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Abstract

Uncovering hidden symbolic laws from time
series data, as an aspiration dating back to Ke-
pler’s discovery of planetary motion, remains a
core challenge in scientific discovery and ar-
tificial intelligence. While Large Language
Models show promise in structured reason-
ing tasks, their ability to infer interpretable,
context-aligned symbolic structures from time
series data is still underexplored. To system-
atically evaluate this capability, we introduce
SymbolBench, a comprehensive benchmark
designed to assess symbolic reasoning over
real-world time series across three tasks: multi-
variate symbolic regression, Boolean network
inference, and causal discovery. Unlike prior
efforts limited to simple algebraic equations,
SymbolBench spans a diverse set of symbolic
forms with varying complexity. We further pro-
pose a unified framework that integrates LLMs
with genetic programming to form a closed-
loop symbolic reasoning system, where LLMs
act both as predictors and evaluators. Our em-
pirical results reveal key strengths and limita-
tions of current models, highlighting the impor-
tance of combining domain knowledge, context
alignment, and reasoning structure to improve
LLMs in automated scientific discovery.

1 Introduction

Centuries ago, Johannes Kepler revolutionized our
understanding of the cosmos by discovering the
laws of planetary motion (Gentner, 2002). Through
meticulous analysis and rigorous reasoning over as-
tronomical observations, captured as time series
data of planetary positions, Kepler derived precise
mathematical relationships that explained the com-
plex, time-dependent dynamics of celestial orbits.
Automating such a challenging process, where hid-
den symbolic laws are extracted from time se-
ries, is a long-standing aspiration in artificial in-
telligence (Reddy and Shojaee, 2025). However,
achieving this automation presents fundamental

reasoning-driven challenges, as time series data
encapsulates dynamic behaviors and temporal de-
pendencies that demand abstraction, generalization,
and reasoning beyond mere pattern recognition to
uncover underlying symbolic structures.

Recent advances in Large Language Mod-
els (LLMs) and Multimodal LLMs (MLLMs)
show strong performance in complex reasoning
tasks (Wang et al., 2024), but their ability to extract
symbolic laws from time series remains underex-
plored. Traditional methods in symbolic regression,
such as genetic programming (Makke and Chawla,
2024), often prioritize data fit at the expense of in-
terpretability. Meanwhile, recent attempts (Merler
et al., 2024; Li et al., 2024; Shojaee et al., 2024) to
use LLMs in this domain have been limited; they
employ them merely as domain-agnostic function
generators, overlooking the models’ core potential
for deeper, theory-aligned reasoning. This shallow
integration often results in proposed equations that
lack contextual relevance. Additionally, most work
focuses on algebraic expressions, neglecting other
symbolic forms like logical formulas (Zhang et al.,
2024) and causal relations (Assaad et al., 2022).

To address these gaps and provide further in-
sights into the symbolic reasoning ability of LLMs
for time series, a comprehensive benchmark is
urgently required. Our work is guided by four
key objectives: (a) Real-world relevance: To use
real-world time series with ground-truth symbolic
structures. (b) Task difficulty: To incorporate a
diverse form of symbolic structures with varying
complexity. (c) Scale and balance: To ensure a
sufficiently large and balanced sample distribution
across tasks. (d) Unified framework: To provide
a unified framework to execute various tasks and
establish connections with task-specific baselines.

To realize these objectives, we present three pri-
mary contributions.

(I) SymbolBench, a comprehensive benchmark de-
signed to rigorously evaluate the symbolic reason-



ing capabilities of LLMs over time series with
rich real-world contextual descriptions. It uniquely
spans three core tasks covering major types of
time series data: (a) Multivariate symbolic regres-
sion for continuous data to recover complex equa-
tions like coupled Ordinary Differential Equations
(ODEs). (b) Boolean network inference (Zhang
et al., 2024) for discrete systems to identify logical
rules. (c) Causal discovery (Assaad et al., 2022)
for multivariate data to uncover structured causal
graphs. Each task includes challenging, real-world
examples from domains such as biology, physics,
and healthcare, with varying dimensionality and
difficulty. To ensure both quality and coverage, we
curate representative subsets from large databases,
yielding a benchmark that is broader, more chal-
lenging, and more balanced than prior efforts.

(I1) Unified Symbolic Reasoning Framework that
enables the context-aware and knowledge-rich
LLMs to play the dual role of predictors and judges
in the process of hypothesis generation, testing,
and refinement, while optionally including efficient
genetic programming tools in a hybrid way.

(I111) Critical empirical insights into the current
strengths and limitations of LLMs and MLLMs
in temporal symbolic reasoning. (a) LLMs sur-
pass traditional baselines on multivariate symbolic
regression and causal discovery, but fall short on
Boolean network inference; (b) LLMs are able to
perform a certain level of reasoning on the three
tasks, with properly increasing test-time compute
bringing moderate improvement. (c) Introducing
context not only improves performance but also
potentially guides the selection of generalizable
symbolic structures. (d) Combining LLMs in com-
plementary roles with genetic programming further
boosts performance.

2 Related Work

Symbolic Expression Discovery. Symbolic re-
gression (SR) aims to recover interpretable equa-
tions from time series data. Classical methods
like Genetic Programming and sparse optimization
(e.g., SINDy (Brunton et al., 2016), PySR (Cran-
mer, 2024)) prioritize accuracy and parsimony but
face scalability challenges. Recent deep learning
models (e.g., ODEformer (d’Ascoli et al., 2023),
TPSR (Shojaee et al., 2023)) improve efficiency
by treating SR as a translation task, though they
require pretraining and lack iterative refinement.
Related fields like Boolean network inference and

causal discovery also seek symbolic structures from
time series. More details are in Appendix A.
LLM Symbolic Reasoning. Due to the strong
in-context learning and reasoning ability of LLMs
that allow them to adapt to various tasks, they are
able to perform logical inference(Ahn et al., 2024;
Wang and Chen, 2023), and temporal symbolic
reasoning (Fang et al., 2024). Despite the strong
ability of LLMs, current research for SR tasks only
applies them as function generators without a rea-
soning process. Though the generated functions
may achieve a high fitting score, the reasoning pro-
cess remains unknown to us and may fail to align
with the context, with little real-world meaning. In
addition, the current research focus has also skewed
toward algebraic equations, with logical rules or
causal relations remaining underexplored.

3 SymbolBench Dataset

To rigorously evaluate the reasoning abilities of
LLMs on time series related science discovery,
we introduce SymbolBench, a curated benchmark
that aims to uncover symbolic structures from time
series. The dataset spans diverse domains (e.g.,
physics, biology) and is structured around three
core categories of symbolic structures. More de-
tails of the dataset are provided in Appendix B.
Coupled Differential Equations (CDEs). CDEs
represent dynamic systems, yielding continuous
and multivariate time series data. Let x; denote the
i-th variable of a multivariate time series, a cou-
pled differential equation can be described as the
following: djf = fi(z1,22,...,2pn),1 = 1,...,m,
where the symbolic structures f; describe dynamic
interactions among state variables. The correspond-
ing time series data consists of numerical solutions
{z;(t)} over time, generated from initial condi-
tions and system parameters. This setting reflects
real-world dynamical systems in physics and engi-
neering, where the complexity arises from variable
interdependence. While the previous benchmark
dataset, ODEbench (d’ Ascoli et al., 2023), contains
coupled ODEs from 1 dimension to 4 dimensions,
the number of samples is small, and the class of
dimensions is heavily imbalanced, with only three
4-dimensional ODE:s. In this study, we further en-
rich ODEbench with more high-dimensional ODEs
and provide a balanced dataset with over 156 sam-
ples. Each sample is accompanied by the variable
descriptions and the domain name if available, as
shown in Appendix B.




Boolean Networks (BNs). Multivariate time se-
ries with discrete values are also seen in the sci-
entific domains. Derived from models used in
systems biology, particularly in gene regulatory
and signaling networks, Boolean networks repre-
sent each variable as a binary node whose state

. . . t+1
evolves according to logical expressions: wg ) _

fi(xgt), xg), ey xg)), x; € {0,1}, where f; is a
logical function composed of AND, OR, NOT, etc.
The time series data is a sequence of binary vectors
over discrete time steps, representing the dynamic
evolution of the system. This setup emphasizes
symbolic logic reasoning, state transitions, and rule
discovery from temporal traces of binary states.
In this study, we provide a curated subset of 65
Boolean networks from BioDivine (Pastva et al.,
2023). For each sample, we provide a short descrip-
tion of the domain and the name of each variable.

Structured Causal Models (SCMs). Beyond spec-
ifying a specific data-generating process (e.g., via
mathematical functions), studying causal depen-
dencies among time series variables is valuable for
uncovering interdependencies directly from raw
data, akin to the broader task of causal discovery in
temporal settings. This approach models systems
using Structural Causal Models (SCMs), which
can be expressed as a directed graph. For each
variable z;, the goal is to identify its parent vari-
ables x; along with their corresponding time lags
[, such that z; at time ¢ — [ causally influences x;
attime t: z; « {(z;,1) | x; € X,;l € [1,M]},
where X denotes the set of all variables and M
is the maximum considered lag. As the number
of variables and potential lag intervals increases,
the search space for an optimal SCM grows expo-
nentially, making discovery more challenging. In
this work, we extract SCMs from the CDEs in our
curated dataset, as well as from additional CDEs in
the Physiome database involving more than three
variables, using functional analysis. Each sample
is annotated with its corresponding SCM, resulting
in 190 samples.

4 SymbolBench Reasoning Framework

Given an input time series with T time points
{x"}L |, where x* € RP and D is the number
of dimensions, our framework aims to generate a
subset of symbolic structures for each time series.
Figure 1 sketches the closed-loop workflow that
combines LLMs into the automatic pipeline. The
process starts with Proposal Generation (Sec. 4.1),

Table 1: Comparison of SymbolBench with existing
benchmarks for LLMs across symbolic structures, eval-
uation setups, contextual data types, and reasoning.

Feature LLM-SRBench ODEBench RealTCD Ours

Symbolic Structures

Scientific Eq. 128 63 - 156

Logical Exp. - - - 65

SCM - - 2 190
Evaluation

ID/OOD v ' - v

Reasoning - - - v
Context

Textual v - - v

Multimodal - - - v

which generates candidate expressions alongside
their reasoning path if available. Then, the raw out-
put is cleaned and used for Verification (Sec. 4.2),
which assigns scores for each candidate. Candi-
dates are then stored in a history pool. Finally,
before the next round of generation, the Context
Manager (Sec. 4.3) extracts candidates from the
history pool based on certain rules and provides
them as the context for the next round proposal gen-
eration. The loop repeats until either the stopping
criterion is met or the budget exceeds the limit.

4.1 Proposal Generation

LLM-as-Predictor. To leverage the knowledge
embedded in LLMs, recent studies have explored
the direct generation of equations. In this work, we
frame this approach as LLM-as-Predictor. To thor-
oughly assess both the capabilities of LL.Ms and
the impact of iterative refinement, external context,
and chain-of-thought reasoning, we introduce four
distinct prompting strategies to evaluate the per-
formance of LLMs/MLLMs comprehensively. (a)
Naive prompt instructs the model to generate math-
ematical expressions without providing any con-
textual or historical information. (b) Base prompt
builds upon the Naive prompt by incorporating
previously generated expressions from the history
pool, filtered by the context manager. (b) Context
prompt further enhances the Base prompt by adding
relevant contextual information, such as variable
descriptions. (c¢) CoT prompt extends the Con-
text prompt by enabling the model to perform step-
by-step reasoning. The reasoning process is also
recorded and subjected to qualitative verification.
Details of all prompts are provided in Appendix I.

Hybrid Method. While the generation of symbolic
structures is central to the pipeline, this part can
also be addressed using operations from traditional
genetic programming. In the context of CDEs and
BN, this involves applying operations like muta-
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Figure 1: Iterative refinement framework. Candidate proposals are generated using either an LLM-as-Predictor
or genetic programming operations. Each round of candidates undergoes quantitative and qualitative evaluation
via validation tools and an LLM-as-Judge. Scored candidates are stored in a history pool, and a context manager

decides contextual information for the next round.

tion and crossover on expression trees to produce
new candidates. Since LLMs may still contribute
to other components of the framework, e.g., verifi-
cation, we phrase such a combination as the Hybrid
Method, and further discuss it in Appendix F.

4.2 Verification

Verification in symbolic structure discovery as-
sesses three key aspects: numerical fitness, sym-
bolic fitness, and context alignment. While nu-
merical fitness can be quantified, symbolic fitness
and context alignment are harder to measure with-
out ground truth. To address this, we introduce a
dual-verification strategy combining standard quan-
titative metrics with rubric-based qualitative evalu-
ation by LLMs-as-Judges.

4.2.1 Quantitative Verification

(a) For CDEs, we simulate time series data using
the predicted functions and assess their numeri-
cal fitness using the averaged coefficient of deter-
mination: R? = 1/DY"P(1 — M),
J D=1 ij-—xJ'IIQ
where 3:2 denotes the ground truth at time ¢ for
time series 7j, 553 the model prediction, and X;
the empirical mean of the observed data. We
also evaluate expression complexity based on sym-
bolic structure, defined as the number of oper-
ations. (b) For Boolean networks, we simu-
late transitions from the predicted Boolean net-
works and evaluate predictive performance using
the macro-averaged F1 score over 7' transitions:

. J
F1 = pip 2 S $§§+FN{:
TP?, FPZ , and FN? are the true positives, false
positives, and false negatives for node ¢ at tran-
sition j, respectively. Expression complexity is
computed analogously to CDEs. (¢) For struc-
tural causal models, where the true data-generating
process is typically unknown, we adopt a Condi-
tional Independence score (Cl-score) as a proxy
for structural fidelity. This metric captures the
strength of dependence between each child node
and its parents, conditioned on the remaining par-
ents. Let the parent set of X’ defined as P; =
{(x5,0)|j € D, ¥ € lpax} Where 5 is the maxi-
mum time lag. For each directed edge (x;,£) — i
in the edge set I/, we compute the partial corre-
lation: r;_,;=Corr| th._l, X! {mz_zlz(xk,f/)GPi, k;é]})
The Cl-score for a candidate graph G is then given
by: Cl-score(G) \T}EI Z(xj,E)—n‘eE I7jsil - A
lower Cl-score suggests stronger conditional in-
dependence and thus better structural plausibility.

where

4.2.2 Qualitative Verification

To assess the symbolic quality of the generated
expressions, we employ a rubric-based scoring sys-
tem ranging from 1 (poor) to 5 (excellent). Each
qualitative score is assigned by an LLM acting
as a judge (Hao et al., 2024), using a standard-
ized evaluation rubric. The rubric consists of four
core criteria: (a) Context alignment: Alignment
with provided time series data and contextual de-
scriptions; (b) Scientific plausibility: Alignment
with possible physical laws or domain-specific con-



straints; (c) Conciseness and clarity: The read-
ability and succinctness of the reasoning path; (d)
Logical coherence: The consistency and step-by-
step soundness of the derivation process.

4.3 Context Manager

The Context Manager is responsible for deliver-
ing relevant contextual information to the Proposal
Generator during iterative refinement. Based on
the chosen refinement strategy, the Context Man-
ager selects and provides appropriate context for
the next round of proposal generation. Through-
out the process, the Context Manager maintains a
history pool H, which stores previously generated
expressions, reasoning paths, and their associated
verification scores in a structured DataFrame, while
removing duplicates. In this study, we adopt a naive
ranking-based strategy by only selecting the top-k
highest-scoring candidates for further refinement.

S Experiment

5.1 Experimental Setup

Baseline Models. For CDEs, we include the
following baselines: PySR (Cranmer, 2024), a
GP-based method; ProGED (Omejc et al., 2024),
a probabilistic grammar-based approach; and
ODEformer (d’Ascoli et al., 2023), a pretrained
transformer-based model. For BNs, we evalu-
ate LogicGep (Zhang et al., 2024), a GP-based
method tailored for Boolean Network inference.
For SCMs, we adopt several time-series causal dis-
covery methods, including PCMCI (Runge et al.,
2019), LPCMCI (Gerhardus and Runge, 2020), and
j-PCMCI+ (Giinther et al., 2023).

Evaluation Metrics. SymbolBench evaluates
models on both in-distribution (ID) and out-of-
distribution (OOD) data by applying new initial
conditions. For CDEs, we report symbolic re-
gression score: SR* = LSV R? . I(R? >
0), and accuracy for R? > 0.9: ACCyg. For
BNs, we assess numerical similarity via preci-
sion, recall, F1, and bookmaker informedness:
recall + speci ficity — 1. For SCMs, structural
accuracy is measured using classification metrics
and Structural Hamming Distance (SHD). Sym-
bolic similarity (for CDEs and BNs) is evaluated
via expression tree edit distance, and expression
complexity via sympy’s count_ops (Meurer et al.,
2017). For BNs and SCMs, we also report accuracy
for samples with F1 above a threshold: AC'Cipesp-

5.2 Experimental Results

Across all three tasks, we select LLMs with var-
ious sizes and architectures, including Qwen?2.5-
14B (Team, 2024), Llama-3.2B (Dubey et al.,
2024), Mathstral-7B (Jiang et al., 2023), GPT-4o-
mini (Achiam et al., 2023), and ChatTS-14B (Xie
et al., 2024). For GPT-40-mini and ChatTS-14B,
we use inputs with visual and temporal modalities.
We present the results in Table 2, 3, and 4.

Obs. 1: LLLMs demonstrate superior capabil-
ity compared to baselines on CDEs and SCMs
datasets, while failing to compete against
baselines in Boolean network inference. For
Boolean network inference, while LLMs consis-
tently achieve positive bookmaker informedness
scores, indicating performance better than random
guessing, the genetic programming-based model,
LogicGep, significantly outperforms all evaluated
LLMs across nearly all evaluation metrics in both
ID and OOD scenarios. This could be explained
by both the symbolic and numerical fitting process.
(a) Symbolic fitting Unlike CDEs, BN inference
does not involve coefficient optimization. Com-
pared with CDEs, even if the symbolic structure is
not precisely correct, adjusting coefficients can still
yield good numerical accuracy. Compared with
SCMs, SCM inference focuses only on discovering
causal relationships, which is a less stringent goal
than recovering the full dynamics as in BN infer-
ence. (b) Numerical fitting: CDEs and SCMs are
inferred from continuous time series, which form a
consistent chains of state transitions, whereas BN
inference uses state transitions with various initial
conditions, forming graphs of state transitions, as
shown in Appendix B and H.1, which can be hard
to identify trends and summarize patterns.

Obs. 2: LLLMs’ performance degrades with
problem difficulty. Across all models, perfor-
mance consistently declines as the dimensional-
ity of the system increases. While conventional
methods such as PySR remain competitive in low-
dimensional systems (e.g., dim = 1), baseline mod-
els tend to exhibit a steeper performance drop com-
pared to LLMs. Similarly, there is a notable drop
in accuracy when models are evaluated on OOD
data, underscoring the increased complexity and
generalization challenges posed by these scenarios.
Obs. 3: Chain-of-thought prompting does not
consistently improve performance. Further intro-
ducing CoT prompting does not lead to consistent
gains, especially on the CDEs dataset. An excep-



tion is ChatTS-14B, likely due to its specialized
time series reasoning capabilities. While increas-
ing test-time compute has been shown to improve
outcomes in various tasks (Snell et al., 2024), and
CoT can contribute to this effect, similar limita-
tions have been observed in more complex tasks
such as those in SciBench (Wang et al., 2023).

Obs. 4: Providing problem contexts improves
LLM performance. Across all three tasks, com-
pared to the Naive prompt, LLMs demonstrate the
ability to leverage the provided context, resulting in
higher numerical performance. In this setting, con-
text functions as a form of conditioning, helping to
constrain the solution space and guide the model
toward more accurate and relevant inferences with
a faster convergence rate, as shown in Appendix G.

5.3 Further Analysis

In this section, we explore the adaptability of our
framework with genetic programming methods and
the power of test-time compute. We formulate
several key questions and takeaways as follows:
Q1: Do LLMs Employ Correct Symbolic Rea-
soning Paths? While previous research (Hao et al.,
2024) has demonstrated that yielding correct an-
swers does not necessarily yield correct reasoning
paths, we find that general LLMs like Qwen?2.5-
14B with pure textual input are able to perform a
certain level of reasoning (through CoT prompt-
ing) over the time series and the given context. As
shown in Table H.2, the LLM is not only able to
consider the meaning of each variable, but also the
historical candidates.
Q2: How should test-time compute be struc-
tured for consistent improvement? While scal-
ing test-time compute can enhance LLM perfor-
mance (Snell et al., 2024), our findings indicate
that the structure of this computation is critical
for achieving consistent improvement. Simply in-
creasing compute via naive CoT reasoning does
not yield reliable gains, as shown in Obs. 3. This
is because the depth of naive CoT reasoning often
remains shallow and lacks key mechanisms such
as reflection, verification, and backtracing that are
present in more advanced RLM (Besta et al., 2025)
with Long CoT (Chen et al., 2025), which involves
more cognitive behaviors such as verification, re-
flection, and backtracing, etc. We use illustrative
examples to demonstrate this in Appendix H.3.
Thus, to see consistent gains, test-time compute
should be structured to facilitate a Long CoT. We
explore two approaches: First, we analyze the ef-
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Figure 2: Evaluation scores improve with more itera-
tions and test-time compute, as discussed in Q2.

fect of a Long CoT, generated by RLMs, within
each reasoning epoch. This reveals that dedicating
more compute to a longer, more detailed chain-of-
thought leads to moderate but consistent improve-
ments in the final prediction scores, as shown in
Figure 3. Second, we view the entire iterative re-
finement process as a form of Long CoT. In this
approach, the model verifies previous outputs and
generates improved answers based on earlier, po-
tentially flawed, solutions. As shown in Figure 2,
the verification scores consistently improve as more
refinement steps are added. From both approaches,
we observe that the complexity of the best-fitting
solutions increases with the amount of computation,
echoing the human-like process of progressively
constructing more sophisticated answers.

Q3: Does the generalizability of prediction cor-
relate with structural complexity? When faced
with multiple symbolic structures that can fit the
given time series, the conventional wisdom sug-
gests that the simplest one is the most likely to
be generalizable. Existing LLM-based approaches
for symbolic regression (Shojaee et al., 2024; Li
et al., 2024; Merler et al., 2024; Grayeli et al., 2024;
Wang et al., 2025), rooted in the principle of Oc-
cam’s Razor, advocate for choosing the expression
with the least complexity. However, our experimen-
tal results challenge the assumption that simpler is
always better. Our analysis shows that expressions
with higher complexity can also achieve improved
symbolic proximity and OOD performance in Ta-
ble 2. This is because, in complex scientific do-



Table 2: Symbolic regression performance for CDEs across 4 dimensions. We use percentage for S R?
, , and Cyan mark the first, second, and third place, respectively.

and ACCO_Q.
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29.50
70.00
56.30
44.70
38.30

12.30
27.40
63.70
50.00
39.40
31.70

12.00
29.20
65.30
49.00
39.20
31.10

11.50
29.20
66.90
53.10
37.30
29.20

17.00
29.40
70.80
59.20
40.20
32.60

17.20
29.60
68.40
57.10
42.40
33.30

9.70
32.70
11.50

8.70

7.00

0.00

Complexity |
Symbolic Prox. |

SR?
D acco,

SR?
00D} Coo

Dim=4

10.60
30.30
74.60
65.20
23.80
21.70

14.40
36.40
34.80
29.60
11.40

7.10

22.90
35.20
92.70
87.90
29.20
19.40

23.20
35.40
93.60
94.10
19.10
15.60

23.10
34.10
93.30
93.90
19.40
12.50

18.50
32.90
91.00
89.30
34.60
33.30

20.60
34.70
49.40
40.70
28.30
12.00

19.60
32.70
61.10
52.00
21.30
13.60

17.90
32.50
78.00
74.10
30.70
24.00

18.70
32.40
78.70
75.00
36.90
30.80

14.50
34.80
88.60
78.80
26.90
19.40

13.90
32.90
86.90
70.00
27.60
20.70

13.90
32.20
86.10
71.40
30.40
15.40

13.60
31.90
89.10
85.70
30.50
21.40

22.60
38.00
78.70
74.10
25.00
21.70

22.10
36.30
80.00
80.80
24.50
17.40

Table 3: Comparison of Boolean network inference across ID and OOD settings.

Model Setting

ID

(010)))

Prec.

Rec. Acc. B.I. ACCyp5 ACCp7 ACCyp g Prec

. Rec. Ace. BL. ACCos ACCo7 ACCos

Symb. Prox. | Comp. |

LogicGep 93.6 92.7

~

95.2 88.7

98.5

98.5

96.9

84.7

86.5

89.5 76.5

98.5

86.2

76.9

12.39

12.39

Naive 58.7
Base 54.7
Context 57.8
CoT 583

Qwen2.5-14B

71.7
733
77.2
73.9

66.5 29.5
63.5 27.3
67.1 29.1
65.4 30.3

86.2
80.0
87.7
92.3

33.8
20.0
38.5
27.7

6.2
3.1
9.2
4.6

56.4
53.8
56.1
56.2

71.
72.8
77.2
73.9

3 64.5 26.6

62.5 259
65.5 27.0
63.2 27.9

80.0
83.1
87.7
84.6

24.6
16.9
30.8
24.6

7.7
3.1
10.8
3.1

12.87
12.33
12.39
11.96

14.84
16.73
16.86
14.79

Context 51.6

Llama3.2-3B
ama32-3B o 520

74.8
73.1

62.4 24.5
62.3 23.0

60.0
61.5

18.5
20.0

1.5
1.5

474
499

71.1
67.8

582 169
583 15.7

523
56.9

9.2
13.8

1.5
1.5

14.12
14.30

17.67
19.59

Context 49.5
CoT 513

Mathstral-7B

73.3
74.4

60.3 19.2
62.6 23.9

50.8
61.5

154
21.5

1.5
3.1

48.0
48.3

72.2
71.7

58.0 16.4
58.3 169

53.8
60.0

10.8
16.9

1.5
3.1

12.74
12.16

20.14
20.48

.. Context 51.6

GPT-40-mini 8.9
CoT 522

58.9

62.6 21.2
63.5 23.5

471
53.8

154
4.6

0.0
0.0

51.3
51.7

58.5
60.6

61.4 20.0
62.2 23.0

53.8
53.8

13.8
7.7

0.0
0.0

13.24
11.20

30.07
32.42

mains such as biology or physics, the ground-truth
expression may inherently be more structurally
complex while being numerically simpler in the
ID setting. Imposing a strong simplicity criterion
can hinder the discovery or selection of the more
generalizable context-aligned candidates. As de-
tailed in Appendix E and Table 5, our analysis sug-
gests that: Candidate ranking and selection should
not solely rely on complexity and may benefit from
considering contextual information.

Q4: Can LLMs and genetic programming (GP)
be combined for enhanced performance? While
LLMs show superior performance on CDE and
SCM inference, GP holds value for its cost, con-
trol over complexity, and stronger performance in

BN inference. To capitalize on the advantages of
both, we explored two primary methods for creat-
ing a high-performance hybrid system, as detailed
in Appendix F. The key is to use the contextual un-
derstanding of LLMs to “inject context and knowl-
edge” into the GP workflow, boosting its perfor-
mance. This can be achieved in two main ways:
(a) LLM-Guided Initialization: Use an "LLM-as-
Predictor" to generate a high-quality initial popula-
tion of candidate expressions for the GP to evolve.
This provides the GP with a context-aware and
promising starting point. (b) LLM-Guided Eval-
uation: Employ an “LLM-as-Judge” to provide
context-enhanced evaluation scores during the GP’s
fitness assessment. This helps guide the evolution-



Table 4: Performance comparison of causal discovery methods and LLM-based approaches.

Model  Setting F1 Prec. Recall FDR| ACCgs ACCg7 ACCos SHD| Complx|
PCMCI ~ 527 522 637 461 553 23.7 79 9528 96.76
LPCMCI ~ 520 68.6 459 291 = 563 18.4 53 2535 1454
j-PCMCI+ ~ 462 58.1 433 391 453 13.2 74 4936 38.83
Naive 49.7 59.4 450 40.6  43.7 17.9 84 3554 18.93
5s.q4p Base 505 614 450 386 474 18.4 89 3458 18.10
Qwen2.5- Context 53.4 63.0 483 37.0 53.7 19.5 79  31.69 18.61
CoT 513 619 463 381 526 20.0 84 3936 21.76
Llama3.2.3p Context 51.3 56.1 490 439 374 13.7 89  41.89 2543
amas..z- CoT 51.8 564 495 436 484 22.6 11.6 4440 2575
Mathstral7p CONtext 47.2 548 431 452 40.5 15.8 79 3770 2048
athstral- CoT 49.8 58.0 454 420 447 14.2 5.8 3430 19.38
GPTdo.min; CONteXt 369 59.9  27.6 401 247 53 1.6 4429 1336
“H0-mIlcaT 371 575 285 425 242 3.2 2.6 3890 13.08
ChatTs.14p Context 541 723 462 277 589 22.6 11.6 3248 15.07
atls- CoT 544 723 466 277  61.1 25.3 105 31.10 14.70

Table 5: Correlations between complexity and OOD
ACCy.g across four dimensions with and without con-
text in symbolic regression task.

Condition Diml Dim2 Dim3 Dim4
w/o context -0.672 -0.384 -0.425 0.584
w/ context 0.097 0.728 0.165 -0.174
+
0.85
0.80 u L
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(a) Comparison of increasing test-time compute on CDEs.
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Figure 3: Comparison of performance with and without
thinking.

ary search toward solutions that are not only numer-
ically accurate but also scientifically plausible. As
shown in Tables 6 and 7, combining LL.Ms with GP
in these roles demonstrably improves performance.

6 Conclusion and Outlook

We introduce SymbolBench, a real-world bench-
mark for symbolic structure discovery, and a Uni-
fied Symbolic Reasoning Framework that en-
ables LLMs (optionally with GP) to generate and

Table 6: Hybrid method on CDEs. We use the same

GPT-40-mini as judge and predictor.

Method SR%, SR%,p, Sym.Prox.| Comp.|
GPLearn 27.6 14.9 6.083 1.333
GPT-40-mini 39.3 24.1 7.438 7.406
GPLearn +

LLM-as-Judge 31.7 16.3 6.550 1.200
LLM-as-Predictor +

GPLearn 89.5 69.3 5.045 2.682

Table 7: Hybrid method on BNs. We use the same GPT-
40-mini as judge and predictor.

Method Setting Metrics
Prec. Recall F1 Ace BM Comp.|
. ID 880 886 8.0 917 809 0.773

LogicGep

00D 789 830 800 856 692 0.773
GPTaomini P 528 656 57.8 612 236 2422
00D 499 623 545 583 173 2422
LogicGep + ID 893 928 909 932 856 1012
Judge 00D 786 852 804 858 710 1012
Predictor + 1D 722 847 715 80.6 610 0.993
LogicGep 00D 63.1 772 679 732 469 0.993

judge hypotheses across tasks. Experiments show:
(i) LLMs beat baselines on multivariate symbolic
regression and causal discovery but lag on Boolean
network inference; (ii) more test-time compute
yields only modest gains; (iii) contextual ground-
ing boosts accuracy and generalizability; and (iv)
LLM-GP hybrids further improve performance.

Future Opportunities. Based on our observa-
tions and takeaways, we summarize some poten-
tial future directions as follows: (i) task-specific
scaling of test-time compute and reasoning depth;
(i) richer, knowledge-heavy context to guide hy-
potheses; (iii) context-aware criteria beyond syntac-
tic simplicity (e.g., plausibility, robustness, causal
faithfulness); and (iv) broader symbolic targets plus
verifiable reasoning traces for interpretability.



7 Limitations

This work has several limitations stemming from
computational constraints. First, we did not evalu-
ate larger open-source models (e.g., DeepSeek-R1).
Second, we capped the budget at 100 generation
epochs and a maximum of 20 retries per epoch for
each run; samples without candidates that could
reach the tolerance will be rerun once again to mit-
igate uncertainty. Finally, we examined only one
LLM and one GP in the hybrid architecture, and
did not analyze the effects of reasoning strategies
or model size.
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Appendices

A Related Work

symbolic structure Discovery. Discovering sym-
bolic laws from time series data is a central objec-
tive in many scientific discovery tasks. One promi-
nent approach is Symbolic Regression, which seeks
closed-form expressions that accurately model the
observed data. Classical methods such as Genetic
Programming (GP) (Mundhenk et al., 2021) are
powerful but computationally intensive and often
sensitive to the choice of operators and fitness func-
tions. Alternatively, sparse optimization techniques
like SINDy (Brunton et al., 2016) and PySR (Cran-
mer, 2024) aim to identify parsimonious models
by leveraging sparsity in the function space. More
recently, deep learning-based models have been
introduced to enhance efficiency and scalability.
Methods such as ODEformer (d’Ascoli et al., 2023)
and TPSR (Shojaee et al., 2023) reformulate sym-
bolic discovery as a sequence-to-sequence trans-
lation task, mapping time series data to symbolic
equations. These approaches generate high-quality
expressions and offer improved computational effi-
ciency. However, they typically require large-scale
pretraining and often lack the capability for itera-
tive refinement and adaptation across diverse scien-
tific domains. Beyond symbolic regression, related
tasks such as Boolean Network Inference(Zhang
et al., 2024) and Causal Discovery(Hasan et al.,
2023) also aim to extract symbolic structures from
time series data. These methods seek to uncover
underlying logical or causal relationships, further
emphasizing the broader interest in interpretable,
symbolic representations of dynamical systems.

LLM Symbolic Reasoning. Due to the strong in-
context learning and reasoning ability of Large lan-
guage models (LLMs) that allow them to adapt to
various tasks, they are able to perform logical infer-
ence(Ahn et al., 2024; Wang and Chen, 2023), and
temporal symbolic reasoning (Fang et al., 2024).
Despite the strong ability of LLMs, current re-
search for SR tasks only applies them as proposal
generators without a reasoning process. Though
the generated functions may achieve a high fitting
score, the reasoning process remains unknown to
us and may fail to align with the context, with lit-
tle real-world meaning. In addition, the current
research focus has also skewed toward algebraic
equations, with little work on logic rules or causal
relations. Our SymbolBench, compared to previ-
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ous benchmarks as shown in Table 1, addresses
this by systematically evaluating both LLMs and
MLLMs on SR for time series data, covering varied
symbolic forms and emphasizing the transparency
of the reasoning process. In addition, compared
to prior benchmarks, we provide a more compre-
hensive evaluation including In-distribution and
Out-of-distribution settings over coupled ODE:s,
logical expressions, and structured causal models.

B SymbolBench Dataset

SymbolBench uses three different datasets to eval-

uate the ability of LLMs/MLLMs to uncover the

symbolic laws from time series data. We include
variable description, domain name, and the time
series trajectory as additional context. Examples of

the dataset are shown in Table 8.

In addition, we provide a more detailed illustra-
tion of the verification process of the three tasks as
follows:

(a) CDEs: We use an LLM to generate the skele-
ton of the continuous-time dynamical system,
replacing each unknown coefficient with a
placeholder "c". An optimizer then fits these
coefficients to the training time series. To
avoid the high cost of repeatedly solving and
differentiating through a full ODE solver, we
adopt the finite—difference approximation strat-
egy from ODEFormer (d’ Ascoli et al., 2023).
Once the functional form f (x; ¢) is obtained,
where ¢ is the fitted coefficients, we gener-
ate the final numerical solution using SciPy’s
scipy.integrate.solve_ivp, and compare
the trajectory to the ground truth:

solve_ivp(f(x; @), x(to), to, ..., tn,method=LSODA).

6]
The distribution of sample dims is shown in
Figure 4a.
BNs: For Boolean Networks, the LLM di-
rectly outputs a set of logical update rules (e.g.
zi(t + 1) = x;(t) A —x(t)). Since there
are no continuous parameters to fit, we simply
simulate the network from the known initial
state z(top) and compute the F1 score over all
bits and time steps to assess agreement with
the true dynamics. The distribution of sample
dims is shown in Figure 4b.
SCMs: For Structured Causal Models, the
LLM predicts the possible causal relations
among all variables, forming a directed graph.
Since the predicted SCMs can not directly pro-

(b)

(c)
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duce numerical solutions, to quantify how well
the predicted SCM explains the data, we com-
pute the sample partial correlation between z;
and each candidate parent in pa(x;) (condition-
ing on the parents), following the protocol of
Runge et al. (Runge et al., 2019). The final
score for each node is the mean of its absolute
partial correlations, and we average over all
nodes to obtain the overall SCM score. The
distribution of sample dims is shown in Fig-
ure 4c.
Textual Context. For regular LLMs that only ac-
cept textual inputs, all inputs to LLMs are format-
ted as structured textual prompts. Time series data
are serialized into strings, supplemented with con-
textual metadata such as domain information, vari-
able meanings, and prior scored expressions. This
enables language models to reason over both data
patterns and contextual priors.
Visual and Temporal Context. Multimodal LLMs
have shown promise in handling visual and tempo-
ral data. While visual inputs are traditionally used
in vision-language tasks (Radford et al., 2021), re-
cent research has extended MLLMs to time series
domains (e.g., forecasting via visual encodings (Li
et al., 2023)). Recent models like ChatTS (Xie
et al., 2024) and TempoGPT (Zhang et al., 2025)
enable joint reasoning over temporal and textual
modalities. In SymbolBench, we explore the use
of MLLMs to incorporate both visual time series
plots and encoded temporal embeddings.

C LLMs for Benchmarking

We evaluate six representative LLMs, chosen for
their diversity in size, training data, and specializa-
tion:

(a) Qwen Series (Team, 2024, 2025): Qwen2.5-
14B (Team, 2024) is a 14.7-billion-parameter
causal Transformer (13.1 B non-embedding)
built on RoPE, SwiGLU, RMSNorm, and
QKV-bias that extends context support to 128
K tokens (with generation up to 8 K) and
delivers significantly richer knowledge, ad-
vanced coding, and mathematical reasoning
(via domain-expert submodels), robust instruc-
tion following, long-form text, and structured
output (e.g., tables, JISON), and out-of-the-box
multilingual fluency across 29+ languages. Fol-
lowing Qwen2.5-14B, Qwen3 (Team, 2025)
series is the newest generation in the Qwen
family, combining dense and Mixture-of-
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(b)

(©)

(d)

of CDE DI

43

35

15 20 255

Dimension

(a) Dimension distribution of Coupled
Differential Equations used in Symbol-
Bench.

Distribution of BN Dimensions 9

Count
N
N
N
IS

a 6 8 10 12 1.

) 16 18 20
Number of Variables

(b) Dimension distribution of Boolean
Networks used in SymbolBench.

Distribution of SCM Di

111 011 1111 1

15 20 %5
Number of Variables

(c) Dimension distribution of Structured
Causal Models used in SymbolBench.

Experts architectures to deliver seamless mode-
switching—*“thinking” for deep logical reason-
ing, math, and coding, and “non-thinking” for
fast, general dialogue.

Llama 3.2-3B (Dubey et al., 2024): Llama
3.2 is a family of multilingual 1 B and 3
B—parameter pretrained and instruction-tuned
text-in/text-out models, with its instruction-
tuned versions specially optimized for dia-
logue, agentic retrieval, and summarization
across dozens of languages—consistently out-
performing many open-source and proprietary
chat models on standard industry benchmarks.
Mathstral-7B (Jiang et al., 2023): Mathstral
is a 7 billion-parameter LLM released by Mis-
tral Al as a tribute to Archimedes’ 2311th
anniversary, built on Mistral 7B with a 32K
token context window and fine-tuned for ad-
vanced multi-step mathematical and scientific
reasoning. Developed in collaboration with
Project Numina, it achieves state-of-the-art per-
formance for its size.

ChatTS-14B (Xie et al., 2024): ChatTS-



14B is a multimodal LLM explicitly designed
around time series as its core modality, offer-
ing native support for multivariate sequences
of varying lengths and dimensions, preserv-
ing raw numerical fidelity for precise statis-
tical queries, and enabling interactive, con-
versational exploration and reasoning over
time-series data—while also integrating seam-
lessly into existing LLM workflows (including
vLLM) with provided code, datasets, and mod-
els.

GPT-40-mini (Achiam et al., 2023): GPT-4o-
mini is a compact multimodal reasoning model
released by OpenAl in July 2024, delivering
GPT-4-level performance while costing over
60% less than GPT-3.5 Turbo; it supports text
and vision inputs, advanced function calling,
and extended long-context understanding.
o4-mini (Achiam et al., 2023): 04-mini is
OpenAlT’s latest release of a reasoning-focused
GPT variant that replaces 03-mini, offering
both text and image processing, “whiteboard”
chain-of-thought reasoning, seamless tool in-
tegration, and a high-accuracy paid-tier op-
tion—all accessible via ChatGPT and the
Completions API for domain-critical decision-
making tasks.

(e)

®

Baseline Implementation

CDEs: We follow ODEFormer’s base-
line implementation and hyperparameter tun-
ing (d’Ascoli et al., 2023), using PySR with
finite-difference approximations for skeleton
search, and default greedy top-k generation for
ODEFormer.

BNs: We reimplement LogicGep’s Boolean-
network inference using the same Geppy
genetic-programming framework (Gao et al.,
2022), but omit the continuous-to-binary dis-
cretization and MLP-based constraint stages,
since our training traces are already binary.
SCMs: All SCM baselines are based on
Tigramite (Runge et al., 2022), with the maxi-
mum time-lag set to 1 for fair comparison.

(a)

(b)

(©

E Analysis on Table 2

Prior studies (Shojaee et al., 2024; Merler et al.,
2024) often use complexity as the sole standard for
final selections of candidate predictions. However,
we show that the generalization, represented by
the performance during holdout evaluation (OOD),
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has a poor correlation with expression complex-
ity. (a) As shown in Table 9, without introducing
context, complexity may have a moderate corre-
lation with AC'C(.9 when the dimension is small
and not challenging. However, given samples with
higher dimensions, the correlation became positive,
meaning higher complexity can also give better
generalization. (b) When context is introduced, be-
sides the overall improved performance is observed
as illustrated in Obs. 4, the correlation also turned
positive from Dim=1 to Dim=3 and remained low
for Dim=4. Such an obvious change potentially
suggests that context is a more effective criterion
for candidate ranking and selection during both
iterative refinement and final evaluation.

Table 9: Correlations between complexity and OOD
ACCy g across four dimensions with and without con-
text

Condition Diml Dim2 Dim3 Dim4
w/o context -0.672 -0.384 —-0.425 0.584
w/ context 0.097 0.728 0.165 -0.174




F Hybrid Method

We adopt two frameworks for hybrid approach by
separately let make GP and LLMs play different
roles. (a) As shown in Figure 5a, in addition to the
quantitative evaluation using MSE, an additional
qualitative score produced by LLM is incorporated
in the evolution loop; (b) As shown in Figure 5b, in
addition to the original closed loop (blue line), we
provide an extended path (red line) that utilize GP
to expand the history pool. From a different per-
spective, the initial population produced by LLMs
also improves the generation for GP by providing
context-enhanced initial populations.

Evaluation Score = MSE(y, y_pred) + weight*LLM_score

Genetic
Programming

Population

Operations
e.g., mutation

LLMs-as-Judges

(a) Hybrid method using Genetic Programming + LLM-as-
Judge.

Evaluate

Data Points

LLMs-as-Predictors
4. Top-k context

1. Generate

History Pool

2. Top-k initial genes 3. Generate

Genetic
Programming

(b) Hybrid method using Genetic Programming + LLM-as-
Predictor, where GP helps expand the history pool with the
current best expressions as initial population.

Figure 5: Hybrid method

G Convergence Rate

We further examine the convergence rate under var-
ious settings. As shown in Figure 6, introducing
both context and reasoning leads to a faster con-
vergence rate on the CDE and BN datasets. In
contrast, the SCM dataset exhibits an overall fast
convergence rate across all settings, with context
having only a marginal improvement.
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H Example Outputs

H.1 Example predictions across three tasks

We present examples across three tasks in Table 8.

Generate a synthetic ordinary differential equation (ODE) ... should model a plausible real-world or conceptual dynamical process that fits the given domain and context.
Requirements:

C D E {context}; {var_points}; {functions}; {example_str}
Generate Five sets of improved samples compared to the previously generated results, ...
Think the problem step by step ...

Generate Boolean Networks ... should model a plausible real-world or conceptual process.
Requirements:
You are given the follwoing context:
- Here is the domain of the problem: DROSOPHILA-WINGS-AP.
BN Here are the variables and their descriptions: x1: v_Ap, x2: v_Ap2, x3: v_DI, x4: v_DI2, x5: v_Fng, x6: v_Fng2, x7: v_N, x8: v_N2, x9: v_Ser, x10: v_Ser2.
The transitions you are fitting is:
-1110111111 -> 1100110111; 1100110111 -> 1100110011; ...
{functions}; {example_str}
Think the problem step by ...

Generate a Structured Causal Model... should model a plausible real-world or conceptual dynamical process that fits the given domain and context.
Requirements:

SCM

{context}; {var_points}; {functions}; {example_str}
Generate Five sets of improved samples compared to the previously generated results, ...
Think the problem step by step ...

LLM-as-Predictor
1

Expr R2 Complexity

[-c*x_0*x_1-c*x 0*x 2+c*x 0,c*x 0*x_1+c*x 0*x 2-c*x 1,c*x 1-c*x 2-¢c*x 3, -
C*x_0+c*x_2+c*x_3] 0.999 24

This model is a combination of the previous models. The equations model a more complex interaction between the states. The transitions between the states are
influenced by the rate constant c. Itincludes the susceptible state and the recovered state interacting with the infected and dead/immune states.

Expr F1 Complexity
{'x3': X2 & ~x1, 'x4': x3 | x5, 'x5': x10 & X6, 'x6': X4 * X7, 'X7": x8 | ~x1, 'x8': x9 | ~x2, 'x9":
x10 & x2, 'x10": x3 | x5} 0.561 1

The equations leverage the concept of genetic dominance, where the absence of x1 combined with the presence of x2 allows for different outcomes in x3. This suggests a
model where certain wing characteristics are present when specific alleles are expressed or repressed. The use of logical operations also captures the complex
interactions and dependencies between various genes involved in wing patterning in Drosophila.

Expr Cl-score Complexity
{0 [('x1', 1), ('x4', 1)], 'x1": [('x2', 1), (x5, 1)], 'x2": [('x0", 1), ('x6", 1)], 'x3" [('x0", 1), ('x1',
1)1, x4 [('x7', 1)], 'x5': [('x3", 1), ('x6", 1)], 'x6": [('x1", 1)], 'X7": [('x2', 1), ('x5', 1)], 'x8": [('x0',
1), (x14, 1)1} 0.9283 16

This SCM captures the interdependencies between the different compartments of L-dopa and benserazide. The variable x0, representing the concentration of A_dopa in the
gastrointestinal compartment, is influenced by the concentrations of C_dopa_c and A_bens from the previous time step. Additionally, the concentration of C_dopa_c is
affected by both x2 and x5, indicating a feedback mechanism. Furthermore, x3 C_Ro_central depends on the previous values of x0 and x1, suggesting that fluctuations in the
gastrointestinal compartments can impact central compartment concentrations.

Figure 7: Example input and output across three tasks using LLMs-as-Predictors. The output is processed through
verification.

H.2 Candidates of CoT reasoning output on coupled-differential equations

We show the list of candidates found for fitting the time series generated from the SEIR model in Table 10.
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H.3 RLM output for one sample with marked reasoning steps

(Step 1: Problem Setup) Okay, let’s see. I need to generate a system of coupled ODEs for the calcium_dynamics domain. The
variables are xo, x1, X2, 3, each with their descriptions as given. The time series data is provided, which includes xg values and
the other variables. (Step 2: Initial Observations) First, the variables xo, 1, 2, x3 are each in the range of their description.
The domain is calcium dynamics, so the equations need to model some process related to calcium concentration. Looking
at the time series for xo, which is a negative value, and the other variables being positive. Since calcium concentrations are
usually positive, maybe the model is about the flow of calcium through the cell membrane, or the impact of different ions on
calcium levels. The time series for x; is all zeros except at some points. The x; values are all 0.3, then increase. Maybe this is a
transient phase or a step change. For 2 and x3, they seem to be varying linearly. (Step 3: First Model Attempt) Looking
at the equations, perhaps there are some nonlinear terms. The variables can be combined using trigonometric functions. Let
me think about a possible model. If I consider a calcium channel model, the rates of change could involve the concentration of
ions. For example, the rate of change of x¢ might depend on x1, 2, and x3. Similarly, 1 might relate to z2 and x3. (Step 4:
Linear Combination Trial) But the problem is to create a model that fits the data. Let’s think of a simple model. Suppose that
2o = ¢(x1 + w2 + x3). Similarly, maybe x1 = ¢(z2 — z3). For x2, maybe it’s a linear function: 2 = ¢(x¢ + x3). Similarly,
3 = c(x3 — o). Putting it all together, the system would be:

c*x1 + c*x2 + c*x3 | c*x2 - c*x1 | c*x@ + c*x3 | c*x3 - c*x0@
(Step 5: Plugging in Sample Data) In the first sample: xo = —43.0, x1 = 0.03, etc.

2o = ¢(0.03 + 0.1 + 0.434) = ¢(0.564) = ¢ = 520 ~ —76.5

x1 =¢(0.1 —0.434) = ¢(—0.334) = c = %% ~ —0.09
Inconsistent values suggest equation mismatch. (Step 6: Revising the Model) Try again with the same structure:
c= zg — =430 ~—T765¢c= 0.03 — _0.03 ~ —0.09

w1 twotas 0.564 : 0.1-0.431 — —0.334 :

Still inconsistent. (Step 7: Trying Differential Form) Suppose:

dx@/dt = c*(x1 + x2 + x3)
dx1/dt = c*(x2 - x3)
dx2/dt = c*(x@ + x3)
dx3/dt = c*(x3 - x0)

(Step 8: Numerical Check) With 2o = —43.0,21 = 0.03, 22 = 0.1, x3 = 0.434:

dx@/dt = cx0.564
dx1/dt = c*(-0.334)
dx2/dt = cx0.464
dx3/dt = c*x43.434

Still inconsistent ¢ values. (Step 9: Considering Other Forms) Maybe use other terms, e.g., absolute values or trigonometric
forms.
Step 10: Trying Absolute Values

dx@/dt = |x1 + x2 + x3|
dx1/dt = |x2 - x3|
dx2/dt = |x1 - x3|
dx3/dt = |x3 - x0|
Still not matching data. (Step 11: Simpler Model Revisited) Try:
dx@/dt = c*x1 + c*x2 + c*x3
dx1/dt = c*x2 - c*x3
dx2/dt = c*x@ + c*x3
dx3/dt = c*x3 - c*x@
(Step 12: Integrating into Sample) With ¢ = 1:
dxe/dt = 0.564
dx1/dt = -0.334
dx2/dt = -42.566
dx3/dt = 43.434

(Step 13: Final Justification) Suggests calcium dynamics via flow of ions. xo as calcium concentration, 1, T2, T3 as
inflow/outflow.
(Step 14: Final Model Form and JSON)

dx@/dt = cxx1 + c*x2 + c*x3

dx1/dt = c*x2 - c*x3

dx2/dt = cxx@ + c*x3

dx3/dt = c*x3 - c*x@
(Step 15: Format Verification) Follow pipe-separated format:

{"eq": "cxx_0*x_1 + c*x_2 - c*x_3 | c*xx_1/X_0 + c*x_3 | c*x_2 - c*X_0*x_3 | c*x_3 + cxx_0 - cxx_1", "dim": 4}
(Final JSON Output)

{
"eq": "cAX_@*x_1 + c*x_2 - c*x_3 | c*x_1/x_0 + c*x_3 | Cc*X_2 - Cc*Xx_0*x_3 | c*x_3 + c*x_0 - cxx_1",
"dim": 4

}
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I Prompts

Generate a synthetic ordinary differential equation (ODE) or a system of coupled ODEs in the
following structured format. The system should model a plausible real-world or conceptual
dynamical process that fits the given domain and context.
Requirements:
*Use variable names ONLY in {var_list}.
*No actual values allowed and the constants should be denoted ONLY by c.
*You don’t neccsaarily need to involve all variables in the equations (the simplest case
is just an constant c)
*For coupled equations (dim > 1), separate right-hand sides using the pipe symbol ‘|’.
*Equations must be algebraic expressions involving only the x_* variables from
{var_list} and the constant c.
*You may combine basic mathematical operations (+, -, *, /, A, sqrt, exp, log, abs),
trigonometric expressions (sin, cos, tan), constants (c), and variables in any way to
create diverse and meaningful functions.
*The generated equations should firstly achieve a good fitting score, and secondly
have a low complexity as much as possible.
*Output ONLY a JSON object (not a string) in the following format (no extra text):
The generated equations should fit the following context:
*{context}
The time series you are fitting is:
*{var_points}
You are given the previous generated results and scores as follows:
*{functions}
Format Examples (depend on the current dim):
*{example_str}
Generate Five sets of improved samples compared to the previously generated results, each
sample is a JSON object with the same format as above. Each sample should have
dim={num_eqs}. Each sample should be separated by a comma. Do not output other
irrelevant text.
Think the problem step by step and store your reasoning process (based on your own
knowledge and the given context) using a json format {‘reasoning’: ‘your reasoning process’}.
You can either propose entirely new equations with diverse reasoning paths or refine the
given equations along with their reasoning.

Figure 8: Prompt with CoT and Context for CDEs.
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Generate Boolean Networks in the following structured format. The system should model
a plausible real-world or conceptual process.
Requirements:

*Use variable names ONLY in {var_list}.

*Equations must be logical expressions involving only the x* variables from

{var_list}.

*There are free variables that do not need to be modeled and simply serve as

observed variables: {free_vars}.

*Allowed operations: AND (&), OR (]), NOT (!), XOR (*), and IMPLIES (->).

*Use ; to separate each logical expression in a sample.

*Output ONLY a JSON object (not a string) in the following format (no extra text):
You are given the following context:

*{context}
The transitions you are fitting is:

o{transitions}
You are given the previous generated results and scores as follows:

*{functions}
Format Examples (depend on the current dim):

*{example_str}
You are free to use any amount of the variables in {var_list}, and any number of
operations to construct one equation. The generated equations should be creative and
not the same as the example!
Generate Five sets of samples that are better than the previously generated results, each
sample is a JSON object with the same format as above. Each sample should have
dim={num_eqs}. Each sample should be separated by a comma. Do not output other
irrelevant text.
Think the problem step by step and store your reasoning process using a json format
{‘reasoning’: ‘your reasoning process’}. The reasoning should be based on your own
knowledge and the given context.

Figure 9: Prompt with CoT and Context for BNs.
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You are an expert in analyzing Multi-variate Time Series data, especially their causal
relations. Your task is to generate Structured Causal Models (SCMs) in the following
structured format.
Requirements:
*The system should model a plausible real-world or conceptual dynamical process
*Use variable names ONLY in {var_list}.
*SCMs must be expressed in directed graphs, involving only the x* variables from
{var_list}.
*Each edge is given a positive integer value indicating the lagging of causal effect.
*Output ONLY a JSON object (not a string) in the following format (no extra text):
You are given the following context:
*{context}
The time series you are fitting is:
*{var_points}
You are given the previously generated results and scores as follows:
*{graphs}
Format of one example sample:
o{example_str}
Above is just an example of output format. The actual lagging values should only be
chosen from {lagging_list}.
Generate Five sets of samples, each sample is a JSON object with the same format as
above. Each sample should be separated by a comma. Do not output other irrelevant text.
Think the problem step by step and store your reasoning process using a json format
{‘reasoning’: ‘your reasoning process’}. The reasoning should be based on your own
knowledge and the given context.

Figure 10: Prompt with CoT and Context for SCMs.
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You are an expert in analyzing Coupled Ordinary Equations and will analyze some ODEs
based on certain context.
The data that the ODEs are fitted is:
*{data}
The context of the given data is:
*-{context}
The scored candidate coupled ODE is:
*{candidate_exprs}
Your task is to analyze the candidate Coupled Ordinary Equations and determine if they
are suitable for the given context and transitions.
You are give the following criteria:
-Context Alignment: The ODEs should be relevant to the context provided.
-Scientific Plausibility: The ODEs should be scientifically plausible and make sense in the
context of the data.
-Conciseness and Clarity: The reasonings should be concise and clear, avoiding
unnecessary complexity.
-Logical Coherence: The reasonings should be logically coherent, consistent, and correct

You should provide a score for each criterion on a scale of 1 to 5, where 1 is the lowest
and 5 is the highest. Only output the scores in the following format and do not ouput any
other content:

{

context_alignment: <score>,
scientific_plausibility: <score>,
conciseness_and_clarity: <score>,
logical_coherence: <score>,

}

Figure 11: LLM-as-Judge prompt for CDEs.
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