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Abstract

Tensor Attention, a multi-view attention that is able to capture high-order corre-
lations among multiple modalities, can overcome the representational limitations
of classical matrix attention. However, the O(n3) time complexity of tensor at-
tention poses a significant obstacle to its utilization in transformers, where n is
the input sequence length. In this work, we prove that the backward gradient
of tensor attention training can be computed in almost linear time n1+o(1), the
same complexity as its forward computation under the bounded entries assump-
tion. We provide a closed-form solution for the gradient and propose a fast com-
putation method utilizing polynomial approximation methods and tensor algebraic
techniques. Furthermore, we prove the necessity and tightness of our assumption
through hardness analysis, showing that slightly weakening it renders the gradient
problem unsolvable in truly subcubic time. Our theoretical results establish the
feasibility of efficient higher-order transformer training and may facilitate practi-
cal applications of tensor attention architectures.

1 Introduction

The generative large language models (LLMs), such as Mistral [JSM+23], Llama [TLI+23],
Llama2 [TMS+23], Llama3 [AI24], Gemma [TMH+24], GPT-3 [BMR+20], GPT-4 [AAA+23],
Claude3 [Ant24], Grok-1 [xAI24] and many more, have been widely involved in people’s living
and work in these two years, such as bio-informatics [TTE+23a], coding [HZL+24], education
[KSK+23], finance [LWDC23], law [Sun23], medicine [TTE+23b], and even writing NeurIPS
conference reviews [LIZ+24]. The success of LLMs is based on the transformer architecture in-
troduced by [VSP+17], which also has been introduced into other modality [DBK+20], such as
vision-language models, e.g., CLIP [RKH+21], Flamingo [ADL+22], LLaMA-Adapter [ZHZ+23,
GHZ+23], LLava [LLWL24, LLLL23], BLIP [LLXH22, LLSH23], MiniGPT-4 [ZCS+23], Qwen
[BBC+23, BBY+23], Gemini [TAB+23], MM1 [MGF+24].

The above open-sourced large models use two-view matrix attention, i.e., each attention score/entry
is related to two tokens (one query token and one key token) to capture the data correlation. More
specifically, let Z be hidden representations and Q = ZWQ,K = ZWK , V = ZWV be the corre-
sponding query, key, and value matrices after projections using weights WQ,WK ,WV respectively.
Then, the classical/matrix attention head can be written as Att(Z) = Softmax(QK⊤)V .
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On the other hand, many studies find that multi-view is crucial for high-order correlation in various
kinds of data, e.g., math [SHT23], graph [DLG+22, LYH+23], and multi-modality [LAJ15]. For
example, recently, OpenAI released GPT-4o [Ope24], and Google released Project Astra [Goo24],
two flagship multi-modality models that aim to reason across three views, i.e., audio, vision, and
text in real-time.

However, [SHT23] theoretically and empirically shows that classical attention can capture pairwise
correlation but not triple-wise correlation due to the representational limitations of matrix atten-
tion. In other words, one classical matrix attention head “cannot” capture the information relevant
to multi-views simultaneously unless using multiple layers with careful architecture design. This
poses a fundamental technical obstacle for multi-modality models to efficiently fuse multiple repre-
sentations/views to capture the high-order correlation among them.

To fundamentally solve the above obstacle, [SHT23] and [AS24b] introduce Tensor Attention, which
is a higher-order generalization of matrix attention that can capture high-order/multi-view informa-
tion intrinsically. More specifically, it is defined as Softmax(Q(K1 ⊘ K2)

⊤)(V1 ⊘ V2) (Defini-
tion 2.5, and illustrated in Figure 1), where ⊘ is one kind of tensor operation, and Q, K1/V1,
K2/V2 can be from different views/modalities. However, to implement Tensor Attention practically,
we must overcome the complexity bottleneck. Let the input token length be n, then the forward and
backward time complexity of tensor attention will be O(n3) as Q(K1⊘K2)

⊤ ∈ Rn×n2

[MZZ+19],
while the time complexity of matrix attention is O(n2) only as QK⊤ ∈ Rn×n [KWH23]. For ex-
ample, the input length of Llama2 [TMS+23] is 4096. So, intuitively, if we put tensor attention
in Llama2, the input length will reduce to 256 to keep the same complexity in running speed and
memory consumption.

Table 1: Comparison to previous works.

Reference For/Backward Matrix/Tensor
[ZHDK23] Forward Matrix

[AS23] Forward Matrix
[HJK+24] Forward Matrix
[AS24a] Backward Matrix
[AS24b] Forward Tensor

Ours (Theorem 4.2) Backward Tensor

There are several recent works
to overcome the time complexity
bottleneck above, e.g., O(n2) for
matrix attention and O(n3) for
tensor attention. [ZHDK23] ac-
celerate matrix attention forward
via kernel density estimation and
get truly sub-quadratic time run-
ning time. [AS23] uses the poly-
nomial approximation method to
map the matrix attention into
low-rank matrices during forward
computation, leading to an almost linear time complexity n1+o(1) when entries are bounded. Sim-
ilarly, under sparsity assumptions, [HJK+24] achieves nearly linear time computation for matrix
attention forward by identifying the larger entries in the attention matrix. On the one hand, with
fine-grained analysis, [AS24a] proposes a new backward algorithm to compute the gradient of matrix
attention in almost linear time complexity n1+o(1) as well, under the same bounded entry assump-
tion. On the other hand, [AS24b] surprisingly finds that the forward computation of tensor attention
can also be achieved in almost linear time n1+o(1) rather than almost quadratic time n2+o(1), under
similar assumptions as [AS23]. See a summary in Table 1. Thus, it is natural to ask,

Can we achieve almost linear time for gradient computation in Tensor Attention Training?

We provide a positive answer in this work. Under the same bounded entries assumption as [AS24b],
we propose Algorithm 1 to fast compute the backward gradient of Tensor Attention Training in
almost linear time n1+o(1) as its forward computation. Thus, our results may make the tensor atten-
tion practical, as we can get around the O(n3) complexity barrier both in its forward and backward
computation. Our contributions are summarized as follows:

• Under fine-grained analysis, we give the closed-form solution of the gradient computation of
tensor attention (Lemma 3.1) and its time complexity without acceleration (Theorem 3.3).

• Based on the closed-form solution, by utilizing polynomial approximation methods and tensor
computation techniques, we propose Algorithm 1 to fast compute the backward gradient of tensor
attention training in almost linear time as its forward computation (Theorem 4.2).
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• Furthermore, we prove that our assumption is necessary and “tight” by hardness analysis, i.e.,
if we slightly weaken the assumption, there is no algorithm that can solve the tensor attention
gradient computation in truly sub-cubic complexity (Theorem A.3).

2 Preliminary

2.1 Definition of Tensor Operations

We define some operations like the Kronecker product, which is a matrix operation applied to two
matrices of any size, producing a block matrix. It is different from regular matrix multiplication and
will be useful for our introduction and analysis of tensor attention.
Definition 2.1 (⊗ Kronecker product). Given K1 ∈ Rn1×d1 and K2 ∈ Rn2×d2 , for any i1 ∈
[n1], i2 ∈ [n2], j1 ∈ [d1], j2 ∈ [d2], we define K := K1 ⊗K2 ∈ Rn1n2×d1d2 as follows

Ki1+(i2−1)n1,j1+(j2−1)d1
= (K1)i1,j1 · (K2)i2,j2 .

In this work, we will primarily use the following column-wise and row-wise versions of the Kro-
necker product, which are special kinds of Kronecker product.
Definition 2.2 (⊘ column-wise Kronecker product). Given matrices K1 ∈ Rn1×d,K2 ∈ Rn2×d,
we define matrix K := K1 ⊘K2 ∈ Rn1n2×d as follows

Ki1+(i2−1)n1,j := (K1)i1,j · (K2)i2,j , ∀i1 ∈ [n1], i2 ∈ [n2], j ∈ [d].

Definition 2.3 (⊖ row-wise Kronecker product). Given matrices K1 ∈ Rn×d1 ,K2 ∈ Rn×d2 , we
define matrix K := K1 ⊖K2 ∈ Rn×d1d2 as follows

Ki,j1+(j2−1)d1
:= (K1)i,j1 · (K2)i,j2 , ∀i ∈ [n], j1 ∈ [d1], j2 ∈ [d2].

2.2 Key Definitions of Tensor Attention

Now, we are ready to introduce the tensor attention. First, we introduce the parameters and input.
Definition 2.4 (Input and weight matrix). We define the input sequence as Z ∈ Rn×d and the key,
query, and value weight matrix as WK1

,WK2
,WQ,WV1

,WV2
∈ Rd×d. Then, we define the key,

query, and value matrix as K1 := ZWK1
∈ Rn×d, K2 := ZWK2

∈ Rn×d, Q := ZWQ ∈ Rn×d,
V1 := ZWV1

∈ Rn×d, V2 := ZWV2
∈ Rn×d.

Then, based on Kronecker product, we define tensor attention in the following way.
Definition 2.5 (Tensor attention, Definition 7 in [SHT23], Definition 1.1 in [AS24b]). Given input
matrices Q,K1,K2, V1, V2 ∈ Rn×d, compute the following matrix

D−1︸︷︷︸
n×n

A︸︷︷︸
n×n2

V︸︷︷︸
n2×d

∈ Rn×d,

where (1) A := exp(QK⊤/d) ∈ Rn×n2

and K := K1 ⊘K2 ∈ Rn2×d, (2) D := diag(A1n2) ∈
Rn×n, and (3) V := V1 ⊘ V2 ∈ Rn2×d.
Remark 2.6. In Definition 2.5, on the one hand, we separate the Softmax operation into an element-
wise exp operation and a diagonal normalization matrix D for a more transparent formulation. On
the other hand, we change K,V ∈ Rn×d in classical attention to K1 ⊘K2, V1 ⊘ V2 ∈ Rn2×d in
tensor attention, where ⊘ is a tensor operation defined in Definition 2.2.

Our Definition 2.5 covers the self-attention setting, when the query/key/values Q,K1,K2, V1, V2

follow Definition 2.4 where they share the same input. It is then a tensor self-attention, which can
capture high-order information of the input Z. When the query/key/values have different inputs, it
is then a tensor cross-attention that can capture high-order relationships among multiple inputs.

Also, note that we have A ∈ Rn×n2

in Definition 2.5. Although QK⊤ is a low-rank matrix with rank
at most d, exp(QK⊤) may be a full-rank matrix in general. Thus, it is clear to see the exact forward
computation of tensor attention takes O(n3) time. Here, we introduce a forward tensor attention
approximation task, which will help us formulate the tensor attention gradient approximation task
later. Furthermore, [AS24b] show that they can solve this approximation task in almost linear time
n1+o(1) (Lemma 4.1).
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Definition 2.7 (Approximate Tensor Attention Computation (ATAttC(n, d,B, ϵ)), Definition 1.2
in [AS24b]). Given input matrices Q,K1,K2, V1, V2 ∈ Rn×d and parameters ϵ, B > 0, where
max{∥Q∥∞, ∥K1∥∞, ∥K2∥∞, ∥V1∥∞, ∥V2∥∞} ≤ B. Let A,D, V be defined in Definition 2.5.
Then, our target is to output a matrix T ∈ Rn×d satisfying

∥ T︸︷︷︸
n×d

−D−1︸︷︷︸
n×n

A︸︷︷︸
n×n2

V︸︷︷︸
n2×d

∥∞ ≤ ϵ.

For our focus, tensor attention training, we would like to find weights to fit the tensor attention to
a desired output E. We first simplify the attention expression of Definition 2.5, whose inputs are
from Definition 2.4 with weight matrices WQ,WK1

,WK2
,WV1

,WV2
∈ Rd×d. Let X := WQ ·

(WK1
⊘ WK2

)⊤ ∈ Rd×d2

and Y := WV1
⊘ WV2

∈ Rd2×d. It can be verified that the tensor
attention equals D−1 exp(ZX(Z⊗Z)⊤/d)(Z⊗Z)Y . Then we model the tensor attention training
as the following tensor attention optimization problem (where A1, A2, A3, A4, A5 are introduced to
replace Z to capture more general settings such as cross-attention). See Figure 2 for an illustration.
Definition 2.8 (Tensor attention optimization). Suppose that A1, A2, A3, A4, A5, E ∈ Rn×d and
Y1, Y2 ∈ Rd×d are given. We formulate the attention optimization problem as

min
X∈Rd×d2

Loss(X) := 0.5∥D(X)−1 exp(A1X(A2 ⊗A3)
⊤/d)(A4 ⊗A5)Y − E∥2F ,

where (1) A2 ⊗ A3 ∈ Rn2×d2

is the tensor product between A2 and A3, (2) D(X) =

diag(exp(A1X(A2 ⊗A3)
⊤/d)1n2) ∈ Rn×n, and (3) Y = Y1 ⊘ Y2 ∈ Rd2×d.

The naive gradient computation for the above tensor attention training takes Ω(n3) time. The gra-
dient for X is the bottleneck while that for Y is not, since A1X(A2 ⊗ A3)

⊤ ∈ Rn×n2

lies in the
non-linear function Softmax. Also, note that with gradients of X and Y , it is easy to get the gradi-
ents of the weight matrices WQ,WK1

,WK2
,WV1

,WV2
. Therefore, our main focus is the following

Approximate Tensor Attention Loss Gradient Computation task.
Definition 2.9 (Approximate Tensor Attention Loss Gradient Computation
(ATAttLGC(n, d,B, ϵ))). Let ϵ, B > 0. Let A1, A2, A3, A4, A5, E ∈ Rn×d and let
X1, X2, X3, Y1, Y2 ∈ Rd×d (see Definition 2.8). Let X = X1 · (X2 ⊘ X3)

⊤ ∈ Rd×d2

. As-
sume that max{∥A1X1∥∞, ∥A2X2∥∞, ∥A3X3∥∞, ∥A4Y1∥∞, ∥A5Y2∥∞} ≤ B. Let us assume
that any numbers in the previous matrices are in the log(n) bits model. We define Loss(X) the same
as Definition 2.8. Let the gradient of loss function Loss(X) be dLoss(X)

dX ∈ Rd×d2

. Then, our target
is to output a matrix g̃ ∈ Rd×d2

satisfying ∥g̃ − dLoss(X)
dX ∥∞ ≤ ϵ.

3 Exact Tensor Attention Gradient Computation and Complexity

In this section, we provide the closed form of the tensor attention gradient of the loss function
(Definition 2.8) and also its computational time. First, we calculate the closed form of the gradient
in the following lemma, whose proof is in Appendix G.5.
Lemma 3.1 (Closed form of gradient, informal version of Lemma G.6). Define the function F(x) ∈
Rn×n2

as in Definition F.6. Suppose that A1, A2, A3 ∈ Rn×d are three given matrices. Suppose
that Loss(x) is defined as Definition 2.8, where x = vec(X). Then, we have

dLoss(x)

dx
= vec(A⊤

1 F(x)(A2 ⊗A3)) ∈ Rd3

.

Note that, F(x) is a size n× n2 matrix which is the bottleneck obstacle in time complexity.
Definition 3.2. Let Tmat(a, b, c) denote the time of multiplying a× b matrix and b× c matrix.

Then, with straightforward analysis, we get the following theorem about the time complexity of
naive computation. The complete proof is in Appendix G.6.
Theorem 3.3 (Tensor attention gradient computation, informal version of Theorem G.7). Suppose
that A1, A2, A3, A4, A5, E ∈ Rn×d are input fixed matrices. We denote matrix variables as X ∈
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Rd×d2

and Y ∈ Rd2×d (gradient computation is w.r.t. X ). Let g = dLoss(X)
dX ∈ Rd×d2

(for definition
of Loss(X), see Definition 2.8). Then, we show that computing the gradient g ∈ Rd×d2

requires
Tmat(n, d

2, n2) time.

Note that Tmat(n, d
2, n2) ≥ Ω(n3). Thus, the naive tensor attention gradient computation is a com-

plexity obstacle in practice as discussed in Section 1. Based on the closed formulation in Lemma 3.1,
we derive our acceleration method, which will be introduced in the following section.

4 Fast Tensor Attention Gradient Computation

In this section, we show how to compute the tensor attention matrix gradient in almost linear time.
In Section 4.1, we demonstrate our main results. In Section D.1, we introduce some key tensor
techniques used in our proof.

4.1 Main Results for Fast Gradient Computation

Polynomial approximation methods involve representing complex functions through simpler poly-
nomial forms to facilitate easier analysis and computation. They are crucial in numerical analysis,
aiding in the efficient solution of differential equations and optimization problems, and are widely
used in simulations and machine learning [AA22, ACSS20].

Based on the polynomial approximation methods, [AS24b] get the following result about tensor
attention acceleration, which will be used to prove our main result.

Lemma 4.1 (Theorem 1.4 in [AS24b]). There is an algorithm that solves ATAttC(n, d =
O(log n), B = o( 3

√
log n), ϵ = 1/ poly(n)) (see Definition 2.7) in time n1+o(1).

Using similar polynomial approximation methods, and combined with a series of tensor analysis
techniques (Section D.1), we get our main acceleration results.

Theorem 4.2 (Main result for fast gradient computation). Assuming the entries of A1, A2, A3,
A4, A5, E ∈ Rn×d and X1, X2, X3, Y1, Y2 ∈ Rd×d are represented using O(log n) bits. Then,
there exist an algorithm (Algorithm 1) that runs in n1+o(1) time to solve ATAttLGC(n, d =
O(log n), B = o( 3

√
log n), ϵ = 1/ poly(n)) (see Definition 2.9), i.e., our algorithm computes a

gradient matrix g̃ ∈ Rd×d2

satisfying ∥dLoss(X)
dX − g̃∥∞ ≤ 1/ poly(n).

Proof sketch of Theorem 4.2. The complete proof can be found in Appendix H.6.

We use the polynomial approximation method to obtain low-rank approximation results for
D−1 exp(A1X(A2 ⊗A3)

⊤/d) in Lemma H.1. However, this cannot be directly used for the closed
form of the tensor attention gradient solution in Theorem 3.3. Utilizing a series of tensor techniques
(Section D.1 and Appendix E), we smartly convey these low rank properties throughout the gradient
formulation and computation, where two key steps are fixed in Lemma H.5 and Lemma H.7.

Remark 4.3. The assumption in Theorem 4.2 is practical. In practice, especially in recent long
context tasks, the n is large, e.g, n = 2 × 106 for Google’s Gemini 1.5 Pro [Gem24], while the
model training uses a half-precision floating-point format, e.g., the bit number is 16. Furthermore,
our assumption is “tight”, where if we slightly weaken the assumption, there is no algorithm that
can solve the tensor attention gradient computation in truly sub-cubic complexity (Theorem A.3).

Our Theorem 4.2 accurately approximates (ϵ = 1/ poly(n)) the tensor attention gradient computa-
tion in almost linear time n1+o(1) under practical assumptions (see the above Remark 4.3). Thus,
our methods solve the last puzzle of tensor attention acceleration. Combined with previous work on
tensor attention inference, this may make tensor attention practical, as we overcome the theoretical
cubic time complexity barrier both in inference and training.

We provide Algorithm 1 for our almost linear time tensor attention training method. In the de-
tailed algorithm, first, we construct U1, V1,W1 in Lemma H.1. Then, we construct U2, V2,W2 in
Lemma H.3 and U3, V3,W3 in Lemma H.5. We show how to construct U4, V4,W4 in Lemma H.7.
Finally, we construct U5, V5,W5 and compute the gradient g in almost linear time in Theorem H.8.
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Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke
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A Tensor Attention Gradient Complexity Lower Bound

In this section, we show that our assumption is necessary. First, we introduce some hardness analysis
background in Section A.1. Then, we introduce our main hardness result in Section A.2.

A.1 SETH and Tensor Attention Forward Hardness

We provide the findings that our results are based on. We first introduce a well-known hypothesis in
hardness analysis. The Strong Exponential Time Hypothesis (SETH), a well-established conjecture,
has been instrumental in establishing fine-grained lower bounds for numerous algorithmic problems,
as highlighted in the survey by [Wil18]. More than two decades ago, [IP01] introduced SETH as an
enhanced version of the well-known P ̸= NP conjecture, positing that current algorithms solving
the SAT problem are nearly optimal in terms of efficiency.
Hypothesis A.1 (Strong Exponential Time Hypothesis (SETH), [IP01]). Given ϵ > 0, there exists
k ≥ 3 ∈ Z such that it is impossible to solve k-SAT problem with n variables in O(2(1−ϵ)n) time,
including using any randomized algorithms.

We will critically utilize the hardness result of the forward tensor attention computation.
Lemma A.2 (Theorem 1.3 in [AS24b]). Assuming SETH, for any constant δ > 0, no algorithm
can solve ATAttC(n, d = Θ(log n), B = Θ( 3

√
(1 + γ) log n), ϵ = nγ−O(1)) (Definition 2.7) in

O(n3−δ) time, even if the inputs meet the following conditions for any γ ≥ 0: (1) V ∈ {0, 1}n2×d,
(2) There exists Ba ≤ O((1 + γ) log2 n) = O(d( 3

√
(1 + γ) log n)3) where all entries of Q(K1 ⊘

K2)
⊤ are within the range [1, Ba] and more than half entries in each row of Q(K1 ⊘ K2)

⊤ are
equal to Ba.

This result shows that assuming SETH, if we just slightly weaken the assumption from B =

O( 3
√
log n) to B = Θ( 3

√
(1 + γ) log n) with γ = ω(1), then the tenor attention forward com-

putation is hard, i.e., no algorithm can solve it in truly sub-cubic time.

A.2 Main Result for Hardness

Based on the above observation (Lemma A.2), we prove our main result for tensor attention gradient
computation hardness.
Theorem A.3 (Main result for hardness). Let γ : N→ N be any function with γ(n) = o(log n) and
γ(n) = ω(1). Assuming SETH, for any constant δ > 0, it is impossible to solve ATAttLGC(n, d =

Θ(log n), B = Θ( 3
√
γ(n) · log n), ϵ = O(1/(log n)4)) (Definition 2.9) in time O(n3−δ) when E =

0, Y = Id, X = λId for some scalar λ ∈ [0, 1].
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See the formal proof in Appendix I.2. The intuition is that if we can solve ATAttLGC in O(t) time,
then we can solve ATAttC in O(t · log11(n)) time by interpolation and “integral”. We see a similar
sharp complexity transition as forward computation (Lemma A.2): assuming SETH, if we slightly
weaken the assumption from B = O( 3

√
log n) to B = Θ( 3

√
(1 + γ) log n) with γ = ω(1), then the

tensor attention gradient computation will be unsolvable in truly sub-cubic time as well.

B Further Discussion and Extension

Connection to real applications. There are some empirical studies attempting to implement sim-
ilar tensor attention (three order) in language modeling [MZZ+19] and 3D medical image segmen-
tation [WQW+23]. However, due to cubic time complexity, their models remain relatively small,
e.g, 12M parameters in [MZZ+19]. Although small scale, [MZZ+19, WQW+23] demonstrates the
significant potential of tensor attention. Our work proves that an almost linear time algorithm for
tensor attention mechanisms exists (Algorithm 1). This advancement could enable the scaling up
of tensor attention and facilitate novel model designs in multi-modality, 3D imaging, and beyond.
On the other hand, we abstract the most challenging part (the highest time complexity operation) in
high-order attention into a clear mathematical problem and provide a solution. Our work introduces
a new concept to the community, suggesting that cubic time complexity may not be the bottleneck in
implementing three-order attention during training. Practical implementation poses additional sig-
nificant challenges, considering numerous other techniques and operations, such as dropout, layer
normalization, residual connections, position encoding, and many others. We hope our work inspires
further algorithmic design.

Feasibility when the large value exists in the matrices. If there exist many large entries in
Q,K1,K2, V1, V2, our hardness results (Theorem A.3) indicate that no algorithm can accelerate
the attention computation. However, several exciting works [SCKL24, HJK+24] have shown that
large entries are very sparse in the attention matrix. This suggests that our Algorithm 1 could inspire
many potential practical implementations. One straightforward approach is to handle large entries
separately, as in [HJK+24], and apply our algorithm to the remaining parts. There is undoubtedly a
broad algorithm design space, and we hope our work provides valuable insights.

Extend our technique to compute the module-wise gradient. Let n be the input toke length,
and d be the hidden dimension. At the i-th layer of transformer model, let Gi ∈ Rn×d denote the
output of upstream gradient, Xi ∈ Rn×d be defined in Definition 2.8, and Attni := D−1AV be the
tensor attention model where D,A, V are defined in Definition 2.5. Let Loss be some loss function.
Then, by the chain rule, we have the module-wise gradient dLoss

dXi
= vec(Gi)

dAttni
dXi

.

Extend our technique to the multi-head attention. The gradient computation for each attention
head in the same layer is independent of the others; each head only depends on its upstream gradient
and its current module-wise gradient according to the chain rule. Therefore, our analysis can be
directly applied to multi-head attention.

Generalize to scenarios involving multiple modalities In our three-order attention, one attention
module can handle three modalities simultaneously, i.e., Q,K1,K2. For more modality, e.g., m > 3
modality, there are two potential solutions in our minds. First, we could use m-order attention,
i.e., Q,K1,K2, . . . ,Km−1. The inference and training time complexity for this approach are still
unknown, and we leave it as our future work. Second, we could use multiple modules of three-order
attention. Note that one layer of standard attention may introduce one more modality K1 each time,
while one layer of three-order attention may introduce two more modalities K1,K2 each time. Thus,
if we have m + 1 modality and Q is from one modality, say text, then the standard attention may
need m layers to merge all modalities together, whereas three-order attention may only need log(m)
layers to merge them all together.

Societal impacts. We delve into and offer a deeper understanding of the attention mechanism,
introducing a novel approach to integrate multi-modality into attention through the tensor attention
algorithm. We also demonstrate that the computation of both forward and backward tensor atten-
tion can be achieved with almost linear time complexity. Regarding the negative societal impact,
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since our work is completely theoretical in nature, we do not foresee any potential negative societal
impacts which worth pointing out.

C More Related Work

Large language models and transformer. The foundation of the success of generative large lan-
guage models (LLMs) lies in the decoder-only transformer architecture, as introduced by [VSP+17].
This architecture has become critical for many leading models in natural language processing
(NLP) [CWW+24]. These models have already demonstrated their capabilities in various real-
world applications, including language translation [HWL21], sentiment analysis [UAS+20], and
language modeling [MMS+19], due to their emergent ability, e.g., compositional ability [DLS+24,
XSL24, LLS+24], in-context learning [OEN+22, MLH+22, SWXL23]. The transformer leverages
a self-attention mechanism, which enables the model to identify long-range dependencies within the
input sequence. Self-attention calculates a weighted sum of input tokens, with weights based on
the similarity between token pairs. This allows the model to focus on pertinent information from
various parts of the sequence during output generation.

Fast attention computation. In recent years, significant advances have been made in the devel-
opment of efficient attention computation. One research direction involves employing low-rank
approximations, polynomial kernel, or random features for the attention matrix [RSW16, LLR16,
WLK+20, CKNS20, CLD+20, ZWK22, AA22, AS23, KMZ23, SDZ+24, ACS+24], which scales
the computational complexity linearly with sequence length. Another method explores patterns of
sparse attention that lessen the computational load [CGRS19, BPC20, ZGD+20, SCL+23, HJK+24,
GLL+24]. Additionally, using linear attention as an alternative to softmax attention has emerged
as a substantial area of study [TBY+19, KVPF20, SIS21, ZFB23, SDH+23, ACS+24, SWXL23,
ZBKR24, LLSS24, DSZ23]. These innovations have enhanced the capability of transformer-based
models to handle longer sequences, thereby broadening their potential applications across var-
ious fields [CQT+23, SAL+24, PQFS24, DZZ+24, MYX+24, XSW+24, AHZ+24, BANG24,
JHY+24].

Tensor computation for high-order representation. Tensors excel over matrices in capturing
higher-order relationships within data. Calculating low-rank factorizations or approximations of
tensors is essential in a wide range of computer science applications, such as natural language pro-
cessing [CtYYM14, LZBJ14, LZMB15, BNR+15], computer vision [VT02, WA03, SH05, HPS05,
HD08, AFdLGTL09, PLY10, LFC+16, CLZ17], computer graphics [VT04, WWS+05, Vas09], se-
curity [AÇKY05, ACY06, KB06], cryptography [FS99, Sch12, SHW+16, KYFD15], computational
biology [CV15, SC15], and data mining [KABO10, RST10, KS08, Mør11]. Moreover, tensors
are crucial in numerous machine learning applications [MR05, AFH+12, PBLJ15, JO14, HK13,
ALB13, ABSV14, AGH+14, AGHK14, BCV14, GHK15, JSA15, ALA16, AGMR16, ZSJ+17,
YSST19, SSL+22] and other diverse fields [RTP16, DLDM98, CMDL+15, YCS11, STLS14,
LMWY13, OS14, ZCZJ14, YCS16, RNSS16].

D Technical Overview

D.1 Tensor Operation Analysis Techniques

Here, we introduce some key techniques for proving Theorem 4.2. These techniques make it pos-
sible to convey the low-rank property even during the tensor operations, solving the novel technical
challenges in tensor attention gradient computation.

We first introduce a swap rule and a distributed rule, where both proofs are in Appendix E.2.

Fact D.1 (Swap rule for tensor and matrix product). Let W1,W2 ∈ Rd×d, A1, A2 ∈ Rn×d. We have

(A1 ⊗A2)︸ ︷︷ ︸
n2×d2

· (W1 ⊘W2)︸ ︷︷ ︸
d2×d

= (A1 ·W1)︸ ︷︷ ︸
n×d

⊘ (A2 ·W2)︸ ︷︷ ︸
n×d

.

Fact D.1 tells us that we can swap the order of tensor operation and matrix multiplication, allowing
us to always compute the low dimension first to reduce the complexity.
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Fact D.2. Let U1 ∈ Rn1×d and U2 ∈ Rn1×k. Let V1 ∈ Rn2×d and V2 ∈ Rn2×k. Let W1 ∈ Rn3×d

and W2 ∈ Rn3×k. We have

(U1 ⊖ U2)︸ ︷︷ ︸
n1×dk

·((V1 ⊖ V2)︸ ︷︷ ︸
n2×dk

⊘ (W1 ⊖W2)︸ ︷︷ ︸
n3×dk

)⊤ = ( U1︸︷︷︸
n1×d

( V1︸︷︷︸
n2×d

⊘ W1︸︷︷︸
n3×d

)⊤) ◦ ( U2︸︷︷︸
n1×k

( V2︸︷︷︸
n2×k

⊘ W2︸︷︷︸
n3×k

)⊤)

Fact D.2 tells us that the multiple tensor operation can be distributed to a different format. If we have
some low-rank matrix/tensor, we can distribute them into each component, so that each component
can be accelerated via the low-rank property. Intuitively, this allows us to borrow some low-rank
benefits from other terms to fix the bottleneck terms.

We provide an important tool whose proof is in Appendix E.2.
Lemma D.3 ( Informal version of Lemma E.13 ). Given A1 ∈ Rn1×d1 , A2 ∈ Rn2×d1 , let A :=
(A1 ⊘A2) ∈ Rn1n2×d1 . Given B1 ∈ Rn1×d2 , B2 ∈ Rn2×d2 , let B := (B1 ⊘B2) ∈ Rn1n2×d2 . We
define C ∈ Rd1×d2 as C := A⊤B and C1 := A⊤

1 B1 ∈ Rd1×d2 , C2 := A⊤
2 B2 ∈ Rd1×d2 . Then, we

have C1 ◦ C2 = C and given A1, A2, B1, B2, we can get C in Tmat(d1,max{n1, n2}, d2) time.

Lemma D.3 is a highly non-trivial method to handle tensor operation, ◦ and matrix multiplication
together. By using the method, we save the computation time from Tmat(d, n

2, d) to Tmat(d, n, d),
which gets rid of the bottleneck quadratic term n2.

Lastly, we introduce a tensor trick, which can reduce a tensor operation to a matrix multiplication
operation. The proof is in Appendix E.3.
Fact D.4 (Tensor-trick). Given matrices A1 ∈ Rn1×d1 , A2 ∈ Rn2×d2 and X ∈ Rd1×d2 , we have
vec(A1XA⊤

2 ) = (A1 ⊗A2) vec(X) ∈ Rn1n2 .

Technical novelty over previous works. We generalize beyond the results of [AS24b], which only
provide methods for tensor attention forward. Our paper presents a detailed analysis for tensor
attention backward, providing both upper bound and lower bound. Though we build on some re-
sults from [AS24b] and [AS24a], generalizing to tensor attention backward posed many technical
challenges. These challenges are unique for our setting and not presented in previous settings like
matrix attention [AS23, AS24a] or tensor attention forward [AS24b]. To be more specific, we prove
many key properties for tensor operation needed for backward though not needed for forward, in-
cluding Facts D.1 (swap rule for tensor and matrix product), D.2 (distribution rule for tensor and
matrix product), E.11 (tensor computation reduction to matrix product), E.12 (distribution rule for
tensor computation), Claim E.20 (tensor product to matrix product). Fact D.1, used as a key part
to prove Lemmas H.1 and H.3, gives the swap rule for tensor operations. Lemma D.3 supports the
proof of Fact D.2 and helps bypass the O(n3d2) time complexity bottleneck in the fast computation
of U2. Fact D.2, crucial in proving Lemma H.5, shows the distributive nature of tensor operations.
Using Facts E.11, E.12, and Claim E.20, we leverage the structure of low-rank matrices U5, V5,W5

to prove Theorem 4.2.

E Tensor Operation Background

In Section E.1, we define the notation of computational time and the tensor operation. In Section E.2,
we provide some helpful facts of tensor operation. In Section E.3, we provide some helpful facts of
vectorization operation. In Section E.4, we provide some helpful facts about the tensor product.

E.1 General definitions and tensor operation

Fact E.1 ([BCS13, Blä13]). We can show that Tmat(a, b, c) = O(Tmat(a, c, b)) =
O(Tmat(b, a, c)) = O(Tmat(b, c, a)) = O(Tmat(c, a, b)) = O(Tmat(c, b, a)).

We define the third mode tensor product, which is the core operator of tensor operations.
Definition E.2 (Third mode tensor product (·, ·, ·)). Let X ∈ Rd×d×d. Given matrices A1 ∈ Rn×d,
A2 ∈ Rn×d and A3 ∈ Rn×d. Let operator X(A1, A2, A3) ∈ Rn×n×n satisfying

X(A1, A2, A3)i,j,l :=

d∑
a=1

d∑
b=1

d∑
c=1

Xa,b,c(A1)i,a(A2)j,b(A3)l,c, ∀i ∈ [n], j ∈ [n], l ∈ [n].
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Definition E.3 (⊙ tensor computation). Given matrices A ∈ Rn×d, B ∈ Rn×d, C ∈ Rn×d, we use
T = A⊙B ⊙ C ∈ Rn×n×n to denote an tensor whose entries are given by

Ti,j,l :=

d∑
a=1

Ai,aBj,aCl,a, ∀i ∈ [n], j ∈ [n], l ∈ [n].

We note that a tensor T can be written in the form A⊙B ⊙C like this if and only if its tensor rank
is at most d.

E.2 Facts for tensor operation

Fact E.4 (Transpose rule). We show the results below

• Suppose that K︸︷︷︸
n1n2×d

= K1︸︷︷︸
n1×d

⊘ K2︸︷︷︸
n2×d

. We have K⊤︸︷︷︸
d×n1n2

= K⊤
1︸︷︷︸

d×n1

⊖ K⊤
2︸︷︷︸

d×n2

.

• Suppose that Q︸︷︷︸
n×d1d2

= Q1︸︷︷︸
n×d1

⊖ Q2︸︷︷︸
n×d2

. We have Q⊤︸︷︷︸
d1d2×n

= Q⊤
1︸︷︷︸

d1×n

⊘ Q⊤
2︸︷︷︸

d2×n

.

• Suppose that V︸︷︷︸
n1n2×d1d2

= V1︸︷︷︸
n1×d1

⊗ V2︸︷︷︸
n2×d2

. We have V ⊤︸︷︷︸
d1d2×n1n2

= V ⊤
1︸︷︷︸

d1×n1

⊗ V ⊤
2︸︷︷︸

d2×n2

.

Proof. The proof is very straightforward.

Fact E.5 (Swap rule). Let V1 ∈ Rn×d. Let V2 ∈ Rn×k. Let W1 ∈ Rm×d. Let W2 ∈ Rm×k. We can
show swap rule for ⊘ and ⊖,

(V1 ⊖ V2)︸ ︷︷ ︸
n×dk

⊘ (W1 ⊖W2)︸ ︷︷ ︸
m×dk

= (V1 ⊘W1)︸ ︷︷ ︸
mn×d

⊖ (V2 ⊘W2)︸ ︷︷ ︸
mn×k

And we can show swap rule for ⊗ and ⊖,

(V1 ⊖ V2)︸ ︷︷ ︸
n×dk

⊗ (W1 ⊖W2)︸ ︷︷ ︸
m×dk

= (V1 ⊗W1)︸ ︷︷ ︸
mn×dk

⊖ (V2 ⊗W2)︸ ︷︷ ︸
mn×dk

Proof. The proof is trivially following from definition of ⊘ and ⊖.

Note that for any i1 ∈ [n], i2 ∈ [m], j1 ∈ [d], j2 ∈ [k]

((V1 ⊖ V2)⊘ (W1 ⊖W2))i1+(i2−1)n,j1+(j2−1)d

= (V1)i1,j1(V2)i1,j2(W1)i2,j1(W2)i2,j2
= ((V1 ⊘W1)⊖ (V2 ⊘W2))i1+(i2−1)n,j1+(j2−1)d

Thus, we complete the proof.

Remark E.6. In Fact E.5, due to definition V1 and V2 need to have the same number of rows. W1

and W2 also need to have the same number of rows. V1 and W1 need to have same number of
columns, and V2 and V2 need to have same number of columns.
Fact E.7 (Swap rule for tensor product and matrix product, Restatement of Fact D.1). Let W1,W2 ∈
Rd×d and A1, A2 ∈ Rn×d. We have

(A1 ⊗A2)︸ ︷︷ ︸
n2×d2

· (W1 ⊘W2)︸ ︷︷ ︸
d2×d

= (A1 ·W1)︸ ︷︷ ︸
n×d

⊘ (A2 ·W2)︸ ︷︷ ︸
n×d

.

Proof of Fact D.1. For any i1, i2 ∈ [n], j ∈ [d], we have

((A1 ⊗A2) · (W1 ⊘W2))i1+(i2−1)n,j

=
∑

k1∈[d],k2∈[d]

(A1 ⊗A2)i1+(i2−1)n,k1+(k2−1)d(W1 ⊘W2)k1+(k2−1)d,j
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=
∑

k1∈[d],k2∈[d]

(A1 ⊗A2)i1+(i2−1)n,k1+(k2−1)d · (W1)k1,j · (W2)k2,j

=
∑

k1∈[d],k2∈[d]

(A1)i1,k1 · (A2)i2,k2 · (W1)k1,j · (W2)k2,j

= (
∑

k1∈[d]

(A1)i1,k1 · (W1)k1,j) · (
∑

k2∈[d]

(A2)i2,k2 · (W2)k2,j)

= (A1 ·W1)i1,j · (A2 ·W2)i2,j
= ((A1 ·W1)⊘ (A2 ·W2))i1+(i2−1)n,j ,

where the first step follows matrix multiplication, the second step follows Definition 2.2, the third
step follows Definition 2.1, the fourth step follows simple algebra, the fifth step follows matrix
multiplication and the last step follows Definition 2.2.

Fact E.8 (Restatement of Fact D.2). Let U1 ∈ Rn1×d and U2 ∈ Rn1×k. Let V1 ∈ Rn2×d and
V2 ∈ Rn2×k. Let W1 ∈ Rn3×d and W2 ∈ Rn3×k. We have

(U1 ⊖ U2)︸ ︷︷ ︸
n1×dk

·((V1 ⊖ V2)︸ ︷︷ ︸
n2×dk

⊘ (W1 ⊖W2)︸ ︷︷ ︸
n3×dk

)⊤ = ( U1︸︷︷︸
n1×d

( V1︸︷︷︸
n2×d

⊘ W1︸︷︷︸
n3×d

)⊤) ◦ ( U2︸︷︷︸
n1×k

( V2︸︷︷︸
n2×k

⊘ W2︸︷︷︸
n3×k

)⊤)

Proof of Fact D.2. We can show that

(U1 ⊖ U2)((V1 ⊖ V2)⊘ (W1 ⊖W2))
⊤ = (U1 ⊖ U2)((V1 ⊘W1)⊖ (V2 ⊘W2))

⊤

= (U1 ⊖ U2)((V1 ⊘W1)
⊤ ⊘ (V2 ⊘W2)

⊤)

= (U⊤
1 ⊘ U⊤

2 )⊤((V1 ⊘W1)
⊤ ⊘ (V2 ⊘W2)

⊤)

= (U1(V1 ⊘W1)
⊤) ◦ (U2(V2 ⊘W2)

⊤)

where first step is due to swapping rule for ⊘ and ⊖ (see Fact E.5), the second step follows from
Fact E.4, the third step follows from Fact E.4, and the last step follows from Lemma E.13.

Fact E.9. Let U1 ∈ Rn1×d2

and U2 ∈ Rn1×k2

. Let V1 ∈ Rn2×d and V2 ∈ Rn2×k. Let W1 ∈ Rn3×d

and W2 ∈ Rn3×k. We have

(U1 ⊖ U2)︸ ︷︷ ︸
n1×d2k2

·((V1 ⊖ V2)︸ ︷︷ ︸
n2×dk

⊗ (W1 ⊖W2)︸ ︷︷ ︸
n3×dk

)⊤ = ( U1︸︷︷︸
n1×d2

( V1︸︷︷︸
n2×d

⊗ W1︸︷︷︸
n3×d

)⊤) ◦ ( U2︸︷︷︸
n1×k2

( V2︸︷︷︸
n2×k

⊗ W2︸︷︷︸
n3×k

)⊤)

Proof. We can show that,

(U1 ⊖ U2)︸ ︷︷ ︸
n1×d2k2

·((V1 ⊖ V2)︸ ︷︷ ︸
n2×dk

⊗ (W1 ⊖W2)︸ ︷︷ ︸
n3×dk

)⊤

= (U1 ⊖ U2)︸ ︷︷ ︸
n1×d2k2

·((V1 ⊗W1)⊖ (V2 ⊗W2))
⊤

= (U1 ⊖ U2) · ((V1 ⊗W1)
⊤ ⊘ (V2 ⊗W2)

⊤)

= (U⊤
1 ⊘ U⊤

2 )⊤ · ((V1 ⊗W1)
⊤ ⊘ (V2 ⊗W2)

⊤)

= ( U1︸︷︷︸
n1×d2

( V1︸︷︷︸
n2×d

⊗ W1︸︷︷︸
n3×d

)⊤) ◦ ( U2︸︷︷︸
n1×k2

( V2︸︷︷︸
n2×k

⊗ W2︸︷︷︸
n3×k

)⊤)

where the first step is because of the swap rule for ⊗ and ⊖ (see Fact E.5), the second step follows
from Fact E.4, the third step follows from Fact E.4, and the last step follows from Lemma E.13.

Claim E.10. Let A,B,C ∈ Rn×d.

Part 1. Let Id ∈ Rd×d denote an identity matrix. Then, we have

AIdB
⊤ = AB⊤.

Part 2. Let Id ∈ Rd×d×d denote an identity tensor. Then we can show that

Id(A,B,C) = A⊙B ⊙ C
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Proof. Now we prove for each part.

Proof of Part1. Using the property of identity matrix, it’s easy to see this holds.

Proof of Part2.

Id(A,B,C) =

d∑
a=1

d∑
b=1

d∑
c=1

(Id)a,b,c(A)i,a(B)j,b(C)l,c

=

d∑
a=1

(A)i,a(B)j,a(C)l,a

= A⊙B ⊙ C

where the first step follows from Definition E.2, the second step follows from the property of identity
tensor (Id)i,j,k, which equals 1 only when i = j = k and 0 elsewhere, and the last step follows from
Definition E.3.

Fact E.11. Let U, V,W ∈ Rn×d, we have

U(V ⊘W )⊤︸ ︷︷ ︸
n×n2

= mat(U ⊙ V ⊙W )︸ ︷︷ ︸
n×n2

.

Proof. For any i, j, k ∈ [n], we have

mat(U ⊙ V ⊙W )i,(j−1)n+k = (U ⊙ V ⊙W )i,j,k

=
∑
a∈[d]

Ui,aVj,aWk,a

=
∑
a∈[d]

Ui,a(V ⊘W )(j−1)n+k,a

=
∑
a∈[d]

Ui,a((V ⊘W )⊤)a,(j−1)n+k

= (U(V ⊘W )⊤)i,(j−1)n+k,

where the first step by definition of mat, the second step follows Definition E.3, the third step
follows Definition 2.2, the fourth step follows from transpose, and the last step follows from matrix
multiplication.

Fact E.12. Given A1, A2, A3 ∈ Rn×d and W1,W2,W3 ∈ Rn×k, we have

[W1 ⊙W2 ⊙W3](A
⊤
1 , A

⊤
2 , A

⊤
3 )︸ ︷︷ ︸

d×d×d

= ((A⊤
1 W1)⊙ (A⊤

2 W2)⊙ (A⊤
3 W3))︸ ︷︷ ︸

d×d×d

.

Proof. The proof is trivial by Definition E.3 and Definition E.2.

We prove an important tool, which will be used in analyzing the running time of our algorithm.
Lemma E.13 ( Formal version of Lemma D.3 ). If the following condition holds

• Let ⊘ be defined as Definition 2.2.

• Given A1 ∈ Rn1×d1 , A2 ∈ Rn2×d1 , let A := (A1 ⊘A2) ∈ Rn1n2×d1 .

• Given B1 ∈ Rn1×d2 , B2 ∈ Rn2×d2 , let B := (B1 ⊘B2) ∈ Rn1n2×d2 .

• We define C ∈ Rd1×d2 as C := A⊤B

• We define C1︸︷︷︸
d1×d2

:= A⊤
1 B1, C2︸︷︷︸

d1×d2

:= A⊤
2 B2

Then, we have
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• Part 1. C1 ◦ C2 = C

• Part 2. Given as input A1, A2, B1, B2, we can get C in Tmat(d1,max{n1, n2}, d2) time.

Proof. For each i ∈ [n1], let a⊤1,i denote the i-th row of A1 ∈ Rn1×d1 .

For each i ∈ [n2], let a⊤2,i denote the i-th row of A2 ∈ Rn2×d1 .

For each i ∈ [n1], let b⊤1,i denote the i-th row of B1 ∈ Rn1×d2 .

For each i ∈ [n2], let b⊤2,i denote the i-th row of B2 ∈ Rn2×d2 .

Recall that C1 ∈ Rd1×d2 and C2 ∈ Rd1×d2 ,

C1 := A⊤
1 B1, C2 := A⊤

2 B2

Thus, we see that for all ∀k1 ∈ [d1], k2 ∈ [d2]

(C1)k1,k2 =

n1∑
i=1

a1,i,k1b1,i,k2

(C2)k1,k2
=

n2∑
j=1

a2,j,k1
b2,j,k2

Then, we can write C ∈ Rd1×d2 as

C︸︷︷︸
d1×d2

= A⊤︸︷︷︸
d1×n1n2

B︸︷︷︸
n1n2×d2

=

n1n2∑
i=1

Ai,∗︸︷︷︸
d1×1

(Bi,∗)
⊤︸ ︷︷ ︸

1×d2

=

n1∑
i=1

n2∑
j=1

Ai+(j−1)n1,∗︸ ︷︷ ︸
d1×1

· (Bi+(j−1)n1,∗)
⊤︸ ︷︷ ︸

1×d2

=

n1∑
i=1

n2∑
j=1

(a1,i ◦ a2,j)︸ ︷︷ ︸
d1×1

· (b1,i ◦ b2,j)⊤︸ ︷︷ ︸
1×d2

(1)

where the first step follows from definition of C ∈ Rd×d, the second step follows from the matrix
can written as the summation of n1n2 rank-1 matrices, the third step follows from changing the
index, the forth step follows from Ai+(j−1)n1,∗︸ ︷︷ ︸

d1×1

= a1,i︸︷︷︸
d1×1

◦ a2,j︸︷︷︸
d1×1

by Definition 2.2.

From the above, we can calculate that the entry of C in location k1 ∈ [d1], k2 ∈ [d2] is

Ck1,k2
=

n1∑
i=1

n2∑
j=1

(a1,i ◦ a2,j)k1
· (b1,i ◦ b2,j)⊤k2

=

n1∑
i=1

n2∑
j=1

a1,i,k1a2,j,k1b1,i,k2b2,j,k2

= (

n1∑
i=1

a1,i,k1b1,i,k2) · (
n2∑
j=1

a2,j,k1b2,j,k2)

= (C1)k1,k2
· (C2)k1,k2

where the first step follows from Eq. (1), the second step follows from simple algebra, the third step
follows from separating the summation over i and the summation over j, and the last step follows
from definition of matrices C1 and C2.
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Thus, we can conclude

C = C1 ◦ C2.

The algorithm will first compute C1 and C2, which takes Tmat(d1,max{n1, n2}, d2) time. Then it
calculates C1 ◦ C2, which takes O(d1d2) time.

E.3 Facts for vectorization operation

Fact E.14. Let A,B ∈ Rn×d. Then,

tr[A⊤B] = vec(A)⊤ vec(B)

Proof. We can show

tr[A⊤B] =

n∑
i=1

d∑
j=1

Ai,jBi,j

= vec(A)⊤ vec(B)

where the first step is due to the definition of trace, and the second step is because of the definition
of vec operator.

Fact E.15. Let a ∈ Rn, b ∈ Rd. Then,

vec(ab⊤) = a⊗ b

Proof. We can show

vec(ab⊤) = vec(

a1b
⊤

a2b
⊤

. . .
anb

⊤

)
= [a1b

⊤, a2b
⊤, . . . , anb

⊤]⊤

= a⊗ b

where the first step follows from the definition of the outer product, the second step follows from
the definition of vectorization operator vec(·) which stacks rows of a matrix into a column vector,
and the last step follows from Definition 2.1.

Fact E.16 (Tensor-trick, Restatement of Fact D.4). Given matrices A1 ∈ Rn1×d1 , A2 ∈ Rn2×d2

and X ∈ Rd1×d2 , we have vec(A1XA⊤
2 ) = (A1 ⊗A2) vec(X) ∈ Rn1n2 .

Proof of Fact D.4. We can show

vec(A1XA⊤
2 ) =

d1∑
i=1

d2∑
j=1

Xi,j vec(A1,∗,i(A2,∗,j)
⊤)

=

d1∑
i=1

d2∑
j=1

Xi,j(A1,∗,i︸ ︷︷ ︸
n1×1

⊗A2,∗,j︸ ︷︷ ︸
n2×1

)

=

d1∑
i=1

(A1,∗,i︸ ︷︷ ︸
n1×1

⊗ A2︸︷︷︸
n2×d2

)Xi,∗︸︷︷︸
d2×1

= (A1 ⊗A2) vec(X)

where the first step is due to the matrix being able to be written as a summation of vectors, the second
step follows from Fact E.15, the third step follows from that matrix can be written as a summation
of vectors, and the last step follows from the definition of vectorization operator vec(·).
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Fact E.17. Let A ∈ Rn1×n2 , B ∈ Rn2×n3 , C ∈ Rn3×n4 , D ∈ Rn4×n5 .

We have
tr[ABCD] = vec(A⊤)⊤(B ⊗D⊤) vec(C)

Proof. We can show

tr[ABCD] = vec(A⊤)⊤ vec(BCD)

= vec(A⊤)⊤(B ⊗D⊤) vec(C)

where the first step follows from Fact E.14, and the second step follows from Fact E.16.

Fact E.18. Let A,B ∈ Rn×n be two n × n symmetric matrices. Let X and Y denote two n × n
matrices. Then we have

vec(A)⊤(X ⊗ Y ) vec(B) = vec(A)⊤(Y ⊗X) vec(B)

Proof. We can show that

vec(A)⊤(X ⊗ Y ) vec(B) = tr[A⊤XBY ⊤]

= tr[BY ⊤A⊤X]

= vec(B⊤)⊤(Y ⊤ ⊗X⊤) vec(A⊤)

= vec(B)⊤(Y ⊤ ⊗X⊤) vec(A)

= ((Y ⊤ ⊗X⊤) vec(A))⊤ vec(B)

= vec(A)⊤(Y ⊗X) vec(B)

where the first step follows from Fact E.17, the second step follows from the cyclic property of trace,
the third step follows from Fact E.17, the fourth step follows from A,B is symmetric, the fifth step
is due to the definition of inner product, and the last step is due to Fact E.4.

E.4 Facts for tensor product

Fact E.19. Let X = mat(Id)︸ ︷︷ ︸
d×d2

, where Id ∈ Rd×d×d and A1, A2 ∈ Rn×d. We have

(A1 ⊗A2)︸ ︷︷ ︸
n2×d2

X⊤︸︷︷︸
d2×d

= A1 ⊘A2︸ ︷︷ ︸
n2×d

.

Proof. For any i1, i2 ∈ [n], j ∈ [d], we have

((A1 ⊗A2)X
⊤)i1+(i2−1)n,j =

∑
k1∈[d],k2∈[d]

(A1 ⊗A2)i1+(i2−1)n,k1+(k2−1)dXj,k1+(k2−1)d

=
∑

k1∈[d],k2∈[d]

(A1)i1,k1
· (A2)i2,k2

Xj,k1+(k2−1)d

= (A1)i1,j · (A2)i2,j
= (A1 ⊘A2)i1+(i2−1)n,j ,

where the first step is due to matrix multiplication, the second step follows Definition 2.1, the third
step follows Xj,k1+(k2−1)d = 1 when j = k1 = k2, and Xj,k1+(k2−1)d = 0 otherwise, and the last
step is because of Definition 2.2.

Claim E.20. Given X ∈ Rd×d2

. Note X ∈ Rd×d×d denotes its tensor version. Given matrices
A1, A2, A3 ∈ Rn×d. Following Definition E.2, we can show

( A1︸︷︷︸
n×d

X︸︷︷︸
d×d2

(A2 ⊗A3)
⊤︸ ︷︷ ︸

d2×n2

)i,(j−1)n+l = (X(A1, A2, A3)︸ ︷︷ ︸
n×n×n

)i,j,l, ∀i ∈ [n], j ∈ [n], l ∈ [n]

and
vec( A1︸︷︷︸

n×d

X︸︷︷︸
d×d2

(A2 ⊗A3)
⊤︸ ︷︷ ︸

d2×n2

) = vec(X(A1, A2, A3)︸ ︷︷ ︸
n×n×n

).
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Proof. We can show that

(A1X(A2 ⊗A3)
⊤)i,(j−1)n+l =

d∑
a=1

d∑
b=1

d∑
c=1

(A1)i,aXa,(b−1)d+c(A2)j,b(A3)l,c

=

d∑
a=1

d∑
b=1

d∑
c=1

Xa,b,c(A1)i,a(A2)j,b(A3)l,c

= X(A1, A2, A3)i,j,l,

where the first step follows the Kronecker product Definition 2.1, the second step follows Xa,b,c =
Xa,(b−1)d+c, and the last step is due to Definition E.2.

Now, we introduce a key claim that can reduce the tensor product to matrix multiplication and
Kronecker product to make calculation easy.

Claim E.21. Let Id ∈ Rd×d×d and A1, A2, A3 ∈ Rn×d. We have mat(Id(A1, A2, A3)) =

A1mat(Id)(A2 ⊗A3)
⊤ = A1(A2 ⊘A3)

⊤ ∈ Rn×n2

.

Proof. The proof follows from Claim E.20 and Fact E.19.

F Gradient Formulation and Analysis

In Section F.1, we define some useful function that will help further calculation. In Section F.2, we
define the expression for the loss function. In Section F.3, we give detailed gradient computation.

)(Softmax Q

K1

K2

V1

V2

Figure 1: The visualization of tensor attention with Softmax activation function (Definition 2.5).
We give an example of input token length n = 8, feature dimension d = 4.

Basic notations. We use [n] to denote {1, 2, . . . , n}. We use ei to denote a column vector where
only i-th location is 1 and zeros everywhere else. We denote an all 1 vector using 1n ∈ Rn . We use
⟨a, b⟩ to denote the inner product of a, b ∈ Rd i.e. ⟨a, b⟩ := ∑d

i=1 aibi. We use ∥x∥p to denote the
ℓp norm of a vector x ∈ Rn, i.e. ∥x∥2 := (

∑n
i=1 x

2
i )

1/2, and ∥x∥∞ := maxi∈[n] |xi|. We use ◦ to
denote the Hadamard product i.e. the (i, j)-entry of A ◦B is Ai,jBi,j .

We use tr[A] :=
∑n

i=1 Ai,i to denote the trace of a matrix A ∈ Rn×n. We use exp(A) to denote a
matrix where exp(A)i,j := exp(Ai,j) for a matrix A ∈ Rn×d. We use ∥A∥∞ to denote the ℓ∞ norm
of a matrix A ∈ Rn×d, i.e. ∥A∥∞ := maxi∈[n],j∈[d] |Ai,j |. We use ∥A∥F to denote the Frobenius

norm of a matrix A ∈ Rn×d, i.e. ∥A∥F :=
√∑

i∈[n]

∑
j∈[d] |Ai,j |2. We use poly(n) to denote

polynomial time complexity w.r.t n.

Tensor related notations. Let A ∈ Rn×d. We use a := vec(A) to denote a length nd vector.
We stack rows of A into a column vector, i.e. vec(A) := [a⊤1 , a

⊤
2 , . . . , a

⊤
n ]

⊤ where a⊤i is the i-th
row of A, or simply vec(A)j+(i−1)d := Ai,j for any i ∈ [n], j ∈ [d]. Let Id ∈ Rd×d denote an
identity matrix. Let Id ∈ Rd×d×d denote an identity tensor, i.e., the diagonal entries are 1 and zeros
everywhere else. Let X ∈ Rd×d2

. Let x ∈ Rd3

denote the vectorization of X ∈ Rd×d2

. Let
X ∈ Rd×d×d be the tesnorization of X ∈ Rd×d2

, where Xa,b,c = Xa,(b−1)d+c for any a, b, c ∈ [d].
And we have X = mat(X).
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F.1 Definitions for useful functions

We will introduce the definition of K, α, S, and L used in loss formulation.

Definition F.1. We define A1, A2, A3 ∈ Rn×d to be three matrices in size n × d. Suppose that
A = A1⊗A2⊗A3 ∈ Rn3×d3

. Let Aj0 ∈ Rn2×d3

represent an n2×d3 sub-block from A. There are
n such sub-blocks, i.e. the (i + (j0 − 1) · n2)-th row, j-th column of A is the i-th row, j-th column
of Aj0 , for i ∈ [n2], j ∈ [d3], j0 ∈ [n].

For all j0 ∈ [n], we denote function K(x)j0 : Rd3 → Rn2

as below:

K(x)j0 := exp(Aj0x)︸ ︷︷ ︸
n2×1

.

Definition F.2. Let three matrices A1, A2, A3 ∈ Rn×d in size n× d. We define Aj0 ∈ Rn2×d3

be a
n2 × d3 size sub-block from A (see as Definition F.1 ). (Recall that A = A1 ⊗A2 ⊗A3 ∈ Rn3×d3

.)

For any index j0 ∈ [n], we denote function α(x)j0 : Rd3 → R as follows:

α(x)j0 := ⟨exp(Aj0x)︸ ︷︷ ︸
n2×1

, 1n2︸︷︷︸
n2×1

⟩.

Definition F.3. Suppose that α(x)j0 ∈ R (see Definition F.2).

Recall K(x)j0 ∈ Rn2

(see Definition F.1).

For a fixed j0 ∈ [n], we define function S(x)j0 : Rd3 → Rn2

as follows:

S(x)j0 := α(x)−1
j0︸ ︷︷ ︸

scalar

K(x)j0︸ ︷︷ ︸
n2×1

.

We use S(x) ∈ Rn×n2

to denote the matrix where j0-th row is (S(x)j0)
⊤. (Note that we can

rewrite S(x) = D−1 exp(A1X(A2 ⊗ A3)
⊤/d) ∈ Rn×n2

and where D = diag(exp(A1X(A2 ⊗
A3)

⊤/d)1n2).)

Definition F.4. Let A3 = A4 ⊗ A5 ∈ Rn2×d2

, where A4, A5,∈ Rn×d. Let Y1, Y2 ∈ Rd×d. Let
Y = Y1 ⊘ Y2 ∈ Rd2×d denote the matrix representation of y ∈ Rd3

. For all i0 ∈ [d], we define
L()i0 : Rd3 → Rn2

as follows:

L(y)i0 := A3︸︷︷︸
n2×d2

Y∗,i0︸︷︷︸
d2×1

.

Let L(y) ∈ Rn2×d matrix where i0 column is L(y)i0 . (Note that we can rewrite L(y) = (A4⊗A5)Y .)

We will define W and F used in gradient analysis.

Definition F.5. Let V(x) ∈ Rn×d (see Definition F.7). Let L(y) ∈ Rn2×d (see Definition F.4).

We define W(x) ∈ Rn×n2

to be

W(x) := V(x)︸︷︷︸
n×d

L(y)⊤︸ ︷︷ ︸
d×n2

We denote W(x)⊤j0 as the j0-th row of W(x) ∈ Rn×n2

.

Definition F.6. For all index j0 ∈ [n], let us define F(x)j0 ∈ Rn2

to be

F(x)j0︸ ︷︷ ︸
n2×1

:= (diag(S(x)j0)− S(x)j0S(x)
⊤
j0)︸ ︷︷ ︸

n2×n2

W(x)j0︸ ︷︷ ︸
n2×1

.

We define F(x) ∈ Rn×n2

in the sense that F(x)⊤j0 is the j0-th row of F(x).
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min
X ∈ Rd×d2

0.5∥ ( n D(X)

n

)
−1

× exp (n A1

d

× d X

d2

× d2 (A2 ⊗A3)
⊤

n2

)× n2 (A4 ⊗A5)

d2

× d2 Y

d

− n E

d

∥ 2
F

n D(X)

n

= diag ( )exp (n A1

d

× d X

d2

× d2 (A2 ⊗A3)
⊤

n2

) × n2
1
n
2

Figure 2: The visualization of loss function defined in Definition 2.8. Let A1, A2, A3, A4, A5 and E
be n× d input matrices. Let Y be a given matrix with size d2 × d. The Kronecker product operator
⊗ is defined in Definition 2.1. We minimize matrix X ∈ Rd×d2

in our loss function. We first
compute exp(A1X(A2 ⊗ A3)

⊤). Then, we compute D(X) := diag(exp(A1X(A2 ⊗ A3)
⊤)1n2).

Afterwards, we compute D(X)−1 exp(A1X(A2 ⊗ A3)
⊤)(A4 ⊗ A5)Y − E. Finally, we optimize

X to compute the minimum of its Frobenius norm with a scaling factor 0.5.

F.2 Definitions for loss function

We now present some useful definitions pertaining to x ∈ Rd3

.

Definition F.7. For all j0 ∈ [n], we denote S(x)j0 ∈ Rn2

as the normalized vector (see Defini-
tion F.3). For all i0 ∈ [d], we denote L(y)i0 to be the same in Definition F.4.

Consider every j0 ∈ [n], every i0 ∈ [d]. Let us consider V(x)j0,i0 : Rd3 → R as follows:

V(x)j0,i0 := ⟨S(x)j0 , L(y)i0⟩ − Ej0,i0 ,

where Ej0,i0 is the (j0, i0)-th coordinate of E ∈ Rn×d for j0 ∈ [n], i0 ∈ [d]. This is the same as
V(x)︸︷︷︸
n×d

= S(x)︸︷︷︸
n×n2

L(y)︸︷︷︸
n2×d

− E︸︷︷︸
n×d

.

Definition F.8. For all j0 ∈ [n], for all i0 ∈ [d]. We define Loss(x)j0,i0 to be := 0.5V(x)2j0,i0 .

F.3 Further information on gradient computation

In this section, we offer detailed analysis to help the computations of gradient and derivative. It is
noted that, for the sake of convenience in deriving a closed-form expression for our gradient, we
omit the 1/d normalization factor in S. As this factor merely scales the result, it does not impact the
overall computation of these matrices.
Remark F.9. Recall that in Definition 2.8, we consider X ∈ Rd×d×d for gradient computation,
which has d3 number of parameters. On the other hand, in Definition 2.9, we have X = X1 ·
(X⊤

2 ⊖X⊤
3 ) ∈ Rd×d2

which has 3d2 number of parameters, which indeed guarantee computation
acceleration.
Lemma F.10 (The gradient computation for various functions w.r.t. xi). Let x ∈ Rd3

. Let
j0 ∈ [n], i0 ∈ [d]. For all i ∈ [d3], we define Aj0,i ∈ Rn2

to be the i-th column for Aj0 ∈ Rn2×d3

.
Recall that K(x)j0 ∈ Rn2

is defined in Definitions F.1. The scalar function α(x)j0 ∈ R is defined
in Definitions F.2 . Column function S(x)j0 ∈ Rn2

is defined in Definitions F.3. Scalar function
V(x)j0,i0 ∈ R is defined in Definitions F.7. Scalar function Loss(x)j0,i0 ∈ R is defined in Defini-
tions F.8.

Then, for each i ∈ [d3], we have

• Part 1.
dx

dxi
= ei
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• Part 2. For any j0 ∈ [n],

dAj0x

dxi
= Aj0,i

• Part 3. For any j0 ∈ [n]

dK(x)j0
dxi

= Aj0,i ◦ K(x)j0

• Part 4. For any j0 ∈ [n],

dα(x)j0
dxi

= ⟨Aj0,i,K(x)j0⟩

• Part 5. For any j0 ∈ [n],

dS(x)j0
dxi

= Aj0,i ◦ S(x)j0 − ⟨Aj0,i,S(x)j0⟩ · S(x)j0

• Part 6. For any j0 ∈ [n], for any i0 ∈ [d],

d⟨S(x)j0 , L(y)i0⟩
dxi

= ⟨L(y)i0 ,Aj0,i ◦ S(x)j0⟩ − ⟨L(y)i0 ,S(x)j0⟩ · ⟨Aj0,i,S(x)j0⟩

• Part 7. For any j0 ∈ [n], for each i0 ∈ [d]

dV(x)j0,i0
dxi

= ⟨Aj0,i ◦ S(x)j0 , L(y)i0⟩ − ⟨S(x)j0 , L(y)i0⟩ · ⟨Aj0,i,S(x)j0⟩

• Part 8. For any j0 ∈ [n], for each i0 ∈ [d]

dLoss(x)j0,i0
dxi

= (⟨L(y)i0 ,Aj0,i ◦ S(x)j0⟩ − ⟨S(x)j0 ,Aj0,i⟩ · ⟨L(y)i0 ,S(x)j0⟩) · V(x)j0,i0

Proof. Proof of Part 1. We have

dx

dxi
=

d[x1, x2, . . . , xd3 ]⊤

dxi

= ei

where the first step follows from x is a vector, and the second step follows from all coordinates are
independent to each other.

Proof of Part 2. We have

dAj0x

dxi
= Aj0︸︷︷︸

n2×d3

dx

dxi︸︷︷︸
d3×1

= Aj0︸︷︷︸
n2×d3

· ei︸︷︷︸
d3×1

= Aj0,i︸︷︷︸
n2×1

where the second step follows from Part 1.

Proof of Part 3.

It’s easy to show that
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dK(x)j0
dxi︸ ︷︷ ︸
n2×1

=
d exp(Aj0x)

dxi

= exp(Aj0x) ◦
dAj0x

dxi

= exp(Aj0x) ◦ Aj0,i

= K(x)j0︸ ︷︷ ︸
n2×1

◦Aj0,i︸︷︷︸
n2×1

where the third step is because of Part 2, the last step follows from definition of K(x)j0 .

Proof of Part 4.

To further simplify the writing of proofs, we represent (x) as (·).
It’s easy to see that

dα(·)j0
dxi

=
d⟨K(·)j0 ,1n2⟩

dxi

= ⟨K(·)j0 ◦ Aj0,i,1n2⟩
= ⟨K(·)j0 ,Aj0,i⟩

where the first step is due to definition of α(·), the second step is because of Part 3, the third step
comes from ⟨a ◦ b,1n2⟩ = ⟨a, b⟩.
Proof of Part 5.

To further simplify the writing of proofs, we represent (x) as (·).
It’s easy to see that

dS(·)j0
dxi

=
dα(·)−1

j0
K(·)j0

dxi

= α(·)−1
j0

dK(·)j0
dxi

+ (
dα(·)−1

j0

dxi
)K(·)j0

For the first term, we have

α(·)−1
j0

dK(·)j0
dxi

= α(·)−1
j0

K(·)j0 ◦ Aj0,i

= S(·)j0 ◦ Aj0,i

where the first step is due to Part 3, the second step is because of definition of S(·).
For the second term, we have

(
dα(·)−1

j0

dxi
)K(·)j0 = − α(·)−2

j0

dα(·)j0
dxi

K(·)j0
= − α(·)−2

j0
· ⟨K(·)j0 ,Aj0,i⟩ · K(·)j0

= − S(·)j0 · ⟨S(·)j0 ,Aj0,i⟩
where the first step is from simple calculus, the second step is from Part 4, and the third step is due
to the definition of S(·)j0 .

By applying all of the above, we have

dS(·)j0
dxi

= S(·)j0 ◦ Aj0,i − S(·)j0 · ⟨S(·)j0 ,Aj0,i⟩

Proof of Part 6. From Part 5, clearly this holds.
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Proof of Part 7.

To further simplify the writing of proofs, we represent (x) as (·).
From definition of V in Definition F.7, it holds that

V(·)j0,i0 := ⟨S(·)j0 , L(y)i0⟩ − Ej0,i0 (2)

Thus it holds that
dV(·)j0,i0

dxi
=

d(⟨S(·)j0 , L(y)i0⟩ − Ej0,i0)

dxi

=
d⟨S(·)j0 , L(y)i0⟩

dxi

= ⟨S(·)j0 ◦ Aj0,i, L(y)i0⟩ − ⟨S(·)j0 , L(y)i0⟩ · ⟨S(·)j0 ,Aj0,i⟩,

where the first step comes from Eq. (2), the second step follows from dEj0,i0

dxi
= 0, and the last step

is due to Part 6.

Proof of Part 8.

To further simplify the writing of proofs, we represent (x) as (·).
From definition of Loss(·) (see Definition F.8), it holds that

Loss(·)j0,i0 = 0.5V(·)2j0,i0 (3)

Thus, we have

dLoss(·)j0,i0
dxi

=
d(0.5V(·)2j0,i0)

dxi

= V(·)j0,i0
dV(·)
dxi

= V(·)j0,i0 · (⟨S(·)j0 ◦ Aj0,i, L(y)i0⟩ − ⟨S(·)j0 , L(y)i0⟩ · ⟨S(·)j0 ,Aj0,i⟩),
where the 1st step comes from the Eq. (3), the second step follows from the chain rule, and the last
step is because of Part 7.

G Tensor Attention Exact Gradient Computation Time Complexity

Section G.1 demonstrates how to calculate S (1/d factor is still ignored) and L. Section G.2 explains
the straightforward method for calculating V. Section G.3 and Section G.4 define F and W, and
demonstrate their computations. Section G.5 presents a more elegant way to express the gradient.
Finally, Section G.6 combines all these elements and determine the overall time complexity of our
algorithm.

G.1 Time complexity to get S and L

Remark G.1. Note that Tmat(n, d
2, n2) ≥ Ω(n3).

Now we will show the time complexity for computing S and L.
Lemma G.2 (Computing S and L). If the following conditions hold

• Let S(x) ∈ Rn×n2

(see Definition F.3)

• Let L(y) ∈ Rn2×d (see Definition F.4)

Then, we have

• the time complexity of S(x) is Tmat(n, d
2, n2) + Tmat(n, d, d

2)
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• the time complexity of L(y) is Tmat(n
2, d2, d)

Proof. Note that

S(x) = D−1︸︷︷︸
n×n

exp( A1︸︷︷︸
n×d

X︸︷︷︸
d×d2

(A2 ⊗A3)
⊤︸ ︷︷ ︸

d2×n2

)

and

D = diag(exp(A1X(A2 ⊗A3)
⊤)1n2)

We firstly compute exp(A1X(A2 ⊗A3)
⊤), this takes time of

• A1︸︷︷︸
n×d

X︸︷︷︸
d×d2

takes Tmat(n, d, d
2)

• Computing A2 ⊗A3 takes O(n2d2) time

• Computing A1X · (A2 ⊗A3)
⊤ takes Tmat(n, d

2, n2) time

The overall time complexity of above three parts is dominated by

Tmat(n, d, d
2) +O(d2n2) + Tmat(n, d

2, n2) = Tmat(n, d, d
2) + Tmat(n, d

2, n2)

Therefore, computing D takes O(n3) time.

Computing D−1 exp(A1X(A2 ⊗A3)
⊤) requires O(n3) time.

Therefore, the overall time complexity is

Tmat(n, d, d
2) + Tmat(n, d

2, n2)

It is noted that computing L(y) = A3︸︷︷︸
n2×d2

Y︸︷︷︸
d2×d

takes time of Tmat(n
2, d2, d).

Thus, we complete the proof.

G.2 Time complexity to get V

We will explain the calculation of V.
Lemma G.3 (Computing V). If the following conditions hold

• Let E ∈ Rn×d

• Let S(x) ∈ Rn×n2

.

• Let L(y) ∈ Rn2×d.

Then one can get V(x) ∈ Rn×d in O(Tmat(n, n
2, d)) time.

Proof. Based on the definition of V(x) ∈ Rn×d which is

V(x) = S(x)︸︷︷︸
n×n2

L(y)︸︷︷︸
n2×d

− E︸︷︷︸
n×d

It is easy to see that we can compute S(x)L(y) in time Tmat(n, n
2, d), and S(x)L(y) − E in time

O(nd).

Therefore, overall running time is

Tmat(n, n
2, d) +O(nd) = O(Tmat(n, n

2, d)).
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G.3 Time complexity to get W

We will explain how to calculate W.
Lemma G.4. If the below holds that

• Let V(x) ∈ Rn×d

• Let L(y) ∈ Rn2×d

Then, computing W(x) takes time of O(Tmat(n, d, n
2)).

Proof. Let use recall that W(x) = V(x)L(y)⊤. This need time of Tmat(n, d, n
2) to compute.

G.4 Time complexity to get F

We can show how to construct F.
Lemma G.5. If the following conditions hold

• Let S(x) ∈ Rn×n2

• Let W(x) ∈ Rn×n2

Then, computing takes time of F(x) in O(n3).

Proof. For every j0 ∈ [n], it follows that F(x)j0 ∈ Rn2

can be computed in O(n2), given that
diag(S(x)j0) is a diagonal matrix and S(x)j0S(x)

⊤
j0

is a rank-one matrix. Consequently, construct-
ing the matrix F(x) ∈ Rn×n2

takes a total time of n×O(n2) = O(n3).

G.5 Closed form of gradient

We will give the closed form the gradient of the loss function.
Lemma G.6 (Closed form of gradient, formal version of Lemma 3.1). Let us define functions S(x) ∈
Rn×n2

, V(x) ∈ Rn×d, L(y) ∈ Rn2×d, W(x) ∈ Rn×n2

and F(x) ∈ Rn×n2

(see Definitions F.3,
F.7, F.4, F.5 and F.6 respectively). Suppose three matrices A1, A2, A3 ∈ Rn×d are given. We define
A = A1 ⊗ A2 ⊗ A3. Let Loss(x) and Loss(x)j0,i0 be defined as Definition 2.8 and F.8. Then, we
can show that

dLoss(x)

dx
= vec(A⊤

1 F(x)(A2 ⊗A3)) ∈ Rd3

.

Proof. From the Lemma statement and Lemma F.10 Part 8, we have

dLoss(x, y)j0,i0
dxi

= V(x, y)j0,i0 · (⟨S(x)j0 ◦ Aj0,i, L(y)i0⟩ − ⟨S(x)j0 , L(y)i0⟩ · ⟨S(x)j0 ,Aj0,i⟩)
(4)

We know that for all a, b ∈ Rn, we have diag(a) · b = diag(b) · a = a ◦ b = b ◦ a. Then, we have

⟨S(x)j0 ◦ Aj0,i, L(y)i0⟩ = (diag(S(x)j0)Aj0,i)
⊤L(y)i0 = A⊤

j0,i diag(S(x)j0)L(y)i0

and

⟨S(x)j0 , L(y)i0⟩ · ⟨S(x)j0 ,Aj0,i⟩ = A⊤
j0,iS(x)j0S(x)

⊤
j0L(y)i0

Therefore, Eq. (4) becomes

dLoss(x)j0,i0
dxi

= V(x, y)j0,i0 · (A⊤
j0,i diag(S(x)j0)L(y)i0 − A⊤

j0,iS(x)j0S(x)
⊤
j0L(y)i0)

= V(x, y)j0,i0 · A⊤
j0,i(diag(S(x)j0)− S(x)j0S(x)

⊤
j0)L(y)i0 , (5)
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where the second step is due to basic algebra.

Note that we defined W(x)j0 in Definition F.5.

W(x)j0 :=

d∑
i0=1

V(x)j0,i0L(y)i0 . (6)

Also, we defined F(x)j0 ∈ Rn2

in Definition F.6,

F(x)j0 := (diag(S(x)j0)− S(x)j0S(x)
⊤
j0)W(x)j0 . (7)

We can show

dLoss(x)

dx

=

n∑
j0=1

d∑
i0=1

dLoss(x)j0,i0
dx

=

n∑
j0=1

d∑
i0=1

V(x)j0,i0︸ ︷︷ ︸
scalar

· A⊤
j0︸︷︷︸

d3×n2

(diag(S(x)j0)− S(x)j0S(x)
⊤
j0)︸ ︷︷ ︸

n2×n2

L(y)i0︸ ︷︷ ︸
n2×1

=

n∑
j0=1

A⊤
j0(diag(S(x)j0)− S(x)j0S(x)

⊤
j0)W(x)j0

=

n∑
j0=1

A⊤
j0F(x)j0

= A⊤ vec(F(x))

= vec(A⊤
1 F(x)(A2 ⊗A3)) ∈ Rd3

where the first step comes from Definition 2.8, the second step is due to Eq. (5), the third step is
because of Eq. (6), the fourth step is due to Eq. (7), the fifth step utilize the notation of vec(·), and
the last step follows from Fact E.16.

G.6 Putting all together

We now show the overall running time of computing the gradient.

Theorem G.7 (Tensor attention gradient computation, formal version of Theorem 3.3 ). If we have
the following conditions

• Suppose that we have input fixed matrices A1, A2, A3, A4, A5, E ∈ Rn×d.

• We denote X ∈ Rd×d2

and Y ∈ Rd2×d as matrix variables (gradient is computed w.r.t. X
)

– For simplicity of calculation, we utilize vector variables x ∈ Rd3×1 and y ∈ Rd3×1,
i.e., vec(X) = x.

– For simplicity of calculation, we use tensor variables X ∈ Rd×d×d and Y ∈ Rd×d×d

• Let g = dLoss(X)
dX ∈ Rd×d2

(see Loss(X) in Definition 2.8)

Then it’s plain to see that we can compute gradient g ∈ Rd×d2

in Tmat(n, d
2, n2) time.

Proof. Step 1. We compute S(x) and L(y). According to Lemma G.2, this takes
O(Tmat(n, d

2, n2) + Tmat(n, d, d
2)) time.
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Step 2. We compute V(x). According to Lemma G.3, this takes O(Tmat(n, n
2, d)) time.

Step 3. We compute W(x). According to Lemma G.4, this takes O(Tmat(n, d, n
2)) time.

Step 4. We compute F(x). According to Lemma G.5, this takes O(n3) time.

Step 5. From Lemma G.6, the gradient is give by vec(A⊤
1 F(x)(A2 ⊗ A3)). We know that

A⊤
1 ∈ Rd×n, F(x) ∈ Rn×n2

, and A2 ⊗ A3 ∈ Rn2×d2

, it can be calculated in O(Tmat(d, n, d
2) +

Tmat(n, n
2, d2)) time.

Thus, the overall running time complexity for computing the gradient is O(Tmat(n, d
2, n2) +

Tmat(n, d, d
2)).

H Running Acceleration via Polynomial Method

Remember that in the preceding section, for simplicity in the computations of the gradient, we didn’t
consider the d factor in S. This factor does not affect the time complexity in our algorithms as it
merely acts as a rescaling factor. We will now retake the 1/d in S factor into consideration to utilize
the tools from previous work [AS23].

In Section H.1, we demonstrate how to create a low-rank representation for S efficiently and explic-
itly. In Section H.2, we show how to make a low-rank construction for V(x). In Sections H.3, H.4,
and H.5, we present low-rank representations for W(x), Fa(x), and Fb(x), respectively. Finally, in
Section H.6, we will consolidate all these elements to prove our final algorithmic result.

H.1 Fast computation of S

Using the polynomial method results in [AS23, AS24b], we have the following low-rank represen-
tation results.

Lemma H.1. For any B = o( 3
√
log n), we have k1 = no(1) such that: Let A1, A2, A3 ∈ Rn×d,

X1, X2, X3 ∈ Rd×d and X = X1 · (X⊤
2 ⊖X⊤

3 ) ∈ Rd×d2

. Assume that each number in S(x) can
be written using O(log n) bits. It holds that max{∥A1X1∥∞, ∥A2X2∥∞, ∥A3X3∥∞} ≤ B, then
there are three matrices U1, V1,W1 ∈ Rn×k1 such that ∥U1(V1 ⊘W1)

⊤ − S(x)∥∞ ≤ ϵ/ poly(n).
Here S(x) = D−1 exp(A1X(A2 ⊗ A3)

⊤/d) ∈ Rn×n2

and we define D = diag(exp(A1X(A2 ⊗
A3)

⊤/d)1n2). Moreover, these matrices U1, V1,W1 can be created explicitly in n1+o(1) time.

Proof. We have

(X⊤
2 ⊖X⊤

3 ) · (A2 ⊗A3)
⊤ = ((A2 ⊗A3) · (X⊤

2 ⊖X⊤
3 )⊤)⊤

= ((A2 ⊗A3) · (X2 ⊘X3))
⊤

= ((A2 ·X2)⊘ (A3 ·X3))
⊤,

where the first step is due to simple algebra, the second step comes from Fact E.4, and the last step
follows Fact E.7.

Thus, we can rewrite S(x) = D−1 exp(Q(K1 ⊘ K2)
⊤/d) ∈ Rn×n2

and we define D =
diag(exp(Q(K1 ⊘K2)

⊤/d)1n2), where Q = A1X1,K1 = A2X2,K2 = A3X3.

More explicitly, we have

Q(K1 ⊘K2)
⊤ = A1X1(A2X2 ⊘A3X3)

⊤

= A1X1(X
⊤
2 ⊖X⊤

3 ) · (A2 ⊗A3)
⊤

= A1X(A2 ⊗A3)
⊤,

where the 1st step is due to Q = A1X1,K1 = A2X2,K2 = A3X3, the 2nd step is because of the
identity in the beginning of the proof, and the 3rd step follows from X = X1(X

⊤
2 ⊖X⊤

3 ).

Thus, we finish the proof by applying Lemma 4.1.
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H.2 Fast computation of V

We will explain how to obtain the low rank representation of V(x).

Lemma H.2. We assume conditions the same as Lemma H.1. Let d = O(log n) and k1 = no(1).
We also assume that we can write each number in E ∈ Rn×d and L(y) ∈ Rn2×d using O(log n)
bits. Let V(x) ∈ Rn×d (see Definition F.7). Then, there are three matrices U1, V1,W1 ∈ Rn×k1 we
have ∥U1(V1 ⊘W1)

⊤L(y)−E −V(x)∥∞ ≤ ϵ/ poly(n), where V1 ⊘W1 ∈ Rn2×k1 . Moreover, we
can construct these matrices U1, V1,W1 in n1+o(1) time.

Proof. Let U1, V1,W1 be the matrices in Lemma H.1. We can show that

∥U1(V1 ⊘W1)
⊤L(y)− E − V(x)∥∞ = ∥U1(V1 ⊘W1)

⊤L(y)− E − S(x)L(y) + E∥∞
= ∥(U1(V1 ⊘W1)

⊤ − S(x))L(y)∥∞
≤ ϵ/ poly(n)

where the 1st step is due to V(x) = S(x)L(y)− E, the 2nd step comes from basic algebra, and 3rd
step is due to Lemma H.1 and each number in L(y) ∈ Rn2×d can be written using O(log n).

H.3 Fast computation of W

We will explain how to obtain the low rank representation of W(x).

Lemma H.3. Assume the same condition as Lemma H.2. Let k2 = no(1). We define V(x) ∈ Rn×d

(see Definition F.7). We define L(y) ∈ Rn2×d (see Definition F.4). Let W(x) := V(x)L(y)⊤ ∈
Rn×n2

be defined in Definition F.5. There are three matrices U2, V2,W2 ∈ Rn×k2 such that
∥U2(V2 ⊘W2)

⊤ −W(x)∥∞ ≤ ϵ/poly(n). We can construct the matrices U2, V2,W2 in n1+o(1)

time.

Proof. For W(x), we define its approximation as W̃(x).

According to Lemma H.2, we find a good approximation U1(V1 ⊘W1)
⊤L(y) − E of V(x), where

k1 = no(1) and U1, V1,W1 ∈ Rn×k1 .

Now we turn W̃(x) into low-rank representation

W̃(x) = (U1(V1 ⊘W1)
⊤L(y)− E)︸ ︷︷ ︸

n×d

L(y)⊤︸ ︷︷ ︸
d×n2

= (U1(V1 ⊘W1)
⊤L(y)− E)︸ ︷︷ ︸

n×d

((A4 ⊗A5) · (Y1 ⊘ Y2))
⊤︸ ︷︷ ︸

d×n2

= (U1(V1 ⊘W1)
⊤L(y)− E)︸ ︷︷ ︸

n×d

((A4 · Y1)︸ ︷︷ ︸
n×d

⊘ (A5 · Y2)︸ ︷︷ ︸
n×d

)⊤,

where the 1st step is because that U1(V1⊘W1)
⊤L(y)−E is a good approximation to V(x), the 2nd

step comes from definition of L(y) (see Definition F.4), the last step is due to Fact E.7.

Thus, we let U2 = U1(V1 ⊘W1)
⊤L(y) − E, V2 = A4 · Y1 and W2 = A5 · Y2, which only takes

n1+o(1) time. (We remark that, if we use naive way to compute U2 that it takes Ω(n2), however
using Lemma E.13 can beat O(n2) time.) We can explicitly construct U2, V2,W2 ∈ Rn×k2 where
k2 ≤ max{d, k1}+ d = no(1). (Here the reason is k1 = no(1) and d = no(1))

For controlling the error, we can show

∥W̃(x)−W(x)∥∞ = ∥(U1(V1 ⊘W1)
⊤L(y)− E)L(y)⊤ − V(x)L(y)⊤∥∞

≤ d · ∥L(y)∥∞ · ∥U1(V1 ⊘W1)
⊤L(y)− E − V(x)∥∞

≤ ϵ/ poly(n),
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where the first step follows from the definition of W̃(x),W(x), the second step follows from
∥ab⊤∥∞ ≤ d · ∥a∥∞ · ∥b∥∞ for length d vectors a, b, and the last step follows Lemma H.2.

Thus, we complete the proof.

H.4 Fast computation of Fa: key step

Definition H.4. Let S(x) ∈ Rn×n2

(see Definition F.3). Let W(x) ∈ Rn×n2

(see Definition F.5).
Then, we define

Fa(x) := S(x) ◦W(x) ∈ Rn×n2

.

We will explain how to obtain the low-rank representation of Fa(x).

Lemma H.5. Let k1 = no(1), k2 = no(1), k3 = no(1). We assume U1, V1,W1 ∈ Rn×k1 approxi-
mates the S(x) ∈ Rn×n2

satisfying ∥U1(V1 ⊘W1)
⊤ − S(x)∥∞ ≤ ϵ/ poly(n). Let us assume that

U2, V2,W2 ∈ Rn×k2 approximates the W(x) ∈ Rn×n2

satisfying ∥U2(V2 ⊘W2)
⊤ −W(x)∥∞ ≤

ϵ/ poly(n). We assume that each number in S(x) and W(x) can be written using O(log n) bits.
Let Fa(x) := S(x) ◦ W(x) ∈ Rn×n2

be defined in Definition H.4. Then there are matrices
U3, V3,W3 ∈ Rn×k3 such that ∥U3(V3 ⊘ W3)

⊤ − Fa(x)∥∞ ≤ ϵ/ poly(n). We can construct
the matrices U3, V3,W3 in n1+o(1) time.

Proof. If we choose U3 = U1 ⊖ U2 ∈ Rn×k1k2 and V3 = V1 ⊖ V2 ∈ Rn×k1k2 , W3 = W1 ⊖W2 ∈
Rn×k1k2 , this need n1+o(1) time to compute.

For further simplicity of proofs, we call S̃(x) = U1(V1 ⊘W1)
⊤ and W̃(x) = U2(V2 ⊘W2)

⊤.

According to Lemma E.13, we can show

∥U3(V3 ⊘W3)
⊤ − Fa(x)∥∞ = ∥U3(V3 ⊘W3)

⊤ − S(x) ◦W(x)∥∞
= ∥(U1 ⊖ U2)((V1 ⊖ V2)⊘ (W1 ⊖W2))

⊤ − S(x) ◦W(x)∥∞
= ∥(U1(V1 ⊘W1)

⊤) ◦ (U2(V2 ⊘W2)
⊤)− S(x) ◦W(x)∥∞

= ∥S̃(x) ◦ W̃(x)− S(x) ◦W(x)∥∞
= ∥S̃(x) ◦ W̃(x)− S̃(x) ◦W(x) + S̃(x) ◦W(x)− S(x) ◦W(x)∥∞
≤ ∥S̃(x) ◦ W̃(x)− S̃(x) ◦W(x)∥∞ + ∥S̃(x) ◦W(x)− S(x) ◦W(x)∥∞
≤ ϵ/ poly(n)

where the first step is due to the definition of Fa(x), the second step is because of the definition
of U3, V3,W3, the third step is due to Fact E.8, the fourth step follows from the definition of S̃(x)
and W̃(x), the fifth step is because of basic algebra, the sixth step comes from triangle inequality,
and the last step is because bounded entries (we can write each number in S(x) and W(x) using
O(log n) bits) and Lemma assumptions that ∥S̃(x)−S(x)∥∞ ≤ ϵ/poly(n) and ∥W̃(x)−W(x)∥∞ ≤
ϵ/ poly(n)

H.5 Fast computation of Fb: key step

Definition H.6. Let S(x) ∈ Rn×n2

(see Definition F.3). Let W(x) ∈ Rn×n2

(see Definition F.5).
Then, we define Fb(x) ∈ Rn×n2

whose j0-th column

Fb(x)j0 = S(x)j0S(x)
⊤
j0W(x)j0 ,

for each j0 ∈ [n].

We will explain how to obtain the low rank representation of Fb(x).
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Lemma H.7. Let k1 = no(1), k2 = no(1), k4 = no(1). Let us assume that U1, V1,W1 ∈ Rn×k1

approximates the S(x) ∈ Rn×n2

satisfying ∥U1(V1 ⊘W1)
⊤ − S(x)∥∞ ≤ ϵ/ poly(n). We assume

U2, V2,W2 ∈ Rn×k2 approximates the W(x) ∈ Rn×n2

satisfying ∥U2(V2 ⊘W2)
⊤ −W(x)∥∞ ≤

ϵ/ poly(n). Assume that we can write each number in S(x) and W(x) using O(log n) bits. Let us
assume that Fb(x) ∈ Rn×n2

whose j0-th column Fb(x)j0 = S(x)j0S(x)
⊤
j0
W(x)j0 for each j0 ∈ [n]

(see Definition H.6). Then there are matrices U4, V4,W4 ∈ Rn×k4 such that ∥U4(V4 ⊘W4)
⊤ −

Fb(x)∥∞ ≤ ϵ/ poly(n). We can construct the matrices U4, V4,W4 in n1+o(1) time.

Proof. For further simplicity of proofs, we define R(x) ∈ Rn to be a local vector function where
R(x)j0 is ⟨S(x)j0 ,W(x)j0⟩. We denote the approximation of R(x) to be R̃(x).

It is noted that a good approximation of S(x)j0 is (U1(V1⊘W1)
⊤)⊤j0,∗. We denote the approximation

of S(x) to be S̃(x) = U1(V1 ⊘W1)
⊤.

It is noted that a good approximation of W(x)j0 is (U2(V2 ⊘W2)
⊤)⊤j0,∗. Let denote the approxima-

tion of W(x) to be W̃(x) = U2(V2 ⊘W2)
⊤.

Suppose that R̃(x)j0 := ⟨S̃(x)j0 , W̃(x)j0⟩ = (U1(V1 ⊘W1)
⊤)j0,∗ · (U2(V2 ⊘W2)

⊤)⊤j0,∗.

For the side of computation time, we compute V ⊤
1 V2 first and this takes n1+o(1) time. Then, we

compute W⊤
1 W2 and this also takes n1+o(1) time.

Next, we have

R̃(x)j0 = (U1(V1 ⊘W1)
⊤)j0,∗ · (U2(V2 ⊘W2)

⊤)⊤j0,∗

= (U1)j0,∗︸ ︷︷ ︸
1×k1

(V1 ⊘W1)
⊤︸ ︷︷ ︸

k1×n2

(V2 ⊘W2)︸ ︷︷ ︸
n2×k2

((U2)j0,∗)
⊤︸ ︷︷ ︸

k2×1

= (U1)j0,∗︸ ︷︷ ︸
1×k1

((V ⊤
1 V2)︸ ︷︷ ︸

k1×k2

◦ (W⊤
1 W2)︸ ︷︷ ︸

k1×k2

) ((U2)j0,∗)
⊤︸ ︷︷ ︸

k2×1

where the first step follows from the definition of R(x), the second step follows from (AB)j0,∗ =
ej0(AB) = (ej0A)B = Aj0,∗B for any matrices A and B, and the third step is due to Lemma E.13.

Once we have pre-computed V ⊤
1 V2 ∈ Rk1×k2 and W⊤

1 W2 ∈ Rk1×k2 , the above step only takes
O(k1k2) time. Since there n coordinates, so the overall time complexity is still O(nk1k2) =
n1+o(1).

We can use S̃(x) and R̃(x) to approximate Fb(x). Let F̃b(x) = diag(R̃(x))︸ ︷︷ ︸
n×n

S̃(x)︸︷︷︸
n×n2

. Because

diag(R̃(x)) is a diagonal matrix and S̃(x) has low-rank representation, then obviously we know
how to construct U4, V4,W4. Basically U4 = diag(R̃(x))U1 and V4 = V1, W4 = W1.

Now, we need to control the error, and we have

∥U4(V4 ⊘W4)
⊤ − Fb(x)∥∞

= ∥F̃b(x)− Fb(x)∥∞
= max

j0∈[n]
∥S̃(x)j0 R̃(x)j0 − S(x)j0R(x)j0∥∞

= max
j0∈[n]

∥S̃(x)j0 R̃(x)j0 − S̃(x)j0R(x)j0 + S̃(x)j0R(x)j0 − S(x)j0R(x)j0∥∞

≤ max
j0∈[n]

∥S̃(x)j0 R̃(x)j0 − S̃(x)j0R(x)j0∥∞ + ∥S̃(x)j0R(x)j0 − S(x)j0R(x)j0∥∞

where the first step is due to the definition of F̃b(x), the second step follows from the definition of
Fb(x) and F̃b(x), the third step follows from simple algebra, and the last step follows from triangle
inequality.
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For the 1st term, we have

max
j0∈[n]

∥S̃(x)j0 R̃(x)j0 − S̃(x)j0R(x)j0∥∞ ≤ max
j0∈[n]

∥S̃(x)j0∥∞ · |R̃(x)j0 − R(x)j0 |

≤ ϵ/ poly(n)

For the 2nd term, we have

max
j0∈[n]

∥S̃(x)j0R(x)j0 − S(x)j0R(x)j0∥∞ ≤ max
j0∈[n]

∥S̃(x)j0 − S(x)j0∥∞ · |R(x)j0 |

≤ ϵ/ poly(n)

We complete the proof, by using all three equations we derived above.

H.6 Gradient computation in almost linear time by low rank tensor approximation

We now present our main result regarding the time complexity of our Algorithm 1.

Algorithm 1 Almost Linear Time Tensor Attention Gradient Computation

1: procedure FASTTENSORATTENTION(A1, A2, A3, A4, A5, E ∈ Rn×d, X1, X2, X3, Y1, Y2 ∈
Rd×d, n ∈ N+, d ∈ N+, ϵ ∈ (0, 0.1)) ▷ Definition 2.9, Theorem 4.2

2: ▷ n can be viewed as the length of the sentence
3: ▷ d can be viewed as the feature of dimension, and we assume d = O(log n)
4: ▷ ϵ is the accuracy output, and we typically pick 1/ poly(n)

5: Get U1, V1,W1 ∈ Rn×no(1)

to approximate S(x) via Lemma H.1 ▷ O(n1+o(1)) time
6: U2 ← U1(V1 ⊘W1)

⊤L(y)− E to approximate V(x) via Lemma D.3 ▷ O(n1+o(1)) time
7: V2, W2 ← A4Y1, A5Y2 to approximate W(x) via Lemma H.3 ▷ O(nd2) time
8: U3, V3, W3 ← U1 ⊖ U2, V1 ⊖ V2, W1 ⊖W2 to approximate Fa(x) via Lemma H.5 ▷

O(n1+o(1)) time
9: Precompute V ⊤

1 V2 and W⊤
1 W2 to approximate Fb(x) via Lemma H.7 ▷ O(n1+o(1)) time

10: for j0 ∈ [n] do ▷ Overall R̃(x) takes O(n1+o(1)) time
11: R̃(x)j0 ← (U1)j0,∗((V

⊤
1 V2) ◦ (W⊤

1 W2))((U2)j0,∗)
⊤

12: end for
13: U4 ← diag(R̃(x))U1 ▷ O(n1+o(1)) time
14: V4, W4 ← V1, W1 ▷ O(n1+o(1)) time
15: /* Approximate F(x), Theorem H.8 */
16: U5, V5, W5 ← [U3,−U4], [V3, V4], [W3,W4] ▷ O(n1+o(1)) time
17: /* Approximate g, Theorem H.8 */
18: Precompute A⊤

1 U5, A⊤
2 V5, A⊤

3 W5 separately ▷ O(dn1+o(1)) time
19: g̃ ← (A⊤

1 U5)⊙ (A⊤
2 V5)⊙ (A⊤

3 W5) ▷ ⊙ in Definition E.3. O(d3no(1)) time
20: return g̃ ▷ As d = O(log n), the total complexity is O(n1+o(1)) time
21: end procedure

Theorem H.8 (Main result for fast gradient computation, Restatement of Theorem 4.2). Assuming
the entries of A1, A2, A3, A4, A5, E ∈ Rn×d and X1, X2, X3, Y1, Y2 ∈ Rd×d are represented using
O(log n) bits. Then, there exist an algorithm that runs in n1+o(1) time to solve ATAttLGC(n, d =
O(log n), B = o( 3

√
log n), ϵ = 1/ poly(n)) (see Definition 2.9), i.e., our Algorithm 1 computes a

gradient matrix g̃ ∈ Rd×d2

satisfying ∥dLoss(X)
dX − g̃∥∞ ≤ 1/ poly(n).

Proof of Theorem 4.2. Given size n×n2 matrices F(x) (see Definition F.6), Fa(x) (see Lemma H.7)
and Fb(x) (see Lemma H.5), obviously we know

F(x) = Fa(x)− Fb(x).

By applying Lemma H.1, Lemma H.2, and Lemma H.3, we confirm that the assumptions in
Lemma H.5 and Lemma H.7 hold true. Therefore, we can utilize Lemma H.5 and Lemma H.7
to conclude that
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• Let k3 = no(1). We know that Fa(x) has approximate low rank representation
U3, V3,W3 ∈ Rn×k3 , let F̃a(x) denote U3(V3 ⊘W3)

⊤.

• Let k4 = no(1). We know that Fb(x) has approximate low rank representation U4, V4,W4 ∈
Rn×k4 , let F̃b(x) denote U4(V4 ⊘W4)

⊤.

• Let U5, V5,W5 ∈ Rn×k5 denote the approximate low rank representation for F(x), call it
F̃(x) = U5(V5 ⊘W5)

⊤. We have k5 ≤ k3 + k4 = no(1).

Thus, Lemmas H.1, H.2, H.3, H.5 and H.7 all are taking n1+o(1) time to compute.

From the Lemma G.6, we know that

dLoss(x)

dx
= vec(A⊤

1 F(x)(A2 ⊗A3))

We use vec(A⊤
1 F̃(x)(A2 ⊗A3)) to do approximation, then

vec(A⊤
1︸︷︷︸

d×n

F̃(x)︸︷︷︸
n×n2

(A2 ⊗A3)︸ ︷︷ ︸
n2×d2

) = vec(A⊤
1︸︷︷︸

d×n

F̃(x)︸︷︷︸
n×n2

(A⊤
2 ⊗A⊤

3 )
⊤︸ ︷︷ ︸

n2×d2

)

= vec([U5 ⊙ V5 ⊙W5]︸ ︷︷ ︸
n×n×n

(A⊤
1 , A

⊤
2 , A

⊤
3 ))

= vec(((A⊤
1 U5)⊙ (A⊤

2 V5)⊙ (A⊤
3 W5))),

where the first step is due to Fact E.4, the second step is because of Claim E.20 and Fact E.11, and
the last step follows Fact E.12.

The above computation takes n1+o(1)d+ d3no(1) time. So, overall time complexity is still n1+o(1).

Recall that g̃ ∈ Rd×d2

and dLoss(X)
dX ∈ Rd×d2

.

We have

∥dLoss(X)

dX
− g̃∥∞ = ∥ vec(A⊤

1 F(x)(A2 ⊗A3))− vec(A⊤
1 F̃(x)(A2 ⊗A3))∥∞

= ∥A⊤
1 F(x)(A2 ⊗A3)−A⊤

1 F̃(x)(A2 ⊗A3)∥∞
= ∥A⊤

1 (Fa(x)− Fb(x))(A2 ⊗A3)−A⊤
1 (F̃a(x)− F̃b(x))(A2 ⊗A3)∥∞

≤ ∥A⊤
1 (Fa(x)− F̃a(x))(A2 ⊗A3)∥∞ + ∥A⊤

1 (Fb(x)− F̃b(x))(A2 ⊗A3)∥∞
≤ ∥A1∥∞∥A2∥∞∥A3∥∞ · n3 · (∥Fa(x)− F̃a(x)∥∞ + ∥Fb(x)− F̃b(x)∥∞)

≤ ϵ/poly(n)

where the 1st step is due to definition of dLoss(X)
dX in the above, the 2nd step follows from the def-

inition of vec(·), the 3rd step follows from simple algebra, the 4th step follows from triangle in-
equality, the 5th step follows from ∥T(A1, A2, A3)∥∞ ≤ n3 · ∥T∥∞ · ∥A1∥∞ · ∥A2∥∞ · ∥A3∥∞,
where T is a tensor, and the last step follows from entries in A1, A2, A3 are bounded, and
∥Fa(x)− F̃a(x)∥∞ ≤ ϵ/ poly(n), ∥Fb(x)− F̃b(x)∥∞ ≤ ϵ/poly(n).

By picking ϵ = 1/ poly(n), we complete the proof.

I Hardness

In this section, we will show the hardness of our algorithm. In Section I.1, we provide some useful
tools for our results. In Section I.2,we present our main hardness results.

I.1 Tools for backward complexity

Next, we demonstrate that the tensor attention optimization problem (see Definition 2.8) exhibits
favorable behavior when applied to matrices constrained as described in Lemma A.2:
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Lemma I.1. Suppose that a fixed matrix H ∈ Rn×n2

with entries in the interval [1, Ba] satisfying
that more than half entries of H in each row are equal to Ba. Let a matrix V ∈ Rn2×d with entries
in {0, 1}. For λ ∈ R, let us define Mλ := exp(λH) ∈ Rn×n2

. We denote the function f : R → R
as

f(λ) := ∥ diag(Mλ1n2)−1︸ ︷︷ ︸
n×n

Mλ︸︷︷︸
n×n2

V︸︷︷︸
n2×d

∥2F ,

Then, for every λ ∈ R we get

• |f ′(λ)| ≤ O(Band),

• |f ′′(λ)| ≤ O(B2
and).

Proof. Let G denote the n×n2 matrix G = diag(Mλ1n)
−1Mλ. For i ∈ [n], j ∈ [n2], we calculate

that Mλi,j = eλHi,j and so

Gi,j =
eλHi,j∑n2

k=1 e
λHi,k

.

For ℓ ∈ [d], let Sℓ ⊆ [n2] represent the set of 1s in column ℓ of V , defined as Sℓ = {j ∈ [n2] |
Vj,ℓ = 1}. Therefore, for each i ∈ [n], ℓ ∈ [d], the (i, ℓ) entry of the matrix diag(Mλ1n)

−1MλV
can be shown that

(diag(Mλ1n)
−1MλV )i,ℓ = (GV )i,ℓ

=

n2∑
j=1

Gi,jVj,ℓ

=
∑
j∈Sℓ

Gi,j

=

∑
j∈Sℓ

eλHi,j∑n2

k=1 e
λHi,k

.

where the 1st step comes from definition, the 2nd step is due to simple algebra, the 3rd step is
because of definition of Sℓ, and the last step comes from definition of G.

Thus, we obtain:

f(λ) =

n∑
i=1

∑d
ℓ=1

(∑
j∈Sℓ

eλHi,j

)2

(∑n2

k=1 e
λHi,k

)2

=

n∑
i=1

∑d
ℓ=1

∑
j1∈Sℓ

∑
j2∈Sℓ

eλ(Hi,j1+Hi,j2 )∑n2

k1=1

∑n2

k2=1 e
λ(Hi,k1

+Hi,k2
)

.

We define

g(λ, i) :=

d∑
ℓ=1

∑
j1∈Sℓ

∑
j2∈Sℓ

eλ(Hi,j1
+Hi,j2

).

We also define

h(λ, i) :=

n2∑
k1=1

n2∑
k2=1

eλ(Hi,k1
+Hi,k2

)
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By the previous three equations, we have:

f(λ) =

n∑
i=1

g(λ, i)/h(λ, i).

As at least half of the entries in each row of H are equal to Ba and all entries lie within the interval
[1, Ba], we can bound: (

n2

2

)2

· e2Baλ ≤ h(λ, i) ≤ (n)
4 · e2Baλ. (8)

Furthermore, since the derivative of eλ(Hi,k1
+Hi,k2

) with respect to λ is (Hi,k1 + Hi,k2) ·
eλ(Hi,k1

+Hi,k2
), we can bound

2 · h(λ, i) ≤ dh(λ, i)

dλ
≤ 2Ba · h(λ, i). (9)

We may similarly bound

0 ≤ g(λ, i) ≤ d·n4 · e2Baλ, (10)

and

2 · g(λ, i) ≤ dg(λ, i)

dλ
≤ 2Ba · g(λ, i). (11)

The derivative of f can be bounded by (where the ′ notation denotes the derivative w.r.t. λ):

f ′(λ) =
n∑

i=1

g′(λ, i) · h(λ, i)− g(λ, i) · h′(λ, i)
(h(λ, i))2

≤
n∑

i=1

g′(λ, i) · h(λ, i)
(h(λ, i))2

=

n∑
i=1

g′(λ, i)
h(λ, i)

≤
n∑

i=1

2Bad · n4e2Baλ

(n2/2)2 · e2Baλ

=

n∑
i=1

8Bad

= 8Ba · nd.
where the first step is due to the calculation of derivative, the second step is due to basic algebra, the
third step is because of cancelling h(λ, i), the fourth step is by Eq. (8) (h(λ, i) term) and Eq. (11) (
g′(λ, i) term), the fifth step is due to basic algebra, and the last step is due to basic algebra.

In a similar manner, a lower bound for f ′(λ) can be,

f ′(λ) =
n∑

i=1

g′(λ, i) · h(λ, i)− g(λ, i) · h′(λ, i)
(h(λ, i))2

≥ −
n∑

i=1

g(λ, i) · h′(λ, i)
(h(λ, i))2

≥ −
n∑

i=1

(dn4 · e2Baλ) · (2Ba · h(λ, i))
((n2/2)2 · e2Baλ) · (h(λ, i))

= −
n∑

i=1

8Bad
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= −8Ba · nd.
where the first step is due to the definition, the second step is due to basic algebra, the third step
comes from Eq. (8) (h(λ, i) term), Eq. (9) (h′(λ, i)term), and Eq. (10) (g(λ, i) term), the fourth step
is due to basic algebra, and the final step comes from basic algebra.

Finally, we let f(λ, i) := g(λ,i)
h(λ,i) , and we can have f ′′(λ) is equal to the following using the quotient

rule:
n∑

i=1

g′′(λ, i)− h′′(λ, i) · f(λ, i)− 2 · h′(λ, i) · f ′(λ, i)
h(λ, i)

,

which we can likewise bound in magnitude by O(B2
and).

We have the following tool from previous work.
Lemma I.2 (Lemma 5.4 in [AS24a]). Suppose that f : [0, 1]→ R is a twice-differentiable function
that satisfy |f ′′(λ)| ≤ b for all λ ∈ [0, 1]. And for any positive integer t, we define

st :=
t−1∑
i=0

f ′(i/t)
t

Then, we have

|st − (f(1)− f(0))| ≤ b/t.

I.2 Main result for lower bound

Finally, we are prepared to present our main result:
Theorem I.3 (Main result for hardness, Restatement of Theorem A.3). Let γ : N → N be any
function with γ(n) = o(log n) and γ(n) = ω(1). Assuming SETH, for any constant δ > 0, it
is impossible to solve ATAttLGC(n, d = Θ(log n), B = Θ( 3

√
γ(n) · log n), ϵ = O(1/(log n)4))

(Definition 2.9) in time O(n3−δ) when E = 0, Y = Id, X = λId for some scalar λ ∈ [0, 1].

Proof of Theorem A.3. Let us assume that such an algorithm do exist. Then we can call it
O((log n)11) times to refute Lemma A.2 using parameter γ = γ(n), i.e., we can get f(1) by solving
ATAttLGC with O((log n)11) times.

Suppose that Id ∈ Rd×d×d is an identity tensor. Also suppose that the input matrices to Lemma A.2
are Q,K1,K2, V1, V2. And we set A1 = Q, A2 = K1,A3 = K2, A4 = V1,A5 = V2, Y = I , and
X = λ ·mat(Id)︸ ︷︷ ︸

d×d2

, with some λ ∈ [0, 1]. Let f : [0, 1]→ R be defined in Lemma I.1 where H is the

matrix A1(A2 ⊘ A3)
⊤, so that Mλ is the matrix exp(A1X(A2 ⊗ A3)

⊤) by Fact E.19. It follows
from Lemma I.1 and d = Θ(log n) that

|f ′′(λ)| ≤ O(n log5 n · (γ(n))2),

where Ba = O(γ(n) log2 n) in Lemma I.1 by the second bullet point of Lemma A.2.

It is worth noting that f(0) can be computed in Õ(n) time because of the all-1s matrix Mf . Our
final target is to calculate f(1).

From Lemma I.2, f ′(λ) can be computed on O(log9(n)(γ(n))2) = O(log11 n) points up to error
O(1/(log n)4), and give back their average. Because we have already chosen X = λI , f ′(λ)
can be calculated from the gradient dLoss(X)

dX in (see Definition 2.9), by our assumed approximated
algorithm.
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