed by these scenarios. 427

Obs. 3: Chain-of-thought prompting does not 428

consistently improve performance. Further intro- 429

ducing CoT prompting does not lead to consistent 430

gains, especially on the CDEs dataset. An excep- 431
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tion is ChatTS-14B, likely due to its specialized432

time series reasoning capabilities. While increas-433

ing test-time compute has been shown to improve434

outcomes in various tasks (Snell et al., 2024), and435

CoT can contribute to this effect, similar limita-436

tions have been observed in more complex tasks437

such as those in SciBench (Wang et al., 2023).438

Obs. 4: Providing problem contexts improves439

LLM performance. Across all three tasks, com-440

pared to the Naive prompt, LLMs demonstrate the441

ability to leverage the provided context, resulting in442

higher numerical performance. In this setting, con-443

text functions as a form of conditioning, helping to444

constrain the solution space and guide the model445

toward more accurate and relevant inferences with446

a faster convergence rate, as shown in Appendix G.447

5.3 Further Analysis448

In this section, we explore the adaptability of our449

framework with genetic programming methods and450

the power of test-time compute. We formulate451

several key questions and takeaways as follows:452

Q1: Do LLMs Employ Correct Symbolic Rea-453

soning Paths? While previous research (Hao et al.,454

2024) has demonstrated that yielding correct an-455

swers does not necessarily yield correct reasoning456

paths, we find that general LLMs like Qwen2.5-457

14B with pure textual input are able to perform a458

certain level of reasoning (through CoT prompt-459

ing) over the time series and the given context. As460

shown in Table H.2, the LLM is not only able to461

consider the meaning of each variable, but also the462

historical candidates.463

Q2: How should test-time compute be struc-464

tured for consistent improvement? While scal-465

ing test-time compute can enhance LLM perfor-466

mance (Snell et al., 2024), our findings indicate467

that the structure of this computation is critical468

for achieving consistent improvement. Simply in-469

creasing compute via naive CoT reasoning does470

not yield reliable gains, as shown in Obs. 3. This471

is because the depth of naive CoT reasoning often472

remains shallow and lacks key mechanisms such473

as reflection, verification, and backtracing that are474

present in more advanced RLM (Besta et al., 2025)475

with Long CoT (Chen et al., 2025), which involves476

more cognitive behaviors such as verification, re-477

flection, and backtracing, etc. We use illustrative478

examples to demonstrate this in Appendix H.3.479

Thus, to see consistent gains, test-time compute480

should be structured to facilitate a Long CoT. We481

explore two approaches: First, we analyze the ef-482
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Figure 2: Evaluation scores improve with more itera-
tions and test-time compute, as discussed in Q2.

fect of a Long CoT, generated by RLMs, within 483

each reasoning epoch. This reveals that dedicating 484

more compute to a longer, more detailed chain-of- 485

thought leads to moderate but consistent improve- 486

ments in the final prediction scores, as shown in 487

Figure 3. Second, we view the entire iterative re- 488

finement process as a form of Long CoT. In this 489

approach, the model verifies previous outputs and 490

generates improved answers based on earlier, po- 491

tentially flawed, solutions. As shown in Figure 2, 492

the verification scores consistently improve as more 493

refinement steps are added. From both approaches, 494

we observe that the complexity of the best-fitting 495

solutions increases with the amount of computation, 496

echoing the human-like process of progressively 497

constructing more sophisticated answers. 498

Q3: Does the generalizability of prediction cor- 499

relate with structural complexity? When faced 500

with multiple symbolic structures that can fit the 501

given time series, the conventional wisdom sug- 502

gests that the simplest one is the most likely to 503

be generalizable. Existing LLM-based approaches 504

for symbolic regression (Shojaee et al., 2024; Li 505

et al., 2024; Merler et al., 2024; Grayeli et al., 2024; 506

Wang et al., 2025), rooted in the principle of Oc- 507

cam’s Razor, advocate for choosing the expression 508

with the least complexity. However, our experimen- 509

tal results challenge the assumption that simpler is 510

always better. Our analysis shows that expressions 511

with higher complexity can also achieve improved 512

symbolic proximity and OOD performance in Ta- 513

ble 2. This is because, in complex scientific do- 514

6



Table 2: Symbolic regression performance for CDEs across 4 dimensions. We use percentage for SR2 and ACC0.9.
Yellow, Orange, and Cyan mark the first, second, and third place, respectively.

Dim Metric Baselines Qwen2.5 Llama3.2 Mathstral 4o-text 4o-image ChatTS

Pro. PySR ODE. Naïve Base Ctx CoT Ctx CoT Ctx CoT Ctx CoT Ctx CoT Ctx CoT

D
im

=1

Complexity ↓ 5.06 2.91 4.68 4.17 5.14 5.34 3.91 1.89 1.97 2.63 2.69 2.31 2.36 2.37 2.09 3.29 3.00
Symbolic Prox. ↓ 4.86 3.54 5.18 5.11 5.37 5.57 4.89 4.03 4.14 3.86 4.09 3.89 3.79 3.97 4.06 4.83 4.37

ID SR2 95.50 96.90 83.40 93.30 97.20 99.00 97.40 95.10 94.90 96.20 96.20 92.80 95.40 95.70 95.30 95.10 97.00
ACC0.9 91.40 97.10 73.50 91.40 97.10 100.00 97.10 91.40 91.40 97.10 97.10 94.30 97.00 97.10 97.10 91.40 97.10

OODSR2 74.10 88.20 54.10 60.90 74.00 61.80 61.80 69.90 64.60 71.00 66.90 70.80 66.20 71.50 62.90 63.80 70.30
ACC0.9 65.70 85.70 47.10 45.70 63.60 52.90 51.40 51.40 48.60 62.90 60.00 54.30 51.50 54.30 45.70 51.40 54.30

D
im

=2

Complexity ↓ 5.71 7.00 9.05 8.76 9.75 10.00 9.07 6.93 7.07 7.93 8.35 6.91 6.64 6.33 6.33 9.88 9.63
Symbolic Prox. ↓ 10.90 8.21 9.98 11.20 11.60 11.40 11.10 10.00 9.86 10.30 10.40 10.40 9.98 10.10 10.00 11.70 11.40

ID SR2 61.20 80.40 72.50 82.40 87.90 87.40 88.00 82.20 80.90 88.60 88.40 78.50 77.40 78.40 82.40 84.80 90.90
ACC0.9 42.90 76.90 47.60 71.10 77.30 80.00 76.70 65.10 65.10 79.10 79.10 62.20 59.50 62.80 62.80 76.70 83.70

OODSR2 18.80 54.00 34.60 44.90 52.90 45.30 49.70 40.60 47.30 46.10 46.80 42.70 40.20 38.10 45.60 49.50 44.70
ACC0.9 12.50 42.10 18.60 31.00 44.40 34.10 35.90 32.60 34.90 34.90 33.30 29.50 22.50 23.80 29.30 43.60 33.30

D
im

=3

Complexity ↓ 7.87 8.82 13.90 16.60 17.40 18.30 15.50 15.70 17.30 16.30 15.40 12.60 12.30 12.00 11.50 17.00 17.20
Symbolic Prox. ↓ 30.30 25.70 30.50 29.80 30.10 29.70 28.60 28.80 30.00 29.50 29.00 29.50 27.40 29.20 29.20 29.40 29.60

ID SR2 20.90 67.10 36.30 71.30 74.30 75.30 70.90 62.10 57.40 65.20 64.60 70.00 63.70 65.30 66.90 70.80 68.40
ACC0.9 10.90 60.50 18.40 61.20 63.30 67.30 53.10 49.00 43.50 57.10 57.10 56.30 50.00 49.00 53.10 59.20 57.10

OODSR2 8.60 49.90 30.00 47.20 43.20 44.30 40.90 43.10 35.90 38.70 45.00 44.70 39.40 39.20 37.30 40.20 42.40
ACC0.9 4.50 36.10 15.20 39.50 38.60 36.60 33.30 34.00 28.60 33.30 40.90 38.30 31.70 31.10 29.20 32.60 33.30

D
im

=4

Complexity ↓ 9.70 10.60 14.40 22.90 23.20 23.10 18.50 20.60 19.60 17.90 18.70 14.50 13.90 13.90 13.60 22.60 22.10
Symbolic Prox. ↓ 32.70 30.30 36.40 35.20 35.40 34.10 32.90 34.70 32.70 32.50 32.40 34.80 32.90 32.20 31.90 38.00 36.30

ID SR2 11.50 74.60 34.80 92.70 93.60 93.30 91.00 49.40 61.10 78.00 78.70 88.60 86.90 86.10 89.10 78.70 80.00
ACC0.9 8.70 65.20 29.60 87.90 94.10 93.90 89.30 40.70 52.00 74.10 75.00 78.80 70.00 71.40 85.70 74.10 80.80

OODSR2 7.00 23.80 11.40 29.20 19.10 19.40 34.60 28.30 21.30 30.70 36.90 26.90 27.60 30.40 30.50 25.00 24.50
ACC0.9 0.00 21.70 7.10 19.40 15.60 12.50 33.30 12.00 13.60 24.00 30.80 19.40 20.70 15.40 21.40 21.70 17.40

Table 3: Comparison of Boolean network inference across ID and OOD settings.

Model Setting
ID OOD

Symb. Prox. ↓ Comp. ↓
Prec. Rec. Acc. B.I. ACC0.5 ACC0.7 ACC0.8 Prec. Rec. Acc. B.I. ACC0.5 ACC0.7 ACC0.8

LogicGep ∼ 93.6 92.7 95.2 88.7 98.5 98.5 96.9 84.7 86.5 89.5 76.5 98.5 86.2 76.9 12.39 12.39

Qwen2.5-14B

Naïve 58.7 71.7 66.5 29.5 86.2 33.8 6.2 56.4 71.3 64.5 26.6 80.0 24.6 7.7 12.87 14.84
Base 54.7 73.3 63.5 27.3 80.0 20.0 3.1 53.8 72.8 62.5 25.9 83.1 16.9 3.1 12.33 16.73

Context 57.8 77.2 67.1 29.1 87.7 38.5 9.2 56.1 77.2 65.5 27.0 87.7 30.8 10.8 12.39 16.86
CoT 58.3 73.9 65.4 30.3 92.3 27.7 4.6 56.2 73.9 63.2 27.9 84.6 24.6 3.1 11.96 14.79

Llama3.2-3B
Context 51.6 74.8 62.4 24.5 60.0 18.5 1.5 47.4 71.1 58.2 16.9 52.3 9.2 1.5 14.12 17.67

CoT 52.0 73.1 62.3 23.0 61.5 20.0 1.5 49.9 67.8 58.3 15.7 56.9 13.8 1.5 14.30 19.59

Mathstral-7B
Context 49.5 73.3 60.3 19.2 50.8 15.4 1.5 48.0 72.2 58.0 16.4 53.8 10.8 1.5 12.74 20.14

CoT 51.3 74.4 62.6 23.9 61.5 21.5 3.1 48.3 71.7 58.3 16.9 60.0 16.9 3.1 12.16 20.48

GPT-4o-mini
Context 51.6 58.9 62.6 21.2 47.7 15.4 0.0 51.3 58.5 61.4 20.0 53.8 13.8 0.0 13.24 30.07

CoT 52.2 58.9 63.5 23.5 53.8 4.6 0.0 51.7 60.6 62.2 23.0 53.8 7.7 0.0 11.20 32.42

mains such as biology or physics, the ground-truth515

expression may inherently be more structurally516

complex while being numerically simpler in the517

ID setting. Imposing a strong simplicity criterion518

can hinder the discovery or selection of the more519

generalizable context-aligned candidates. As de-520

tailed in Appendix E and Table 5, our analysis sug-521

gests that: Candidate ranking and selection should522

not solely rely on complexity and may benefit from523

considering contextual information.524

Q4: Can LLMs and genetic programming (GP)525

be combined for enhanced performance? While526

LLMs show superior performance on CDE and527

SCM inference, GP holds value for its cost, con-528

trol over complexity, and stronger performance in529

BN inference. To capitalize on the advantages of 530

both, we explored two primary methods for creat- 531

ing a high-performance hybrid system, as detailed 532

in Appendix F. The key is to use the contextual un- 533

derstanding of LLMs to “inject context and knowl- 534

edge” into the GP workflow, boosting its perfor- 535

mance. This can be achieved in two main ways: 536

(a) LLM-Guided Initialization: Use an "LLM-as- 537

Predictor" to generate a high-quality initial popula- 538

tion of candidate expressions for the GP to evolve. 539

This provides the GP with a context-aware and 540

promising starting point. (b) LLM-Guided Eval- 541

uation: Employ an “LLM-as-Judge” to provide 542

context-enhanced evaluation scores during the GP’s 543

fitness assessment. This helps guide the evolution- 544
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Table 4: Performance comparison of causal discovery methods and LLM-based approaches.
Model Setting F1 Prec. Recall FDR↓ ACC0.5 ACC0.7 ACC0.8 SHD↓ Complx↓
PCMCI ∼ 52.7 52.2 63.7 46.1 55.3 23.7 7.9 95.28 96.76

LPCMCI ∼ 52.0 68.6 45.9 29.1 56.3 18.4 5.3 25.35 14.54
j-PCMCI+ ∼ 46.2 58.1 43.3 39.1 45.3 13.2 7.4 49.36 38.83

Qwen2.5-14B

Naïve 49.7 59.4 45.0 40.6 43.7 17.9 8.4 35.54 18.93
Base 50.5 61.4 45.0 38.6 47.4 18.4 8.9 34.58 18.10

Context 53.4 63.0 48.3 37.0 53.7 19.5 7.9 31.69 18.61
CoT 51.3 61.9 46.3 38.1 52.6 20.0 8.4 39.36 21.76

Llama3.2-3B Context 51.3 56.1 49.0 43.9 37.4 13.7 8.9 41.89 25.43
CoT 51.8 56.4 49.5 43.6 48.4 22.6 11.6 44.40 25.75

Mathstral-7B Context 47.2 54.8 43.1 45.2 40.5 15.8 7.9 37.70 20.48
CoT 49.8 58.0 45.4 42.0 44.7 14.2 5.8 34.30 19.38

GPT-4o-mini Context 36.9 59.9 27.6 40.1 24.7 5.3 1.6 44.29 13.36
CoT 37.1 57.5 28.5 42.5 24.2 3.2 2.6 38.90 13.08

ChatTS-14B Context 54.1 72.3 46.2 27.7 58.9 22.6 11.6 32.48 15.07
CoT 54.4 72.3 46.6 27.7 61.1 25.3 10.5 31.10 14.70

Table 5: Correlations between complexity and OOD
ACC0.9 across four dimensions with and without con-
text in symbolic regression task.

Condition Dim 1 Dim 2 Dim 3 Dim 4

w/o context −0.672 −0.384 −0.425 0.584
w/ context 0.097 0.728 0.165 −0.174

5.6 5.8 6.0 6.2 6.4 6.6 6.8
log10(Generated Tokens)
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(a) Comparison of increasing test-time compute on CDEs.
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(b) Comparison of w and w/o thinking on BNs and SCMs.

Figure 3: Comparison of performance with and without
thinking.

ary search toward solutions that are not only numer-545

ically accurate but also scientifically plausible. As546

shown in Tables 6 and 7, combining LLMs with GP547

in these roles demonstrably improves performance.548

6 Conclusion and Outlook549

We introduce SymbolBench, a real-world bench-550

mark for symbolic structure discovery, and a Uni-551

fied Symbolic Reasoning Framework that en-552

ables LLMs (optionally with GP) to generate and553

Table 6: Hybrid method on CDEs. We use the same
GPT-4o-mini as judge and predictor.

Method SR2
ID SR2

OOD Sym. Prox. ↓ Comp. ↓

GPLearn 27.6 14.9 6.083 1.333
GPT-4o-mini 39.3 24.1 7.438 7.406
GPLearn +
LLM-as-Judge 31.7 16.3 6.550 1.200
LLM-as-Predictor +
GPLearn 89.5 69.3 5.045 2.682

Table 7: Hybrid method on BNs. We use the same GPT-
4o-mini as judge and predictor.

Method Setting
Metrics

Prec. Recall F1 Acc BM Comp. ↓

LogicGep
ID 88.0 88.6 88.0 91.7 80.9 0.773
OOD 78.9 83.0 80.0 85.6 69.2 0.773

GPT-4o-mini
ID 52.8 65.6 57.8 61.2 23.6 2.422
OOD 49.9 62.3 54.5 58.3 17.3 2.422

LogicGep +
Judge

ID 89.3 92.8 90.9 93.2 85.6 1.012
OOD 78.6 85.2 80.4 85.8 71.0 1.012

Predictor +
LogicGep

ID 72.2 84.7 77.5 80.6 61.0 0.993
OOD 63.1 77.2 67.9 73.2 46.9 0.993

judge hypotheses across tasks. Experiments show: 554

(i) LLMs beat baselines on multivariate symbolic 555

regression and causal discovery but lag on Boolean 556

network inference; (ii) more test-time compute 557

yields only modest gains; (iii) contextual ground- 558

ing boosts accuracy and generalizability; and (iv) 559

LLM–GP hybrids further improve performance. 560

Future Opportunities. Based on our observa- 561

tions and takeaways, we summarize some poten- 562

tial future directions as follows: (i) task-specific 563

scaling of test-time compute and reasoning depth; 564

(ii) richer, knowledge-heavy context to guide hy- 565

potheses; (iii) context-aware criteria beyond syntac- 566

tic simplicity (e.g., plausibility, robustness, causal 567

faithfulness); and (iv) broader symbolic targets plus 568

verifiable reasoning traces for interpretability. 569
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7 Limitations570

This work has several limitations stemming from571

computational constraints. First, we did not evalu-572

ate larger open-source models (e.g., DeepSeek-R1).573

Second, we capped the budget at 100 generation574

epochs and a maximum of 20 retries per epoch for575

each run; samples without candidates that could576

reach the tolerance will be rerun once again to mit-577

igate uncertainty. Finally, we examined only one578

LLM and one GP in the hybrid architecture, and579

did not analyze the effects of reasoning strategies580

or model size.581
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Appendices784

A Related Work785

symbolic structure Discovery. Discovering sym-786

bolic laws from time series data is a central objec-787

tive in many scientific discovery tasks. One promi-788

nent approach is Symbolic Regression, which seeks789

closed-form expressions that accurately model the790

observed data. Classical methods such as Genetic791

Programming (GP) (Mundhenk et al., 2021) are792

powerful but computationally intensive and often793

sensitive to the choice of operators and fitness func-794

tions. Alternatively, sparse optimization techniques795

like SINDy (Brunton et al., 2016) and PySR (Cran-796

mer, 2024) aim to identify parsimonious models797

by leveraging sparsity in the function space. More798

recently, deep learning-based models have been799

introduced to enhance efficiency and scalability.800

Methods such as ODEformer (d’Ascoli et al., 2023)801

and TPSR (Shojaee et al., 2023) reformulate sym-802

bolic discovery as a sequence-to-sequence trans-803

lation task, mapping time series data to symbolic804

equations. These approaches generate high-quality805

expressions and offer improved computational effi-806

ciency. However, they typically require large-scale807

pretraining and often lack the capability for itera-808

tive refinement and adaptation across diverse scien-809

tific domains. Beyond symbolic regression, related810

tasks such as Boolean Network Inference(Zhang811

et al., 2024) and Causal Discovery(Hasan et al.,812

2023) also aim to extract symbolic structures from813

time series data. These methods seek to uncover814

underlying logical or causal relationships, further815

emphasizing the broader interest in interpretable,816

symbolic representations of dynamical systems.817

LLM Symbolic Reasoning. Due to the strong in-818

context learning and reasoning ability of Large lan-819

guage models (LLMs) that allow them to adapt to820

various tasks, they are able to perform logical infer-821

ence(Ahn et al., 2024; Wang and Chen, 2023), and822

temporal symbolic reasoning (Fang et al., 2024).823

Despite the strong ability of LLMs, current re-824

search for SR tasks only applies them as proposal825

generators without a reasoning process. Though826

the generated functions may achieve a high fitting827

score, the reasoning process remains unknown to828

us and may fail to align with the context, with lit-829

tle real-world meaning. In addition, the current830

research focus has also skewed toward algebraic831

equations, with little work on logic rules or causal832

relations. Our SymbolBench, compared to previ-833

ous benchmarks as shown in Table 1, addresses 834

this by systematically evaluating both LLMs and 835

MLLMs on SR for time series data, covering varied 836

symbolic forms and emphasizing the transparency 837

of the reasoning process. In addition, compared 838

to prior benchmarks, we provide a more compre- 839

hensive evaluation including In-distribution and 840

Out-of-distribution settings over coupled ODEs, 841

logical expressions, and structured causal models. 842

B SymbolBench Dataset 843

SymbolBench uses three different datasets to eval- 844

uate the ability of LLMs/MLLMs to uncover the 845

symbolic laws from time series data. We include 846

variable description, domain name, and the time 847

series trajectory as additional context. Examples of 848

the dataset are shown in Table 8. 849

In addition, we provide a more detailed illustra- 850

tion of the verification process of the three tasks as 851

follows: 852

(a) CDEs: We use an LLM to generate the skele- 853

ton of the continuous-time dynamical system, 854

replacing each unknown coefficient with a 855

placeholder "c". An optimizer then fits these 856

coefficients to the training time series. To 857

avoid the high cost of repeatedly solving and 858

differentiating through a full ODE solver, we 859

adopt the finite–difference approximation strat- 860

egy from ODEFormer (d’Ascoli et al., 2023). 861

Once the functional form f̂(x;ϕ) is obtained, 862

where ϕ is the fitted coefficients, we gener- 863

ate the final numerical solution using SciPy’s 864

scipy.integrate.solve_ivp, and compare 865

the trajectory to the ground truth: 866

solve_ivp
(
f̂(x;ϕ), x(t0), t0, . . . , tn, method=LSODA

)
.

(1) 867

The distribution of sample dims is shown in 868

Figure 4a. 869

(b) BNs: For Boolean Networks, the LLM di- 870

rectly outputs a set of logical update rules (e.g. 871

xi(t + 1) = xj(t) ∧ ¬xk(t)). Since there 872

are no continuous parameters to fit, we simply 873

simulate the network from the known initial 874

state x(t0) and compute the F1 score over all 875

bits and time steps to assess agreement with 876

the true dynamics. The distribution of sample 877

dims is shown in Figure 4b. 878

(c) SCMs: For Structured Causal Models, the 879

LLM predicts the possible causal relations 880

among all variables, forming a directed graph. 881

Since the predicted SCMs can not directly pro- 882
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duce numerical solutions, to quantify how well883

the predicted SCM explains the data, we com-884

pute the sample partial correlation between xi885

and each candidate parent in pa(xi) (condition-886

ing on the parents), following the protocol of887

Runge et al. (Runge et al., 2019). The final888

score for each node is the mean of its absolute889

partial correlations, and we average over all890

nodes to obtain the overall SCM score. The891

distribution of sample dims is shown in Fig-892

ure 4c.893

Textual Context. For regular LLMs that only ac-894

cept textual inputs, all inputs to LLMs are format-895

ted as structured textual prompts. Time series data896

are serialized into strings, supplemented with con-897

textual metadata such as domain information, vari-898

able meanings, and prior scored expressions. This899

enables language models to reason over both data900

patterns and contextual priors.901

Visual and Temporal Context. Multimodal LLMs902

have shown promise in handling visual and tempo-903

ral data. While visual inputs are traditionally used904

in vision-language tasks (Radford et al., 2021), re-905

cent research has extended MLLMs to time series906

domains (e.g., forecasting via visual encodings (Li907

et al., 2023)). Recent models like ChatTS (Xie908

et al., 2024) and TempoGPT (Zhang et al., 2025)909

enable joint reasoning over temporal and textual910

modalities. In SymbolBench, we explore the use911

of MLLMs to incorporate both visual time series912

plots and encoded temporal embeddings.913

C LLMs for Benchmarking914

We evaluate six representative LLMs, chosen for915

their diversity in size, training data, and specializa-916

tion:917

(a) Qwen Series (Team, 2024, 2025): Qwen2.5-918

14B (Team, 2024) is a 14.7-billion-parameter919

causal Transformer (13.1 B non-embedding)920

built on RoPE, SwiGLU, RMSNorm, and921

QKV-bias that extends context support to 128922

K tokens (with generation up to 8 K) and923

delivers significantly richer knowledge, ad-924

vanced coding, and mathematical reasoning925

(via domain-expert submodels), robust instruc-926

tion following, long-form text, and structured927

output (e.g., tables, JSON), and out-of-the-box928

multilingual fluency across 29+ languages. Fol-929

lowing Qwen2.5-14B, Qwen3 (Team, 2025)930

series is the newest generation in the Qwen931

family, combining dense and Mixture-of-932
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(c) Dimension distribution of Structured
Causal Models used in SymbolBench.

Experts architectures to deliver seamless mode- 933

switching—“thinking” for deep logical reason- 934

ing, math, and coding, and “non-thinking” for 935

fast, general dialogue. 936

(b) Llama 3.2-3B (Dubey et al., 2024): Llama 937

3.2 is a family of multilingual 1 B and 3 938

B–parameter pretrained and instruction-tuned 939

text-in/text-out models, with its instruction- 940

tuned versions specially optimized for dia- 941

logue, agentic retrieval, and summarization 942

across dozens of languages—consistently out- 943

performing many open-source and proprietary 944

chat models on standard industry benchmarks. 945

(c) Mathstral-7B (Jiang et al., 2023): Mathstral 946

is a 7 billion-parameter LLM released by Mis- 947

tral AI as a tribute to Archimedes’ 2311th 948

anniversary, built on Mistral 7B with a 32K 949

token context window and fine-tuned for ad- 950

vanced multi-step mathematical and scientific 951

reasoning. Developed in collaboration with 952

Project Numina, it achieves state-of-the-art per- 953

formance for its size. 954

(d) ChatTS-14B (Xie et al., 2024): ChatTS- 955

13



14B is a multimodal LLM explicitly designed956

around time series as its core modality, offer-957

ing native support for multivariate sequences958

of varying lengths and dimensions, preserv-959

ing raw numerical fidelity for precise statis-960

tical queries, and enabling interactive, con-961

versational exploration and reasoning over962

time-series data—while also integrating seam-963

lessly into existing LLM workflows (including964

vLLM) with provided code, datasets, and mod-965

els.966

(e) GPT-4o-mini (Achiam et al., 2023): GPT-4o-967

mini is a compact multimodal reasoning model968

released by OpenAI in July 2024, delivering969

GPT-4–level performance while costing over970

60% less than GPT-3.5 Turbo; it supports text971

and vision inputs, advanced function calling,972

and extended long-context understanding.973

(f) o4-mini (Achiam et al., 2023): o4-mini is974

OpenAI’s latest release of a reasoning-focused975

GPT variant that replaces o3-mini, offering976

both text and image processing, “whiteboard”977

chain-of-thought reasoning, seamless tool in-978

tegration, and a high-accuracy paid-tier op-979

tion—all accessible via ChatGPT and the980

Completions API for domain-critical decision-981

making tasks.982

D Baseline Implementation983

(a) CDEs: We follow ODEFormer’s base-984

line implementation and hyperparameter tun-985

ing (d’Ascoli et al., 2023), using PySR with986

finite-difference approximations for skeleton987

search, and default greedy top-k generation for988

ODEFormer.989

(b) BNs: We reimplement LogicGep’s Boolean-990

network inference using the same Geppy991

genetic-programming framework (Gao et al.,992

2022), but omit the continuous-to-binary dis-993

cretization and MLP-based constraint stages,994

since our training traces are already binary.995

(c) SCMs: All SCM baselines are based on996

Tigramite (Runge et al., 2022), with the maxi-997

mum time-lag set to 1 for fair comparison.998

E Analysis on Table 2999

Prior studies (Shojaee et al., 2024; Merler et al.,1000

2024) often use complexity as the sole standard for1001

final selections of candidate predictions. However,1002

we show that the generalization, represented by1003

the performance during holdout evaluation (OOD),1004

has a poor correlation with expression complex- 1005

ity. (a) As shown in Table 9, without introducing 1006

context, complexity may have a moderate corre- 1007

lation with ACC0.9 when the dimension is small 1008

and not challenging. However, given samples with 1009

higher dimensions, the correlation became positive, 1010

meaning higher complexity can also give better 1011

generalization. (b) When context is introduced, be- 1012

sides the overall improved performance is observed 1013

as illustrated in Obs. 4, the correlation also turned 1014

positive from Dim=1 to Dim=3 and remained low 1015

for Dim=4. Such an obvious change potentially 1016

suggests that context is a more effective criterion 1017

for candidate ranking and selection during both 1018

iterative refinement and final evaluation. 1019

Table 9: Correlations between complexity and OOD
ACC0.9 across four dimensions with and without con-
text

Condition Dim 1 Dim 2 Dim 3 Dim 4

w/o context −0.672 −0.384 −0.425 0.584
w/ context 0.097 0.728 0.165 −0.174
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F Hybrid Method1020

We adopt two frameworks for hybrid approach by1021

separately let make GP and LLMs play different1022

roles. (a) As shown in Figure 5a, in addition to the1023

quantitative evaluation using MSE, an additional1024

qualitative score produced by LLM is incorporated1025

in the evolution loop; (b) As shown in Figure 5b, in1026

addition to the original closed loop (blue line), we1027

provide an extended path (red line) that utilize GP1028

to expand the history pool. From a different per-1029

spective, the initial population produced by LLMs1030

also improves the generation for GP by providing1031

context-enhanced initial populations.1032

Data PointsLLMs-as-Judges

Operations
e.g., mutation

Population

Evaluate

Genetic 
Programming

Evaluation Score = MSE(y, y_pred) + weight*LLM_score

(a) Hybrid method using Genetic Programming + LLM-as-
Judge.

Genetic 
Programming

LLMs-as-Predictors

History Pool

2. Top-k initial genes

1. Generate

3. Generate

4. Top-k context

(b) Hybrid method using Genetic Programming + LLM-as-
Predictor, where GP helps expand the history pool with the
current best expressions as initial population.

Figure 5: Hybrid method

G Convergence Rate1033

We further examine the convergence rate under var-1034

ious settings. As shown in Figure 6, introducing1035

both context and reasoning leads to a faster con-1036

vergence rate on the CDE and BN datasets. In1037

contrast, the SCM dataset exhibits an overall fast1038

convergence rate across all settings, with context1039

having only a marginal improvement.1040
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Figure 6: Convergence Rate on CDE, BN, and SCM
datasets.
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H Example Outputs1041

H.1 Example predictions across three tasks1042

We present examples across three tasks in Table 8.1043

LLM-as-Predictor

CDE

BN

SCM

This model is a combination of the previous models. The equations model a more complex interaction between the states. The transitions between the states are 
influenced by the rate constant c. It includes the susceptible state and the recovered state interacting with the infected and dead/immune states.

ComplexityR2Expr

240.999
[-c*x_0*x_1 - c*x_0*x_2 + c*x_0, c*x_0*x_1 + c*x_0*x_2 - c*x_1, c*x_1 - c*x_2 - c*x_3, -

c*x_0 + c*x_2 + c*x_3]

Generate a synthetic ordinary differential equation (ODE) … should model a plausible real-world or conceptual dynamical process that fits the given domain and context.
Requirements:

….
{context}; {var_points}; {functions}; {example_str}
Generate Five sets of improved samples compared to the previously generated results, …
Think the problem step by step …

Generate Boolean Networks … should model a plausible real-world or conceptual process.
Requirements:
You are given the follwoing context:
- Here is the domain of the problem: DROSOPHILA-WINGS-AP.
Here are the variables and their descriptions: x1: v_Ap, x2: v_Ap2, x3: v_Dl, x4: v_Dl2, x5: v_Fng, x6: v_Fng2, x7: v_N, x8: v_N2, x9: v_Ser, x10: v_Ser2.
The transitions you are fitting is:
- 1110111111 -> 1100110111; 1100110111 -> 1100110011; …
{functions}; {example_str}
Think the problem step by …

ComplexityF1Expr

110.561
{'x3': x2 & ~x1, 'x4': x3 | x5, 'x5': x10 & x6, 'x6': x4 ^ x7, 'x7': x8 | ~x1, 'x8': x9 | ~x2, 'x9': 

x10 & x2, 'x10': x3 | x5}

The equations leverage the concept of genetic dominance, where the absence of x1 combined with the presence of x2 allows for different outcomes in x3. This suggests a 
model where certain wing characteristics are present when specific alleles are expressed or repressed. The use of logical operations also captures the complex 

interactions and dependencies between various genes involved in wing patterning in Drosophila.

ComplexityCI-scoreExpr

160.9283

{'x0': [('x1', 1), ('x4', 1)], 'x1': [('x2', 1), ('x5', 1)], 'x2': [('x0', 1), ('x6', 1)], 'x3': [('x0', 1), ('x1', 
1)], 'x4': [('x7', 1)], 'x5': [('x3', 1), ('x6', 1)], 'x6': [('x1', 1)], 'x7': [('x2', 1), ('x5', 1)], 'x8': [('x0', 

1), ('x1', 1)]}

This SCM captures the interdependencies between the different compartments of L-dopa and benserazide. The variable x0, representing the concentration of A_dopa in the 
gastrointestinal compartment, is influenced by the concentrations of C_dopa_c and A_bens from the previous time step. Additionally, the concentration of C_dopa_c is 

affected by both x2 and x5, indicating a feedback mechanism. Furthermore, x3 C_Ro_central depends on the previous values of x0 and x1, suggesting that fluctuations in the 
gastrointestinal compartments can impact central compartment concentrations.

Generate a Structured Causal Model… should model a plausible real-world or conceptual dynamical process that fits the given domain and context.
Requirements:

….
{context}; {var_points}; {functions}; {example_str}
Generate Five sets of improved samples compared to the previously generated results, …
Think the problem step by step …

Figure 7: Example input and output across three tasks using LLMs-as-Predictors. The output is processed through
verification.

H.2 Candidates of CoT reasoning output on coupled-differential equations1044

We show the list of candidates found for fitting the time series generated from the SEIR model in Table 10.1045

1046
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H.3 RLM output for one sample with marked reasoning steps1047

(Step 1: Problem Setup) Okay, let’s see. I need to generate a system of coupled ODEs for the calcium_dynamics domain. The1048
variables are x0, x1, x2, x3, each with their descriptions as given. The time series data is provided, which includes x0 values and1049
the other variables. (Step 2: Initial Observations) First, the variables x0, x1, x2, x3 are each in the range of their description.1050
The domain is calcium dynamics, so the equations need to model some process related to calcium concentration. Looking1051
at the time series for x0, which is a negative value, and the other variables being positive. Since calcium concentrations are1052
usually positive, maybe the model is about the flow of calcium through the cell membrane, or the impact of different ions on1053
calcium levels. The time series for x1 is all zeros except at some points. The x1 values are all 0.3, then increase. Maybe this is a1054
transient phase or a step change. For x2 and x3, they seem to be varying linearly. (Step 3: First Model Attempt) Looking1055
at the equations, perhaps there are some nonlinear terms. The variables can be combined using trigonometric functions. Let1056
me think about a possible model. If I consider a calcium channel model, the rates of change could involve the concentration of1057
ions. For example, the rate of change of x0 might depend on x1, x2, and x3. Similarly, x1 might relate to x2 and x3. (Step 4:1058
Linear Combination Trial) But the problem is to create a model that fits the data. Let’s think of a simple model. Suppose that1059
x0 = c(x1 + x2 + x3). Similarly, maybe x1 = c(x2 − x3). For x2, maybe it’s a linear function: x2 = c(x0 + x3). Similarly,1060
x3 = c(x3 − x0). Putting it all together, the system would be:1061

c*x1 + c*x2 + c*x3 | c*x2 - c*x1 | c*x0 + c*x3 | c*x3 - c*x01062

(Step 5: Plugging in Sample Data) In the first sample: x0 = −43.0, x1 = 0.03, etc.1063
x0 = c(0.03 + 0.1 + 0.434) = c(0.564) ⇒ c = −43.0

0.564
≈ −76.51064

x1 = c(0.1− 0.434) = c(−0.334) ⇒ c = 0.03
−0.334

≈ −0.091065
Inconsistent values suggest equation mismatch. (Step 6: Revising the Model) Try again with the same structure:1066
c = x0

x1+x2+x3
= −43.0

0.564
≈ −76.5 c = 0.03

0.1−0.434
= 0.03

−0.334
≈ −0.091067

Still inconsistent. (Step 7: Trying Differential Form) Suppose:1068

dx0/dt = c*(x1 + x2 + x3)1069
dx1/dt = c*(x2 - x3)1070
dx2/dt = c*(x0 + x3)1071
dx3/dt = c*(x3 - x0)1072

(Step 8: Numerical Check) With x0 = −43.0, x1 = 0.03, x2 = 0.1, x3 = 0.434:1073

dx0/dt = c*0.5641074
dx1/dt = c*(-0.334)1075
dx2/dt = c*0.4641076
dx3/dt = c*43.4341077

Still inconsistent c values. (Step 9: Considering Other Forms) Maybe use other terms, e.g., absolute values or trigonometric1078
forms.1079
Step 10: Trying Absolute Values1080

dx0/dt = |x1 + x2 + x3|1081
dx1/dt = |x2 - x3|1082
dx2/dt = |x1 - x3|1083
dx3/dt = |x3 - x0|1084

Still not matching data. (Step 11: Simpler Model Revisited) Try:1085

dx0/dt = c*x1 + c*x2 + c*x31086
dx1/dt = c*x2 - c*x31087
dx2/dt = c*x0 + c*x31088
dx3/dt = c*x3 - c*x01089

(Step 12: Integrating into Sample) With c = 1:1090

dx0/dt = 0.5641091
dx1/dt = -0.3341092
dx2/dt = -42.5661093
dx3/dt = 43.4341094

(Step 13: Final Justification) Suggests calcium dynamics via flow of ions. x0 as calcium concentration, x1, x2, x3 as1095
inflow/outflow.1096

(Step 14: Final Model Form and JSON)1097

dx0/dt = c*x1 + c*x2 + c*x31098
dx1/dt = c*x2 - c*x31099
dx2/dt = c*x0 + c*x31100
dx3/dt = c*x3 - c*x01101

(Step 15: Format Verification) Follow pipe-separated format:1102

{"eq": "c*x_0*x_1 + c*x_2 - c*x_3 | c*x_1/x_0 + c*x_3 | c*x_2 - c*x_0*x_3 | c*x_3 + c*x_0 - c*x_1", "dim": 4}1103

(Final JSON Output)1104

{1105
"eq": "c*x_0*x_1 + c*x_2 - c*x_3 | c*x_1/x_0 + c*x_3 | c*x_2 - c*x_0*x_3 | c*x_3 + c*x_0 - c*x_1",1106
"dim": 41107

}1108
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I Prompts 1109

Generate a synthe+c ordinary differen+al equa+on (ODE) or a system of coupled ODEs in the 
following structured format. The system should model a plausible real-world or conceptual 
dynamical process that fits the given domain and context.
Requirements:

•Use variable names ONLY in {var_list}.
•No actual values allowed and the constants should be denoted ONLY by c.
•You don’t neccsaarily need to involve all variables in the equa+ons (the simplest case 
is just an constant c)
•For coupled equa+ons (dim > 1), separate right-hand sides using the pipe symbol ‘|’.
•Equa+ons must be algebraic expressions involving only the x_* variables from 
{var_list} and the constant c.
•You may combine basic mathema+cal opera+ons (+, -, *, /, ^, sqrt, exp, log, abs), 
trigonometric expressions (sin, cos, tan), constants (c), and variables in any way to 
create diverse and meaningful func+ons.
•The generated equa+ons should firstly achieve a good fiZng score, and secondly 
have a low complexity as much as possible.
•Output ONLY a JSON object (not a string) in the following format (no extra text):

The generated equa+ons should fit the following context:
•{context}

The +me series you are fiZng is:
•{var_points}

You are given the previous generated results and scores as follows:
•{func+ons}

Format Examples (depend on the current dim):
•{example_str}

Generate Five sets of improved samples compared to the previously generated results, each 
sample is a JSON object with the same format as above. Each sample should have 
dim={num_eqs}. Each sample should be separated by a comma. Do not output other 
irrelevant text.
Think the problem step by step and store your reasoning process (based on your own 
knowledge and the given context) using a json format {‘reasoning’: ‘your reasoning process’}.
You can either propose en+rely new equa+ons with diverse reasoning paths or refine the 
given equa+ons along with their reasoning.

Figure 8: Prompt with CoT and Context for CDEs.
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Generate Boolean Networks in the following structured format. The system should model 
a plausible real-world or conceptual process.
Requirements:

•Use variable names ONLY in {var_list}.
•EquaIons must be logical expressions involving only the x* variables from 
{var_list}.
•There are free variables that do not need to be modeled and simply serve as 
observed variables: {free_vars}.
•Allowed operaIons: AND (&), OR (|), NOT (!), XOR (^), and IMPLIES (->).
•Use ; to separate each logical expression in a sample.
•Output ONLY a JSON object (not a string) in the following format (no extra text):

You are given the following context:
•{context}

The transiIons you are fi_ng is:
•{transiIons}

You are given the previous generated results and scores as follows:
•{funcIons}

Format Examples (depend on the current dim):
•{example_str}

You are free to use any amount of the variables in {var_list}, and any number of 
operaIons to construct one equaIon. The generated equaIons should be creaIve and 
not the same as the example!
Generate Five sets of samples that are beaer than the previously generated results, each 
sample is a JSON object with the same format as above. Each sample should have 
dim={num_eqs}. Each sample should be separated by a comma. Do not output other 
irrelevant text.
Think the problem step by step and store your reasoning process using a json format 
{‘reasoning’: ‘your reasoning process’}. The reasoning should be based on your own 
knowledge and the given context.

Figure 9: Prompt with CoT and Context for BNs.
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You are an expert in analyzing Mul2-variate Time Series data, especially their causal 
rela2ons. Your task is to generate Structured Causal Models (SCMs) in the following 
structured format.
Requirements:

•The system should model a plausible real-world or conceptual dynamical process
•Use variable names ONLY in {var_list}.
•SCMs must be expressed in directed graphs, involving only the x* variables from 
{var_list}.
•Each edge is given a posi2ve integer value indica2ng the lagging of causal effect.
•Output ONLY a JSON object (not a string) in the following format (no extra text):

You are given the following context:
•{context}

The 2me series you are fiUng is:
•{var_points}

You are given the previously generated results and scores as follows:
•{graphs}

Format of one example sample:
•{example_str}

Above is just an example of output format. The actual lagging values should only be 
chosen from {lagging_list}.
Generate Five sets of samples, each sample is a JSON object with the same format as 
above. Each sample should be separated by a comma. Do not output other irrelevant text.
Think the problem step by step and store your reasoning process using a json format 
{‘reasoning’: ‘your reasoning process’}. The reasoning should be based on your own 
knowledge and the given context.

Figure 10: Prompt with CoT and Context for SCMs.
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You are an expert in analyzing Coupled Ordinary Equations and will analyze some ODEs 
based on certain context.
The data that the ODEs are fitted is:

•{data}
The context of the given data is:

•-{context}
The scored candidate coupled ODE is:

•{candidate_exprs}
Your task is to analyze the candidate Coupled Ordinary Equations and determine if they 
are suitable for the given context and transitions.
You are give the following criteria:
-Context Alignment: The ODEs should be relevant to the context provided.
-Scientific Plausibility: The ODEs should be scientifically plausible and make sense in the 
context of the data.
-Conciseness and Clarity: The reasonings should be concise and clear, avoiding 
unnecessary complexity.
-Logical Coherence: The reasonings should be logically coherent, consistent, and correct

You should provide a score for each criterion on a scale of 1 to 5, where 1 is the lowest 
and 5 is the highest. Only output the scores in the following format and do not ouput any 
other content:

{
context_alignment: <score>,
scientific_plausibility: <score>,
conciseness_and_clarity: <score>,
logical_coherence: <score>,

}

Figure 11: LLM-as-Judge prompt for CDEs.
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