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ABSTRACT

Pretrained knowledge memorized in LLMs raises critical concerns over safety and
privacy, which has motivated LLM Unlearning as a technique for selectively re-
moving the influences of undesirable knowledge. Existing approaches, rooted in
Gradient Ascent (GA), often degrade general domain knowledge while relying
on retention data or curated contrastive pairs, which can be either impractical or
data and computationally prohibitive. Negative Preference Alignment has been
explored for unlearning to tackle the limitations of GA, which, however, remains
confined by its choice of reference model and shows undermined performance in
realistic data settings. These limitations raise two key questions: i) Can we achieve
effective unlearning that quantifies model confidence in undesirable knowledge
and uses it to calibrate gradient updates more precisely, thus reducing catastrophic
forgetting? ii) Can we make unlearning robust to data scarcity and length varia-
tion? We answer both questions affirmatively with CaTNiP (Calibrated and To-
kenized Negative Preference Alignment), a principled method that rescales un-
learning effects in proportion to the model’s token-level confidence, thus ensuring
fine-grained control over forgetting. Extensive evaluations on MUSE and WMDP
benchmarks demonstrated that our work enables effective unlearning without
requiring retention data or contrastive unlearning response pairs, with stronger
knowledge forgetting and preservation tradeoffs than state-of-the-art methods.

1 INTRODUCTION

Large Language Models are disruptive technologies built upon vast accumulations of human knowl-
edge (Naveed et al., 2025). While their unprecedented capabilities have benefited society across
various domains (Baldassarre et al., 2023; Kasneci et al., 2023; sen, 2024), the massive pretrained
knowledge memorized in LLMs poses a double-edged challenge, which raises concerns over safety,
privacy, and intellectual property (Carlini et al., 2021; 2022). LLMs may inadvertently surface
hazardous procedural information (Li et al., 2024), copyrighted books (Shi et al., 2025; Eldan &
Russinovich, 2023), or sensitive personal data memorized during pretraining (Carlini et al., 2021;
Huang et al., 2022) that violate regulatory requirements (EU) or ethical norms.

Towards removing undesirable knowledge from LLMs, retraining from scratch (Cao & Yang, 2015;
Thudi et al., 2022) offers an oracle-level solution, which is prohibitively costly and even infeasible.
Instead, a growing field of work explores LLM unlearning (Zhang et al., 2024a; Shi et al., 2025;
Eldan & Russinovich, 2023; Li et al., 2024), a methodology that selectively mitigates the influences
of undesirable knowledge, as a more practical path towards accountable LLMs.

At the core of varying LLM unlearning approaches is Gradient Ascent (GA) (Jang et al., 2022;
Yao et al., 2024), which fine-tunes a target LLM by increasing the loss gradient on data repre-
senting the undesirable knowledge, named unlearning data to weaken its influence. However, GA
introduces a fundamental tradeoff that, while removing harmful knowledge, it also risks degrad-
ing general-domain knowledge, due to the interconnected nature of pretrained knowledge within
LLMs, whereas GA uniformly increases the model’s predictive loss on forgetting data regardless
of the semantic importance of data samples. Towards addressing this unlearning-preserving trade-
off, previous work often hinges on access to a subset of pretraining data, termed retention data,
for preserving general domain knowledge during unlearning optimization, which could be a strong
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prerequisite in practice. Another line of research tackles the catastrophic collapse caused by GA ob-
jectives, among which Negative Preference Optimization (NPO) is a representative method (Zhang
et al., 2024a). NPO takes inspiration from LLM alignment objectives that initially required con-
trastive pairs (desired vs. undesirable responses) (Rafailov et al., 2023; Ouyang et al., 2022). NPO
relaxes this data requirement and instead optimizes only the tractable component tied to undesirable
responses (i.e. knowledge to be forgotten), making it more suitable for knowledge embedded in large
corpora, such as copyrighted books.

NPO still shows empirical limitations in unlearning efficacy and usually requires retention data to
achieve more balanced performance (Shi et al., 2025). The limitations may be rooted in its choices
of alignment objectives, where a reference model is critical to indicate the margin for the unlearn-
ing model to improve (Meng et al., 2024), which is reflected in the probability ratio between the
unlearning model πθ and a reference model πref given an unlearning sample (x, y): πθ(y|x)

πref(y|x) . Prior
work typically uses a static reference model πref fixed at initialization, e.g. model before alignment,
which offers limited margin to guide the unlearning model, especially in regions where πref(y|x) is
already high, which leads to diminished unlearning guidance as training progresses. Furthermore,
the varying unlearning samples introduce training biases, as long samples contribute more to gradi-
ent updates regardless of their semantic importance. This mismatch is exacerbated when evaluation
data follow diverging length distributions that are different from those seen in training, which further
hinders unlearning and alignment efficacy (Joshi et al., 2024).

Towards overcoming the limitations of prior arts, we focus on addressing two key questions: i)
How to achieve effective unlearning with an informative reference model, that can guide model
gradient update more effectively and precisely, while avoiding catastrophic forgetting without re-
lying on retention data? ii) how to make unlearning robust to data length bias, while benefiting
from heterogeneous or scarce unlearning data, such as concept unlearning with only a few anchor
examples (Thaker et al., 2025)?

In response, we proposed CATNIP, an unlearning algorithm based on Caliberated and Tokenized
Negative Preference Alignment. Our innovation lies in the unlearning objective design to capture the
heterogeneous influence of tokens on the unlearning process. We introduced a calibrated objective
by re-weighting each loss term based on an adaptive reference model, which rescales the unlearning
effects in proportion to the model’s predictive confidence. In parallel, our objective is tokenized
such that each token independently contributes to the unlearning loss, which provides fine-grained
unlearning optimization that focuses on a token’s semantic importance, while remaining robust to
training biases induced by varying data lengths.

Overall, we introduced an effective unlearning method with calibrated, token-level alignment based
on the model’s prior confidence in the unlearning knowledge. We verified the key factors in our
algorithm design that enhance its unlearning outcomes, including the choice of reference policy,
calibration gradient, effects of tokenization, and its performance robustness against varying quali-
ties of training data and task context. CATNIP offers a principled solution that enables effective
unlearning without requiring retention data or curating contrastive unlearning response pairs, while
achieving comparable or stronger tradeoffs between forgetting and knowledge preservation than
state-of-the-art unlearning methods.

2 PRELIMINARIES OF UNLEARNING
We consider an LLM as a policy model πθ parameterized as θ, which contains undesirable knowl-
edge manifested in an unlearning dataset D. Each unlearning sample τ = (x, y) ∼ D contains
input x and undesirable response y. The goal of LLM unlearning is to reduce model’s knowledge of
D while preserving the general-domain knowledge, which is typically summarized as below:

min
θ

L(θ) = Lunlearn(θ;D) + Lretain(θ;Dretain),

where Dretain denotes a dataset of general domain knowledge intended to be preserved, termed the
retaining dataset, which may not always be available during unlearning in practice, due to the pro-
hibitive cost of data processing or restricted permission. Among varying formulations for the Lunlearn
loss, Gradient Ascent (GA) is a fundamental building block, which minimizes the log probability
for the model to generate the undesirable response: minθ LGA

unlearn(θ;D) = Ex,y∼D[log πθ(y|x)].
The core challenge of effective unlearning is to keep a balanced performance between forgetting
and knowledge retention. Prior unlearning work typically relies on access to Dretain during training
and makes the retain loss tractable by minimizing the behavior difference on the Dretain between the
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target model θ and a reference model, which is usually the model before unlearning training. For
instance, a widely used formulation employs the KL divergence (Maini et al., 2024):

min
θ

LKL
retain(θ;Dretain) = Ex∼Dretain

[
DKL[πθ(·|x)∥πref(·|x)]

]
. (1)

2.1 LLM UNLEARNING AS PREFERENCE OPTIMIZATION

Unlearning is also closely connected to LLM Alignment, which is a paradigm to optimize the LLM’s
preference over responses to align with those of humans. A representative method along this line is
Direct Preference Optimization (DPO) (Rafailov et al., 2023). Formally, when given a pair of pre-
ferred and less preferred model responses, τ+ = (x, y+), τ− = (x, y−) towards the same input x,
an alignment optimization maximizes the relative probability for model πθ to generate the desirable
response over the less desirable one:

min
πθ

E(τ+,τ−)∼D

{
− logP (τ+ ≻ τ−|πθ)

}
. (2)

DPO treated the above as a constrained RL optimization task and reformulated the objective to be
reward-free:

LDPO = − 1

β
E(x,y+,y−)∼D

[
log σ

(
β
πθ(y

+|x)
πref(y+|x)

− β
πθ(y

−|x)
πref(y−|x)

)]
. (3)

Accordingly, DPO requires data with contrastive pairs of {y+, y−}. Later, Negative Preference Op-
timization (NPO) adopts this preference optimization idea for unlearning, by treating the unlearning
sample as undesirable τ−, and only optimizing the tractable component when τ+ is absent:

min
θ

LNPO = − 2

β
Eτ−=(x,y)∼D

[
log σ

(
−β log

πθ(y|x)
πref(y|x)

)]
. (4)

While NPO is designed to be retention-data free, it is often empirically combined with a retention
objective e.g. LKL

retain, requiring retention data and a reference model to avoid catastrophic forgetting
on general domain knowledge (Shi et al., 2025).

3 METHODS

Below we introduce our main idea of effective LLM unlearning, which formulates unlearning as
a preference optimization over model policies, in contrast to conventional alignment methods that
optimize preference over data samples.
3.1 NEGATIVE PREFERENCE ALIGNMENT AS POLICY RANKING:

Consider a sample trajectory τ containing an input and response pair τ = (x, y), an LLM π, and
let P (τ |π) = π(y|x) · p(x), where p(x) does not depend on π, we denote P (π|τ) = P (π).P (τ |π)

P (τ) ∝
P (π).P (τ |π) to represent the likelihood that the observed response in τ is generated by π.

Built on the Bradley-Terry model (Bradley & Terry, 1952), for an arbitrary reference policy πβ ,
we denote P (πθ ≻ πβ |τ) to quantify the probability that the observed τ is generated by the target
policy πθ rather than πβ (see Appendix A.2 for details):

P (πθ ≻ πβ |τ) =
exp(u(πθ, τ))

exp(u(πθ, τ)) + exp(u(πβ , τ))
= σ(β log

πθ(y|x)
πβ(y|x)

), (5)

where a log-utility function: u(π, τ) = log
(
P (π|τ)β

)
acts as the negative of energy function in

Boltzmann distribution (Chandler, 1987), a constant term β is introduced as an inverse of temper-
ature to smooth optimization, and σ(·) is the sigmoid function. When β = 1, the utility function
simplifies to the standard Bradley–Terry form: P (πθ ≻ πβ |τ)β=1 = P (πθ|τ)

P (πθ|τ)+P (πβ |τ) .

Intuitively, P (πθ ≻ πβ |τ) quantifies how well the target policy πθ can explain given trajectory,
compared to the reference policy πβ . This can be viewed as a preference ranking between two
policies based on an observed data sample. Formally, given a dataset D that needs to be unlearned
πθ, we frame unlearning as a negative alignment of preference over a pair of policies:

min
πθ

Eτ=(x,y)∼D

[
log P (πθ ≻ πβ |τ)

]
. (6)

In contrast, for conventional alignment methods such as DPO, the preference is applied to pairs
of data samples rather than policies (Equation 2). Resultingly, our method provides a principled
formulation that can be applied to practical scenarios for LLM unlearning, where undesirable data
may not come with explicit contrastive counterparts.
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3.2 USING REVERSE POLICY AS A COUNTERFACTUAL REFERENCE

Up to now, a key question is how to choose the reference policy πβ . Prior art mostly adopts the
pre-alignment policy model as a static reference, i.e. πβ ≡ πθ|t=0, commonly denoted as πref. One
limitation is that such reference in log πθ(y|x)

πref(y|x) may become constraints as training evolves, especially
for regions x, y where πref put a high density πref(y|x) > 1− ϵ, thus only a small margin remains to
guide the target policy πθ during training, and the effect of such training sample diminishes quickly
given a static reference model.

To address the above limitations, we follow two principles: i) an ideal reference model should be
calibrated to reflect the varying importance of different training samples.Thus, data points for which
the model is more confident should contribute more to gradient updates and incur greater penalties
during unlearning training; ii) The reference πβ should be adaptive along with the target policy πθ.

In response, we propose an adaptive reference model: πβ(·|x) ≡ 1−πθ(·|x), which approximates an
un-normalized probability that reverses the choice of πθ given arbitrary input x. The relative margin
between the target model πθ(y|x) and the reference model 1−πθ(y|x) naturally reflects the model’s
confidence in y given x: Specifically, when πθ(y|x) > 1 − ϵ, the rescaling factor 1

1−πθ(y|x) > 1
ϵ

becomes large, and vice versa. Accordingly, a sample response y that yields a high πθ(y|x) will
lead to an amplified penalty of loss, ascribed to our choice of reverse model as a reference. We use
π̂θ to indicate a gradient-free version (grad(π̂θ) = False), and derive the following objective:

min
θ

Eτ∼D

[
log P (πθ ≻ πβ |τ)

]
≡ min

θ
Ex,y∼D

[
− log

(
1− σ

(
β log

πθ(y|x)
1− π̂θ(y|x)

))]
. (7)

3.3 TOKENIZED UNLEARNING OPTIMIZATION

Another pain-point for alignment-based methods is the length bias incurred by samples with varying
token sizes |y|. In practice, log πθ(y|x) =

∑|y|
i=1 log πθ(yi|x, y<i), which aggregates the proability

density term for each response token yi. Consequently, a long sample with larger |y| tends to gen-
erate larger gradient updates that bias the training (Park et al., 2024), as samples of long sequences
get more attention than shorter ones: σ(log piθ(y|x)

πβ(y|x) ) = σ(
∑

i log
πθ(yi|x,y<i)
πβ(yi|x,y<i)

).

To mitigate this issue, prior efforts such as SimPO (Meng et al., 2024) employed the average of log
probabilities: 1

|y| log πθ(y|x) = 1
|y|

∑|y|
i log πθ(yi|x, y<i). They further replaced a reference policy

with a margin constant r > 0, which encourages higher πθ(·|x) assigned to desirable responses.
Similar insights were later applied to an unlearning method dubbed SimNPO (Fan et al., 2025) that
combines the merits of NPO and SimPO: minθ LsimNPO ≡ − 2

βσ(−
β
|y| log πθ(y|x)− γ).

Contrary to the prior work that involves an extra margin term γ, we turn the curse of data length bias
into a blessing: we frame each conditional token generation π(yi|x, y<i) as an independent data
sample for unlearning training, and finally propose a tokenized unlearning objective as follows:

min
θ

LCATNIP(θ) ≡ Ex,y∼Df

[ 1

|y|

|y|∑
i=1

− log
(
1− σ

(
β log

πθ(yi|x, yf<i)

1− π̂θ(yi|x, y<i)

))]
. (8)

The benefits of our tokenizing unlearning loss are multifold: 1) it allows fine-grained calibration on
the gradient contribution of each token to the unlearning process, thus differentiating the effects of
knowledge-critical tokens from common ones (Sec 5.4). 2) A tokenized objective makes unlearning
more robust to different contextual lengths, and can be much more data-efficient to achieve effective
unlearning with lightweight training samples (Sec 5.3).
3.4 CALIBRATED AND TOKENIZED GRADIENT UPDATE:
We derive the gradient formulation of CATNIP to demonstrate how it provides fine-grained calibra-
tion on GA, which minimizes log πθ(y|x) on forgetting data sample (x, y). Formally, each token
yi contributes to a rescaled gradient update during CATNIP training (the detailed derivation is in
Appendix A.3):

∇LCATNIP(θ) =
1

|y| ·
|y|∑
i=1

β ·
(
πθ(yi|x, y<i)

)β(
πθ(yi|x, y<i)

)β
+

(
1− π̂θ(yi|x, y<i)

)β︸ ︷︷ ︸
wi(β,πθ)|CATNIP

·∇ log πθ(yi|x, y<i)︸ ︷︷ ︸
∇Lθ(GA)

. (9)
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Figure 1: Our objective derives an
adaptive gradient weight wi(β, πθ) (y-
axis) in Eq. 9 that monotonically in-
creases with model’s token probabil-
ity: zi = πθ(yi|x, y<i) (x-axis), and
β serves as a rescaling factor.

Figure 2: Token-level unlearning analysis: Given an unlearning
task of Harry Potter book series, we provide a in-context demonstra-
tions z, a question x, a ground-truth response y containing undesirable
domain knowledge, and the token probabilities π(yi|x, z, y<i) across
three models: original (before unlearning), CATNIP, and NPO. Our
method shows targeted probability drops on HP-relevant keywords,
while NPO shows amortized probability drops across tokens.

We denote the gradient weight function as wi(β, πθ) = β·σ(β·log πθ(yi|x,y<i)
1−π̂θ(yi|x,y<i)

). The effect of our
reference model 1 − π̂θ in rescaling wi(β, πθ) is adaptively reciprocal to πθ, making the gradient
weight monotonically increasing with zi = πθ(yi|x, y<i). Thus, tokens with high confidence zi
will receive more gradient updates to remove their knowledge during unlearning training. Figure 1
illustrates the effects of zi as well as β in reweighting the gradient.

In contrast, prior methods, including NPO or SimNPO, receive un-tokenized gradient weights, where

wθ(y|x)|SimNPO =
2
(
πθ(y|x)

)β/|y|
1 +

(
πθ(y|x)

)β/|y| · 1

|y| , and wθ(y|x)|NPO =
2πβ

θ (y|x)
πβ
θ (y|x) + πβ

ref(y|x)
.

They share common limitations: the weights are applied on the entire sequence and thus cannot cal-
ibrate training losses on a token-level. Moreover, their gradient weights rely on a static denominator
component (either πref(y|x) or 1 as a dummy reference) that remains unchanged during training.

We presented a case study to illustrate the token-wise unlearning effects of our method in Figure 2,
where we calculated each π(yi|x, y<i) for an undesirable inference sample. CATNIP exhibits tar-
geted penalization of tokens related to unlearning concepts (e.g., “magical” regarding the Harry
Potter book series), which shows more notable probability drops. In contrast, NPO demonstrates a
more amortized probability across all tokens {yi}|y|i , indicating less precise unlearning behavior.

4 RELATED WORK

Machine Unlearning was initially developed for classification tasks (Kurmanji et al., 2023; Fan
et al., 2024a; Jia et al., 2023) and later extended to other domains such as concept removal from
diffusion models (Fan et al., 2024b; Zhang et al., 2024b; Gandikota et al., 2023). While retraining
from scratch (Cao & Yang, 2015; Thudi et al., 2022) provides an oracle-level solution for removing
undesirable knowledge, it is often practically infeasible due to computational costs and scalability
limitations. Model editing through fine-tuning or parameter pruning (Ilharco et al., 2022; Wei et al.,
2024; Jia et al., 2023) offers a more viable alternative.

LLM Unlearning (Zhang et al., 2024a; Li et al., 2024; Fan et al., 2025; Wang et al., 2025; Jia
et al., 2024) presents unique challenges due to the interconnected nature of pretraining knowledge
and the complexity of evaluation. Current approaches fall into two main categories: Inference-
based unlearning (Pawelczyk et al., 2024; Thaker et al., 2024) injects instructions in context without
parameter updates, which, however, is superficial and vulnerable to memorization attacks that ex-
pose suppressed capabilities (Anil et al., 2024). They also show limited scalability to increasing
numbers of unlearning targets (Thaker et al., 2024). Training-based unlearning is more widely
adopted yet faces the core challenge of balancing forgetting and retention utility. Conventional
approaches like GA (Jang et al., 2022; Yao et al., 2024) and task-arithmetic (Ilharco et al., 2022)
may lead to over-forgetting on general domain. To address this, methods such as RMU (Li et al.,
2024) and others (Rafailov et al., 2023; Ethayarajh et al., 2024a; Meng et al., 2024) incorporate
retention objectives during training that depend on access to retention data. Another line of efforts
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focus on retention-data-free unlearning. NPO (Zhang et al., 2024a) and its extensions (Fan et al.,
2025) treat unlearning as preference alignment optimization, though they still exhibit non-negligible
performance degradation on general domain knowledge. FLAT (Wang et al., 2025) minimizes the
dual form of f -divergence between model-generated and expected response distributions using con-
trastive response pairs. In contrast, our method eliminates the need for contrastive pairs or retention
samples, while showing greater robustness to data quantity and length bias.

Unlearning and Alignment for LLMs are closely related domains (Scholten et al., 2025; Feng et al.,
2025). DPO (Rafailov et al., 2023) provides a general framework for aligning models with human
preferences, with variants aimed at debiasing or removing reliance on reference models (Hong et al.,
2024; Ethayarajh et al., 2024b; Meng et al., 2024). Building on this line of work, extensions such
as NPO (Zhang et al., 2024a) and SimNPO (Fan et al., 2025) applied to unlearning by treating
responses to be forgotten as displeased, thus aligning with ethical and safety requirements.

Benchmarks and metrics for LLM unlearning remain underdeveloped. Existing efforts include
MUSE-bench (Shi et al., 2025), which evaluates the removal of copyrighted information through
tasks involving Harry Potter book contents (Eldan & Russinovich, 2023; Shi et al., 2025) and
news articles (Shi et al., 2025) across six metrics; WMDP (Li et al., 2024), which evaluates sup-
pression of hazardous knowledge such as cyber-attacks or bio-weapon creation capabilities; and
MMLU (Hendrycks et al., 2021), which evaluates retention performance on general knowledge (Li
et al., 2024). RWKU (Jin et al., 2024) and TOFU (Maini et al., 2024) evaluate removal of entity
information. Scholten et al. (2025) evaluates the whole output distribution of a model instead of
deterministic evaluations.

5 EXPERIMENTS

We conducted comprehensive experiments to evaluate CATNIP against state-of-the-art unlearning
baselines across diverse benchmarks and LLM architectures. Section 5.1 detailed the experimental
setup and evaluation metrics. Section 5.2 demonstrated the advantages of CATNIP in unlearning-
retention trade-offs compared to existing approaches. Section 5.4 presented ablation studies to ex-
amine the contribution of each component in CATNIP’s design, along with robustness analysis
across different unlearning data formats, comparing with baseline methods.

5.1 EXPERIMENTAL SETUP
5.1.1 TASKS AND DATASETS

We evaluated on two representative benchmarks focusing on concept-unlearning: Mitigating haz-
ardous knowledge (WMDP) (Li et al., 2024) and Removing copyrighted content from the Harry
Potter book series (Shi et al., 2025) (MUSE-Books). Both benchmarks target conceptual knowledge
removal rather than synthetic catalog samples, which provide more realistic evaluation scenarios.

Hazardous Knowledge Mitigation encompasses two unlearning tasks from the WMDP bench-
mark, targeting hazardous knowledge removal in cybersecurity and biology domains. Following Li
et al. (2024), we utilized training data for Biology (Dbio) sourced from the PubMed corpus and for
Cybersecurity (Dcyber) from the GitHub corpus. Consistent with the coreset effect observed by Pal
et al. (2025), we employed the first 1,000 samples from each domain.

Copyrighted Information Removal is originally introduced by Eldan & Russinovich (2023) for
LLM unlearning of the Harry Potter books, this task was later formalized by Shi et al. (2025) as part
of the MUSE-Bench evaluation framework.

Training Data: We examined CATNIP’s unlearning effectiveness across two data formats: (1) Raw
text format: Following established practices, we first conducted unlearning using the complete Harry
Potter book series as training data. (2) Question-answer format: We constructed a lightweight
dataset of 132 Harry Potter-related question-answer pairs, each with a short sample length compared
with raw textbook to assess CATNIP’s efficiency with limited, structured training data, and 104
general knowledge question-answer pairs serve as retention data.

Evaluation Data: We evaluated models’ knowledge memorization about Harry Potter on the corre-
sponding unlearning testing data of MUSE-Bench. To address potential bias from the limited 100
evaluation samples in MUSE-Bench, we enriched this dataset with 400 additional evaluation sam-
ples. We reported the performance on both datasets as f (Extended) and f (MUSE), respectively.
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5.1.2 EVALUATION METRICS

Our evaluation focuses on two dimensions: unlearning effectiveness and utility preservation.

Unlearning Effectiveness: For copyrighted content removal, we measureed the knowledge mem-
orization using the MUSE-Bench evaluation protocol (Shi et al., 2025), which employs ROUGE
scores (Lin, 2004) to assess model performance on Harry Potter-related queries. For hazardous
knowledge mitigation, we evaluated the reduction of answering accuracy (∆f ↓) on WMDP Biol-
ogy and Cybersecurity tasks, where lower accuracy indicates more effective unlearning.

Utility Preservation: We assessed the general model utility using Accuracy on MMLU (Hendrycks
et al., 2021), a comprehensive benchmark that contains 15,908 multiple-choice questions across
57 academic and professional domains. Higher MMLU scores indicate better retention of general
knowledge capabilities. Specifically, for accuracy evaluations on both WMDP and MMLU, we
utilized the LM Eval Harness framework (Gao et al., 2024), which selects the option with the highest
model-assigned probability for each question.

Overall Quality shift (∆O(↑)): To quantify the balanced trade-off between unlearning and utility
preservation, we reported the overall quality shift metric, formulated as ∆O(↑) = −∆f(%) +
∆u(%), where ∆f(%) ↓ represents the relative drop in forget domain knowledge and ∆u(%) ↑
denotes the relative change in MMLU accuracy after unlearning. Higher overall quality shift scores
indicate stronger unlearning performance with better preservation of general model capabilities.
5.1.3 BASELINES

We compared CATNIP with several representative unlearning methods: (1) GA (Shi et al., 2025):
applies gradient ascent to maximize loss on forget data. (2) NPO (Zhang et al., 2024a) is a prefer-
ence optimization approach extended from DPO that treats forget data as negative preferences. (3)
SimNPO (Fan et al., 2025) is a variant of NPO that removes the reference model dependency. (4)
FLAT (Wang et al., 2025) minimizes the f -divergence between model-generated response yf ∈ Df

and the contrastive, expected response yct ∈ Dct for unlearning. Intuitively, an yct can be treated
a as refusal to answer. (We adopted the Total Variation setting following their experiment result).
(5) RMU (Li et al., 2024) is tailored for the WMDP benchmark, which randomly perturbs the latent
representations regarding hazardous knowledge to be unlearned, combined with a retention loss for
regularized performance on the general domain.

Data Requirements: The above unlearning baselines have varying data requirements: FLAT hinges
on pairs of forgetting and contrastive data (D ∪ Dct), while RMU requires forgetting and retention
data (D ∪ Dretain). To establish upper bounds for general utility preservation, we also evaluated
variants of GA and NPO that are augmented with a retention loss to minimize the KL divergence
between pre- and post-unlearning models on retention data (Eq. 1).

5.1.4 MODEL AND TRAINING CONFIGURATION

We adopted Llama3.2-3B-Instruct (Meta, 2024) as the base model for the copyrighted information
removal task. The raw text of the Harry Potter book series is segmented into training samples of
2048 tokens each. We adopted Zephyr 7B β(Tunstall et al., 2023) as the base model following Li
et al. (2024) for hazardous knowledge mitigation. We truncated each sample in Dbio and Dcyber

to the first 512 tokens for training, which is consistent with practice in prior work Li et al. (2024).
In this task, we finetuned the model weights of all methods on designated layers that are consistent
with the official implementation of RMU for fair comparison. Following prior work, we explored
multiple hyper parameters for each algorithm and reported the best performance.

5.2 OVERALL PERFORMANCE

Hazardous Knowledge Mitigation: Table 1 presents the overall performance of all methods on the
WMDP benchmark, which shows that CATNIP achieves the highest overall quality shifts among
all retention-data-free unlearning methods. Notably, (1) RMU depends on retention data (Dretain)
and thus can be treated as an upper-bound for utility preservation. (2) When retention data are not
available during training, a random knowledge perturbation (RMU∗) or a uniform gradient penalty
(GA) leads to catastrophic forgetting. On the other hand, FLAT does not require retention data,
but hinges on manual curation of contrastive responses (Dct), which can be costly to construct,
and still suffers a noticeable utility drop compared to CATNIP. (3) NPO and SimNPO alleviate
utility degradation through weighted preference alignment, but their untokenized unlearning loss
yields limited unlearning efficacy. Overall, CATNIP demonstrates the strongest trade-off between
unlearning effectiveness and utility preservation using only the undesirable data samples.
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Table 1: Performance on WMDP unlearning tasks using Zephyr 7B β model (Tunstall et al., 2023). w/ Dr

and w/ Dct denote methods using additional retention or contrastive data. ∆f and ∆u indicate the forgetting
domain and general domain (MMLU) knowledge shifts after unlearning. The result is highlighted in blue
if the unlearning algorithm satisfies the criterion and highlighted in red otherwise. ∆O ↑ indicates overall
quality shift. The satisfaction criterion for unlearning is over 80% of RMU’s performance, and for utility
preservation is within 15% performance drop. RMU∗ denotes RMU trained with only the forget data. CATNIP
achieves optimal balanced performance among retention-data-free training methods.

Methods WMDP Bio WMDP Cyber
Bio ↓ ∆f ↓ MMLU↑ ∆u ↑ ∆O ↑ Cyber↓ ∆f ↓ MMLU↑ ∆u ↑ ∆O ↑

Base model 63.70 - 58.10 - - 44.00 - 58.10 - -

RMU (w/ Dretain) 31.89 (✓) 57.18 (✓) 30.89 26.93 (✓) 57.81 (✓) 16.78
GA + KL (w/ Dretain) 62.77 (✗) 57.29 (✓) 0.12 40.36 (✗) 59.82 (✓) 5.36
NPO + KL (w/ Dretain) 63.16 (✗) 57.67 (✓) 0.11 39.61 (✗) 57.11 (✓) 3.40
FLAT (w/ Dct) 25.61 (✓) 27.16 (✗) 7.15 24.51 (✓) 23.24 (✗) -15.37

RMU∗ 25.84 (✓) 25.50 (✗) 5.26 24.61 (✓) 25.50 (✗) -13.21
GA 24.65 (✓) 25.25 (✗) 6.20 33.77 (✗) 48.79 (✗) 0.92
NPO 62.69 (✗) 56.88 (✓) -0.21 36.89 (✗) 55.34 (✓) 4.35
SimNPO 27.10 (✓) 47.37 (✗) 25.87 34.22 (✗) 54.25 (✓) 5.93
CATNIP (Ours) 28.36 (✓) 51.37 (✓) 28.61 28.69 (✓) 53.01 (✓) 10.22

Table 2: The performance of removing Harry Potter-related information. The base model is Llama3.2-3B-
Instruct (Meta, 2024). w/ Dr and w/ Dct denote methods using additional retention or contrastive data. Know
f is the knowledge memorization using the MUSE-Bench evaluation protocol (Shi et al., 2025). Know f
(MUSE) and Know f (Extended) represent evaluation on the raw test samples of MUSE, and our extended
test samples (including the raw samples), respectively. ∆f and ∆u indicate the forgetting domain and gen-
eral domain (MMLU) knowledge shifts after unlearning, and ∆O ↑ indicates overall quality shift, which is
−∆f (Extended)+∆u. The result is highlighted in blue if the unlearning algorithm satisfies the criterion and
highlighted in red otherwise. The satisfaction criterion for unlearning is over 80% of GA’s performance, and
for utility preservation is within 15% performance drop.

Harry Potter Know f ↓
(Extended)

∆f ↓
(Extended)

Know f ↓
(MUSE)

∆f ↓
(MUSE) MMLU ↑ ∆u ↑ ∆O ↑

Base model 39.99 - 32.13 - 60.45 - -

GA + KL (w/ Dr) 38.29 (✗) 27.20 (✗) 60.18 (✓) 1.43

NPO + KL (w/ Dr) 33.62 (✗) 28.92 (✗) 59.47 (✓) 5.39

FLAT (w/ Dct) 5.44 (✓) 6.35 (✓) 50.12 (✓) 24.22

GA 0.00 (✓) 0.00 (✓) 24.87 (✗) -5.61

NPO 25.21 (✗) 24.18 (✗) 54.79 (✓) 9.12

SimNPO 6.87 (✓) 6.54 (✓) 51.84 (✓) 24.21

CATNIP (Ours) 2.29 (✓) 2.08 (✓) 52.17 (✓) 29.42

Figure 3: Forgetting quality versus utility
trade-offs on Harry Potter unlearning task.

Copyrighted Information Removal: Table 2 overviews
the performance of different unlearning methods in re-
moving knowledge related to the Harry Potter series.
CATNIP achieves the lowest or nearly the lowest mem-
ory scores in both our extended test set and the origi-
nal MUSE test set, and the highest overall quality shift
among all methods. It even outperforms unlearning
methods that depend on retention data or contrastive
data. Notably, performance trends observed on our ex-
tended dataset align closely with those on MUSE, while
our enriched test set introduces more challenging queries
that enable a more rigorous and reliable evaluation of un-
learning efficacy.

Balancing the conflicting goals of retention and un-
learning: As shown in Figure 3, baseline unlearning methods face a fundamental dilemma: in-
corporating retention data for regularization enhances general utility but simultaneously weakens
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unlearning performance (e.g. NPO+KL), while retention-data-free unlearning can exacerbate utility
degradation. In contrast, CATNIP achieves strong unlearning with minimal collateral damage on
the general utility.

5.3 IMPACTS OF TRAINING DATA VARIATIONS ON UNLEARNING EFFICACY

Figure 4: Performance comparison of retention-free
methods on forgetting Harry Potter-related knowledge
across different training datasets. Knowledge memoriza-
tion is evaluated on the extended dataset.

A key difference between CATNIP and exist-
ing unlearning methods is its token-wise ob-
jective, where each token individually con-
tributes as a training example, which makes
our method particularly effective when the
data for concept unlearning are scarce. To
verify this phenomenon, we replaced the raw
text of the Harry Potter book series with a
lightweight QA dataset, which consists of
only 132 question–answer pairs, each with
approximately 30 tokens, and is substantially
smaller in scale compared to the raw Harry
Potter corpus. As illustrated in Figure 4. With
the same amount of unlearning data, NPO
and SimNPO showed a significant drop in un-
learning effectiveness. In contrast, CATNIP
consistently outperformed all retention-free baselines while preserving the highest overall utility,
which demonstrates its robustness under limited concept training data.

5.4 EFFECTS OF CALIBRATION AND TOKENIZATION:

Table 3: Comparison of CATNIP, CATNIPref (with static
reference model), and CATNIP (w/o Tokenization) on re-
moving Harry Potter-related information using a lightweight
QA dataset.

Harry Potter Know f (Extended) ↓ MMLU↑
Base model 39.99 60.45
CATNIP 0.74 59.10
CATNIPref 21.16 60.23
CATNIP (w/o CAT) 35.04 60.29

To investigate which components in CAT-
NIP lead to a more effective and balanced
unlearning, we conducted two comparative
studies on the copyrighted information re-
moval task using the QA dataset to eval-
uate the impact of our calibrated and tok-
enized objective, as shown in Table 3. To
assess the effect of tokenization, we re-
place the original loss LCATNIP with a variant
LCATNIP(w/o CAT), defined as:

LCATNIP(w/o CAT)(θ) ≡ Ex,y∼Df

[
− log

(
1− σ

( β

|y| log
πθ(yi|x, yf<i)

1− π̂θ(yi|x, y<i)

))]
.

To evaluate the effect of the adaptively updated reference model, we replace 1 − π̄θ in LCATNIP
with a fixed reference model πref, which results in the following objective: LCATNIPref(θ) ≡
Ex,y∼Df

[
1
|y|

∑|y|
i=1 − log

(
1 − σ

(
β log

πθ(yi|x,yf<i
)

πref(yi|x,y<i)

))]
. As shown in Table 3, CATNIP notably

outperforms both CATNIP(w/o CAT) and CATNIPref in terms of unlearning effectiveness and over-
all quality shift. These results highlight that both components-(1) the fine-grained calibrated and tok-
enized loss objective, and (2) the adaptively updated reference model-complementarily contribute to
performance improvements. Each plays a distinct and complementary role in enhancing unlearning
effectiveness while preserving overall model quality.

6 CONCLUSION

In this work, we introduced CATNIP, a method for LLM unlearning that addresses training biases
arising from indiscriminate gradient updates. By leveraging calibrated, token-level model confi-
dence, CATNIP enables fine-grained and robust forgetting of undesirable knowledge while preserv-
ing general capabilities without the need for curated contrastive pairs or access to retained knowl-
edge. Through comprehensive evaluations on the MUSE and WMDP benchmarks, we demonstrated
that CATNIP outperforms existing methods in both forgetting effectiveness and utility retention, and
shows stronger training efficacy and robustness towards data format variation. Our findings affirm
the feasibility of principled and practical unlearning on LLMs.
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ETHIC STATEMENT

This work does not involve any human subjects, personally identifiable information, or sensitive
data. All experiments are conducted using publicly available datasets and open-source tools in ac-
cordance with standard research protocols. No data collection, annotation, or interaction involving
human participants was performed during this study. Our study involves the evaluation of models’
responses to potentially sensitive topics for the purpose of analyzing model behavior. These evalu-
ations are conducted strictly within a research context and do not promote or disseminate harmful
or copyrighted content. The proposed methods aim to enhance the safety and robustness of large
language models and do not introduce any foreseeable harm. As such, we believe this research does
not pose any ethical risks.

REPRODUCIBILITY STATEMENT

We have taken substantial measures to ensure the reproducibility of our work. The ar-
chitecture details, training configurations, and hyperparameters are clearly described in Sec-
tion 5.1.4. Further implementation specifics, including data preprocessing steps, are provided
in Appendix A.4. To facilitate replication, we provide an anonymous GitHub repository con-
taining source code, configuration files, and instructions necessary to reproduce our results:
https://anonymous.4open.science/r/CATNIP-23BB. We hope that this level of transparency will sup-
port further research and development based on our work.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

All ideas, experimental designs, and the overall structure and content of this paper are original
contributions of the authors. Large Language Models were solely used for non-substantive purposes
such as table formatting, grammar correction, and language polishing.

A.2 PREFERENCE ALIGNMENT OVER POLICIES

Elaboration on Equation 5:

P (πθ ≻ πβ |τ) =
exp(u(πθ, τ))

exp(u(πθ, τ)) + exp(u(πβ , τ))

=
1

1 + exp(u(πβ , τ)− u(πθ, τ))

=
1

1 + exp(β logP (πβ |τ)− β logP (πθ|τ))

=
1

1 + exp(−β log P (πθ |τ)
P (πβ |τ) )

=
1

1 + exp(−β log P (πθ |τ)
P (πβ |τ) )

= σ(β log
P (πθ|τ)
P (πβ |τ)

)

= σ(β log
P (πθ).P (τ |πθ)

P (πβ).P (τ |πβ)
)

= σ(β log
���P (πθ).P (x)πθ(y|x)
���P (πβ).P (x)πβ(y|x)

)

= σ(β log
πθ(y|x)
πβ(y|x)

),

where P (π|τ) = P (π).P (τ |π)
P (τ) ∝ P (π).P (τ |π) from Sec 3.1. P (τ |π) = π(y|x).P (x) given

τ = {x, y}. The log-utility function is u(π, τ) = log
(
P (π|τ)β

)
and σ(·) is the sigmoid func-

tion. Especially, when πβ = 1 − π̂θ, πβ and πθ is one-to-one mapped, leading to equal prior of
P (πθ) = P (πβ).

A.3 GRADIENT DERIVATION:

Without losing clarity, ∀x, y, let us denote u = β. log .πθ(y|x)
πβ(y|x) , where πβ = 1− π̂θ and is gradient-

free, one can derive that:

∇θLCATNIP = ∇u

(
− log(1− σ(u))

)
.∇θ(u) (10)

= − 1

1− σ(u)
· (−1) ·

(
σ(u)(1− σ(u)

)
· ∇θ(u) (11)

= σ(u).∇θ

(
β log

πθ(y|x)
πβ(y|x)

)
(12)

= β.
πβ
θ

πβ
θ + πβ

β

.∇θ log πθ(y|x) (13)

= β.
πβ
θ

πβ
θ + (1− πθ)β

.∇θ log πθ(y|x). (14)
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A.4 EXPERIMENT DETAILS

A.4.1 PARAMETERS AND DETAILS OF EACH METHOD FOR WMDP CYBER:

GA: learning rate=3e-5, epoch=3
GA+KL:learning rate=3e-5, epoch=3
NPO: learning rate=5e-6, β=0.05, epoch=3.
NPO+KL: learning rate=5e-6, β=0.05, epoch=3.
RMU: learning rate=5e-5, epoch=1.
RMU∗: learning rate=5e-5, epoch=1.
SimNPO: learning rate=5e-6, β=1, γ=0, epoch=1.
FLAT: learning rate=5e-6, epoch=1.
CATNIP: learning rate=5e-6, β=2, epoch=1.8. We subsample our tokenized loss with a step size of
16.

A.4.2 PARAMETERS AND DETAILS OF EACH METHOD FOR WMDP BIOLOGY:

GA: learning rate=3e-5, epoch=3
GA+KL:learning rate=3e-5, epoch=3
NPO: learning rate=5e-6, β=0.05, epoch=3.
NPO+KL: learning rate=5e-6, β=0.05, epoch=3.
RMU: learning rate=5e-5, epoch=1.
RMU∗: learning rate=5e-5, epoch=1.
SimNPO: learning rate=5e-6, β=1, γ=0, epoch=2.
FLAT: learning rate=5e-6, epoch=2.
CATNIP: learning rate=5e-6, β=2, epoch=1.8. We subsample our tokenized loss with a step size
of 16.

A.4.3 PARAMETERS OF EACH METHOD FOR HARRY POTTER (TRAINING ON RAW DATA):

GA: learning rate=3e-5, epoch=3
GA+KL:learning rate=3e-5, epoch=3
NPO: learning rate=5e-6, β=0.05, epoch=1.
NPO+KL: learning rate=5e-6, β=0.05, epoch=1.
SimNPO: learning rate=5e-6, β=4, γ=0.1, epoch=1.
FLAT: learning rate=5e-6, epoch=3.
CATNIP: learning rate=5e-6, β=6, epoch=1.

A.4.4 PARAMETERS AND DETAILS OF EACH METHOD FOR HARRY POTTER (TRAINING ON
QA):

GA: learning rate=3e-5, epoch=3
GA+KL:learning rate=3e-5, epoch=3
NPO: learning rate=5e-6, β=0.05, epoch=5.
NPO+KL: learning rate=5e-6, β=0.05, epoch=5.
SimNPO: learning rate=5e-6, β=4, γ=0, epoch=20.
FLAT: learning rate=1e-5, epoch=10.
CATNIP: learning rate=1e-5, β=1, epoch=10.

A.5 DETAILED EXPERIMENT RESULT

Figure 5 shows the forgetting quality versus utility trade-offs on the WMDP Cybersecurity task.
Table 4 and Table 5. provided ∆f and ∆u of Table 1 and Table 2.
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Figure 5: Forgetting quality versus utility trade-offs on WMDP tasks.

Table 4: Performance on WMDP unlearning tasks using Zephyr 7B β model (Tunstall et al., 2023).
w/ Dr and w/ Dct denote methods using additional retention or contrastive data. ∆f and ∆u indi-
cate the forgetting domain and general domain (MMLU) knowledge shifts after unlearning. ∆O ↑
indicates overall quality shift. RMU∗ denotes RMU trained with only the forget loss. CATNIP
achieves optimal balanced performance among retention-data-free training methods.

Methods WMDP Bio WMDP Cyber
Bio ↓ ∆f ↓ MMLU↑ ∆u ↑ ∆O ↑ Cyber↓ ∆f ↓ MMLU↑ ∆u ↑ ∆O ↑

Base model 63.70 0 58.10 0.00 0.00 44.00 0.00 58.10 0.00 0.00

RMU (w/ Dretain) 31.89 -31.81 57.18 -0.92 30.89 26.93 -17.07 57.81 -0.29 16.78
GA + KL (w/ Dretain) 62.77 -0.93 57.29 -0.81 0.12 40.36 -3.64 59.82 1.72 5.36
NPO + KL (w/ Dretain) 63.16 -0.54 57.67 -0.43 0.11 39.61 -4.39 57.11 -0.99 3.40
FLAT (w/ Dct) 25.61 -38.09 27.16 -30.94 7.15 24.51 -19.49 23.24 -34.86 -15.37

RMU∗ 25.84 -37.86 25.50 -32.60 5.26 24.61 -19.39 25.50 -32.60 -13.21
GA 24.65 -39.05 25.25 -32.85 6.20 33.77 -10.23 48.79 -9.31 0.92
NPO 62.69 -18.96 56.88 -1.22 17.74 36.89 -7.11 55.34 -2.76 4.35
SimNPO 27.10 -36.60 47.37 -10.73 25.87 34.22 -9.78 54.25 -3.85 5.93
CATNIP (Ours) 28.36 -35.34 51.37 -6.73 28.61 28.69 -15.31 53.01 -5.09 10.22

Table 5: The performance of removing Harry Potter-related information. The base model is
Llama3.2-3B-Instruct (Meta, 2024). w/ Dr and w/ Dct denote methods using additional reten-
tion or contrastive data. Know f is the knowledge memorization using the MUSE-Bench evaluation
protocol (Shi et al., 2025). Know f (MUSE) and Know f (Extended) represent evaluation on the
raw test samples of MUSE, and our extended test samples (including the raw samples), respectively.
∆f and ∆u indicate the forgetting domain and general domain (MMLU) knowledge shifts after
unlearning, and ∆O ↑ indicates overall quality shift, which is −∆f (Extended) +∆u.

Harry Potter Know f ↓
(Extended)

∆f ↓
(Extended)

Know f ↓
(MUSE)

∆f ↓
(MUSE) MMLU ↑ ∆u ↑ ∆O ↑

Base model 39.99 0.00 32.13 0.00 60.45 0.00 0.00

GA + KL (w/ Dr) 38.29 -2.30 27.20 -4.93 60.18 -0.27 1.43
NPO + KL (w/ Dr) 33.62 -6.97 28.92 -3.21 59.47 -0.98 5.39
FLAT (w/ Dct) 5.44 -35.15 6.35 -25.78 50.12 -10.33 24.22

GA 0.00 -40.59 0.00 -32.13 24.87 -35.58 -5.61
NPO 25.21 -15.38 24.18 -7.95 54.79 -5.66 9.72
SimNPO 6.87 -33.72 6.54 -25.59 51.84 -8.91 24.21
CATNIP (Ours) 2.29 -38.30 2.08 -30.05 52.17 -8.28 29.42
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A.6 CASE STUDY

Figure 6: Examples of CATNIP output compared to baseline methods.

A.7 MORE EXPERIMENT RESULT

Table 6: Additional performance of different unlearning methods on WMDP Cybersecurity tasks
using Zephyr 7B β model (Tunstall et al., 2023). w/ Dct denote methods using additional retention
or contrastive data.

Methods and parameter settings Cyber↓ MMLU↑
Base model 44.00 58.10
RMU 28.20 57.10
NPO (learning rate=5e-6, epoch=1, β=0.05) 40.11 56.79
NPO (learning rate=5e-6, epoch=3, β=0.05) 36.89 55.34
SimNPO (learning rate=5e-6, epoch=1, β=1, γ=0) 34.22 54.25
SimNPO (learning rate=5e-6, epoch=2, β=1, γ=0) 25.52 28.83
FLAT (w/ Dct) (learning rate=5e-6, epoch=1) 42.63 58.46
FLAT (w/ Dct) (learning rate=3e-6, epoch=2) 24.51 23.24
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Table 7: Additional performance of different unlearning methods on WMDP Biology tasks using
Zephyr 7B β model (Tunstall et al., 2023). w/ Dct denote methods using additional retention or
contrastive data.

Model and Parameters setting Bio↓ MMLU↑
Base model 63.70 58.10
SimNPO (learning rate=5e-6, epoch=1, β=1, γ=0) 54.05 56.11
SimNPO (learning rate=5e-6, epoch=2, β=1, γ=0) 27.10 47.37
FLAT (w/ Dct) (learning rate=5e-6, epoch=1) 63.55 58.06
FLAT (w/ Dct) (learning rate=5e-6, epoch=2) 25.61 27.16

Table 8: Additional Performance of removing Harry Potter-related information training on the Harry
Potter raw text. The base model is Llama3.2-3B-Instruct (Meta, 2024). Know f is the knowledge
memorization using the MUSE-Bench evaluation protocol (Shi et al., 2025). Know f (Extended)
represent evaluation on our extended test samples (including the raw samples).

Harry Potter Know f (Extended) ↓ MMLU↑
Base model 35.16 60.45
SimNPO (learning rate=5e-6, epoch=5, β=4) 36.87 60.28
SimNPO (learning rate=5e-6, epoch=10, β=4) 38.73 60.45
SimNPO (learning rate=5e-6, epoch=20, β=4) 21.41 60.40
SimNPO (learning rate=5e-6, epoch=20, β=0.75) 22.24 60.45

Table 9: Additional Performance of removing Harry Potter-related information training on our Harry
Potter QA dataset. The base model is Llama3.2-3B-Instruct (Meta, 2024). Know f is the knowledge
memorization using the MUSE-Bench evaluation protocol (Shi et al., 2025). Know f (Sub) is a
subsampled from our extended test samples.

Books Knowledge f (Sub) ↓ Knowledge r ↑
Base model 40.59 82.37
NPO (learning rate=1e-7, epoch=10, β=0.1) 41.59 83.20
NPO (learning rate=1e-6, epoch=10, β=0.1) 42.58 73.77
NPO (learning rate=5e-6, epoch=10, β=0.1) 38.93 46.45
NPO (learning rate=5e-6, epoch=5, β=0.1) 14.70 44.87
NPO (learning rate=1e-5, epoch=10, β=0.1) 3.63 13.20
NPO (learning rate=5e-6, epoch=5, β=0.05) 10.56 46.20
NPO (learning rate=5e-6, epoch=5, β=0.1) 14.70 44.87
NPO (learning rate=5e-6, epoch=5, β=0.2) 41.42 55.18
NPO (learning rate=5e-6, epoch=5, β=0.5) 42.08 67.33
NPO (learning rate=5e-6, epoch=5, β=1) 42.58 73.45
NPO (learning rate=5e-6, epoch=5, β=1.5) 42.58 71.15
NPO (learning rate=5e-6, epoch=5, β=2) 40.60 69.54
NPO (learning rate=5e-6, epoch=10, β=0.05) 6.11 15.43
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