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ABSTRACT

We develop variational search distributions (VSD), a method for finding and gen-
erating discrete, combinatorial designs of a rare desired class in a batch sequential
manner with a fixed experimental budget. We formalize the requirements and
desiderata for active generation and formulate a solution via variational inference.
In particular, VSD uses off-the-shelf gradient based optimization routines, can
learn powerful generative models for designs, and can take advantage of scal-
able predictive models. We derive asymptotic convergence rates for learning the
true conditional generative distribution of designs with certain configurations of
our method. After illustrating the generative model on images, we empirically
demonstrate that VSD can outperform existing baseline methods on a set of real
sequence-design problems in various biological systems.

1 INTRODUCTION

We consider a variant of the active search problem (Garnett et al., 2012; Jiang et al., 2017; Vanchi-
nathan et al., 2015), where we wish to find as many members (designs) of a rare desired class in a
batch sequential manner with a fixed experimental budget. We call online learning of a generative
model of these designs active generation. Examples of rare designs are compounds that could be
useful pharmaceutical drugs, or highly active enzymes for catalyzing chemical reactions. We assume
the design space is discrete or partially discrete, high-dimensional, and practically innumerable. For
example, the number possible configurations of a single protein is 20O(100) (see, e.g., Sarkisyan
et al., 2016).

We are interested in this objective for a variety of reasons. We may wish to study the properties of the
“fitness landscape” (Papkou et al., 2023) to gain a better scientific understanding of a phenomenon
such as natural evolution. Or, we may not be able to completely specify the constraints and objectives
of a task, but we would like to characterize the space of, and generate new feasible designs. For
example, we want enzymes that can degrade plastics in an industrial setting, but we may not yet
know the exact conditions (e.g. temperature, pH), some of which may be anti-correlated with enzyme
catalytic activity.

Assuming we can take advantage of a prior distribution over designs, we formulate the search prob-
lem as inferring the posterior distribution over rare, desirable designs. Importantly, this posterior can
be used for generating new designs. Specifically, we use (black-box) variational inference (VI) (Ran-
ganath et al., 2014), and so refer to our method as variational search distributions (VSD). Our major
contributions are: (1) we formulate the batch active generation objective over a (practically) innu-
merable discrete design space, (2) we present a variational inference algorithm, VSD, which solves
this objective, (3) we show that VSD performs well theoretically and empirically, and (4) we dis-
cuss how active generation is related to recent advances in adaptive experimental design. VSD uses
off-the-shelf gradient based optimization routines, is able to learn powerful generative models, and
can take advantage of scalable predictive models. In our experiments we show that VSD can out-
perform existing baseline methods on a set of real applications. Finally, we evaluate our approach
on the related sequential black-box optimization (BBO) problem, where we want to find the glob-
ally optimal design for a specific objective and show competitive performance when compared with
state-of-the-art methods, e.g., based on latent space optimization (LSO) (Gruver et al., 2023).
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2 METHOD

In this section we formalize our problem and describe its requirements and desiderata. We also
develop our proposed solution, based on variational inference, which we will refer to as variational
search distributions (VSD).

2.1 THE PROBLEM OF ACTIVE GENERATION

We are given a design space X , which can be discrete or mixed discrete-continuous and high dimen-
sional, and where for each instance that we choose x ∈ X , we measure some corresponding property
of interest (so-called fitness) y ∈ R. For example, in our motivating application of DNA/RNA or
protein sequences (henceforth referred to as just sequences), X = VM where V is the sequence
vocabulary (e.g., amino acid labels, |V| = 20) and M is the length of the sequence. However, we do
not limit the application of our method to sequences. Using this framing, a real world experiment
(for example, measuring the activity of an enzyme) can be modeled as an unknown relationship,

y = f�(x) + ϵ, (1)

for some black-box function (e.g. the experiment), f�, and measurement error ϵ ∈ R, distributed
according to p(ϵ) with Ep(ϵ)[ϵ] = 0. Instead of wanting to model the whole space, we are only
interested in a set of events which we choose based on fitness y. In particular, we want to perform
active generation, that is to generate (from a probability density) a sample that is of high fitness.
To place this problem in context (see Figure 1), alternative objective functions may be: the fittest
measurable design; all designs above a minimum level of feasibility, τ ∈ R (e.g. a wild-type
sequence); the distribution of these feasible designs; or the shape of the black-box function for these
feasible designs,

x∗ = argmax
x

f�(x), S := {x : y > τ}, p(x|y > τ), or F := {f�(x) : x ∈ S}. (2)

Our primary focus in this work is to estimate the super level-set distribution p(x|y > τ) in a se-
quential manner. We assume that S are rare events in a high dimensional space, and that we have
access to a prior belief, p(x), which helps narrow in on this subset of X . We are given a dataset,
DN := {(yn,xn)}Nn=1, which may contain only a few instances of yn > τ . Given p(x) and DN we
aim to recommend batches of unique candidates, {xbt}Bb=1, for experimental evaluation (Equation 1)
in a series of rounds, t ∈ {1, . . . , T}, where B = O(1000) and we desire xbt ∈ S. Each round, DN

is augmented with the experimental results of the previous batch, so N ← N + B. Estimating this
super level-set distribution of x is computationally and statistically challenging and, therefore, we
cast this as a variational inference problem. As we shall see later, our solution allows us to satisfy
the following requirements and additional desiderata for our problem.

Requirements & Desiderata. Problem requirements (R) and other desiderata (D).

(R1) Rare feasible designs, y > τ , are rare events in
X that need to be identified

(R2) Sequential non-myopic candidate generation,
x ∈ S ⊂ X , for sequential experiments

(R3) Discrete search over (combinatorially) large
design spaces, e.g. x ∈ X = VM

(R4) Batch generation of up to O(1000) diverse can-
didate designs per round

(R5) Generative models, x(s) ∼ q(x), that are task-
specific for fit designs

(D1) Guaranteed convergence for certain choices of
priors, variational distributions and predic-
tive models

(D2) Gradient based optimization strategies for can-
didate searching

(D3) Scalable predictive models that enable high-
throughput experiments.

2.2 VARIATIONAL SEARCH DISTRIBUTIONS

We cast the estimation of p(x|y > τ) as a sequential optimization problem. A suitable objective for
a round, t, is to minimize a divergence,

ϕ∗
t = argmin

ϕ
D[p(x|y > τ)∥q(x|ϕ)] (3)

2
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(a) argmaxx f�(x) (b) S (c) p(x) (d) p(x|y > τ) (e) F

Figure 1: Fitness landscape tasks. (a) A noise-less fitness landscape, f�(x) and white ‘×’ – the
maximum fitness design, x∗. (b) The super level-set of all fit designs – white hatched area, S. (c)
Prior belief p(x). (d) The density/mass function of the super level-set, p(x|y > τ) – blue contours.
(e) The black box function for the super level-set, F . See Equation 2 for definitions of these these
tasks. Our primary goal is to estimate the density or mass function of the super level-set, (d). Since
we assume a noisy relationship between f� and y, the super level-set will not have a hard boundary
as depicted, and p(x|y > τ) will be non-zero over all X .

where q(x|ϕ) is a parameterized distribution from which we sample experimental candidate designs
xbt, (R5), and which we aim to match to p(x|y > τ). The difficulty is that we cannot directly
evaluate or empirically sample from p(x|y > τ). However, if we consider the reverse Kullback-
Leibler (KL) divergence,

argmin
ϕ

DKL[q(x|ϕ)∥p(x|y > τ)] = argmin
ϕ

Eq(x|ϕ)

[
log

q(x|ϕ)
p(x)

− log p(y > τ |x)
]
, (4)

where we have expanded p(x|y > τ) using Bayes rule and dropped the constant term p(y > τ), we
note that we no longer require evaluation of p(x|y > τ) directly. We recognize the right hand side
of Equation 4 as the well known (negative) variational evidence lower bound (ELBO),

LELBO(ϕ) := Eq(x|ϕ)[log p(y > τ |x)]− DKL[q(x|ϕ)∥p(x)] . (5)

For this we assume access to a prior distribution over the space of designs, p(x), that may be in-
formed from the data at hand. Henceforth, as we will develop a sequential algorithm, we will denote
this prior with p(x|D0). We note the relationship between log p(y > τ |x) and the probability of
improvement (PI) acquisition function from Bayesian optimization (BO) (Kushner, 1964),

log p(y > τ |x) := logEp(y|x,DN )[1[y > τ ]] = logαPI(x,DN , τ) . (6)

Here 1 : {false, true} → {0, 1} is the indicator function and p(y|x,DN ) is typically esti-
mated using the posterior predictive distribution of a Gaussian process (GP) given data, DN . So
p(y > τ |x,DN ) = Ψ((µN (x)− τ)/σN (x)), where Ψ(·) is a cumulative standard normal distribu-
tion function, and µN (x), σ2

N (x) are the posterior predictive mean and variance, respectively, of the
GP. We refer to this estimation strategy as GP-PI, and rewrite the ELBO accordingly,

LELBO(ϕ, τ,DN ) = Eq(x|ϕ)[logαPI(x,DN , τ)]− DKL[q(x|ϕ)∥p(x|D0)] . (7)

The method that maximizes the objective in Equation 7 we call variational search distributions
(VSD), since we are using the variational posterior distribution as a means of searching the space of
fit designs, satisfying (R1), (R2) and (R4). It is well known that when the true posterior is a member
of the variational family indexed by ϕ, the above variational inference procedure has the potential to
recover the exact posterior distribution. To recommend experimental candidates we sample a set of
designs from our search distribution each round,

{xbt}Bb=1 ∼
B∏

b=1

q(x|ϕ∗
t ), where ϕ∗

t = argmax
ϕ

LELBO(ϕ, τ,DN ) . (8)

We discuss the relationship between VSD and BO in Appendix F. In general, because of the dis-
crete combinatorial nature of our problem, we cannot use the re-parameterization trick (Kingma &
Welling, 2014) to estimate the gradients of the ELBO. Instead, we use the score function gradient
estimator (Williams, 1992; Mohamed et al., 2020) with standard gradient descent methods (D2),

∇ϕLELBO(ϕ, τ,DN ) = Eq(x|ϕ)

[(
logαPI(x,DN , τ)− log

q(x|ϕ)
p(x|D0)

)
∇ϕ log q(x|ϕ)

]
, (9)
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where we use Monte-Carlo sampling to approximate this expectation with a suitable variance reduc-
tion scheme, such as using a control variate or baseline (Mohamed et al., 2020). We find that the
exponentially smoothed average of the ELBO works well in practice, and is the same strategy em-
ployed in Daulton et al. (2022). Effectively, VSD implements black-box variational inference (Ran-
ganath et al., 2014) for parameter estimation, and despite the high-dimensional nature of X , we find
we only need O(1000) samples to estimate the required expectations for ELBO optimization on
problems with M = O(100), satisfying (R3). Note that Equation 7 – 9 do not involve any data
(DN ) directly, only indirectly through the acquisition function. Hence the scalability of VSD is
dependent on the complexity of training the underlying estimator of p(y|x,DN ).

2.3 CLASS PROBABILITY ESTIMATION

So far our method indirectly computes the PI by transforming the predictions of a GP surrogate
model, p(y|x,DN ), as in Equation 6. Instead we may choose to follow the reasoning used by
Bayesian optimization by density-ratio estimation (BORE) in Tiao et al. (2021); Oliveira et al.
(2022); Song et al. (2022), and directly estimate the quantity we care about, p(y > τ |x,DN ).
We do this with class probability estimation (CPE) on the labels z := 1[y > τ ] ∈ {0, 1} so
p(y > τ |x,DN ) = p(z = 1|x,DN ) ≈ πθ(x), where πθ : X → [0, 1]. We can recover the class
probability estimates using a proper scoring rule (Gneiting & Raftery, 2007) such as Brier score or
log-loss on training data, Dz

N = {(zn,xn)}Nn=1, e.g.,

LCPE(θ,Dz
N ) := − 1

N

N∑
n=1

zn log πθ(xn) + (1− zn) log(1− πθ(xn)). (10)

The VSD objective using CPE becomes,
LELBO(ϕ, θ) = Eq(x|ϕ)[log πθ(x)]− DKL[q(x|ϕ)∥p(x|D0)] , (11)

into which we plug θ∗t = argminθ LCPE(θ,Dz
N ). Using a CPE also opens up the choice of estimators

that are more scalable than GP-PI, satisfying our desiderata (D3). This may be crucial if we choose
to run more than a few rounds of experiments with B = O(1000). Additionally, since VSD is
a black-box method, we can choose to use CPEs that are non-differentiable, such as decision tree
ensembles. The complete VSD algorithm is given in Algorithm 1, in which we have allowed for a
threshold function, τt = fτ ({y : y ∈ DN}, γt). This function can be used to modify the threshold
each round, e.g. following Tiao et al. (2021), an empirical quantile function τt = Q̂y(γt) where
γt ∈ (0, 1), or a constant τ in the case of estimating the distribution of the super level-set.

Algorithm 1 VSD optimization loop with CPE.

Require: Threshold γ1 and fτ , dataset DN , black-box f�, prior p(x|D0), CPE πθ(x), variational
family q(x|ϕ), budget T and B.

1: function FITMODELS(DN , τ )
2: Dz

N ← {(zn,xn)}Nn=1, where zn = 1[yn > τ ]
3: θ∗ ← argminθ LCPE(θ,Dz

N )
4: ϕ∗ ← argmaxϕ LELBO(ϕ, θ

∗)
5: return ϕ∗, θ∗

6: for round t ∈ {1, . . . , T} do
7: τt ← fτ ({y : y ∈ DN}, γt)
8: ϕ∗

t , θ
∗
t ← FITMODELS(DN , τt)

9: {xbt}Bb=1← q(x|ϕ∗
t )

10: {ybt}Bb=1← {f�(xbt) + ϵbt}Bb=1

11: DN+B ←DN ∪ {(xbt, ybt)}Bb=1

12: τ∗ ← fτ ({y : y ∈ DN}, γ∗)
13: ϕ∗, θ∗← FITMODELS(DN , τ∗)
14: return ϕ∗, θ∗

2.4 THEORETICAL ANALYSIS

In this section we summarize the main theoretical results concerning VSD and its estimates. We
show that VSD sampling distributions converge to a target distribution that characterizes the level
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set given by τ , satisfying (D1) in two general settings. We first derive results assuming f� is drawn
from a Gaussian process, i.e., f� ∼ GP(0, k), with a positive-semidefinite covariance (or kernel)
function k : X × X → R (Appendix D) and then using GP-PI as the CPE for VSD. These results
are then extended to probabilistic classifiers based on wide neural networks (Appendix E) by means
of the neural tangent kernel (NTK) for the given architecture (Jacot et al., 2018). For simplicity, we
set B = 1 and N = t, though sampling with B > 1 should improve rates by a multiplicative factor.

Theorem 2.1. Let assumptions D.1 to D.5 hold. Then VSD equipped with GP-PI approaches the
level-set distribution at the following rate:

D[p(x|y > τt,Dt)∥p(x|y > τt, f�)] ∈ OP(t
−1/2) .

This result is based on showing that the GP posterior variance vanishes at an optimal rate ofO(t−1)
in our setting (Lemma D.5). We also analyze the rate at which VSD finds feasible designs, or “hits”,
compared to an oracle with full knowledge of f�. After T rounds, the number of hits found by VSD is
HT =

∑T
t=1 1[yt > τt−1], where yt is generated from Equation 1 and xt ∼ p(x|y > τt−1,Dt−1).

The number of hits, H∗
T , from an agent that fully knows f� is the same but for generating conditioned

on f� with xt ∼ p(x|y > τt−1, f�). Using this definition and Theorem 2.1 we show the following.
Corollary 2.1. Under the settings in Theorem 2.1, we also have that:

E[|HT −H∗
T |] ∈ O(

√
T ) .

E[HT ] is related to the empirical recall measure in Equation 16 up to the normalization constant, but
it does not account for repeated hits, which are treated as false discoveries (false positives) under
recall. Lastly, for NN-based CPEs, we obtain convergence rates dependent on the spectrum of the
NTK (Proposition E.2), which we instantiate for ReLU networks below. For the full results and
proofs, please see Appendix D for the GP-based analysis and Appendix E for the NTK results.
Corollary 2.2. Let πθ be modeled via a fully connected ReLU network. Then, under the assumptions
in Proposition E.2, VSD achieves:

D[p(x|y > τt,Dt)∥p(x|y > τ, f�)] ∈ ÕP

(
t−

1
2(M+1)

)
, (12)

which asymptotically vanishes for all finite sequence lengths M .

3 RELATED WORK

We will consider related work first in terms of methods that have similar components to VSD, then
second in terms of related problems to our specification of active generation. VSD can be viewed as
one of many methods that makes use of the bound (Staines & Barber, 2013),

max
x

f�(x) ≥ max
ϕ

Eq(x|ϕ)[f�(x)] . (13)

The maximum is always greater than or equal to the expected value of a random variable. This
bound is useful for black-box optimization (BBO) of f�, and becomes tight if q(x|ϕ) → δ(x∗),
see Appendix F for more detail and VSD’s relation to BO. Other well known methods that make
use of this bound are evolution strategies (ES) and natural evolution strategies (NES) (Wierstra
et al., 2014), variational optimization (VO) (Staines & Barber, 2013; Bird et al., 2018), estimation
of distribution algorithms (EDA) (Larrañaga & Lozano, 2001), and Bayesian optimization with
probabilistic reparameterisation (BOPR) (Daulton et al., 2022). For learning the parameters of the
variational distribution, ϕ, they variously make use of maximum likelihood estimation or the score
function gradient estimator (REINFORCE) (Williams, 1992). Algorithms that modify Equation 13
to stop the collapse of q(x|ϕ) to a point mass for batch design include design by adaptive sampling
(DbAS) (Brookes & Listgarten, 2018) and conditioning by adaptive sampling (CbAS) (Brookes
et al., 2019). They use fixed samples x(s) from q(x|ϕ∗

t−1) for approximating the expectation, and
then optimize ϕ using a weighted maximum-likelihood or variational style procedure. DbAS and
CbAS were formulated for offline (non-sequential) tasks, they have often been used in a sequential
setting. We can take a unifying view of many of these algorithms by recognizing the general gradient
estimator, where we give each component in Table 1.

Eq(x|ϕ′)[w(x)∇ϕ log q(x|ϕ)] , (14)
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Method w(x) ϕ′ Fixed x(s) ∼ q(x|ϕ′)?
VSD log πθ∗(x) + log p(x|D0)− log q(x|ϕ) ϕ No

CbAS πθ∗(x)p(x|D0)/q(x|ϕ∗
t−1) ϕ∗

t−1 Yes
DbAS πθ∗(x) ϕ∗

t−1 Yes
BORE∗ πθ∗(x) ϕ No

BOPR α(x,DN ) ϕ No

Table 1: How related methods can be adapted from Equation 14. VSD, CbAS and DbAS may also
use a cumulative distribution representation of αPI(x,DN , τ) in place of πθ∗(x).

BORE∗ has been adapted to discrete X by using the score function gradient estimator and CbAS
and DbAS have been adapted to use a CPE – their original derivations use the equivalent of a PI
acquisition function.

A number of finite horizon methods have been applied to biological sequence BBO tasks, such as
Amortized BO (Swersky et al., 2020), GFlowNets (Jain et al., 2022), and the reinforcement learning
based DynaPPO (Angermueller et al., 2019). LSO-like methods (Gómez-Bombarelli et al., 2018;
Tripp et al., 2020; Stanton et al., 2022; Gruver et al., 2023) tackle optimization of sequences by
encoding them into a continuous latent space within which candidate optimization or generation
takes place. Selected candidates are decoded back into sequences before black box evaluation; see
González-Duque et al. (2024) for a comprehensive survey. VSD does not require a latent space
nor an encoder, and as such can be seen as an amortized variant of probabilistic reparameterisation
methods (Daulton et al., 2022) or continuous relaxations (Michael et al., 2024). Heuristic stochastic
search methods such as AdaLead (Sinai et al., 2020) and proximal exploration (PEX) (Ren et al.,
2022) have also demonstrated strong empirical performance on these tasks. We compare the prop-
erties of the most relevant methods to our problem in Table 2.

In contrast to finding the maximum using BBO, active generation considers another problem –
generating samples from a rare set of feasible solutions. Generation methods that estimate the su-
per level-set distribution, p(x|y > τ), include CbAS, which optimizes the forward KL divergence,
DKL[p(x|y > τ)∥q(x|ϕ)] using importance weighted cross entropy estimation (Rubinstein, 1999).
Batch-BORE (Oliveira et al., 2022) also optimizes the reverse KL divergence and uses CPE, but
with Stein variational inference (Liu & Wang, 2016) for continuous and diverse batch candidates.
There is a rich literature on the related task of active learning and BO for level set estimation (LSE)
(Bryan et al., 2005; Gotovos et al., 2013; Bogunovic et al., 2016; Zhang et al., 2023a). However, we
focus on learning a generative model of a discrete space.

For active generation VSD, CbAS and DbAS all use an acquisition function defined in the original
domain, X , to weight gradients (see Equation 14) for learning a conditional generative model, from
which xbt are sampled. An alternative is to use guided generation, that is to train an unconditional
generative model, and then have a discriminative model guide (condition) the samples from the
unconditional model at test time. This plug-and-play of a discriminative model has shown promise
for controlled image and text generation of pre-trained models (Nguyen et al., 2017; Dathathri et al.,
2020; Li et al., 2022; Zhang et al., 2023b). LaMBO (Stanton et al., 2022) and LaMBO-2 (Gruver
et al., 2023) take a guided generation approach to solve the active generation problem. LaMBO
uses an (unconditional) masked language model auto-encoder, and then optimizes sampling from its
latent space using an acquisition function as a guide. LaMBO-2 takes a similar approach, but uses a
diffusion process as the unconditional model, and modifies a Langevin sampling de-noising process
with an acquisition function guide.

4 EXPERIMENTS

Firstly we test our method, VSD, on its ability to generate complex, structured candidates, x, in
a single round by training it to generate a subset of handwritten digits from flattened MNIST im-
ages (LeCun et al., 1998) in Sec. 4.1. We then compare VSD on two sequence design tasks against
existing baseline methods. The first of these tasks (Sec. 4.2) is to generate as many unique, fit se-
quences as possible using the datasets DHFR (Papkou et al., 2023), TrpB (Johnston et al., 2024)
and TFBIND8 (Barrera et al., 2016). These datasets contain near complete evaluations of X , and to
our knowledge DHFR and TrpB are novel in the machine learning literature. The second (Sec. 4.3)
is a more traditional black-box optimization task of finding the maximum of an unknown func-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Method Rare x
∈ S (R1)

Sequential (R2)

Discrete X
(R3)

Batch {x
bt
}Bb=1

(R4)

Generative q(
x|ϕ

) (R5)

Guaranteed (D1)

Gradient descent (D2)

Scalable (D3)

General acq./rew
ard fn.

Amortiz
ation

BOPR (Daulton et al., 2022) ✗ ✓ ✓ ✗ – ✓ ✓ ✗ ✓ –
BORE (Tiao et al., 2021) ✗ ✓ – ✗ – ✓ ✓ ✓ ✗ –

Batch BORE (Oliveira et al., 2022) ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓
DbAS (Brookes & Listgarten, 2018) ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓

CbAS (Brookes et al., 2019) ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓
Amortized BO (Swersky et al., 2020) ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

GFlowNets (Jain et al., 2022) ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
DynaPPO (Angermueller et al., 2019) ✗ ✓ ✓ ✓ ✓ ✗ ✓ – ✓ ✓

AdaLead (Sinai et al., 2020) ✗ ✓ ✓ ✓ ✗ ✗ ✗ – ✗ ✗
PEX (Ren et al., 2022) ✗ ✓ ✓ ✓ ✗ ✗ ✗ – ✗ ✗

GGS (Kirjner et al., 2024) ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
LSO e.g. (Tripp et al., 2020) ✗ ✓ ✓ ✗ ✓ ✗ ✓ – ✓ –

LaMBO (Stanton et al., 2022) ✗ ✓ ✓ ✓ ✓ ✗ ✓ – ✓ ✓
LaMBO-2 (Gruver et al., 2023) ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

VSD (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Table 2: Feature table of competing methods: ✓ has feature, ✗ does not have feature, – partially has
feature, or requires only simple modification. We follow Swersky et al. (2020) in their definition of
amortization referring to the ability to use q(x|ϕ∗

t−1) for warm-starting the optimization of ϕt.

tion; using datasets AAV (Bryant et al., 2021), GFP (Sarkisyan et al., 2016) and the biologically
inspired Ehrlich functions (Stanton et al., 2024). The corresponding datasets involve |V| ∈ {4, 20},
4 ≤ M ≤ 237 and 65, 000 < |X | < 20237. We discuss the settings and properties of these datasets
in greater detail in Appendix B. For the biological sequence experiments we run a predetermined
number of experimental rounds, T = 10 or T = 32 for the Ehrlich functions. We set the batch
size to B = 128, and use five different seeds for random initialization. We compare against DbAS
(Brookes & Listgarten, 2018), CbAS (Brookes et al., 2019), AdaLead (Sinai et al., 2020), PEX (Ren
et al., 2022), BORE (Tiao et al., 2021) adapted to use the score function gradient estimator, and a
naı̈ve baseline that uses random samples from the prior, p(x|D0). To reduce confounding, all meth-
ods share the same surrogate model, acquisition functions, priors and variational distributions. We
compare against LaMBO-2 (Gruver et al., 2023) on the Ehrlich functions, it uses its own surrogate
and generative models.

4.1 CONDITIONAL GENERATION OF HANDWRITTEN DIGITS

Our motivating application for VSD is to model the space of fit DNA and protein sequences, which
are string-representations of complex 3-dimensional structures. In this experiment we aim to demon-
strate, by analogy, that VSD can generate sequences that represent 2-dimensional structures. For
this task, we have chosen to ‘unroll’ (reverse the order of every odd row, and flatten) down-scaled
(14 × 14 pixel, 8-bit) MNIST (LeCun et al., 1998) images into sequences, x, where M = 196 and
|V| = 8. We then train long short-term memory (LSTM) recurrent neural network (RNN) and
decoder-only causal transformer generative models on the entire MNIST training set by maximum
likelihood (ML). These generative distributions are used as our prior models, p(x|D0), for VSD and
we detail their form in Appendix B.3. The task is then to use VSD in one round to estimate the pos-

(a) LSTM Prior (b) Transformer Prior (c) LSTM Posterior (d) Transformer Posterior

Figure 2: (a) and (b) are samples from the LSTM and transformer priors, respectively. (c) and (d)
show samples from the LSTM and transformer VSD variational distributions respectively. We also
report the samples mean scores according to the CPE probabilities.
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terior p(x|y ∈ {3, 5}) using a CPE trained on labels zn = 1[yn ∈ {3, 5}]. We use a convolutional
architecture for the CPE given in Appendix B.4, and it achieves a test balanced accuracy score of
∼ 99%. We parameterize the variational distributions, q(x|ϕ), in the same way as the priors, and
initialize these distribution parameters from the prior distribution parameters. During training with
ELBO the prior distribution parameters are locked, and we run training for 5000 iterations. This is
exactly lines 8 and 9 in Algorithm 1. Samples are visualized from the resulting variational distri-
butions with the corresponding priors in Figure 2. We see that the prior LSTM and transformer are
able to generate convincing digits once the sampled sequences are ‘re-rolled’, and that VSD is able
to effectively refine these distributions, even though it does not have access to any data directly –
only scores from the CPE. Both the LSTM and transformer yield qualitatively similar results, and
have similar mean scores from the CPE.

4.2 FITNESS LANDSCAPES

In this setting we wish to find fit sequences x ∈ S, so we fix τ over all rounds. We only consider
the combinatorially (near) complete datasets to avoid any pathological behavior from relying on
machine learning oracles (Surana et al., 2024). Results are presented in Figure 3. The primary
measures by which we compare methods are precision, recall and performance,

Precisiont =
1

min{tB, |S|}

t∑
r=1

B∑
b=1

1[ybr > τ ] · 1[xbr /∈ X q
b−1,r], (15)

Recallt =
1

min{TB, |S|}

t∑
r=1

B∑
b=1

1[ybr > τ ] · 1[xbr /∈ X q
b−1,r], (16)

Performancet =
t∑

r=1

B∑
b=1

ybr · 1[xbr /∈ X q
b−1,r]. (17)

Here X q
br ⊂ X is the set of experimentally queried sequences by the bth batch member of the

rth round, including the initial training set. These measures are comparable among probabilistic
and non probabilistic methods. Precision and recall measure the ability of a method to efficiently
explore S, where min{tB, |S|} is the size of the selected set at round t (bounded by the number of
good solutions), and min{TB, |S|} is the number of positive elements possible in the experimental
budget. Performance measures the cumulative fitness of the unique batch members, but unlike Jain
et al. (2022) we do not normalize this measure.

For exact experimental settings we refer the reader to Appendix B.1. We set τ to be that of the
wild-type sequences in the DHFR and TrpB datasets, and use τ = 0.75 for TFBIND8. We find
that a uniform prior over sequences, and a mean field variational distribution (Equation 20) are
adequate for these experiments, as is a simple MLP for the CPE. Results are presented in Figure 3.
VSD is the best performing method by most of the measures. We have found the AdaLead and PEX
evolutionary-search based methods to be effective on lower-dimensional problems (TFBIND8 being
the lowest here), however we consistently observe their performance degrading as the dimension of
the problem increases. We suspect this is a direct consequence of their random mutation strategies
being suited to exploration in low dimensions, but less efficient in higher dimensions compared
to the learned generative models employed by VSD, CbAS, and DbAS. Our modified version of
BORE (which is just the expected log-likelihood component of Equation 11) performs badly in all
cases, and this is a direct consequence of its variational distribution collapsing to a point mass. In a
non-batch setting this behavior is not problematic, but shows the importance of the KL divergence of
VSD in this batch setting. We replicate these experiments in Appendix C.1 using GP-PI, also backed
by our guarantees. In all cases VSD’s results remain similar or improve slightly, whereas the other
methods results remain similar or degrade. We report on batch diversity scores in Appendix C.3.

4.3 BLACK-BOX OPTIMIZATION

In this experiment we use VSD on the related task of BBO. We set τt adaptively by specifying it as
an empirical quantile Q̃t

y of the observed target values at round t,

τt = Q̃t
y(γt=pηt−1) (18)
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(a) DHFR (b) TrpB (c) TFBIND8

Figure 3: Fitness landscape results. Precision (Equation 15), recall (Equation 16) and performance
(Equation 17) – higher is better – for the combinatorially (near) complete datasets, DHFR and TrpB
and TFBIND8. The random method is implemented by drawing B samples uniformly.

where pt−1 is a percentile from the previous round, and η ∈ [0, 1] is an annealing parameter for
τt (Srinivas et al., 2010). Performance is measured by simple regret rt which quantifies how close
the methods get to finding the globally fittest sequence,

rt = y∗ −max
y
{ybi}B,t

b=1,i=1, (19)

where y∗ is the fitness value of the fittest sequence x∗. We use the higher dimensional AAV
(y∗=19.54), GFP (y∗=4.12) and Ehrlich functions (y∗=1) datasets/benchmarks to show that VSD
can scale to higher dimensional problems. X of AAV & GFP is completely intractable to fully ex-
plore experimentally, and so we use a predictive oracle trained on all of the original experimental
data as the ground-truth black-box function. We use the CNN-based oracles from Kirjner et al.
(2024) for these experiments. However, we note here that some of the oracles used in these exper-
iments do not predict well out-of-distribution (Surana et al., 2024), which limits their real-world
applicability. The Ehrlich functions (Stanton et al., 2024) are challenging biologically inspired
closed-form simulations that cover all X . We compare against a genetic algorithm (GA), CbAS
and LaMBO-2 for sequences of length M = {15, 32, 64} using the POLI and POLI-BASELINES
benchmarks and baselines software (González-Duque et al., 2024). For these experiments we use
CNNs for the CPEs – all experimental settings are in Appendix B.2.

The results are summarized in Figure 4 and 5. Batch diversity scores for these experiments are
presented in Appendix C.3, and for HOLO Ehrlich function implementations see Appendix C.2.
VSD is among the leading methods for all experiments. VSD takes advantage of the more complex
variational distributions than CbAS and DbAS since it can sample from the adapted variational
distribution while learning it. We can see that AdaLead, PEX and often BORE all perform worse
than random for reasons previously mentioned. Simple regret can drop below zero for AAV &
GFP since an oracle is used as the black box function, but the global maximizer is taken from the
experimental data. VSD outperforms CbAS on the Ehrlich function benchmarks, and is competitive
with LaMBO-2. We also present an ablation study in Appendix C.4.
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G
FP

A
AV

(a) Independent (b) LSTM (c) Transformer

Figure 4: AAV & GFP BBO results. Simple regret (Equation 19) – lower is better – on GFP and
AAV with independent and auto-regressive variational distributions. The PEX and AdaLead results
are replicated between the plots, since they are unaffected by choice of variational distribution.

(a) M = 15 (b) M = 32 (c) M = 64

Figure 5: Ehrlich function (POLI implementation) BBO results. VSD and CbAS with different
variational distributions; mean field (MF), LSTM and transformer (TFM), compared against genetic
algorithm (GA) and LaMBO-2 baselines.

5 CONCLUSION

We have presented the problem of active generation (sequenatially finding designs of a rare class
under some experimental constraints), and a method for efficiently generating samples which we
call variational search distributions (VSD). Underpinned by variational inference, VSD satisfies
critical requirements and important desiderata, including learning generative models for feasible/fit
sequences and batch candidate generation. We show that VSD converges asymptotically to the true
level-set distribution at the same rate as a Monte-Carlo estimator with full knowledge of the true dis-
tribution. We showcased the benefits of our method empirically on a set of combinatorially complete
and high dimensional sequential-design biological problems and show that it can effectively learn
powerful generative models of fit designs. There is a close connection between active generation and
black box optimisation, and with the advent of powerful generative models we hope that our explicit
framing of generation of fit sequences would lead to further study of this connection. Finally, our
framework can be generalized to more complex application scenarios, potentially involving other
challenging combinatorial optimization problems (Bengio et al., 2021), such as graph structures
(Annadani et al., 2023), and mixed discrete-continuous variables, which are worth investigating as
future work directions.
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A ACRONYMS

ACRONYMS

BBO black-box optimization. 1, 5, 6, 8, 10, 17, 20, 21, 23
BO Bayesian optimization. 3, 5, 6, 36
BOPR Bayesian optimization with probabilistic reparameterisation. 5–7, 20
BORE Bayesian optimization by density-ratio estimation. 4, 6–9, 17, 18, 20, 21, 23

CbAS conditioning by adaptive sampling. 5–10, 17, 18, 20, 21, 23
CPE class probability estimation. 4–9, 17–22

DbAS design by adaptive sampling. 5–9, 17, 18, 20, 23

EDA estimation of distribution algorithms. 5
ELBO evidence lower bound. 3, 4, 8
ES evolution strategies. 5

GA genetic algorithm. 9
GP Gaussian process. 3–5, 8, 20, 29, 32

KL Kullback-Leibler. 3, 6, 8

LSE level set estimation. 6
LSO latent space optimization. 1, 6, 7
LSTM long short-term memory. 7, 8, 10, 18, 19, 21, 23

ML maximum likelihood. 7, 21, 22

NES natural evolution strategies. 5
NTK neural tangent kernel. 5

PEX proximal exploration. 6–10, 18, 20, 22
PI probability of improvement. 3–6, 8, 20, 29

RNN recurrent neural network. 7, 18

VI variational inference. 1
VO variational optimization. 5
VSD variational search distributions. 1–10, 17, 18, 20, 21, 23, 29, 32, 35, 36

B EXPERIMENTAL DETAILS

We use three well established datasets; a green fluorescent protein (GFP) from Aequorea Victo-
ria (Sarkisyan et al., 2016), an adeno-associated virus (AAV) Bryant et al. (2021); and DNA binding
activity to a human transcription factor (TFBIND8) (Trabucco et al., 2022; Barrera et al., 2016).
These datasets have been used variously by Brookes & Listgarten (2018); Brookes et al. (2019);
Angermueller et al. (2019); Kirjner et al. (2024); Jain et al. (2022) among others. The GFP task is
to maximize fluorescence, this protein consists of 238 amino acids, of which 237 can mutate. The
AAV task us to maximize the genetic payload that can be delivered, and the associated protein has
28 amino acids, all of which can mutate. A complete combinatorial assessment is infeasible for
these tasks, and so we use the convolution neural network oracle presented in Kirjner et al. (2024)
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as in-silico ground truth. TFBIND8 contains a complete combinatorial assessment of the effect of
changing 8 nucleotides on binding to human transcription factor SIX6 REF R1 (Barrera et al., 2016).
The dataset we use contains all 65536 sequences prepared by Trabucco et al. (2022).

We also use two novel datasets from recent works that experimentally assess the (near) complete
combinatorial space of short sequences. The first dataset measures the antibiotic resistance of Es-
cherichia coli metabolic gene folA, which encodes dihydrofolate reductase (DHFR) (Papkou et al.,
2023). Only a sub-sequence of this gene is varied (9 nucleic acids which encode 3 amino acids),
and so a near-complete (99.7%) combinatorial scan is available. For variants that have no fitness
(resistance) data available, we give a score of −1. The next dataset is near-complete combinatorial
scan of four interacting amino acid residues near the active site of the enzyme tryptophan synthase
(TrpB) (Johnston et al., 2024), with 159,129 unique sequences and fitness values, we use −0.2 for
the missing fitness values (we do not use the authors’ imputed values). These residues are explicitly
shown to exhibit epistasis – or non-additive effects on catalytic function – which makes navigating
this landscape a more interesting challenge from an optimization perspective.

Finally, we use the recently proposed Ehrlich functions (Stanton et al., 2024) benchmark. These
functions are challenging closed form biological analogues, specifically designed to test BBO meth-
ods on high dimensional sequence design tasks without having to resort to physical experimenta-
tion or machine learning oracles. We use the POLI and POLI-BASELINES software package for the
benchmark and baselines (González-Duque et al., 2024), and test on both the original HOLO imple-
mentation (Stanton et al., 2024) as well as the native POLI implementation of these functions.

The properties of these datasets and benchmarks are presented in Table 3.

Dataset |V| M |Xavailable| |X |
TFBIND8 4 8 65,536 65,536

TrpB 20 4 159,129 160,000
DHFR 4 9 261,333 262,144

AAV 20 28 42,340 2028

GFP 20 237 51,715 20237

Ehrlich-15 20 15 2015 2015

Ehrlich-32 20 32 2032 2032

Ehrlich-64 20 64 2064 2064

Table 3: Alphabet size, sequence length, and number of available sequences for each of the datasets
we use in this work.

We optimize VSD, CbAS, DbAS and BORE for a minimum of 3000 iterations each round (5000 for
all experiments but the Ehrlich functions). When we use a CPE, AdaLead’s κ parameter is set to 0.5
since the CPE already incorporates the appropriate threshold.

B.1 FITNESS LANDSCAPES SETTINGS

For the DHFR and TrpB experiments we set maximum fitness in the training dataset to be that of
the wild type, and τ to be slightly below the wild type fitness value (so we have ∼ 10 positive
examples to train the CPE with). We use a randomly selected Ntrain = 2000 below the wild-type
fitness to initially train the CPE, we also explicitly include the wild-type. The thresholds and wild-
type fitness values are; DHRF: τ = −0.1, ywt = 0, TrpB: τ = 0.35, ywt = 0.409. We follow the
same procedure for the TFBIND8 experiment, however, there is no notion of a wild-type sequence
in this data, and so we set τ = 0.75, and ytrain max = 0.85. We use a uniform prior over sequences,
p(x) =

∏M
m=1 Categ(xm|1 · |V|−1), since these are relatively small search spaces, and the sub-

sequences of nucleic/amino acids have been specifically selected for their task. Similarly, we find
that relatively simple independent (mean-field) variational distributions of the form in Equation 20
and MLP based CPEs work best for these experiments (details in Sec. B.4).

B.2 BLACK-BOX OPTIMIZATION SETTINGS

We follow Kirjner et al. (2024) in the experimental settings for the AAV and GFP datasets, but we
modify the maximum fitness training point and training dataset sizes to make them more amenable
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to a sequential optimization setting. The initial percentiles, schedule, and max training fitness values
are; AAV: p0 = 0.8, η = 0.7, ymax = 5, GFP: p0 = 0.8, η = 0.7 ymax = 1.9. We aim for pT = 0.99.
The edit distance between x∗ and the fittest sequence in the CPE training data is 8 for GFP, and 13
for AAV. We again use a random Ntrain = 2000 for training the CPEs, which in this case are CNNs
– architecture specifics are in Sec. B.4.

For the Ehrlich function experiment, we use sequence lengths of M = {15, 32, 64} with 2 motifs
for the shorter sequence lengths, and 8 motifs for M = 64. All use a motif length of 4 and a
quantization of 4. B = 128, T = 32 and only 128 random samples of the function are used for DN

– these are resampled for each seed. As before, 5 different random seeds are used for these trials,
and for VSD we use an the same scheduling function for τt as in Equation 18, with p0 = 0.75 and
η = 0.9 (so pT = 0.99).

In these higher dimensional settings, we find that performance of the methods heavily relies on using
an informed prior (in the case of VSD and CbAS), or initial variational distribution (in the case of
DbAS and BORE). To this end, we follow Brookes et al. (2019) and fit the initial variational distri-
bution to the CPE training sequences (regardless of fitness), but we use maximum likelihood. Then
for VSD and CbAS we copy this distribution and fix its parameters for the remainder of the experi-
ment for use as a prior. We also use this prior for the Random method, but AdaLead and PEX use
alternative generative heuristics. For these experiments we use the simple independent variational
distribution and the same LSTM and causal decoder-only transformer models from Sec. 4.1.

B.3 VARIATIONAL DISTRIBUTIONS

In this section we summarize the main variational distribution architectures considered for VSD,
BORE, CbAS and DbAS, and the sampling distributions for the Random baseline method. Some-
what surprisingly, we find that we obtain consistently good results for the biological sequence ex-
periments using a simple independent (or mean-field) variational distribution,

q(x|ϕ) =
M∏

m=1

Categ(xm|softmax(ϕm)), (20)

where xm ∈ V and ϕm ∈ R|V|. However, this simple mean-field distribution was not capable of
generating convincing handwritten digits. We have also tested a variety of transition variational
distributions,

q(xt|xt−1, ϕ) =

M∏
m=1

Categ(xtm|softmax(NNm(xt−1, ϕ))), (21)

where NNm(xt−1, ϕ) is the mth vector output of a neural network that takes a sequence from the
previous round, xt−1, as input. We have implemented multiple neural net encoder/decoder archi-
tectures for NNm(xt−1, ϕ), but we did not consider architectures of the form NNm(ϕ) since the
variational distribution in Equation 20 can always learn a ϕm = NNm(ϕ′). We found that none of
these transition architectures significantly outperformed the mean-field distribution (Equation 20)
when it was initialized well (e.g. fit to the CPE training sequences), see Sec. C.4 for results. We also
implemented auto-regressive variational distributions of the form,

q(x|ϕ) = Categ(x1|softmax(ϕ1))

M∏
m=2

q(xm|x1:m−1, ϕ1:m) where, (22)

q(xm|x1:m−1, ϕ1:m) =

{
Categ(xm|softmax(LSTM(xm−1, ϕm−1:m))),

Categ(xm|softmax(DTransformer(x1:m−1, ϕ1:m))).

For a LSTM RNN and a decoder-only transformer with a causal mask, for the latter see Phuong
& Hutter (2022, Algorithm 10 & Algorithm 14) for maximum likelihood training and sampling
implementation details respectively. For the digits experiment, the LSTM uses 5 layers of dimension
128, and the transformer uses 8-attention heads, with 4 layers and a feed-forward network size
of 256. For the AAV and GFP experiments, the LSTM uses 4 layers of dimension 32, and the
transformer uses 4 attention heads for GFP, 2 attention heads for AAV, 1 layer, and a feed-forward
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network size of 64. Any larger than this, and we found these models would over-fit. The Ehrlich
function experiments use the same settings as AAV and GFP save that we use a 3-layer LSTM and
a 2-layer transformer. We use additive positional encoding for all of these models.

B.4 CLASS PROBABILITY ESTIMATOR ARCHITECTURES

For the fitness landscape experiments on the smaller combinatorially complete datasets we use a
two-hidden layer MLP, with an input embedding layer. The architecture is given in Figure 6 (a).
For the larger dimensional AAV and GFP datasets and Ehrlich function benchmark, we use the
convolutional architecture given in Figure 6 (b). On all but the Ehrlich benchmark, five fold cross
validation was used to select the hyper parameters before the CPEs are trained on the whole training
set for use in the subsequent experimental rounds. For the Ehrlich benchmark we do not use cross-
validation to select the CPE hyper parameters – but we do use an additive ensemble of 10 randomly
initialized CNNs for the CPE following LaMBO-2. Model updates are performed by retraining on
the whole query set.

Sequential(
Embedding(

num_embeddings=A,
embedding_dim=8

),
Dropout(p=0.2),
Flatten(),
LeakyReLU(),
Linear(

in_features=8 * M,
out_features=32

),
LeakyReLU(),
Linear(

in_features=32,
out_features=1

),
)

(a) MLP architecture

Sequential(
Embedding(

num_embeddings=A,
embedding_dim=10

),
Dropout(p=0.2),
Conv1d(

in_channels=10,
out_channels=16,
kernel_size=7,

),
LeakyReLU(),
MaxPool1d(

kernel_size=2 or 4,
stride=2 or 4,

),
Conv1d(

in_channels=16,
out_channels=16,
kernel_size=7,

),
LeakyReLU(),
MaxPool1d(

kernel_size=2 or 4,
stride=2 or 4,

),
Flatten(),
LazyLinear(

out_features=128
),
LeakyReLU(),
Linear(

in_features=128,
out_features=1

),
)

(b) CNN architecture

Figure 6: CPE architectures used for the experiments in PyTorch syntax. A = |V|, M = M , GFP
uses a max pooling kernel size and stride of 4, all other datasets and benchmarks use 2. The Ehrlich
function benchmark uses and ensemble of 10 randomly initialised CNNs.
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(a) DHFR (b) TrpB (c) TFBIND8

Figure 7: Fitness landscape results using GP-PI. Precision (Equation 15), recall (Equation 16) and
performance (Equation 17) – higher is better – for the combinatorially (near) complete datasets,
DHFR and TrpB and TFBIND8. The random method is implemented by drawing B samples uni-
formly.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 FITNESS LANDSCAPES – GAUSSIAN PROCESS PROBABILITY OF IMPROVEMENT

Here we present additional fitness landscape experimental results, where we have used a GP as
a surrogate model for p(y|x,DN ) in conjunction with a complementary Normal CDF as the PI
acquisition function. This is the one of the main frameworks supported by our theoretical analysis.
VSD, DbAS, CbAS and BORE make use of the GP-PI acquisition function, and so BORE is BOPR
in this instance since we are not using a CPE. PEX and AdaLead only use the GP surrogate, as
per their original formulation. The GP uses a simple categorical kernel with automatic relevance
determination from Balandat et al. (2020),

k(x,x′) = σ exp

(
− 1

M

M∑
m=1

1[xm = x′
m]

lm

)
, (23)

where σ and lm are hyper-parameters controlling scale and length-scale respectively. See Figure 7
for the results.

C.2 EHRLICH FUNCTION HOLO RESULTS

See Figure 8 for BBO results on the original HOLO Ehrlich function implementation (Stanton et al.,
2024). We present additional diversity scores for these and the POLI implementation in Sec. C.3.
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(a) M = 15 (b) M = 32 (c) M = 64

Figure 8: Ehrlich function (HOLO implementation) BBO results. VSD and CbAS with different
variational distributions; mean field (MF), LSTM and transformer (TFM), compared against genetic
algorithm (GA) and LaMBO-2 baselines.

C.3 DIVERSITY SCORES

The diversity of batches of candidates is a common thing to report in the literature, and to that end
we present the diversity of our results here. We have taken the definition of diversity from (Jain
et al., 2022) as,

Diversityt =
1

B(B − 1)

∑
xi∈DBt

∑
xj∈DBt\{xi}

Lev(xi,xj), (24)

where Lev : X ×X → N0 is the Levenshtein distance. We caution the reader as to the interpretation
of these results however, as more diverse batches often do not lead to better performance, precision,
recall or simple regret (as can be seen from the Random method results). Though insufficient diver-
sity can also explain poor performance, as in the case of BORE. Results for the fitness landscape
experiment are presented in Figure 9, and black-box optimization for AAV & GFP in Figure 10 and
Ehrlich functions in Figure 11.

(a) DHFR (b) TrpB (c) TFBIND8

Figure 9: Fitness landscape diversity results. Higher is more diverse, as defined by Equation 24.

C.4 ABLATIONS – VARIATIONAL AND PRIOR DISTRIBUTIONS

In Figure 12 we present ablation results for VSD using different priors and variational distributions.
We use the BBO experimental datasets for this task as they are higher-dimensional and so more
sensitive to these design choices. We test the following prior and variational posterior distributions:

IU Independent categorical variational posterior distribution of the form in Equation 20, and a
uniform prior distribution, p(x) =

∏M
m=1 Categ(xm|1 · |V|−1).

I Independent categorical prior and variational posterior of the form in Equation 20. The
prior is fit using ML on the initial CPE training data.

LSTM LSTM prior and variational posterior of the form Equation 22. The prior is fit using ML on
the initial CPE training data.
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G
FP

A
AV

(a) Independent (b) LSTM (c) Transformer

Figure 10: Black-box optimization results for diversity on GFP and AAV with independent and
auto-regressive variational distributions. Higher is more diverse, as defined by Equation 24. The
PEX and AdaLead results are replicated between the plots, since they are unaffected by choice of
variational distribution.
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(a) M = 15 (b) M = 32 (c) M = 64

Figure 11: Black-box optimization results for diversity on the POLI and HOLO implementations of
the Ehrlich functions. Higher is more diverse, as defined by Equation 24.

DTFM Decoder-only causal transformer prior and variational posterior of the form Equation 22.
The prior is fit using ML on the initial CPE training data.

TAE Independent categorical prior and a transition-style auto-encoder variational posterior of the
form Equation 21, where we use two-hidden layer MLPs for the encoder and decoder. The
prior is fit using ML on the initial CPE training data.

TCNN Independent categorical prior and a transition-style convolutional auto-encoder variational
posterior of the form Equation 21, where we use a convolutional encoder, and transpose
convolutional decoder. The prior is fit using ML on the initial CPE training data.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

We use the informed-independent priors with the transition variational distributions since they are
somewhat counter-intuitive to use as priors themselves.

(a) AAV (b) GFP

Figure 12: Ablation results for the AAV and GFP BBO experiments. VSD is trialed with different
prior and variational posterior combinations, “I” indicates a simple independent informed prior and
posterior, “IU” is the same but with a uniform prior, “LSTM” and “DTFM” are the LSTM and
decoder only transformer prior and posteriors, “TCNN” and “TAE” are transition convolutional
encoder-decoder and auto-encoder posteriors, with informed independent priors. See text for details.

From Figure 12 we can see that while using an uninformative prior works in the lower-dimensional
fitness landscape experiments, using an informative prior is crucial for these higher dimensional
problems. We found a similar result when using this uninformative prior with CbAS, or using a
uniform initialization with DbAS and BORE. The methods are not able to make any significant
progress within the experimental budget given. The independent and transition variational distri-
butions achieve similar performance, whereas the auto-regressive models generally outperform all
others. This is because of the LSTM and transformer’s superior generalization performance when
generating sequences – measured both when training the priors (on held-out sequences) and during
VSD adaptation.

D THEORETICAL ANALYSIS FOR GP-BASED CPES

In this section, we present theoretical results concerning VSD and its estimates when equipped
with Gaussian process regression models (Rasmussen & Williams, 2006). We show that VSD sam-
pling distributions converge to a target distribution that characterizes the level set given by τ . The
approximation error mainly depends on the predictive uncertainty of the probabilistic model with
respect to the true underlying function f�. For the analysis, we will assume that f� is drawn from a
Gaussian process, i.e., f� ∼ GP(0, k), with a positive-semidefinite covariance (or kernel) function
k : X × X → R. In this case, we can show that the predictive uncertainty of the model converges
(in probability) to zero as the number of observations grows. From this result, we prove asymptotic
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convergence guarantees for VSD equipped with GP-PI-based CPEs. These results form the basis for
our analysis of CPEs based on neural networks (Appendix E).

D.1 GAUSSIAN PROCESS POSTERIOR

Let f� ∼ GP(0, k) be a zero-mean Gaussian process with a positive-semidefinite covariance function
k : X × X → R. Assume that we are given a set DN := {(xi, yi)}Ni=1 of N ≥ 1 observations
yi = f�(xi) + ϵi, where ϵ ∼ N

(
0, σ2

ϵ

)
and xi ∈ X . The GP posterior predictive distribution at any

x ∈ X is then given by (Rasmussen & Williams, 2006):

f�(x)|DN ∼ N
(
µN (x), σ2

N (x)
)

(25)

µN (x) = kN (x)⊤(KN + σ2
ϵ I)

−1yN (26)

kN (x,x′) = k(x,x′)− kN (x)⊤(KN + σ2
ϵ I)

−1kN (x′) (27)

σ2
N (x) = kN (x,x) , (28)

where kN (x) := [k(x,xi)]
N
i=1 ∈ RN , KN := [k(xi,xj)]

N,N
i,j=1 ∈ RN×N , and yN := [yi]

N
i=1 ∈ RN .

Batch size. In the following, we will assume a batch of size B = 1 to keep the proofs simple.
With this assumption, at every iteration t ≥ 1, we have N = t observations available in the dataset.
We would, however, like to emphasize that sampling a batch of multiple observations, instead of
a single observation, per iteration should only improve the convergence rates by a constant (batch-
size-dependent) multiplicative factor. Therefore, our results remain valid as an upper bound for the
convergence rates of VSD in the batch setting.

D.2 BACKGROUND

We will consider an underlying probability space (Ω,A,P), where Ω is the sample space, A denotes
the σ-algebra of events, and P is a probability measure. For any event A ∈ A, we have that P[A] ∈
[0, 1] quantifies the probability of that event. For events involving a random variable, e.g., χ :
(Ω,A) → (R,BR), where BR denotes the Borel σ-algebra of the real line with its usual topology,
we will let:

P[χ > 0] = P[{ω ∈ Ω : χ(ω) > 0}] . (29)
We will also use conditional expectations, i.e., given a σ-sub-algebra S of A, the conditional expec-
tation E[χ|S] is a S-measurable random variable such that:

∀A ∈ S ,

∫
A
E[χ|S] dP =

∫
A
χdP = E[χ|A] . (30)

We will denote by {Ft}∞t=0 an increasing filtration on A. For instance, we could set Ft as the σ-
algebra generated by the random variables in the algorithm (i.e., the candidates, target observations,
etc.) at time t. For more details on the measure-theoretic definition of probability, we refer the
reader to classic textbooks in the area (e.g. Bauer, 1981; Durrett, 2019)

We will use the following well known notation for asymptotic convergence results. For a given
strictly positive function g : N → R, we define O(g(t)) as the set of functions asymptotically
bounded by g (up to a constant factor) as:

O(g(t)) :=
{
h : N→ R

∣∣∣∣ lim sup
t→∞

|h(t)|
g(t)

<∞
}
, (31)

and for convergence in probability we use its stochastic counterpart:

OP(g(t)) :=

{
ρ : N× (Ω,A)→ (R,BR)

∣∣∣∣ lim
C→∞

lim sup
t→∞

P
[
|ρ(t)|
g(t)

> C

]
= 0

}
, (32)

which is equivalent to:

∀ε > 0, ∃Cε ∈ (0,∞) : P[|ρt| > Cε] ≤ ε, ∀t ≥ Tε , (33)

for some Tε ∈ N. For almost sure convergence, we may also say that a sequence of random variables
ρt, t ∈ N, is almost surely O(g(t)) if P[ρt ∈ O(g(t))] = 1. A deeper overview on these notations
and their properties can be found in Garcı́a-Portugués (2024).
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D.3 AUXILIARY RESULTS

We start with a few technical results which will form the basis for our derivations. The following re-
cursive relations allow us to derive convergence rates for the variance of a GP posterior by analyzing
how much it reduces per iteration.
Lemma D.1 (Chowdhury & Gopalan (2017, Appendix F)). The posterior mean and covariance
functions of a Gaussian process given t ≥ 1 observations obey the following recursive identities:

µt(x) = µt−1(x) +
k(x,xt)

σ2
ϵ + σ2

t−1(xt)
(yt − µt−1(x)) (34)

kt(x,x
′) = kt−1(x,x

′)− kt−1(x,xt)kt−1(xt,x
′)

σ2
ϵ + σ2

t−1(xt)
(35)

σ2
t (x) = σ2

t−1(x)−
k2t−1(x,xt)

σ2
ϵ + σ2

t−1(xt)
, (36)

for x,x′ ∈ X .

We will also make use of the following version of the second Borel-Cantelli lemma adapted from
Durrett (2019, Thr. 4.5.5) and its original statement in Dubins & Freedman (1965).
Lemma D.2 (Second Borel-Cantelli lemma). Let {At}∞t=1 be a sequence of events where At ∈ Ft,
for all t ∈ N, and let χt : ω 7→ 1[ω ∈ At], for ω ∈ Ω. Then the following holds with probability 1:

lim
T→∞

∑T
t=1 χt∑T

t=1 P[At|Ft−1]
= L <∞ , (37)

assuming P[A1|F0] > 0. In addition, if limT→∞
∑T

t=1 P[At|Ft−1] =∞, then L = 1.

The next result provides us with an upper bound on the posterior variance of a Gaussian process
which is valid for any covariance function.

Lemma D.3. Let k : X ×X → R be any positive-semidefinite kernel on X , and let k̃ : X ×X → R
be a kernel defined as:

k̃(x,x′) =

{
k(x,x), x = x′

0, x ̸= x′,
(38)

for x,x′ ∈ X . Given any set of observations {xi, yi}ti=1, for t ≥ 1, denote by σ2
t the predictive

variance of a GP model with prior covariance given by k, and let σ̃2
t denote the predictive variance

of a GP model configured with k̃ as prior covariance function, where both models are given the
same set of observations. Then the following holds for all t ≥ 0:

σ2
t (x) ≤ σ̃2

t (x) =
σ2
ϵ σ̃

2
0(x)

σ2
ϵ +Nt(x)σ̃2

0(x)
, ∀x ∈ X , (39)

where Nt(x) denotes the number of observations at x, and σ̃2
0(x) = σ2

0(x) := k(x,x), for x ∈ X .

Proof. It is not hard to show that k̃ defines a valid positive-semidefinite covariance function when-
ever k is positive semidefinite. We will then focus on proving the main statement by an induction
argument. The proof that the statement holds for the base case at t = 0 is trivial given the definition:

σ2
0(x) = k(x,x) = k̃(x,x) = σ̃2

0(x), ∀x ∈ X . (40)

Now assume that, for a given t > 0, it holds that σ2
t (x) ≤ σ̃2

t (x), for all x ∈ X . We will then check
if the inequality remains valid at t+ 1. By Lemma D.1, we have that:

σ2
t+1(x) = σ2

t (x)−
k2t (x,xt+1)

σ2
t (xt+1) + σ2

ϵ

(41)

For any x ∈ X such that x ̸= xt+1, we know that k̃t(x,xt+1) ≥ 0, so that (again by Lemma D.1):

k̃2t (x,xt+1) ≤ k̃2(x,xt+1) = 0 , (42)
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which shows that:
∀x ̸= xt+1, σ2

t+1(x) ≤ σ2
t (x) ≤ σ̃2

t (x) = σ̃2
t+1(x) . (43)

At x = xt+1, we can rewrite σ2
t+1(x) = σ2

t+1(xt+1) as:

σ2
t+1(xt+1) =

σ2
ϵσ

2
t (xt+1)

σ2
t (xt+1) + σ2

ϵ

. (44)

We then check the difference:

σ2
t+1(xt+1)− σ̃2

t+1(xt+1) =
σ2
ϵσ

2
t (xt+1)

σ2
t (xt+1) + σ2

ϵ

− σ2
ϵ σ̃

2
t (xt+1)

σ̃2
t (xt+1) + σ2

ϵ

=
σ2
ϵσ

2
t (xt+1)(σ̃

2
t (xt+1) + σ2

ϵ )− σ2
ϵ σ̃

2
t (xt+1)(σ

2
t (xt+1) + σ2

ϵ )

(σ2
t (xt+1) + σ2

ϵ )(σ̃
2
t (xt+1) + σ2

ϵ )

=
σ4
ϵ (σ

2
t (xt+1)− σ̃2

t (xt+1))

(σ2
t (xt+1) + σ2

ϵ )(σ̃
2
t (xt+1) + σ2

ϵ )

≤ 0 ,

(45)

since σ2
t (xt+1) ≤ σ̃2

t (xt+1) by our assumption for time t. Therefore, we have shown that:

σ2
t (x) ≤ σ̃2

t (x) =⇒ σ2
t+1(x) ≤ σ̃2

t+1(x) , ∀x ∈ X . (46)
From the conclusion above and the base case, the inequality in the main result follows by induction.

Now we derive an explicit form for σ̃2
t . Note that this case corresponds to an independent Gaussian

model, i.e., f�(x) ⊥⊥ f�(x′) whenever x ̸= x′, for f� ∼ GP(0, k̃). For any t ≥ 1, this model’s
predictive variance at any x ∈ X is given by:

σ̃2
t (x) =


σ̃2
t−1(x), x ̸= xt

σ2
ϵ σ̃

2
t−1(xt)

σ2
ϵ + σ̃2

t−1(xt)
=

(
1

σ̃2
t−1(xt)

+
1

σ2
ϵ

)−1

, x = xt

(47)

Looking at the reciprocal, we have that:

∀t ≥ 1,
1

σ̃2
t (x)

=
1

σ̃2
t−1(xt)

+
1[xt = x]

σ2
ϵ

, ∀x ∈ X . (48)

Therefore, every observation at x is simply adding a factor of σ−2
ϵ to σ̃−2

t (x). Unwrapping this
recursion leads us to:

∀t ≥ 1,
1

σ̃2
t (x)

=
1

σ̃2
0(x)

+
1

σ2
ϵ

t∑
i=1

1[xi = x] , ∀x ∈ X . (49)

The result in Lemma D.3 then follows as the reciprocal of the above, which concludes the proof.

Lemma D.4. Let f� ∼ GP(0, k) for a given k : X × X → R, where σ2
X := supx∈X k(x,x) <∞,

and |X | <∞. Then f� is almost surely bounded, and:

E
[
sup
x∈X
|f�(x)|

]
≤ σX

√
2 log |X | . (50)

Proof. The result follows by an application of a concentration inequality for the maximum of a
finite collection of sub-Gaussian random variables (Boucheron et al., 2013, Sec. 2.5). Note that
{f�(x)}x∈X is a collection of |X | Gaussian, and therefore sub-Gaussian, random variables with
sub-Gaussian parameter given by σ2

X ≥ σ2
t (x), for all X . Applying the maximal inequality for a

finite collection sub-Gaussian random variables (Boucheron et al., 2013, Thr. 2.5), we have that:

E
[
max
x∈X

f�(x)

]
≤ σX

√
2 log |X | <∞ . (51)

By symmetry, we know that−f�(x) is also sub-Gaussian with the same parameter, so that the bound
remains valid for maxx∈X −f�(x). As a consequence, the expected value of the maximum of |f�(x)|
is upper bounded by the same constant. On a finite set, the maximum and the supremum coincide.
As the expected value of the supremum is finite, the supremum must be almost surely finite by
Markov’s inequality, and therefore f� is almost surely bounded.
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D.4 ASYMPTOTIC CONVERGENCE

The main assumption we will be working with in this section is the following.
Assumption D.1. The objective function is a sample from a Gaussian process f� ∼ GP(0, k), where
k : X × X → R is a bounded positive-semidefinite kernel on X .

The next result allows us to derive a convergence rate for the posterior variance of a GP as a function
of the sampling probabilities. This result might also be useful by itself for other sampling problems
involving GP-based approximations.
Lemma D.5. Let {xt}t≥1 be a sequence of X -valued random variables adapted to the filtration
{Ft}t≥1. For a given x ∈ X , assume that the following holds:

∃T∗ ∈ N : ∀T ≥ T∗,

T∑
t=1

P[xt = x | Ft−1] ≥ BT > 0 , (52)

for a some sequence of lower bounds {Bt}t∈N. Then, under Assumption D.1, given observations at
{xi}ti=1, the following holds with probability 1:

σ2
t (x) ∈ O(B−1

t ). (53)

In addition, if Bt →∞, then limt→∞ Btσ
2
t (x) ≤ σ2

ϵ .

Proof. At any iteration t, the posterior variance σ2
t of a GP model is upper bounded by a worst case

assumption of no correlation between observations (see Lemma D.3). In this case, we have that:

σ2
t (x) ≤ σ̃2

t (x) =
σ2
ϵ σ̃

2
0(x)

σ2
ϵ +Ntσ̃2

0(x)
, (54)

where σ̃2
0(x) := k̃(x,x) = k(x,x), and Nt := Nt(x) ≤ t denotes the total number of observations

taken at x as of iteration t. Without loss of generality, assume that σ̃2
0(x) = 1.

The only random variable to be bounded in Equation 54 is Nt. Let χt := 1[xt = x], so that:

Nt =

t∑
i=1

χi =

t∑
i=1

1[xt = x] , t ≥ 1. (55)

We now apply the second Borel-Cantelli lemma (Lemma D.2) to Nt. Namely, let N̂t denote the sum
of conditional expectations of {χi}ti=1 given available data, i.e.:

N̂t :=

t∑
i=1

E[χi | Fi−1] =

t∑
i=1

E[1[xt = x] | Fi−1] =

t∑
i=1

P[xi = x | Fi−1] . (56)

By Lemma D.2, we know that the following holds for some L ∈ R:

lim
t→∞

Nt

N̂t

= L <∞ . (57)

Hence, Nt is asymptotically equivalent to N̂t. Applying this fact to σ̃2
t , we have that:

lim
t→∞

Btσ̃
2
t (x) = lim

t→∞

Btσ
2
ϵ

σ2
ϵ +Nt

= lim
t→∞

Btσ
2
ϵ

σ2
ϵ + LN̂t

≤ lim
t→∞

Btσ
2
ϵ

σ2
ϵ + LBt

≤ 1

L
lim
t→∞

min{LBt, σ
2
ϵ }

<∞ ,

(58)
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which holds with probability 1. Lastly, note that, if Bt → ∞, then L = 1 by Lemma D.2, and the
last limit above becomes σ2

ϵ . The main result then follows by an application of Lemma D.3 and the
definition of the big-O notation (see Equation 31).1

We assume a finite search space, which is the case for spaces of discrete sequences of bounded
length. However, we conjecture that our results can be extended to continuous or mixed discrete-
continuous search spaces via a discretization argument under further assumptions on the kernel k
(e.g., ensuring that f� is Lipschitz continuous, as in Srinivas et al. (2010)).

Assumption D.2. The search space X is finite, |X | <∞.

We assume that our family of variational distributions is rich enough to be able to represent the
PI-based distribution p(x|y > τt,Dt), which is the optimum of our variational objective when the
optimal classifier is given by GP-PI. Although this assumption could be seen as strong, note that,
due to Gaussian noise, the classification probability p(y > τt|x,Dt) should be a reasonably smooth
function of x, which facilitates the approximation of the resulting posterior by a generative model.

Assumption D.3. For every t ≥ 0, p(x|y > τt,Dt) is a member of the variational family, i.e.:

∃ϕ∗
t : D[q(x|ϕ∗

t )∥p(x|y > τt,Dt)] = 0. (59)

The next assumption is a technical one to ensure that the thresholds will not diverge to infinity.

Assumption D.4. The sequence of thresholds is almost surely bounded:2

sup
t∈N
|τt| ≤ τ∗ <∞ . (60)

We can now state our main result regarding the GP-based approximations learned by VSD.

Theorem D.1. Let assumptions D.1 to D.4 hold. Then the following holds with probability 1 for
VSD equipped with GP-PI:

σ2
t (x) ∈ O(t−1) , (61)

at every x ∈ X such that p(x) > 0.

Proof. Let ℓt(x) := p(y > τt|x,Dt). For any given x ∈ X where p(x) > 0, by Assumption D.2,
we have that the next candidate will be sampled according to:

∀t ≥ 0, P[xt+1 = x | Ft] = p(x|y > τt,Dt)

=
ℓt(x)p(x)

Ep(x)[ℓt(x)]

≥ ℓt(x)p(x),

(62)

where we used the fact that Ep(x)[ℓt(x)] ≤ 1, since ℓt(x) ≤ 1, for all x ∈ X . As p(x) > 0, we only
have to derive a lower bound on ℓt(x) to apply Lemma D.5 and derive a convergence rate.

A lower bound on ℓt(x) is given by:

∀t ≥ 0, ℓt(x) = Ψ

(
µt(x)− τt√
σ2
t (x) + σ2

ϵ

)
≥ Ψ

(
−∥µt∥∞ + τ∗

σϵ

)
, (63)

where Ψ(·) denotes the cumulative distribution function of a standard normal random variable,
and ∥·∥∞ denotes the essential supremum of a function under P (the probability measure of the
underlying abstract probability space). Therefore, if limt→∞∥µt∥∞ < ∞, we will have that
limt→∞ ℓt(x) > 0, and the sum in Lemma D.5 will diverge.

By Jensen’s inequality for conditional expectations, we have that:

∀t ≥ 0, ∥µt∥∞ = ∥E[f� | Ft]∥∞ ≤ E[∥f�∥∞ | Ft]. (64)

1Recall that for convergent sequences lim and lim sup coincide.
2We do not require τ∗ to be known, only finite.
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As E[E[∥f�∥∞ | Ft]] = E[∥f�∥∞] < ∞ (cf. Lemma D.4), an application of Markov’s inequality
implies that:

lim
a→∞

P[E[∥f�∥∞ | Ft] ≥ a] ≤ lim
a→∞

1

a
E[∥f�∥∞] = 0. (65)

Furthermore, mt := E[∥f�∥∞ | Ft] also defines a non-negative martingale, and by the martingale
convergence theorem (Durrett, 2019, Thr. 4.2.11), limt→∞ mt = m∞ := E[∥f�∥∞ | F∞] is well
defined and E[E[∥f�∥∞ | F∞]] = E[∥f�∥∞] < ∞. Again, by Markov’s inequality, for any a > 0,
we have that:

P
[
lim
t→∞
∥µt∥∞ ≥ aE[∥f�∥∞]

]
≤ E [limt→∞∥µt∥∞]

aE[∥f�∥∞]
≤ E [limt→∞ E[∥f�∥∞ | Ft]]

aE[∥f�∥∞]
=

1

a
. (66)

Therefore, for any a > 0 and any given x ∈ X , with probability at least 1− 1
a , the following holds:

lim
t→∞

P[xt = x | Ft−1] ≥ p(x) lim
t→∞

ℓt−1(x)

≥ p(x) lim
t→∞

Ψ

(
−∥µt−1∥∞ + τ∗

σϵ

)
≥ p(x)Ψ

(
−aE[∥f�∥∞] + τ∗

σϵ

)
=: b∞(a) > 0 .

(67)

Hence, for any εa ∈ (0, b∞(a)), there is Na ∈ N, such that P[xt = x | Ft−1] ≥ b∞(a) − εa > 0,
for all t ≥ Na. As a result,

∑t
t′=1 P[xt′ = x | Ft′−1] ≥ (b∞(a) − εa)(t − Na), for all t ≥ Na,

which asymptotically diverges at a rate proportional to t. By Lemma D.5 and the definition of the
big-O notation, for any x ∈ X , we then have that:

∀a > 0, P
[
lim sup
t→∞

∣∣tσ2
t (x)

∣∣ ≤ σ2
ϵ <∞

]
≥ 1− 1

a
. (68)

Taking the limit as a→∞, we can finally conclude that:

P
[
lim sup
t→∞

∣∣tσ2
t (x)

∣∣ <∞] = 1, (69)

i.e., σ2
t is almost surely O(t−1), which concludes the proof.

Remark D.1. The convergence rate in Theorem D.1 is optimal and cannot be further improved. As
shown by previous works in the online learning literature (Mutný & Krause, 2018; Takeno et al.,
2024), a lower bound on the GP variance at each iteration t ≥ 1 is given by σ2

t (x) ≥ σ2
ϵ (σ

2
ϵ + t)−1

(assuming k(x,x) = 1), which is the case when every observation in the dataset was collected at
the same point x ∈ X (see Takeno et al., 2024, Lem. 4.2). Therefore, the lower and upper bounds on
the asymptotic convergence rates for the GP variance differ by only up to a multiplicative constant.

The result in Theorem D.1 now allows us to derive a convergence rate for VSD’s approximations to
the level-set distributions. To do so, however, we will require the following mild assumption, which
is satisfied by any prior distribution which has support on the entire domain X .

Assumption D.5. The prior distribution is such that p(x) > 0, for all x ∈ X .

Theorem 2.1. Let assumptions D.1 to D.5 hold. Then VSD equipped with GP-PI approaches the
level-set distribution at the following rate:

D[p(x|y > τt,Dt)∥p(x|y > τt, f�)] ∈ OP(t
−1/2) .

Proof. We first prove an upper bound for the KL divergence in terms of the PI approximation error.
We then derive a bound for this term and apply Theorem D.1 to obtain a convergence rate.
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KL bound formulation. Let ℓt(x) := p(y > τt|x,Dt) and ℓ∗t (x) := p(y > τt|x, f�), for x ∈ X .
From the definition of the KL divergence, we have that:

D[p(x|y > τt,Dt)∥p(x|y > τt, f�)] = Ep(x|y>τt,Dt)[log p(x|y > τt,Dt)− log p(x|y > τt, f�)]

= Ep(x|y>τt,Dt)[log ℓt(x)− log ℓ∗t (x)]

+ logEp(x)[ℓ
∗
t (x)]− logEp(x)[ℓt(x)]

= Ep(x|y>τt,Dt)

[
log

(
ℓt(x)

ℓ∗t (x)

)]
+ log

(Ep(x)[ℓ
∗
t (x)]

Ep(x)[ℓt(x)]

)
.

(70)

For logarithms, we know that log(1 + a) ≤ a, for all a > −1, which shows that:

log

(
ℓt(x)

ℓ∗t (x)

)
= log

(
1 +

ℓt(x)− ℓ∗t (x)

ℓ∗t (x)

)
≤ ℓt(x)− ℓ∗t (x)

ℓ∗t (x)
(71)

log

(Ep(x)[ℓ
∗
t (x)]

Ep(x)[ℓt(x)]

)
= log

(
1 +

Ep(x)[ℓ
∗
t (x)− ℓt(x)]

Ep(x)[ℓt(x)]

)
≤

Ep(x)[ℓ
∗
t (x)− ℓt(x)]

Ep(x)[ℓt(x)]
. (72)

Combining the above into Equation 70 yields:

D[p(x|y > τt,Dt)∥p(x|y > τt, f�)] ≤ Ep(x|y>τt,Dt)

[
ℓt(x)− ℓ∗t (x)

ℓ∗t (x)

]
+

Ep(x)[ℓ
∗
t (x)− ℓt(x)]

Ep(x)[ℓt(x)]
.

(73)

The denominator in the expression above is such that:

∀t ≥ 0, ℓ∗t (x) = p(y > τt|x, f�) = Ψ

(
f�(x)− τt

σϵ

)
≥ Ψ

(
−∥f�∥∞ + τ∗

σϵ

)
, ∀x ∈ X . (74)

By Lemma D.4, we know that E[∥f�∥∞] <∞, which implies that P[∥f�∥∞ <∞] = 1 by Markov’s
inequality. Next, we derive a bound for the approximation error term.

Error bound. We now derive an upper bound for the difference ∆ℓt(x) := ℓt(x) − ℓ∗t (x) and
then show that it asymptotically vanishes. Applying Taylor’s theorem to Ψ, we can bound ∆ℓt as a
function of the approximation error between the mean µt and the true function f� as:

∀t ≥ 0, |∆ℓt(x)| =

∣∣∣∣∣Ψ
(

µt(x)− τt√
σ2
t (x) + σ2

ϵ

)
−Ψ

(
f�(x)− τt

σϵ

)∣∣∣∣∣
≤ 1√

2π

∣∣∣∣∣ µt(x)− τt√
σ2
t (x) + σ2

ϵ

− f�(x)− τt
σϵ

∣∣∣∣∣
=

1√
2π

∣∣∣∣∣σϵµt(x)− f�(x)
√
σ2
t (x) + σ2

ϵ + τt(
√

σ2
t (x) + σ2

ϵ − σϵ)

σϵ

√
σ2
t (x) + σ2

ϵ

∣∣∣∣∣
≤ |σϵµt(x)− f�(x)

√
σ2
t (x) + σ2

ϵ |+ |τt|σt(x)

σ2
ϵ

√
2π

≤ σϵ|µt(x)− f�(x)|+ σt(x)(|f�(x)|+ |τt|)
σ2
ϵ

√
2π

, ∀x ∈ X ,

(75)

since supϵ∈R

∣∣∣ dΨ(ϵ)
dϵ

∣∣∣ = 1√
2π

< 1, and we used the fact that σϵ ≤
√

σ2
t (x) + σ2

ϵ ≤ σt(x) + σϵ to
obtain the last two inequalities.

Convergence rate. To derive a convergence rate, given any x ∈ X and t ≥ 0, we have that:

E[|∆ℓt(x)| | Ft] ≤
σϵE[|µt(x)− f�(x)| | Ft] + σt(x)(E[|f�(x)| | Ft] + |τt|)

σ2
ϵ

√
2π

. (76)

We know that E[|f�(x)| | Ft] is almost surely bounded, and by Jensen’s inequality, it also holds that:

E[|µt(x)− f�(x)| | Ft] ≤ σt(x). (77)
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Applying Theorem D.1, we then have that:

|∆ℓt(x)| ∈ OP(t
−1/2). (78)

Since ∥µt∥∞ ≤ E[∥f�∥∞|Ft] ∈ OP(1), we also have that:

1

Ep(x)[ℓt(x)]
∈ OP(1) . (79)

Lastly, we know that 1
ℓ∗t (x)

∈ OP(1) by Equation 74 and the observation that ∥f�∥∞ ∈ OP(1). The
main result then follows by combining the rates above into Equation 73.

D.5 PERFORMANCE ANALYSIS

At every iteration t ≥ 1, VSD samples xt from (an approximation to) the target p(x|y > τt−1,Dt−1)
and obtains an observation yt ∼ p(y|xt). A positive hit consists of an event yt > τt−1, where τt−1

is computed based on the data available in Dt−1 or a constant. Therefore, we can compute the
probability of a positive hit for a given realization of f� as:

P[yt > τt−1 | Dt−1, f�] = Ep(x|y>τt−1,Dt−1)[p(y > τt−1|x, f�)] . (80)

Then the expected number of hits HT after T ≥ 1 iterations is given by:

E[HT | f�] =
T∑

t=1

Ep(x|y>τt−1,Dt−1)[p(y > τt−1|x, f�)] . (81)

We will compare this quantity with the expected number of hits H∗
T obtained by a sampling distri-

bution with full knowledge of the objective function f�:

E[H∗
T | f�] =

T∑
t=1

Ep(x|y>τt−1,f�)[p(yt > τt−1|x, f�)] . (82)

The next result allows us to bound the difference between these two quantities.
Corollary 2.1. Under the settings in Theorem 2.1, we also have that:

E[|HT −H∗
T |] ∈ O(

√
T ) .

Proof. For all T ≥ 1, we have that:

E[HT −H∗
T ] = E

[
T∑

t=1

Ep(x|y>τt−1,Dt−1)[p(y > τt−1|x, f�)]− Ep(x|y>τt−1,f�)[p(yt > τt−1|x, f�)]

]

= E

[
T∑

t=1

∑
x∈X

p(y > τt−1|x, f�) (p(x|y > τt−1,Dt−1)− p(x|y > τt−1, f�))

]

= E

[
T−1∑
t=0

∑
x∈X

p(y > τt|x, f�)p(x)
(

ℓt(x)

Ep(x′)[ℓt(x′)]
− ℓ∗t (x)

Ep(x′)[ℓ
∗
t (x

′)]

)]

≤ E

[
T−1∑
t=0

∑
x∈X

p(x)

(
|∆ℓt(x)|

min{Ep(x′)[ℓt(x′)] ,Ep(x′)[ℓ
∗
t (x

′)]}

)]
,

(83)

since p(y > τt−1|x, f�) ≤ 1, for all t ≥ 1. As both ∥µt∥∞ and ∥f�∥∞ are in OP(1),
min{Ep(x′)[ℓt(x

′)] ,Ep(x′)[ℓ
∗
t (x

′)]} is lower bounded by some constant. As ∆ℓt(x) ∈ OP(t
−1/2),

for T large enough and some C > 0, we then have that:

E[|HT −H∗
T |] ≤ C

T∑
t=1

1√
t
≤ 2C

√
T ∈ O(

√
T ), (84)

which follows by an application of the Euler-Maclaurin formula, since
∫ T

1
1√
t
dt = 2

√
T − 2 and

the remainder term asymptotically vanishes.
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Remark D.2. If the oracle achieves E[H∗
T ] = T , the error bound in Corollary 2.1 suggests an

increasing rate of positive hits by VSD as 1
T E[HT ] ≥ 1 − CT−1/2, for some constant C > 0

and large enough T . Therefore, VSD should asymptotically achieve a full rate of 1 positive hit per
iteration in the single-point batch setting we consider. Note, however, that the results above do not
discount for repeated samples, though should still indicate that VSD achieves a high discovery rate
over the course of its execution.

E VSD WITH NEURAL NETWORK CPES

In this section, we consider VSD with class probability estimators that are not based on GP regres-
sion, which was the case for the previous section, while specifically focusing on neural network
models. We will, however, show that with a kernel-based formulation we are able to capture the
classification models based on neural networks which we use. This is possible by analyzing the be-
havior of infinite-width neural networks (Jacot et al., 2018; Lee et al., 2019), whose approximation
error with respect to the finite-width model can be bounded (Liu et al., 2020; Eldan et al., 2021).

Although our classifiers are learned by minimizing the cross-entropy (CE) loss, we can connect
their approximations with theoretical results from the infinite-width neural network (NN) literature,
which are mostly based on the mean squared error (MSE) loss. Recall that, given a dataset Dz

N :=
{(xn, zn)}Nn=1 with binary labels zn ∈ {0, 1}, the cross-entropy loss for a probabilistic classifier
πθ : X → [0, 1] parameterized by θ is given by3:

LCPE(θ,Dz
N ) := − 1

N

N∑
n=1

zn log πθ(xn) + (1− zn) log(1− πθ(xn)) . (85)

The MSE loss for the same model corresponds to:

LMSE(θ,Dz
N ) :=

1

N

N∑
n=1

(zn − πθ(xn))
2 . (86)

The following result establishes a connection between the two loss functions.
Proposition E.1. Given a binary classification dataset Dz

N of size N ≥ 1, the following holds for
the cross-entropy and the mean-square error losses:

LCPE(θ,Dz
N ) ≥ LMSE(θ,Dz

N ), ∀N ∈ N . (87)

Proof. Applying the basic logarithmic inequality log(1 + a) ≤ a, for all a > −1, to the cross-
entropy loss definition yields:

LCPE(θ,Dz
N ) := − 1

N

N∑
n=1

zn log πθ(xn) + (1− zn) log(1− πθ(xn))

≥ − 1

N

N∑
n=1

zn(πθ(xn)− 1)− (1− zn)πθ(xn)

= − 1

N

N∑
n=1

2znπθ(xn)− zn − πθ(xn)

=
1

N

N∑
n=1

zn − 2znπθ(xn) + πθ(xn) .

(88)

Now note that zn = z2n, for zn ∈ {0, 1}, and πθ(xn) ≥ πθ(xn)
2, as πθ(xn) ∈ [0, 1], for all

n ∈ {1, . . . , N}. Making these substitutions in Equation 88, we obtain:

LCPE(θ,Dz
N ) ≥ 1

N

N∑
n=1

z2n − 2znπθ(xn) + πθ(xn)
2 = LMSE(θ,Dz

N ) , (89)

which concludes the proof.
3We implicitly assume that 0 < πθ(xn) < 1, for n ∈ {1, . . . , N}, so that the CE loss is well defined. This

assumption can, however, be relaxed when dealing with the MSE loss, which remains well defined otherwise.
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The result in Proposition E.1 suggests that minimizing the cross-entropy loss will lead us to mini-
mize the MSE loss as well, since the latter is upper bounded by the former. This result provides us
with theoretical justification to derive convergence results based on the MSE loss, which has been
better analyzed in the NN literature (Jacot et al., 2018; Lee et al., 2019), as a proxy to establish
convergence guarantees for the CE-based VSD setting.

E.1 LINEAR APPROXIMATIONS VIA THE NEURAL TANGENT KERNEL

Let π∗ denote the unknown true classifier, i.e., π(x) := p(y > τ |x, f�), for x ∈ X . In the following,
we will assume that π∗ is an unknown, fixed element of a reproducing kernel Hilbert space (RKHS)
associated with a given kernel (Schölkopf & Smola, 2001). In the case of infinite-width neural
networks, we know that under certain assumptions the NN trained via gradient descent under the
MSE loss will asymptotically converge to a kernel ridge regression solution whose kernel is given
by the neural tangent kernel (NTK, Jacot et al. (2018)). This asymptotic solution is equivalent to
the posterior mean of a Gaussian process that assumes no observation noise. For a finite amount of
training steps with a non-infinitesimal learning rate, however, the literature has shown that gradient-
based training provides a form of implicit regularization. In that case, we recover a regularized
kernel ridge regression solution which can be robust to label noise (Hu et al., 2020) for us to use.
Lastly, although our analysis will be based on NTK results, the approximation error between the
infinite-width and the finite-width NN vanishes with the square root of the network width for most
popular NN architectures (Liu et al., 2020). Therefore, we can assume that these approximation
guarantees will remain useful for wide-enough, finite-width NN models.

Implicit regularization. Several results in the literature have shown that training overparameter-
ized neural networks via gradient descent provides a form of implicit regularization on the learned
model (Fleming, 1990; Yao et al., 2007; Soudry et al., 2018; Barrett & Dherin, 2021), with some
of the same behavior extending to the stochastic gradient setting (Smith et al., 2021). In particular,
Fleming (1990) showed a direct equivalence between an early stopped gradient-descent linear model
and the solution of a regularized least-squares problem with a penalty on the parameters vector Eu-
clidean norm. Therefore, as wide deep neural networks behave as linear models in the infinite-width
limit when trained via gradient descent (Jacot et al., 2018; Lee et al., 2019), it is reasonable to model
our least-squares problem with the MSE loss via its regularized version:

π̂N ∈ argmin
π∈Fk

N∑
i=1

(π(xi)− zi)
2 + ρ∥π∥2k, (90)

where ρ > 0 is a possibly unknown regularization factor, Fk denotes the RKHS associated with
the neural tangent kernel k for the given CPE NN architecture, and ∥·∥k denotes the RKHS norm.
The problem above is equivalent to regularized kernel ridge regression (Shawe-Taylor & Cristianini,
2004), whose solution is given by:

π̂N (x) = π0(x) + kN (x)⊤(KN + ρI)−1(zN − π0(XN )), (91)

where kN and KN are defined in the same way as for the GP case, π0 denotes the untrained NN
classifier at initialization, and π0(XN ) := [π0(xi)]

N
i=1. For our analysis, we may assume that π0 = 0

at times, noting that the least-squares problem can always be solved for the residuals z − π0(x) and
then have π0 added back to the solution. We refer the reader to Jacot et al. (2018) for further
discussion on the effect of the network initialization.

Approximation for finite-width networks. For fully connected, convolutional or residual net-
works equipped with smooth activation functions (e.g., sigmoid or tanh), Liu et al. (2020) showed
that the approximation error between the linear model and the finite-width NN is Õ(m−1/2), where
m denotes the minimum layer width, and the Õ notation corresponds to the O-notation with log-
arithmic factors suppressed. NTK results for other activation functions, e.g., ReLU (Chen & Xu,
2021), and different neural network architectures, such as multi-head attention (Hron et al., 2020),
are also available in the literature.
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E.2 ASSUMPTIONS

In the following, we present a series of mild technical assumptions needed for our theoretical anal-
ysis of NN-based CPEs. Firstly, we assume a bounded NTK.

Assumption E.1. The NTK k corresponding to the network architecture in πθ is bounded:

sup
x∈X

k(x,x) <∞ , (92)

for some constant bk > 0.

We will also assume that the threshold is fixed to simplify the analysis. However, our results should
still be applicable to the time-varying threshold setting after minor adjustments.

Assumption E.2. The threshold is fixed, i.e., τt = τ ∈ R, for all t ≥ 1.

The following assumption on label noise should always hold for Bernoulli random variables
(Boucheron et al., 2013). Any upper bound on the sub-Gaussian parameter should suffice for the
analysis (e.g., σz ≤ 1 for Bernoulli variables).

Assumption E.3. For all t ∈ N and all x ∈ X , label noise ζ = 1[y > τ ] − π∗(x), with y ∼
p(y|x, f�), is σz-sub-Gaussian:

∀a ∈ R, E [exp (aζ)] ≤ exp

(
a2σ2

z

2

)
, (93)

for some σz ≥ 0.

For this analysis, we mainly assume that the true classifier π∗(x) = p(y > τ |x, f�) is a fixed, though
unknown, element of the RKHS given by the NTK, which is formalized by the following assumption.

Assumption E.4. There is π∗ ∈ Fk such that:

π∗(x) = p(y > τ |x, f�), ∀x ∈ X . (94)

For a rich enough RKHS, such assumption is mild, especially given that most popular NN architec-
tures possess universal approximation guarantees (Hornik et al., 1989). Finally, the next assumption
ensures enough sampling asymptotically over the domain X , which we still assume is finite.

Assumption E.5. For any t ≥ 1, the variational family is such that sampling probabilities are
bounded away from 0, i.e.:

∃b > 0 : ∀t ∈ N, q(x|ϕt) ≥ b . (95)

The assumption above only imposes mild constraints on the generative models q(x|ϕ), so that prob-
abilities for all candidates x ∈ X are never exactly 0, though still allowed to be arbitrarily small.

E.3 APPROXIMATION ERROR FOR NN-BASED CPES

Similar to the GP-PI setting, we will assume a batch size of 1, so that we can simply use the iteration
index t ≥ 0 for our estimators. We recall that convergence rates for the batch setting should only
be affected by a batch-size-dependent multiplicative factor, preserving big-O convergence rates. We
start by defining the following proxy variance:

t ≥ 1, σ̂2
t (x) = k(x,x)− kt(x)

⊤(Kt + ρI)−1kt(x) , x ∈ X , (96)

which is equivalent to a GP posterior variance when observation noise is assumed to be zero-mean
Gaussian with variance given by ρ. Given its similarities, we have that if enough sampling is asymp-
totically guaranteed, we can apply the same convergence results available for the GP-PI-based CPE,
i.e., σ̂2

t ∈ O(t−1/2) almost surely. We then invoke Assumption E.5 to derive the following result.

Lemma E.1. Let Assumption E.1 and Assumption E.5 hold. Then the following almost surely holds
for the proxy variance:

σ̂2
t ∈ O(t−1) . (97)

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Proof. The proof follows by verifying that the sum of sampling probabilities at any point x ∈ X
diverges as t→∞ by Assumption E.5, and then by Lemma D.5 the result follows.

Lemma E.2. Let assumptions E.1 to E.4 hold. Then, given any δ ∈ (0, 1], the following holds with
probability at least 1− δ for the approximation error between π̂t and π∗:

∀t ≥ 1, |π̂t(x)− π∗(x)| ≤ βt(δ)σ̂t(x), x ∈ X , (98)

where βt(δ) := ∥π∗∥k + σζ

√
2ρ−1 log(det(I+ ρ−1Kt)1/2/δ).

Proof. The result above is a direct application of Theorem 3.5 in Maillard (2016) which provides
an upper confidence bound on the kernelized least-squares regressor approximation error (another
version of the same result is also available in Durand et al. (2018, Thr. 1)).

For the next result, we need to define the following quantity:

ξT := max
XT⊂X :|XT |≤T

1

2
log det(I+ ρ−1K(XT )) , (99)

where K(XT ) := [k(x,x′)]x,x′∈XT
∈ R|XT |×|XT |. Note that ξT corresponds to the maximum

information gain of a GP model (Srinivas et al., 2010) with covariance function given by the NTK,
assuming Gaussian observation noise with variance given by ρ. Then ξT is mainly dependent on
the eigenvalue decay of the kernel under its spectral decomposition (Vakili et al., 2021). For the
spectrum of the NTK, a few results are available in the literature (Murray et al., 2023).
Proposition E.2. Let assumptions E.1 to E.5 hold. Then, given δ ∈ (0, 1], the following holds with
probability at least 1− δ for VSD equipped with a wide enough NN-based CPE model π̂t:

D[p(x|y > τt,Dt)∥p(x|y > τt, f�)] ∈ O

(√
ξt
t

)
. (100)

Proof. The result follows by applying the same steps as in the proof of Theorem 2.1. We note that
ℓ∗t (x) = π∗(x) > 0, due to observation noise, so that ℓ∗t (x)

−1 ∈ OP(1). Similarly, Lemma E.2
implies that |π̂t(x) − π∗(x)| ≤ βt(δ)σt(x) with probability at least 1 − δ simultaneously over all
x ∈ X , so that ratio-dependent terms in Theorem 2.1 should remain bounded in probability. The
upper bound in the result then follows by noticing that in our case |∆ℓt(x)| ≤ βt(δ)σ̂t(x) with high
probability, where σ̂t ∈ O(t−1/2) by Lemma E.1, and βt(δ) ∈ O(

√
ξt) by Lemma E.2 and the

definition of ξt in Equation 99.

The result above tells us that VSD is able to recover a similar asymptotic convergence guarantee
to the one we derived for the GP-PI case, depending on the choice of NN architecture and more
specifically on the spectrum of its associated NTK. In the case of a fully connected multi-layer
ReLU network, for example, Chen & Xu (2021) showed an equivalence between the RKHS of
the ReLU NTK and that of the Laplace kernel k(x,x′) = exp(−C∥x − x′∥). As the latter is
equivalent to a Matérn kernel with smoothness parameter set to 0.5 (Rasmussen & Williams, 2006),
the corresponding information gain bound is ξt ∈ Õ(t

d
1+d ), where d here denotes the dimensionality

of the domain X (Vakili & Olkhovskaya, 2023). In the case of discrete sequences of length M , the
dimensionality of X is determined by M . Therefore, in this case, we have proven Corollary 2.2.4

Corollary 2.2. Let πθ be modeled via a fully connected ReLU network. Then, under the assumptions
in Proposition E.2, VSD achieves:

D[p(x|y > τt,Dt)∥p(x|y > τ, f�)] ∈ ÕP

(
t−

1
2(M+1)

)
, (12)

which asymptotically vanishes for all finite sequence lengths M .

Similar steps can be applied to derive convergence guarantees for VSD with other neural network
architectures based on the eigenspectrum of their NTK (Murray et al., 2023) and following the recipe
in, e.g., Vakili et al. (2021) or Srinivas et al. (2010).

4Here ÕP suppresses logarithmic factors, as in Õ.
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F VSD AS A BLACK-BOX OPTIMIZATION LOWER BOUND

A natural question to ask is how VSD relates to the BO objective for probability of improve-
ment (Garnett, 2023, Ch.7),

x∗
t = argmax

x
logαPI(x,DN , τ) . (101)

Firstly, we can see that the expected log-likelihood of term of Equation 7 lower-bounds this quantity.

Proposition F.1. For a parametric model, q(x|ϕ), given ϕ ∈ Φ ⊆ Rm and q ∈ P : X ×Φ→ [0, 1],

max
x

logαPI(x,DN , τ) ≥ max
ϕ

Eq(x|ϕ)[logαPI(x,DN , τ)] , (102)

and the bound becomes tight as q(x|ϕ∗
t )→ δ(x∗

t ), a Dirac delta function at the maximizer x∗
t .

Taking the argmax of the RHS will result in the variational distribution collapsing to a delta distri-
bution at x∗

t for an appropriate choice of q(x|ϕ). The intuition for Equation 102 is that the expected
value of a random variable is always less than or equal to its maximum. The proof of this is in
Daulton et al. (2022); Staines & Barber (2013). Extending this lower bound, we can show the
following.
Proposition F.2. For a divergence D : P(X )× P(X )→ [0,∞), and a prior p0 ∈ P(X ),

max
x

logαPI(x,DN , τ) ≥ max
ϕ

Eq(x|ϕ)[logαPI(x,DN , τ)]− D[q(x|ϕ)∥p0(x)] . (103)

We can see that this bound is trivially true given the range of divergences, and this covers VSD as
a special case. However, this bound is tight if and only if p0 concentrates as a Dirac delta at x∗

t
with an appropriate choice of q(x|ϕ). In any case, the lower bound remains valid for any choice of
informative prior p0 or even a uninformed prior, which allows us to maintain the framework flexible
to incorporate existing prior information whenever that is available.
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