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Abstract

One of the most popular ML algorithms, ADABOOST, can be derived from the
dual of a relative entropy minimization problem subject to the fact that the positive
weights on the examples sum to one. Essentially, harder examples receive higher
probabilities. We generalize this setup to the recently introduced tempered expo-
nential measures (TEMs) where normalization is enforced on a specific power of
the measure and not the measure itself. TEMs are indexed by a parameter ¢ and
generalize exponential families (f = 1). Our algorithm, -ADABOOST, recovers
ADABOOST as a special case (t = 1). We show that t-ADABOOST retains AD-
ABOOST’s celebrated exponential convergence rate on margins when ¢ € [0, 1)
while allowing a slight improvement of the rate’s hidden constant compared to
t = 1. :-ADABOOST partially computes on a generalization of classical arithmetic
over the reals and brings notable properties like guaranteed bounded leveraging
coefficients for ¢ € [0, 1). From the loss that t-~ADABOOST minimizes (a general-
ization of the exponential loss), we show how to derive a new family of tempered
losses for the induction of domain-partitioning classifiers like decision trees. Cru-
cially, strict properness is ensured for all while their boosting rates span the full
known spectrum of boosting rates. Experiments using t-ADABOOST+trees display
that significant leverage can be achieved by tuning .

1 Introduction

ADABOOST is one of the most popular ML algorithms [8}, 30]. It efficiently aggregates weak
hypotheses into a highly accurate linear combination [[10]. The common motivations of boosting
algorithms focus on choosing good linear weights (the leveraging coefficients) for combining the
weak hypotheses. A dual view of boosting highlights the dual parameters, which are the weights on
the examples. These weights define a distribution, and ADABOOST can be viewed as minimizing
a relative entropy to the last distribution subject to a linear constraint introduced by the current
hypothesis [12]. For this reason (more in §[2), ADABOOST’s weights define an exponential family.

In this paper, we go beyond weighing the examples with a discrete exponential family distribution,
relaxing the constraint that the total mass be unit but instead requiring it for the measure’s 1/(2 —t)’th
power, where t is a temperature parameter. Such measures, called tempered exponential measures
(TEMs), have been recently introduced [4]]. Here we apply the discrete version of these TEMs for
deriving a novel boosting algorithm called t-ADABOOST. Again the measures are solutions to a
relative entropy minimization problem, but the relative entropy is built from Tsallis entropy and
“tempered” by a parameter t. As ¢ — 1 TEMs become standard exponential family distributions and
our new algorithm merges into ADABOOST. As much as ADABOOST minimizes the exponential loss,
t-ADABOOST minimizes a generalization of this loss we denote as the tempered exponential loss.

TEMs were introduced in the context of clustering, where they were shown to improve the robustness
to outliers of clustering’s population minimizers [4]]. They have also been shown to bring low-level
sparsity features to optimal transport [3]. Boosting is a high-precision machinery: ADABOOST is
known to achieve near-optimal boosting rates under the weak learning assumption [[1]], but it has
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long been known that numerical issues can derail it, in particular, because of the unbounded weight
update rule [14]]. So the question of what the TEM setting can bring for boosting is of primordial
importance. As we show, --ADABOOST can suffer no rate setback as boosting’s exponential rate of
convergence on margins can be preserved for all ¢ € [0, 1). Several interesting features emerge: the
weight update becomes bounded, margin optimization can be tuned with t to focus on examples with
very low margin and besides linear separators, the algorithm can also learn progressively clipped
modelﬂ Finally, the weight update makes appear a new regime whereby weights can "switch off
and on": an example’s weight can become zero if too well classified by the current linear separator,
and later on revert to non-zero if badly classified by a next iterate. t-ADABOOST makes use of a
generalization of classical arithmetic over the reals introduced decades ago [18]].

Boosting algorithms for linear models like ADABOOST bring more than just learning good linear
separators: it is known that (ada)boosting linear models can be used to emulate the training of
decision trees (DT) [[L6], which are models known to lead to some of the best of-the-shelf classifiers
when linearly combined [9]. Unsurprisingly, the algorithm obtained emulates the classical top-down
induction of a tree found in major packages like CART [6] and C4.5 [23]]. The loss equivalently
minimized, which is, e.g., Matusita’s loss for ADABOOST [30} Section 4.1], is a lot more consequen-
tial. Contrary to losses for real-valued classification, losses to train DTs rely on the estimates of the
posterior learned by the model; they are usually called losses for Class Probability Estimation (CPE
[25])). The CPE loss is crucial to elicit because (i) it is possible to check whether it is "good" from the
standpoint of properness (Bayes rule is optimal for the loss [28]), and (ii) it conditions boosting rates,
only a handful of them being known, for the most popular CPE losses [[11} 22} 31].

In this paper, we show that this emulation scheme on ¢t-ADABOOST provides a new family of CPE
losses with remarkable constancy with respect to properness: losses are strictly proper (Bayes rule
is the sole optimum) for any ¢t € (—o0,2) and proper for ¢ = —oo. Furthermore, over the range
t € [—o0, 1], the range of boosting rates spans the full spectrum of known boosting rates [L1].

We provide experiments displaying the boosting ability of t--ADABOOST over a range of ¢t encom-
passing potentially more than the set of values covered by our theory, and highlight the potential of
using ¢ as a parameter for efficient tuning the loss [25, Section 8]. Due to a lack of space, proofs are
relegated to the appendix (APP.). A primer on TEMs is also given in APP., Section/I}

2 Related work

Boosting refers to the ability of an algorithm to combine the outputs of moderately accurate, "weak"
hypotheses into a highly accurate, "strong" ensemble. Originally, boosting was introduced in
the context of Valiant’s PAC learning model as a way to circumvent the then-existing amount of
related negative results [10,134]]. After the first formal proof that boosting is indeed achievable [29]],
ADABOOST became the first practical and proof-checked boosting algorithm [8, 30]. Boosting was
thus born in a machine learning context, but later on, it also emerged in statistics as a way to learn
from class residuals computed using the gradient of the loss [9} 21]], resulting this time in a flurry of
computationally efficient algorithms, still called boosting algorithms, but for which the connection
with the original weak/strong learning framework is in general not known.

Our paper draws its boosting connections with ADABOOST’s formal lineage. ADABOOST has spurred
a long line of work alongside different directions, including statistical consistency [S]], noise handling
[15}[16], low-resource optimization [22], etc. The starting point of our work is a fascinating result in
convex optimization establishing a duality between the algorithm and its memory of past iteration’s
performances, a probability distribution of so-called weights over examples [12]]. From this standpoint,
ADABOOST solves the dual of the optimization of a Bregman divergence (constructed from the
negative Shannon entropy as the generator) between weights subject to zero correlation with the
last weak classifier’s performance. As a consequence, weights define an exponential family. Indeed,
whenever a relative entropy is minimized subject to linear constraints, then the solution is a member of
an exponential family of distributions (see e.g. [2) Section 2.8.1] for an axiomatization of exponential
families). ADABOOST’s distribution on the examples is a member of a discrete exponential family
where the training examples are the finite support of the distribution, sufficient statistics are defined
from the weak learners, and the leveraging coefficients are the natural parameters. In summary, there

'Traditionally, clipping a sum is done after it has been fully computed. In our case, it is clipped after each
new summand is added.



is an intimate relationship between boosting a-la-ADABOOST, exponential families, and Bregman
divergences [7, 12} 20] and our work "elevates" these methods above exponential families.

3 Definitions
We define the ¢-logarithm and ¢-exponential [[17, Chapter 7],
log,(z) = 7= (2" =1) . ewi(z) = [+ 1=z ([z]s = max{0,2)), (1)

where the case t = 1 is supposed to be the extension by continuity to the log and exp functions,
respectively. To preserve the concavity of log, and the convexity of exp,, we need ¢ > 0. In the
general case, we also note the asymmetry of the composition: while exp, log,(z) = z,Yt € R, we
have log, exp,(z) = z fort = 1 (Vz € R), but

z} (t>1).

Comparisons between vectors and real-valued functions written on vectors are assumed component-
wise. We assume ¢ # 2 and define notation t* = 1/(2 — t). We now define the key set in which we
model our weights (boldfaces denote vector notation).

Definition 3.1. The co-simplex of R™, A,,, is defined as A,,, = {ge R™ : ¢ = 0 A 1Tg4t" = 1}.

1
log, exp,(z) = max {1t’ z} (t<1) and log,exp,(z) = min {tl’

The letters g will be used to denote TEMs in A,,, while p denote the co-density q%* or any element
of the probability simplex. We define the general tempered relative entropy as

Di(d'|lq) = ). d - (log,q; —log, ¢:) —log;_, ¢} +log, ; g, )

i€[m]

where [m] = {1,...,m}. The tempered relative entropy is a Bregman divergence with convex
generator ¢;(z) = zlog, z — log,_;(z) (for t € R) and ¢:(z)" = log,(x). Ast — 1, D:(q,q’)
becomes the relative entropy with generator @1 () = 2 log(z) — x.

4 Tempered boosting as tempered entropy projection

We start with a fixed sample 8 = {(x;,y;) : ¢ € [m]} where observations x; lie in some domain X
and labels y; are 1. ADABOOST maintains a distribution p over the sample. At the current iteration,
this distribution is updated based on a current weak hypothesis h € R* using an exponential update:

;) DPi exp(—pu;)

p; = , where u; = y;h(x;),p e R.
S exp(—pue) @)

In [12] this update is motivated as minimizing a relative entropy subject to the constraint that p’ is a
distribution summing to 1 and p’Tu = 0. Following this blueprint, we create a boosting algorithm
maintaining a discrete TEM over the sample which is motivated as a constrained minimization of the
tempered relative entropy, with a normalization constraint on the co-simplex of R™:

g = arg min Dy(q|qg), withueR™. )
geAy,

6Tu:0

We now show that the solution g’ is a tempered generalization of ADABOOST’s exponential update.
Theorem 1. For all t € R\{2}, all solutions to (B)) have the form

1 i — MU i — U . . _ _ =
q; _ expt( Othq pnu ) (_ q ®t eXZpt( Hu )’ Wlth(l@t b= [al t + bl t_ 1]i t> ; (4)
t t

where Z, ensures co-simplex normalization of the co-density. Furthermore, the unknown p satisfies

p € argmax — log,(Zy(p)) (= argmin Z(p)), (5)



Algorithm 1 t-ADABOOST(t, 8, J)

Input: ¢ € [0, 1], training sample 8, #iterations J;
Output: classifiers Hj, Hy/l*f') (see O));
Step 1 : initialize tempered weights: q; = (l/mf'*) ‘1 (eAn);
Step2:forj=1,2,...,J
Step 2.1 : get weak classifier h; < weak_learner(q;, S);
Step 2.2 : choose weight update coefficient p; € R;
Step 2.3 : Vi € [m], for u;; = y;h;(=;), update the tempered weights as

Qi @t expy(—pjuj;)
GGeny = 2 Z;- 72 where Zy; = |q; ® expt(—ujuj)Hl/t* ) (8)

Step 2.4 : choose leveraging coefficient a; € R;

or equivalently is a solution to the nonlinear equation

d(w'u = 0 (6)

Finally, if either (i) t € R>o\{2} or (ii) t = 0 and q is not collinear to u, then Z(1) is strictly
convex: the solution to (3)) is thus unique, and can be found from expression (&) by finding the unique
minimizer of (3) or (equivalently) the unique solution to (6).

(Proof in APP., Section[IL.1)) The ¢-product ®;, which satisfies exp,(a + b) = exp,(a) @ exp,(b),
was introduced in [18]]. Collinearity never happens in our ML setting because w contains the edges of
a weak classifier: g > 0 and collinearity would imply that + the weak classifier performs perfect
classification, and thus defeats the purpose of training an ensemble. V¢ € R\{2}, we have the
simplified expression for the normalization coefficient of the TEM and the co-density p’ of ¢’

D px €Xp _ g
Zy = |lexp, (log, @ — - W)y s 5 P = —— Zt,*( )
t

(with Zl = Zj/t*) G
S Tempered boosting for linear classifiers and clipped linear classifiers

Models A model (or classifier) is an element of R*. For any model H, its empirical risk over § is
Fo, (H,8) = (1/m) - >3 [yi # sign(H (z;))] where [.], Iverson’s bracket [13], is the Boolean value
of the inner predicate. We learn linear separators and clipped linear separators. Let (v;),;>1 be the
terms of a series and 0 > 0. The clipped sum of the series is:

(=9)

o 5
Eja)Z v; = min<{ §,max<{ —0,v5 + @ 2 Vj (e [-6,46]), for J > 1,
] jelJ—1]

jelJ

and we define the base case J = 1 by replacing the inner clipped sum with 0. Note that clipped
summation is non-commutative, and so is different from clipping in [—4, 6] the whole sum itsel
Given a set of so-called weak hypotheses h; € R¥ and leveraging coefficients a; € R (for j € [J)),
the corresponding linear separators and clipped linear separators are

. 5 . (9
Hy(x) = > ajhi(x) 5 HY(x) = (_6)2 ajhj(@). 9)
JelJ] jelJ]

Tempered boosting and its general convergence Our algorithm, t-ADABOOST, is presented in
Algorithm I} using presentation conventions from [30]]. Before analyzing its convergence, several
properties are to be noted for --ADABOOST: first, it keeps the appealing property, introduced by
ADABOOST, that examples receiving the wrong class by the current weak classifier are reweighted

’Fix for example a = —1,b = 3,8 = 2. For v1 = a,ve = b, the clipped sum is 2 = —1 + 3, but for
v1 = b,v2 = a, the clipped sum becomes 1 =2 — 1.



higher (if y+; > 0). Second, the leveraging coefficients for weak classifiers in the final classifier (c;s)
are not the same as the ones used to update the weights (y;s), unless ¢ = 1. Third and last, because
of the definition of exp, (1)), if ¢ < 1, tempered weights can switch off and on, i.e., become 0 if an
example is "too well classified" and then revert back to being > 0 if the example becomes wrongly
classified by the current weak classifier (if 1; > 0). To take into account those zeroing weights,

we denote [m]T = {i:q;; = 0} and mT = Card([ ]T) (V4 € [J] and Card denotes the cardinal).
Let ; = max,, |yz j(®i)l/g;; " and q] = MAX,ef,)1 lyih ()| /(O t)/Rl/ =9 Tt is worth
noting that q; is homogeneous to a tempered weight.

Theorem 2. At iteration j, define the weight function q;-i =q;ifi¢ [m]; and q; otherwise; set

pj = > duihy(xs) (e [-1,1]). (10)
(1+m qT )R] i€e[m] !

In algorithm t-ADABOOST, consider the choices (with the convention ]_[2,:1 v = 1)

1 1-p SR
= ——lo — = (T2 g, (11
TR, gt<M1t(1_pj71+pj)) I ,Bl ’ #ar (D

where M,(a,b) = ((a? + b2)/2)Y4 is the q-power mean. Then for any H € {H, HL(Il/lft)}, its
empirical risk is upperbounded as:

J

it < [177 < TT (o™ ) Kt (K692 =2 ) 02

j=1 j=1

(Proof in APP., Section[[I.2)) We jointly comment --ADABOOST and Theorem 2]in two parts.

Caset — 17: {-ADABOOST converges to ADABOOST and Theoremto its convergence analysis:
t-ADABOOST converges to ADABOOST as presented in [30, Figure 1]: the tempered simplex be-
comes the probability simplex, ®; converges to regular multiplication, weight update (8) becomes
ADABOOST’s, oj — (15 in (TI) and finally the expression of 1; converges to ADABOOST’s leverag-
ing coefficient in [30] (lim;—,q M1_;(a,b) = \/@). Even guarantee converges to ADABOOST’s
popular guarantee of [30, Corollary 1] (lim;_,; K;(2) = v/1 — 22, m} = 0). Also, in this case, we

learn only the unclipped classifier since lim,_,,- H (A=) _ g J-

Case t < 1: Let us first comment on the convergence rate. The proof of Theorem [2] shows that
Ki(z) < exp(—22/(2t*)). Suppose there is no weight switching, so m;- = 0,Vj (see Section
and, as in the boosting model, suppose there exists v > 0 such that |p;| > ~,Vj. Then t-
ADABOOST is guaranteed to attain empirical risk below some € > 0 after a number of iterations
equal to J = (2t*/4?) - log(1/e). t* being an increasing function of ¢ € [0, 1], we see that ¢-
ADABOOST is able to slightly improve upon ADABOOST’s celebrated rate [32]]. However, t* = 1/2
for ¢t = 0 so the improvement is just on the hidden constant. This analysis is suited for small values
of |p;| and does not reveal an interesting phenomenon for better weak hypotheses. Figurecompares
Ki(z) curves (K7 (z) = lim;—,1 K¢(2) = v/1 — 22 for ADABOOST, see [30, Corollary 1]), showing
the case ¢t < 1 can be substantially better, especially when weak hypotheses are not "too weak". If
mT > (), switching Weights can impede our convergence analysis, though exponential convergence is

always possible if m! 1s small enough; also, when it is not, we may in fact have converged to a
good model (see API; i{emark [[). A good criterion to train weak hypotheses is then the optimization
of the edge p;, thus using q’; normalized in the simplex. Other key features of t-ADABOOST are as
follows. First, the weight update and leveraging coefficients of weak classifiers are bounded because
|| < 1/(R;(1—t)) (APP.,, LemmalH) (this is not the case for ¢ — 17). This guarantees that new
weights are bounded before normalization (unlike for ¢ — 17). Second, we remark that u; # «;

if t # 1. Factor m'~*" is added for convergence analysis purposes; we can discard it to train the
unclipped classifier: it does not change its empirical risk. This is, however, different for factor

1—[5;11 Zy.: from (12), we conclude that this is an indication of how well the past ensemble performs.
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Figure 1: Plot of K;(z) in (I2), ¢ € [0, 1] (the smaller, the better for convergence).

As it gets better and better, it progressively dampens the leverage of the next weak classifiers, a
phenomenon that does not occur in boosting, where an excellent weak hypothesis on the current
weights can have a leveraging coefficient so large that it wipes out the classification of the past ones.
This can be useful to control numerical instabilities.

Extension to margins A key property of boosting algorithms like ADABOOST is to be able to
boost not just the empirical risk but more generally margins [19} 30], where a margin integrates both
the accuracy of label prediction but also the confidence in prediction (say | H|). We generalize the
margin notion of [19] to the tempered arithmetic and let v ((x, y), H) = tanh;(yH (x)/2) denote the
margin of H on example (x,y), where tanh;(z) = (1 — exp,(—22))/(1 + exp,(—2z))(e [-1,1])
is the tempered hyperbolic tangent. The objective of minimizing the empirical risk is generalized
to minimizing the margin risk, Fy ¢(H,8) = (1/m) - >}, [ve((x4,y:), H) < 0], where 0 € (—1,1).
Guarantees on the empirical risk are guarantees on the margin risk for § = 0 only. In just a few
steps, we can generalize Theorem to all 6 € (—1,1). For space reason, we state the core part of the
generalization, from which extending it to a generalization of Theorem 2]is simple.

Theorem 3. Forany 0 € (—1,1) andt € [0, 1], the guarantee of algorithm t-ADABOOST in Theorem
[l extends to the margin risk, with notations from Theorem 2} via:

1+9 2—t J B
Fo(H,8) < (1_0> [Tz (13)

Jj=1

(Proof in APP., Section[[L.3) At a high level, --ADABOOST brings similar margin maximization
properties as ADABOOST. Digging a bit in (I3)) reveals an interesting phenomenon for ¢ 1 on how
margins are optimized compared to ¢ = 1. Pick § < 0, so we focus on those examples for which the
classifier H has high confidence in its wrong classification. In this case, factor ((1+6)/(1—8))?~"is
increasing as a function of ¢ € [0, 1] (and this pattern is reversed for § > 0). In words, the smaller we
pick ¢ € [0, 1] and the better is the bound in (13)), suggesting increased "focus" of t-ADABOOST on
increasing the margins of examples with low negative margin (e.g. the most difficult ones) compared
to the case t = 1.

The tempered exponential loss In the same way as ADABOOST introduced the now famous
exponential loss, (I2) recommends to minimize the normalization coefficient, following (7)),

ES
ZE () = |exp, (log, q; —pr- UJ)WZ* (with uji = yih;(2i)) . (14)

We cannot easily unravel the normalization coefficient to make appear an equivalent generalization of
the exponential loss, unless we make several assumptions, one being max; |h;(;)| is small enough
for any j € [J]. In this case, we end up with an equivalent criterion to minimize which looks like

1
F(H.8) = — ) expi™ (—y:H(x:), (15)



where we have absorbed in H the factor m!~* appearing in the exp, (scaling H by a positive value

does not change its empirical risk). This defines a generalization of the exponential loss which we
call the tempered exponential loss. Notice that one can choose to minimize Fy(H, 8) disregarding
any constraint on | H |.

6 A broad family of boosting-compliant proper losses for decision trees

Losses for class probability estimation When it comes to tabular data, it has long been known that
some of the best models to linearly combine with boosting are decision trees (DT, [9]). Decision trees,
like other domain-partitioning classifiers, are not trained by minimizing a surrogate loss defined over
real-valued predictions, but defined over class probability estimation (CPE, [20]), those estimators
being posterior estimation computed at the leaves. Let us introduce a few definitions for those. A
CPEloss ¢ : {—1,1} x [0,1] —> Ris

ly,u) = [y=1] -bu) + [y =—1] - L1 (w). (16)
Functions ¢1, ¢_ are called partial losses. The pointwise conditional risk of local guess u € [0, 1]
with respect to a ground truth v € [0, 1] is:
L(u,v) = v-Li(u)+ (1 —v) - l_1(u). (17)
A loss is proper iff for any ground truth v € [0,1], L(v,v) = inf, L(u,v), and strictly proper
iff u = v is the sole minimizer [26]]. The (pointwise) Bayes risk is L(v) = inf, L(u,v). The
log/cross-entropy-loss, square-loss, Matusita loss are examples of CPE losses. One then trains a
DT minimizing the expectation of this loss over leaves’ posteriors, Ex[L(py)], px being the local
proportion of positive examples at leaf A — or equivalently, the local posterior.

Deriving CPE losses from (ada)boosting Recently, it was shown how to derive in a general way
a CPE loss to train a DT from the minimization of a surrogate loss with a boosting algorithm [16]. In
our case, the surrogate would be Z;; (T4) and the boosting algorithm, t-ADABOOST. The principle is
simple and fits in four steps: (i) show that a DT can equivalently perform simple linear classifications,
(ii) use a weak learner that designs splits and the boosting algorithm to fit the leveraging coefficient
and compute those in closed form, (iii) simplify the expression of the loss using those, (iv) show
that the expression simplified is, in fact, a CPE loss. To get (i), we remark that a DT contains a tree
(graph). One can associate to each node a real value. To classify an observation, we sum all reals
from the root to a leaf and decide on the class based on the sign of the prediction, just like for any
real-valued predictor. Suppose we are at a leaf. What kind of weak hypotheses can create splits "in
disguise"? Those can be of the form
hi(@) = [or=a5] b5, a;,b; €R,

where the observation variable x, is assumed real valued for simplicity and the test [z > a;] splits
the leaf’s domain in two non-empty subsets. This creates half of the split. h;(x) = [z < a;] - —b;
creates the other half of the split. Remarkably h; satisfies the weak learning assumption iff /; does
[L6]. So we get the split design part of (ii). We compute the leveraging coefficients at the new leaves
from the surrogate’s minimization / boosting algorithm, end up with new real predictions at the new
leaves (instead of the original b;, —b;), push those predictions in the surrogate loss for (iii), simplify
it and, quite remarkably end up with a loss of the form Ey[L(py)], where L turns out to be the
pointwise Bayes risk L of a proper loss [16]] (notation from [26]).

In the case of [[16], it is, in fact, granted that we end up with such a "nice" CPE loss because of the
choice of the surrogates at the start. In our case, however, nothing grants this a priori if we start

from the tempered exponential loss th (T4) so it is legitimate to wonder whether such a chain of
derivations (summarized) can happen to reverse engineer an interesting CPE loss:

th 5L ® R eﬁ”; E(_t)l (proper ? strictly proper ? for which ts ?, ...) (18)

When such a complete derivation happens until the partial losses ¢;; ¢_; and their properties, we shall
write that minimizing Z;; elicits the corresponding loss and partial losses.

Theorem 4. Minimizing th elicits the CPE loss we define as the tempered loss, with partial losses:
2—t
1—u
00 () = /D) =W — te[—ow,2]). 19
Vo= (=) w40, tefea) a9
The tempered loss is symmetric, differentiable, strictly proper for t € (—o0, 2) and proper for t = —oo.
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Table 1: Experiments on t-ADABOOST comparing with ADABOOST (¢ = 1, bullets) on three domains
(rows), displaying from left to right the estimated true error of non-clipped and clipped models, and
the min and max codensity weights. These domains were chosen to give an example of three different
situations: small values of ¢ perform well (abalone), the best performance is achieved by the largest
t (e.g. ADABOOST, gsar), and the worst performance is achieved by the largest ¢ (adult). Topmost
row is without noise ( = 0) while the others are with 10% training noise; ¢ scale displayed with
varying color and width (colormap indicated on each plot). Averages shown for readability: see Table
|Z| for exhaustive statistical tests.

Differentiability means the partial losses are differentiable, and symmetry follows from the re-

lationship between partial losses [20] (the proof, in APP., Section [[T.4] derives the infinite case,

Zg_oc) (u) =2 - [u < 1/2])) Let us explicit the Bayes risk of the tempered loss and a key property.

Lemma 1. The Bayes risk of the tempered loss is (M, defined in Theorem EI)
2u(l — u)

My_(u, 1 —u)’

and it satisfies Yu € [0,1],Vz € [2 - min{u, 1 — u}, 1], 3t € [0, 2] such that LD (u) = .

LO(u) = (20)

Lemmal[I] whose proof is trivial, allows to show a key boosting result: ¢ = 1 retrieves Matusita’s
loss, for which a near-optimal boosting rate is known [[11] while ¢ = —o0 retrieves the empirical risk,
which yields the worst possible guarantee [[11]]. In between, we have, for example, CART’s Gini
criterion for ¢ = 0, which yields an intermediate boosting guarantee. Continuity with respect to ¢
of the Bayes risks in between the empirical risk and Matusita’s loss means the boosting ranges of
the tempered loss cover the full known spectrum of boosting rates for t € [—o0, 1]. We know of no
(differentiable and) proper CPE loss with such coverage. Note that (i) this is a non-constructive result
as we do not associate a specific ¢ for a specific rate, and (ii) the state-of-the-art boosting rates for DT
induction do not seem to cover the case ¢ € (1,2), thus left as an open question.

7 Experiments

We have performed experiments on a testbed of 10 UCI domains, whose details are given in APP. (Sec-
tion[A3)). Experiments were carried out using a 10-fold stratified cross-validation procedure.



To compare t-ADABOOST with ADABOOST, we ran t-ADABOOST with a first range of values of
t €{0.0,0.2,0.4,0.6,0.8,0.9}. This is in the range of values covered by our convergence result for
linear separators in Theorem [2] Our results on decision tree induction cover a much wider range,
in particular for ¢ € (1,2). To assess whether this can be an interesting range to study, we added
t = 1.1 to the set of tested ¢ values. When ¢ > 1, some extra care is to be put into computations
because the weight update becomes unbounded, in a way that is worse than ADABOOST. Indeed,
as can be seen from (), if p;y;h;(x;) < —1/(t — 1) (the example is badly classified by the current
weak hypothesis, assuming wlog 1; > 0), the weight becomes infinity before renormalization. In our
experiments, picking a value of ¢ close to 2 clearly shows this problem, so to be able to still explore
whether ¢ > 1 can be useful, we picked a value close to 1, namely ¢t = 1.1, and checked that in our
experiments this produced no such numerical issue. We also considered training clipped and not
clipped models.

All boosting models were trained for a number of J = 20 decision trees (The appendix provides
experiments on training bigger sets). Each decision tree is induced using the tempered loss with the
corresponding value of ¢ (see Theorem ) following the classical top-down template, which consists
in growing the current heaviest leaf in the tree and picking the best split for the leaf chosen. We
implemented t-ADABOOST exactly as in Section [5] including computing leveraging coefficients
as suggested. Thus, we do not scale models. More details are provided in the appendix. In our
experiments, we also included experiments on a phenomenon highlighted more than a decade ago
[[LS]] and fine-tuned more recently [[16], the fact that a convex booster’s model is the weakest link
when it has to deal with noise in training data. This is an important task because while the tempered
exponential loss is convex, it does not fit into the blueprint loss of [[15 Definition 1] because it is not
Clif t # 1. One might thus wonder how t-ADABOOST behaves when training data is affected by
noise. Letting 1 denote the proportion of noisy data in the training sample, we tried n € {0.0, 0.1}
(The appendix provides experiments on more noise levels). We follow the noise model of [[15] and
thus independently flip the true label of each example with probability 7.

For each run, we recorded the average test error and the average maximum and minimum co-density
weight. Table[I] presents a subset of the results obtained on three domains. Table [2] presents a more
synthetic view in terms of statistical significance of the results for ¢ # 1 vs. ¢ = 1 (ADABOOST). The
table reports only results for ¢ > 0.6 for synthesis purposes. Values ¢ < 0.6 performed on average
slightly worse than the others bur on some domains, as the example of abalone suggests in Table[Z]
(the plots include all values of ¢ tested in [0, 1.1]), we clearly got above-par results for such small
values of ¢, both in terms of final test error but also fast early convergence to low test error. This
comment can be generalized to all values of t.

The weights reveal interesting patterns as well. First, perhaps surprisingly, we never encountered the
case where weights switch off, regardless of the value of ¢. The average minimum weight curves of
Table[T|generalize to all our tests (see the appendix). This does not rule out the fact that boosting for a
much longer number of iterations might lead to weights switching off/on, but the fact that this does not
happen at least early during boosting probably comes from the fact that the leveraging coefficients for
weights (u.) are bounded. Furthermore, their maximal absolute value is all the smaller as ¢ decreases
to 0. Second, there is a pattern that also repeats on the maximum weights, not on all domains but on
a large majority of them and can be seen in abalone and adult in Table[T} the maximum weight
of ADABOOST tends to increase much more rapidly compared to t-ADABOOST with ¢ < 1. In the
latter case, we almost systematically observe that the maximum weight tends to be upperbounded,
which is not the case for ADABOOST (the growth of the maximal weight looks almost linear). Having
bounded weights could be of help to handle numerical issues of (ada)boosting [14]].

Our experiments certainly confirm the boosting nature of t-ADABOOST if we compare its convergence
to that of ADABOOST: more often than not, it is in fact comparable to that of ADABOOST. While this
applies broadly for ¢ > 0.6, we observed examples where much smaller values (even ¢ = 0.0) could
yield such fast convergence. Importantly, this applies to clipped models as well and it is important
to notice because it means attaining a low "boosted" error does not come at the price of learning
models with large range. This is an interesting property: for ¢ = 0.0, we would be guaranteed that the
computation of the clipped prediction is always in [—1, 1]. Generalizing our comment on small values
of t above, we observed that an efficient tuning algorithm for ¢ could be able to get very substantial
leverage over ADABOOST. Table [J] was crafted for a standard limit p-val of 0.1 and "blurs" the best
results that can be obtained. On several domains (winered, abalone, eeg, creditcard, adult),
applicable p-values for which we would conclude that some ¢ # 1 performs better than ¢ = 1 drop in



n 0.0 0.1
t| 0.6 0.8 0.9 1.1 0.6 0.8 0.9 1.1
[clipped] O | T |O| T |O|1|O|1|fO]1]|O]1]|O]1]O] 1
#better [ 2 |3 |1 [2]1]3 L1 |1]2]2]1
#equivalent | 5 |5 | 6|6 |7 |76 7|48 |8|7[8|9|8]10
H#worse | 32322 4 1315|1111 2

Table 2: Outcomes of student paired ¢-tests over 10 UCI domains, with training noise n € {0.0, 0.1},
for ¢t € {0.6,0.8,0.9,1.0,1.1} and with / without clipped models. For each triple (7, ¢, [clipped]),
we give the number of domains for which the corresponding setting of ¢-ADABOOST is statistically
better than ADABOOST(#better), the number for which it is statistically worse (#worse) and the
number for which we cannot reject the assumption of identical performances. Threshold p—val = 0.1.

between 7E — 4 and 0.05. Unsurprisingly, ADABOOST also manages to beat significantly alternative
values of ¢ in several cases. Our experiments with training noise (n = 0.1) go in the same direction.
Looking at Table[] one could eventually be tempted to conclude that ¢ slightly smaller than 1.0 may
be a better choice than adaboosting (f = 1), as suggested by our results for ¢ = 0.9, but we do not
think this produces a general "rule-of-thumb". There is also no apparent "noise-dependent” pattern
that would obviously separate the cases ¢ < 1 from ¢ = 1 even when the tempered exponential
loss does not fit to [15]]’s theory. Finally, looking at the results for ¢ > 1 also yields the same basic
conclusions, which suggests that boosting can be attainable outside the range covered by our theory
(in particular Theorem 2).

All this brings us to the experimental conclusion that the question does not reside on opposing the
case t # 1 to the case t = 1. Rather, our experiments suggest — pretty much like our theory does
— that the actual question resides in how to efficiently learn t on a domain-dependent basis. Our
experiments indeed demonstrate that substantial gains could be obtained, to handle overfitting or
noise.

8 Discussion, limitations and conclusion

ADABOOST is one of the original and simplest Boosting algorithms. In this paper we generalized
ADABOOST to maintaining a tempered measure over the examples by minimizing a tempered
relative entropy. We kept the setup as simple as possible and therefore focused on generalizing
ADABOOST. However more advanced boosting algorithms have been designed based on relative
entropy minimization subject to linear constraints. There are versions that constrain the edges of
all past hypotheses to be zero [36]. Also, when the maximum margin of the game is larger than
zero, then ADABOOST cycles over non-optimal solutions [27]]. Later Boosting algorithms provably
optimize the margin of the solution by adjusting the constraint value on the dual edge away from zero
(see e.g. [24]). Finally, the ELRP-Boost algorithm optimizes a trade off between relative entropy
and the edge [35]. We conjecture that all of these orthogonal direction have generalizations to the
tempered case as well and are worth exploring.

These are theoretical directions that, if successful, would contribute to bring more tools to the design
of rigorous boosting algorithms. This is important because boosting suffers several impediments, not
all of which we have mentioned: for example, to get statistical consistency for ADABOOST, it is
known that early stopping is mandatory [5]. More generally, non-Lipschitz losses like the exponential
loss seem to be harder to handle compared to Lipschitz losses [33]] (but they yield in general better
convergence rates). The validity of the weak learning assumption of boosting can also be discussed,
in particular regarding the negative result of [[15] which advocates, beyond just better (ada)boosting,
for boosting for more classes of models / architectures [[16]. Alongside this direction, we feel that
our experiments on noise handling give a preliminary account of the fact that there is no "one ¢ fits
all" case, but a much more in depth analysis is required to elicit / tune a "good" ¢. This is a crucial
issue for noise handling [[16], but as we explain in Section [/} this could bring benefits in much wider
contexts as well.
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Appendix
Abstract

This is the Appendix to Paper "Boosting with Tempered Exponential Measures".
To differentiate with the numberings in the main file, the numbering of Theorems,
Lemmata, Definitions is letter-based (A, B, ...).

Table of contents

A short primer on Tempered Exponential Measures Pg|[14]
Supplementary material on proofs Pg
< Proof of Theorem ]| Pg
< Proof of Theorem [2] Pg

< Proof of Theorem 3| Pg
< Proof of Theorem 4] Pg[27]
Supplementary material on experiments Pg
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I A short primer on Tempered Exponential Measures

We describe here the minimal amount of material necessary to understand how our approach to
boosting connects to these measures. We refer to [4] for more details. With a slight abuse of notation,
we define the perspective transforms (log, )* (2) = t*-log,s (z/t*) and (exp,)*(z) = t*-exp,« (z/t*).
Recall that t* = 1/(2 — t).

Definition A. [4] A tempered exponential measure (TEM) family is a set of unnormalized densities
in which each element admits the following canonical expression:

T xr a —
wol@) = S0 EL) — o (67 p(2) 01 Gi(6) (a0i0= T ) @D

where 0 is the element’s natural parameter, @(x) is the sufficient statistics and

G(6) = (log)* f (expy)* (07 ()

is the (convex) cumulant, £ being a base measure (implicit).

Except for t = 1 (which reduces a TEM family to a classical exponential family), the total mass of a
*
TEM is not 1 (but it has an elegant closed form expression [4]). However, the exponentiated qtll/g

does sum to 1. In the discrete case, this justifies extending the classical simplex to what we denote as
the co-simplex.

Definition B. The co-simplex of R™, A, is defined as A,, = {g€ R™ : ¢ = 0 A 1T git* = 1}.
The connection between {-ADABOOST’s update and TEM’s is immediate from the equation’s update
(@ in MF). We can show that A,,, can also be represented as TEMS.

Lemma A. A,, is a (discrete) family of tempered exponential measures.

Proof. We proceed as in [2, Section 2.2.2] for exponential families: let q € Am, which we write
gin) = > qi-li=nlnelm]. (22)
i€[m]

[7], the Iverson bracket [[13]], takes value 1 if Boolean predicate r is true (and O otherwise). We
create m — 1 natural parameters and the cumulant,

i 1
0; ilogtq—,ze [m—1] ; G(0) =log, —,
Gm dm

and end up with (22) also matching the atom mass function

€XPy (Zie[m—l] 0; - i = ”H)

a(n) = exp, G¢(0) ’

which clearly defines a tempered exponential measure over [m]. This ends the proof of Lemma
O
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II Supplementary material on proofs

I1.1 Proof of Theorem[Il

To improve readability, we remove dependency in ¢ in normalization coefficient Z. We use notations
from [4, proof of Theorem 3.2] and denote the Lagrangian

L = Aqlg + X (Zcﬁ“* - 1) —Zw@- +qu¢ui, (23)

which yields 0£/0G; = log, §; —log, ¢; + Ag-

(absorbing factor 1 — t in 1),

— v; + pu; (A absorbs factor 2 — t), and, rearranging

(1+Q-Ng " = v+ 1+ (1 —1t)(log, g — pw),Vie [m]. (24)

We see that A # —1/(1 — t) otherwise the Lagrangian drops its dependence in the unknown. In fact,
the solution necessarily has 1 + (1 — ¢)A > 0. To see this, we distinguish two cases: (i) if some
ug = 0, then since log, ¢ = —1/(1 — t) there would be no solution to @4) if 1 + (1 —t)A < 0
because of the KKT conditions v; > 0, Vi € [m]; (ii) otherwise, if all us, # 0, Vk € [m], then there
must be two coordinates of different signs otherwise there is no solution to our problem (@) (main
file, we must have indeed ¢ > 0 because of the co-simplex constraint). Thus, there exists at least one
coordinate k € [m] for which —(1 — ¢)pug > 0 and since log, ¢, = —1/(1 — t) (definition of log,)
and v, > 0 (KKT conditions), the RHS of (24) for i = k is > 0, preventing 1 + (1 — ¢)A < 0 in the
LHS.

We thus have 1+ (1 —¢)A > 0. The KKT conditions (v; = 0,v;G; = 0, Vi € [m]) yield the following:
1+ (1 —t)(log, ¢; — pru;) > Oimply v; = 0 and 1 + (1 — ¢)(log, ¢; — pu;) < O imply G ~* = 050

we get the necessary form for the optimum:

S &XPyg (log, ¢; — pui)
exp; A
i @ expy(—pu;)

= Z, ; (25)

where )\ or Z; = exp, A ensures normalisation for the co-density. Note that we have a simplified
expression for the co-density:

ji —pu /t*
pe = Lo b Cpi/1T) (26)
t

with Zg° = Ztl/t* = > Dji O expysx (—pu; /t*). For the analytic form in (25)), we can simplify the
Lagrangian to a dual form that depends on p solely:

D(p) = A@wlg) +p ), 4w 27)
The proof of (3) (main file) is based on a key Lemma.

Lemma B. For any q having form @3)) such that @' w = 0, D(u) = —log, Z: ().

Proof. For any g having form (23)), denote

[m]s = {i:d #0}. (28)
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We first compute (still using A = log, Z;(u) for short):
A DG -log, Gi

_ (eXptﬂogtqi—/uu)>
= Gi -
exp; A

i€[m]

_ 1 [1+(1—1t)(log, g — pus)
P G +(1— )\ -1
i€[m]
1 B (ql (1—t)uu1> 1 Z .
- LY - Loy
1=t ic[m]« + (1 -1A 1=t ic[m]
H ~ 1 1-t 1 ~
= - Giui + i4; — @i
1+ (1 —-8)A Z_E[%;]* 1-tH1+1—-t)A Z* 1—t Z_E[%;]*
u ~T 1 1—t ~
= - = . . : . . 2
oo LT AT ara=on ie%]qu T u G @
=B ) g .
=C =D

Remark that in the last identity, we have put back summations over the complete set [m] of indices.
We note that B = 0 because q' u = 0. We then remark that without replacing the expression of g,
we have in general for any q € A,,;:

E = ) G- (log, g —log,a)
i€[m]
_ - 1 1t 1 1—t
- X q«(l_,(qi ) - @)
i€[m]

:%'Z(ft ZQqut

i€[m] i€[m]

= ft 1—Z%q1t7

and we can check that for any §,q € A,,,, E = A(qllg). We then develop A(g|q) with a partial
replacement of g by its expression:

Aglg) = A—}:@b&%
= A———fZ%q +—L~Z@
1t 1—t £
o 1 ~ 1t
= Oy L0

K3

1 1 L
o1t <1+Ut ) Zﬁﬁ

- L%A Z%ﬁt

)\ ~
_Tiﬁiﬂiwl_“_ﬂ.Amm»'

Rearranging gives that for any q, q € A,,, such that (i) q has the form (25) for some p € R and (ii)
~T
q u=0,

Alqlg) = —A
= 710gt(Zt)7
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as claimed. This ends the proof of Lemma [B] O

We thus get from the definition of the dual that 4 = arg max — log, Z;(u) = argmin Z;(u). We
have the explicit form for Z;:

1
7=t
Zi(p) = (Zexpt (log, qi — l“h‘))
B
2—t
= > exp; " (log, ¢i — ps) ;
i€[m]

where [m)], is defined in (28). We remark that the last expression is differentiable in y, and get
2—t

1
Zy(n) 31 Z exp; " (log, ¢i — pu;)

1€[m]

(2 —1) Z exp; " (log, qi — pu;) - expt (log, ¢i — paw;) - —u;

i€[m] g

= =zt ) exp, (log, q; — pu) - u;

i€[m] g

m] s

= _Zt Z qiu;

ie[m
_ ZtgTu, (30)
SO
0 —log,(Z:) _
a,ut t — 7Zt tZ;
= Q(M)Tu,

and we get that any critical point of Z;(u1) satisfies g(u)"u = 0. A sufficient condition to have
just one critical point, being the minimum sought is the strict convexity of Z;(x). The next Lemma
provides the proof that it is for all £ > 0.

Lemma C. Z/(p) =t~ Zy(1)? = (q(u) "u)?

Proof. After simplifications, we have

372zl = (t—1)- Z exp; (log, ¢; — pw;) - u; (31)
i€[m]
+ Z exp?~ (log, qi — pu) | - Z exp} (log, q; — pug) - ui | (32)
i€[m] i€[m]
= (-1 > QiQuuuw+ Y QI 'Qui, (33)
i,ke[m] i,ke[m]

where we have let Q; = exp, (log, ¢; — pu;) = 0. Since a? + b? > 2ab, we note that for any i # k,

2—tyt 2 2—t Nt 2 2—t 2—t
Qi Qk"%"‘@k Qiu; = 2\/@1 QZ k Qzuzuk

= 2Q; Qruiug, (34
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so we split (33) in two terms and get

Z3%.Z0 = (—1)- Z QFu? + Z Q' Qju;

i€[m] i€[m]
+ ) 2t-1)QiQruwius + Y. QF'Qhuj + Q' Qlul
i,ke[m], i<k i,ke[m],i<k
=t ), Qi
i€[m]
+ Z 2(t — 1)QiQruiui + Z Q7 'Qhui + Q7 Q7
i,ke[m],i<k i,ke[m],i<k
>t ) Qi 2t > QiQruuy (35)
i€[m] i,ke[m],i<k
2
=t- Z exp, (log, ¢; — pw;) - u;
i€[m]
= 27 (@'w)?, (36)

where we have used (34) in (33). Since Z;(1) > 0, we get the statement of Lemma |C| after
reorganising (36). O

Lemma shows the strict convexity of Z;(u) for any ¢ > 0. The case ¢ = 0 follows by direct
differentiation: we get after simplification

20 = (Zie[m] U?) : (Zie[m] (¢ — ,uui)2> - (Zsie[m] (@i — uui)ui)Q.

(Zie[m] (@i — Nui)z) ’

Cauchy-Schwartz inequality allows to conclude that Z' (1) > 0 and is in fact > 0 unless q is collinear
to . This completes the proof of Theorem|[I]

I1.2 Proof of Theorem 2]

The proof involves several arguments, organized into several subsections. Some are more general
than what is strictly needed for the proof of the Theorem, on purpose.

ILIL.2.1 Clipped summations

For any § > 0, we define clipped summations of the sequence of ordered elements v1, va, ..., v : if
J>1,

" J ‘ (6)J—1 J J-1
Z vj =min<s vy + Z vy, d ) (75)2 vj = max § vy + (,5)2 Vi =037
j=1 j=1 j=1 j=1

and the base case (J = 1) is obtained by replacing the inner sum by 0. We also define the doubly
clipped summation:

J J-1
(9) . . (8)
(_6)211 v; = max { min { vy + (_6)2‘1 vj,0 p,—0 ¢,
j= j=

with the same convention for the base case. We prove a series of simple but useful properties of the
clipped summation.

Lemma D. The following properties hold true for clipped summation:

1. (doubly) clipped summations are noncommutative;
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2. (doubly) clipped summations are ordinary summation in the limit: for any J > 1 and any

sequence vy, Vs, ..., V],
()L ! @ < !
lim Z v; = lim Z v; = lim Z v = Z v;
§—+00 4 §—+o0 (—9) §—+ow (=9) -
= j=1 j=1 Jj=1

3. clipped summations sandwich ordinary summation and the doubly clipped summation: for
any § = 0, any J > 1 and any sequence vy, vs, ..., v,

J J J
() J ! () ®) J
Z v; < Z v < (75)2 v Z V< (75)2 v < (75)2 v
J=1 J=1 j=1 J=1 j=1 j=1
Proof. Noncommutativity follows from simple counterexamples: for example, for v = —1 and

o . . (0) 2 L 0)? .
w = 2, if we fix v1 = v,v9 = w, then Ejﬂ v; = 1 while Zj:1 v3_; = —1. Property [2.] is

trivial. The set of leftmost inequalities of property [3.] can be shown by induction, noting the base
case is trivial and otherwise, using the induction hypothesis in the leftmost inequality,

@JH ) J J J J+1
Zvjimin Vj+1 + Z’Uj,é < min 1}J+1+Zvj7(5 <UJ+1+Z’UJ‘:Z’UJ‘,
j=1 Jj=1 Jj=1 Jj=1 J=1

and similarly
J+1 J
v; = max<{ vjp1+ Z vj, —0
(_5)2 J J+1 (—5) 79

Jj=1 J=1

J J J+1
= max UJ+1+Z’U]‘,7(S ZUJ+1+ZUj=ZUj.

j=1 j=1 J=1

A similar argument holds for the set of rightmost inequalities: for example, the induction’s general
case holds

J+1 J
§ 5
()Z v; = min<{ vj41+ ()Zvj,é
j=1 j=1
(9)
< min<{ vy + (—5)2 v, 0
j=1
(8) ! (9) !
. s s
< max<{ min< vy + (75)2 v, 0 p,—0 p = (76)2 vj.
j=1 j=1
for the leftmost inequality. This ends the proof of Lemma [D| O

IL.IL.2.2 Unravelling weights
Lemma E. Define

j—1 1=t 0
v, = m't. <H Ztk) g (convention : n up = 1) : (38)

k=1

dJ+1yi =



Proof. We start for the case t < 1. We proceed by induction, noting first that the normalization
constraint for the initial weights imposes qy; = 1/m"/ (=% = 1/m!* and so (using (1—t)t* = 1—t*)

exp, (log, q1; — pr1u1;)
A

- Lihra-y (2 Lo N
- Zl 1—¢ m% H1Ut;g .

1

q2i =

1 1 =
= — | — —=(1—-t i
Zl |: _ ( )///1'[1/1 :|

mi—t* N
1 - =
- m‘[““*m proni] |
1
1 (t/1-1)
= rt*Zl'eXpt - Z'Ujuji )

completing the base case. Using the induction hypothesis, we unravel at iteration J + 1:

qd(J+1)i
_ expy(log; qyi — pyui)
Zy
(-t
€XPy <10gt (mt*l_[ttllzt] - expy < 2j=1 Uj“ji)) - MJUJi)
= >
(1/1-1) J—-1 " I
exp, | log, exp, | — ijl vjuj; | O log, (m HFl th) — LU
= 7
(-’ ¥ g1
1 max{—llt, — ijl vjuji} — log, (mt Hj:1 th)
= g P — HJugi
Z; 1+ (1—1t)log, (mt* Hj;ll th)
[ (1=’ e
1 (1—t)~max{—1l_t,— Zj=1 1)]'71,1'1;}—(1—t) log, (mt* Hj;ll th)
T 7y 1+ 1+(1—t) log, (m*™* TT/Z} Z4;)
~(1 = g )
_ 1
(Y1- t) 1_[ T—t
B 1 (1—t)~max{—1£t,— J ) v]u“} ( th ’_1)
= ZJ 1+ (m‘* H Zt7)1 T )
—(L =t psuz N
which simplifies into (using (1 — ¢)t* = 1 — t*)
q(J+1)i
1 . J—1 =
(11-0)
= ——— - |1+(1—-t)- | max{ ———,— Zvu —vgug; (39)
J ) g g1 7
mt* szl Zy; 1-1¢ = X

1
- e (-S)),
ST ¢ (=S)
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with

J-1
. . 1 (Y/1-1) 1
S; = min< —max BT j; VUi ¢+ VjUJi, 1-¢
J—1
. . 1 (Y1-1) 1
= min-< vjujy; + min ﬁ’ Z VjUjq 7§
j=1
J-1 1
. (H1-1)
= min<4 vju ; + j; AL —

J
11—+
LW )Z o
7j=1

(we used twice the definition of clipped summation), which completes the proof of Lemmal[E]for ¢ < 1.

We now treat the case ¢ > 1. The base induction is equivalent, while unraveling gives, instead of (39):

q(J+1)i
_1
1 1 JZ_:1 1—t
= ———— [1+(1—-¢t): | min{ ———,— Vil ¢ — VU
" 7 s (s g Wi [
m?* [Ti2y Zus 1-—t v/ l)jz1 N
: (~5)
= =T 5 XPi(—oJ),
mt* Hj:l Ztj
and, this time,
1 J—1 1
S; = max<{ —min 1 7(%71)2 VjUjs +’UJUJia_t_71 (40)
j=1
1 = 1
= max< vjuy; + max T _(1/1_1)2 Uilji 05Ty 41
j=1
J—1 1
= max~{ vjuj; + _(1/t71)2 Uju]'i,—m 42)
j=1
J
= L Vit (43)
j=1
which completes the proof of Lemma [E] [

IL.IL.2.3 Introducing classifiers

Ordinary linear separators Suppose we have a classifier
J it
Hy(m) = > 87 'wi-hi(x), B;=m" [ Zu
j=1 k=1

where y; € R, Vj € [J]. We remark that [z # 7] < exp; ‘(—2r) forany ¢ < 2 and z,7 € R, and

z expf_t(fz) is decreasing for any ¢ < 2, so using [3.] in Lemma@ we get for our training
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sample 8 = {(x;,y;),i € [m]} and any ¢ < 1 (from LemmalE),

— Y (@) # 0l

i€[m]

2—t J 1—t* j—1 -
€xPpy Zj:l m (Hk:1 Ztk) tj - yih (i)

<

ie[m] m

A e - 1t
exp; " (- Z._lml o (Hizll Ztk) I 'yihj(wi))
=

< (44)

i€[m] m

11—y J
exX ?7t ( " )ijl UJujz)
i€[m] m

where

o1 1—t
-t (H Ztk) i i = yihj(xs). (45)
k=1

Using Lemmal E] with those definitions, we get

2—t
* o J
(Q(J+1)7:mt Hj=1 th)

1 .
o 2 ey @) 2 y] < -
i€[m] ie[m]
J
H ) q(1+1
Jj=1 i€[m]
J
- 1z (46)
j=1

because ¢ € A,,. We thus have proven the following Lemma.

Lemma F. For anyt < 1 and any linear separator
J !
Z ﬁ;ftﬂj -hj(x), (Bj =m! H Zikypj e R by e RY Vje [J]) ,
j=1 =
where Zyy, is the normalization coefficient of q in (]2_-5[) with w;; = y;hj(x;),

1 J
— . ) ien(Hs(@) £yl < [z )

ie[m] j=1

Clipped linear separators Suppose we have a classifier (t < 1)

J

j—1

Vi _ o (h-) _ R

HY (@) = LT S8 ey hi(@), B = [ ] Zu
j=1 k=1
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We can now replace (@4) by

1 1—t
— o 3 [sien(H" ) () # yi]
m
i€[m]
_ -« N - 1-t
exp; ! (-yi' (_1/171)2j_1m1 " (Hi:i Ztk) g - hj(-’ci)>
< -
i€[m] m
A I (A - 1t
eXP? t <_ (*1/14)2- 1 m = (Hi:ll Ztk) i il (331)>
_ j=
i€[m] m
T A O I e -t
expy | — 2]’:1 m (szl Ztk) 1 - yilj ()
< (48)
i€[m] m
_ (-0’
exp? K < ijl Ujuji>
ie[m] m

The first identity has used the fact that y; € {—1,1}, so it can be folded in the doubly clipped
summation without changing its value, and the second inequality used [3.] in Lemma[D} This directly
leads us to the following Lemma.

Lemma G. Foranyt < 1 and any clipped linear separator
(0« I
1/1 ¢ . —t _ . .
Hy" (@) = DB - hy(), <ﬁj =m"" [ ] Zu:pj € R, hj e RX, Vi e [J]) :

(-0 11

where Z, is the normalization coefficient of q in 23) with uj; = y;h;(x;),

1 . » ;o
— Z [[s1gn(H§1/1 )(331)) £yl < HZEJ t 49)
j=1

i€[m]

II.IL.2.4 Geometric convergence of the empirical risk

To get the right-hand side of and (@9) as small as possible, we can independently compute each
/4§ SO as to minimize

ZE ) =), exp; T (logy qji — pai) - (50)
i€[m]

We proceed in two steps, first computing a convenient upperbound for (50), and then finding the p
that minimizes this upperbound.
Step 1: We distinguish two cases depending on weight ¢;;. Let [m]jr = {i : g5 > 0} and
[m]} = {i:q; = 0}:
Casel ie [m]]. Letrj; = uji/q;; " and suppose R; > 0 is a real that satisfies

|Tji| < Rj,VZ'E [m]j (51)

For any convex function f defined on [—1, 1], we have f(2) < ((1+ 2)/2) - f(1) + ((1 —
2)/2) - f(—1),Vz € [—1, 1] (the straight line is the chord crossing f at z = —1, 1). Because
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2

t
t

z— [1—z]7" is convex for ¢ < 2, for any i € [m];r

7

exp; ' (log, qj; — puj;)

2—t

= [gi" — Q= Opuy]

22—t
= ¢t [1 — (1= t)uR; - ]
R; |,
Rj +rj; 2= Rj—r 2=t
< 27t.u1 1_t R 11—t 2t J ]21 1_t R 1—t
—t
q_]i R + quUJZ ?_t q]z R qjiuj’b 27::
(1 - (1 - t)uR,; 1+ (1 -t)uR;
Case2 i€ [m];r Let q; > 0 be a real that satisfies
U ,
|T1”| < R;,Vie [m]. (52)
45
Using the same technique as in case 1, we find for any ¢ € [m];
expy " (log, qji — puji)
1
= exp% ‘ (_ 1—¢ - Ky j’L>
=
= [ =t)puul
2—t
- =t
< o7 - -]
T2 t T T2—t 1
4G B+ a5u =G B g %
< ——([1-(1-¢ j = [1+ (1t
Folding both cases into one and letting
, B qji if i€ [m]+
Tji = { q; if ie[m]i ’ (53)
we get after summation, using m} = Card([m]}) and
. 1
P = T TQ,t : Z q/]zuﬂ (E [_la 1])a (54)
(I+mjq; IR; ie[m]
that
Z5 ()
(1+ mqu )R 2=t =
< oR (I+p) 1= =tpuR;] " + (A —py) [1+ (1 = t)puR;];
2t
1 + mTqT B B
———— (U +py) - exp; " (—pRy) + (1= py) - exp} " (uRy)) - (55)

2
Step 2: we have our upperbound for (50). We now compute the minimizer p* of (33). If this
minimizer satisfies

R — (56)

|l TRk

then it can be found by ordinary differentiation, as the solution to

(1= pj) - expy (uW*Rj) — (1 + pj) - exp, (—p*R;) = O,
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which is equivalently

exp, (—p* R;) * *

— . = exp (—puR; O p* Ry

expy (4 F) (G Sep i)
L—pj
1+ p;’

where we recall a ©; b = (a — b)/(1 + (1 — t)b). Solving it yields

1 ((1 —p) T =1+ Pj)l_t)
L=t \(L=p)" "+ (1 +p)" "

! 2(1 - ;)
o (=Y

1 1—p;
g
R; '\ Mi—e(1 = pj, 1+ pj)
where M, (a,b) = ((a? + b?)/2)/4 is the power mean with exponent g. We now check (56).
Lemma H. Foranyt e R, let

1 1—p;
R | J . 57
Hi R, % <M1t<1—pj,1+pj)> 7

Then |j1;] < 1/(Ry |1 — t]).

*

/"L =

m‘»—t EU‘»—A

Proof. Equivalently, we must show

1—=2 1
1 < — Vze[-1,1],
Ogt<M1_t(1—z71+z)>’ TEC A

which is equivalent to showing

2(1 — 2yt - ()

—Z 1—2z

RSN L ) P
1+(}f

Define function f(z,t) = (1 — 2'7%)/(1 + 2'7%) over R5( x R: it is easy to check that for
t <1, f(z,t) € [-1,1], and the symmetry f(z,t) = —f(z,2 — t) also allows to conclude that for
t > 1, f(z,t) € [-1,1]. This ends the proof of Lemma|H] O

For the expression of 1; in (57), we get from (53)) the upperbound on ij*t(uj):
2-t
1+mTqJr _ _
(e e i) ) e )
t 12 - —
_ L+myg A +p)A—p)*" (L= p)(L+p5)*"
2 M= (1= pj, 1+ p5) - MPZ/(1=pj 1+ pj)
(1 n mTqu t) ) (1— P?)M%:tt(l = pj> 1+ p;)
! MP{ (1= pji 1+ p))
9t 1—p?
14+m; qT ) . J .
( Mi—(1=pj, 1+ pj)

We conclude that for both sets of classifiers defined in Lemmata|E| and@ with the choice of y; in
(57), we get

J 2
2—t 1—p3 (1-1)
sign( ) # i (1+mTT ) J ,VHe{H;,H .
—- ) lsi vl < [] Mo pr 5 ) {Hy, H;""}

ijft(.uj)

N

i€[m] Jj=1
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To complete the proof of Theoreml we just need to elicit the best R; (31) and qJ (32); looking at
their constraints suggests

R; = max

poL maxgpr lyihy ()| 0=0)
9 = /(10
R;

This completes the proof of Theorem 2] We complete the proof by two Lemmata of additional
useful results in the context of Algorithm {-ADABOOST, and finally an important remark on the
interpretation of Theorem 2]

Lemma L. The following holds true: (i) p; € [—1,1]; (ii) if, among indexes not in [m ] there exists
at least one index with u;; > 0 and one index with u;; < 0, then for any p # 0, Z2 Y(n) > 0in (50)

(in words, the new weigh vector q ;. cannot be the null vector before normalzzatlon )
Proof. To show (i) for p; < 1, we write (using u;; = y;h;(=;), Vi € [m] for short),

2—t
(1+m;r'q;‘ )R- pj = Z q' jiugi
ie[m]

< Z q jilugil
i€[m]
ot |ugil 2—t Zze 1 Jugil
=2 G 1£t+q; 'T
zE[Tn]]+ q-” qj
ot B 2e [m]} |wjil
S R ) ate T
ze[’m] E[m 7
a,_/

=1
< Rj+qj ‘miR; = (14 mlq] TR,
showing p; < 1. Showing p; > —1 proceeds in the same way. Property (11) is trivial. O

Ki(2) < exp <_ <1 _ ;) .Zz> .

Proof. We remark that for t € [0,1), z = 0, K{(z) is concave and K} (0) = —(2 — t), so K{(z) <
—(2 —t)z,Vz = 0, from which it follows by integration

t
Ki(z) < 1-— (12) 22

and since 1 — z < exp(—2z), we get the statement of the Lemma. O

Lemma J.

Remark 1. The interpretation of Theorem[2|for t < 1 are simplified to the case where there is no
weight switching, i.e. m; = 0, V. While we have never observed weight switching in our experiments
— perhaps owing to the fact that we did never boost for a very long number of iterations or just because

our weak classifiers, decision trees, were in fact not so weak —, it is interesting, from a theoretical
standpoint, to comment on convergence when this happens. Let QQ; = 1+ m;- (q})2_t and p; = Q;p;
(Notations from Theorem . We note that pj ~ f3 - Ep_[yih;(2;)], where p; lives on the simplex and
lyh| < 1,5 < 1. Using Lemmaand (12) (main file), to keep geometric convergence, it is roughly

sufficient that Qjlog Q; < (p;)%/(2t*). Since q; is homogeneous to a tempered weight, one would

expect in general m}(q})Q_t « 1, so using the Taylor approximation Q);1og Q; ~ —1 + @Q);, one
gets the refined sufficient condition for geometric convergence

mi(@;)*" < (7)°/(2t%) = O((5;)°).
What does that imply? We have two cases:
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e [f this holds, then we have geometric convergence,

* if it does not hold, then for a "large” number of training examples, we must have q;; = 0
which, because of the formula for q (8) implies that all these examples receive the right
class with a sufficiently large margin. Breaking geometric convergence in this case is not an
issue: we already have a good ensemble.

I1.3  Proof of Theorem[3

Starting from the proof of Theorem 2] we indicate the additional steps to get to the proof of Theorem
[l The key is to remark that our margin formulation has the following logical convenience:

Il (oi)o H) <01 = [-it(a) +log, (1 ) = (1= Duti(a)log, (17 ) = 0]

- Uvi@) o tos, (1) >0l

2—t

We then remark that since [z > 0] < exp; ™" (2), we get

[vi((s,p:), H) < 0] < exp?™ (<yH (@) @ log, (iz))

_ exp%-:(logt (}fj)) - expEH (—yH ()
- (}fﬁ) " e (CyH (@),

We then just have to branch to (@4)), replacing the [sign(H j(x;)) # vi]s by [ve((zs, v:), H) < 0],
which yields in lieu of (@8] the sought inequality:

140 2—t J B
Ft,Q(Hvs) < (1—49) 1_[2752] t- (58)
j=1

I1.4 Proof of Theorem 4|

The proof proceeds in three parts. Part (A) makes a brief recall on encoding linear classifiers with
decision trees. Part (B) solves (6] in MF, i.e. finds boosting’s leveraging coefficients as solution of:

qw)u = 0. (59)

we then simplify the loss obtained and elicit the conditional Bayes risk of the tempered loss, i.e.
in MF. Part (C) elicits the partial losses and shows properness and related properties.

Part (A): encoding linear models with a tree architecture We use the reduction trick of (au-
thor?) [16] to design a decision tree (DT) boosting procedure, find out the (concave) loss equivalently
minimized, just like in classical top-down DT induction algorithms [6]. The trick is simple: a DT can
be thought of as a set of constant linear classifiers. The prediction is the sum of predictions put at all
nodes. Boosting fits those predictions at the nodes and percolating those to leaves gets a standard
DT with real predictions at the leaves. Figure 2] provides a detailed description of the procedure. Let
) denote a leaf node of the current tree H, with H) € R the function it implements for leaf \. If
parent(\) denotes its parent node (assuming wlog it is not the root node), we have

H, = Hparent()\) + /LAhkv (60)

Part (B): eliciting the Bayes risk of the tempered loss With our simple classifiers at hand, the
tempered exponential loss ij*t in (MF) can be simplified to loss

L(H) = Z:expff’5 (1ogt qii — yiH/\(mi))

= Z my exp; ' (log, q1; — Hy) +m) exp; * (log, q1i + Hy), (61)
AeA(H)
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T3 > ag

b 11 b
faby psbs #;L ! _1|_ !
Lioby J12ba

+ +
Haba Hsbs

Figure 2: The weak learner provides weak hypotheses of the form [z > a,] - b;. From the boosting
standpoint, this weak hypothesis is "as good as" the weak hypothesis h;j(x) = [z < a;] - —b;.
The predicates of both are used to craft a split, e.g. for the root (in our depiction, b3 = —bs) and
then solving (39) provides the leveraging coefficients n.. We then repeat this for as many splits as
necessary. At the end, we can "percolate” nodes reals towards the leaves below and get an equivalent
classifier that resembles a decision tree (right). See [16] for further details.

where A(x) is the leaf reached by observation & and A(H) its set of leaf nodes of H, and H sums all
relevant values in (60). Also, mj\r, m;, denote the cardinal of positive and negative examples at A and
pa = my /(my +m)) the local proportion of positive examples at A, and finally r\ = (m} +m} )/m
the total proportion of examples reaching A.

Theorem A. If we compute piy the solution of (59), we end up with the prediction H y:

PN 1t
_ ™ -1
@, (m;)

H, = . T (62)
Lot <m7¥) +1
my
T Wl € Bl SV 63)
L=t py '+ (1—py)t-t’
and the loss of the decision tree equals:
2pA(1 —
LH) = Y me p?( 173_*) 2 (64)
AeA(H) 1—t (DX, DPx
= EA[L”(pa)]- (65)
Proof. To compute py, (6) is reduced to the examples reaching A, that is, it simplifies to
my expy (log, qri — Hparent(n) — Batiaha) = my exp; (log, qri + Hparent(r) + Batiah§§6)
that we solve for p. Equivalently,
CXPy (logt qii + Hparent()\) + R)\M)\h)\) . ﬂ
CXPy (logt q1; — Hparcnt()\) - R)\/’L/\hk) m; ’
or, using exp, (u)/ exp,(v) = exp,(u S v),
2Hparent(k) + 2R)\,U/)\h)\ . log (mj)
1+ (1 - t)(logt q1i — Hparent()\) - R)\M)\hA) t my ’
after reorganizing:
m+
(1 + (1 - t) (logt q1i — Hparent()\))) ' 1Ogt (mii) - 2Hparent(A)
Rypzhy = — A ;
2+ (1—1t)log, (—i)
my
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which yields the prediction at A:

H, = Hparent()\) +

m+
(1 + (1 - t) (logt q1i — Hparent()\))) ’ logt (?3) - 2]-{parent(/\)

.
2+ (1 —1)log, (%)
N
(1 +(1— t) log;, (Ih‘) -log, (%)
2+ (1 —1t)log, ( f)
= q " o <%)
24 (1 )1ogt (m*)
qh (mx)
1—t fmt
()

it .pi — (1 -p)'
L=t pi7t+ (1—py)tt

>’

We plug H ) back in the loss for all leaves and get, using qq; = 1/m1/(2_t):

—(1— 1—t
. mY exp;~ (logt Qi — qli pl +El Zi;l ’)
( ) - — 1 ‘hlt _(1 p>\)1 :
reatm || +ma expp " (log, qui + 15 pi H(1=p)t

We simplify. First,

;" piit —(1—py)t?
1—t p}\_t + (1 —py)t-t

_ + -t (1= p}\_t —(L—p)" "\
Tt py L+ (L= pa)tt
A +

m;\r exp%ft (logt Qi —

2—t
_ < 1—px >
Mi_¢(px, 1 —p») ’

and then

q; " = =p)!
L=t pi 4+ (1—pa)i—t

1—t 1—t\ 71t
_ 1—¢ Dy - (1 _p)\)
™ [q” . <1 T T (=
A +
. [ 2p}\—t ] 1—¢
pyt (1 —py)tt .

2—t
. ( D )
Mi_(pr,1—p») ’
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SHCAIE

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)



and we can simplify the loss,

2—t 2t
1- Px P
L(H = TAPA ( ) + 7y 1 — DPx ( ) (77)
( ) /\e;(]H) Ml—t(pkvl _p)\) ( ) Ml_t(p)\,l —p/\)
pa(l=p)2 "t + (1 —pa)py "
DI S v = e (79)
XeA(H) 1=t (Pas 1 —pa)
1— . 1—t + (1 — 1—t
- Y o Pl PAL_EPA (1—pa)*t") 79)
XeA(H) M7= (px;1—p»)
2oa(1 —pa) - Mi=t(px, 1 —
_ Z ry - 12\ p;l 1—¢ (P 28] (80)
XeA(H) Mi={(px, 1 —=p»)
2pA(1 —
= Y oo 2em) (81)
NeACH) Mi_¢(pr, 1 —pa)
as claimed. This ends the proof of Theorem[A] O

Part (C): partial losses and their properties The proof relies on the following Theorem. We
recall that a loss is symmetric iff its partial losses satisfy ¢ (u) = ¢_1(1 — u), Yu € [0, 1] [20] and
differentiable iff its partial losses are differentiable.

Theorem B. Suppose t < 2. A set of partial losses having the conditional Bayes risk LW in (63) are
2t
1—u
) = [ —————— A (w) = 691 - w). 82
1 (U) Ml—t(u, 1— U) ’ —1(“’) 1 ( u) ( )
The tempered loss is then symmetric and differentiable. It is strictly proper for any t € (—o0,2) and

proper fort = —0.

Proof. Symmetry and differentiability are straightforward. To check strict properness, we analyze
the cases for ¢ # 1 (otherwise, it is Matusita’s loss, and thus strictly proper), we compute the solution
u to

0
—L = 0.
e (u,v) 0 (83)
To this end, let N (u) = v(1 — u)?~t + (1 — v)u?~* and the g-sum
Sy(a,b) = (a4 b9)Y7 = 2Y9. M, (a,b). (84)
We also let D(u) = S?~F(u,1 — u). Noting L®) (u,v) = 27 . N(u)/D(u) and D(u) # 0,Vu €

[0, 1], the set of solutions of (83)) are the set of solutions to N’(u)D(u) = N(u)D’(u), which boils
down, after simplification, to

(1 =v)u' =" — (1 —u)' )52 (u,1 — u)
= )P (L= o — (1 w) S, 1 — ),

developing and simplifying yields a first simplified expression (1 — 2v)(u(1 — u))' =t = vu=1(1 —
)27t — (1 —v)(1—u)~'u?~t, which, after reorganising to isolate expressions depending on v, yields
(wl—u)'" "+ (1—u) "t = v (=) (- u) e 4 2(u (1 — w) 8S)
Assuming v € (0, 1), we multiply by (u(1 — u))*~* (we shall check u € (0, 1)) and simplify, which

yields u(1 — u) + u? = v((1 — u)? + u? + 2u(1 — u)), and indeed yields
u = v, (86)

and we check from that if v = 0 (resp. v = 1), then necessarily v = 0 (resp. u = 1). To
complete the proof, using the previous derivations, we can then simplify

u—v

5 =3
Bt = S R w1~ w)

ou

87)
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which shows thatif 2 — ¢ > 0 but ¢ # —o0, u = v is a strict minimum of the pointwise conditional
risk, completing the proof for strict properness. Strict properness is sufficient to show by a simple

computation that L") is (63). For t = —oo, we pass to the limit and use the fact that we can also
write

1

M (1 () %)

t — —oo is equivalent to t* — 0. If u < 1/2, u/(1 — u) < 1 and so we see that

1
w o\ 1
lim M 1 = -
e T t*<7(1—u) ) 2’

because M is the arithmetic mean. When u > 1/2, u/(1 — ) > 1 and so this time
1
im My (1, ()" +
_ , = 4.
t*gr(lﬁ 1t 1—u

) = 2 u<1/2], (89)
which is (twice) the partial loss of the 0/1 loss [26]]. O]

M) = (we recall t* = 1/(2 — t)) (88)

Hence,

This ends the proof of Theorem 4]
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Domain Source m d
sonar UCI 208 60 https://archive.ics.uci.edu/ml/datasets/wine+quality
winered UCI 1599 12 https://archive.ics.uci.edu/ml/datasets/wine+quality
abalone UCI 4177 9 https://archive.ics.uci.edu/ml/datasets/abalone
gsar UCI 1055 41 https://archive.ics.uci.edu/ml/datasets/QSAR+biodegradation
winewhite UCI 4 898 12 https://archive.ics.uci.edu/ml/datasets/wine+quality
hillnonoise UCI 1212 | 101 | mttp://archive.ics.uci.edu/ml/datasets/hill-valley
hillnoise UCI 1212 1 0] http://archive.ics.uci.edu/ml/datasets/hill-valley
eeg UCI 14 980 15 https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
creditcard* UCI 14 599 24 https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
adult UCI 32 561 15 https://archive.ics.uci.edu/ml/datasets/adult

Table A3: Public domains considered in our experiments (m = total number of examples, d = total
number of example’s features, including class), ordered in increasing m x d (see text). (*) first m
rows in the domain.

IIT Supplementary material on experiments

III.1 Domains

Table [A3]presents the 10 domains we used for our experiments.

III.2 Implementation details and full set of experiments on linear combinations of decision
trees

Summary This Section depicts the full set of experiments summarized in Table [2| (MF), from Table
[A4]to Table[AT3] Tables are ordered in increasing size of the domain (Table[A3)). In all cases, up to
J = 20 trees have been trained, of size 15 (total number of nodes, except the two biggest domains,
for which the size is 5). For all datasets, except creditcard and adult, we have tested ¢ in the
complete range, ¢t € {0.0,0.2,0.4,0.6,0.8,0.9,1.0, 1.1} (the MF only reports results for ¢ > 0.6),
and in all cases, models both clipped and not clipped. For each dataset, we have set a 10-fold stratified
cross-validation experiment, and report the averages for readability (Table[2]in MF gives the results
of a Student paired ¢-test on error averages for comparison, limit p-val = 0.1). We also provide two
examples of training error averages for domains hillnoise and hillnonoise (Tables and

Implementation details of t--ADABOOST First, regarding file format, we only input a . csv file to
t-ADABOOST. We do not specify a file with feature types as in ARFF files. --ADABOOST recognizes
the type of each feature from its column content and distinguishes two main types of features:
numerical and categorical. The distinction is important to design the splits during decision tree
induction: for numerical values, splits are midpoints between two successive observed values. For
categorical, splits are partitions of the feature values in two non-empty subsets. Our implementation
of t-ADABOOST (programmed in Java) makes it possible to choose ¢ not just in the range of values
for which we have shown that boosting-compliant convergence is possible (¢ € [0, 1]), but also
t > 1. Because we thus implement ADABOOST (¢ = 1) but also for ¢ > 1, weights can fairly easily
become infinite, we have implemented a safe-check during training, counting the number of times
the weights become infinite or zero (note that in this latter case, this really is a problem just for
ADABOOST because in theory this should never happen unless the weak classifiers achieve perfect
(or perfectly wrong) classification), but also making sure leveraging coefficients for classifiers do not
become infinite for ADABOOST, a situation that can happen because of numerical approximations
in encoding. In our experiments, we have observed that none of these problematic cases did occur
(notice that this could not be the case if we were to boost for a large number of iterations). We have
implemented algorithm ¢t-ADABOOST exactly as specified in MF. The weak learner is implemented
to train a decision tree in which the stopping criterion is the size of the tree reaching a user-fixed
number of nodes. There is thus no pruning. Also, the top-down induction algorithm proceeds by
iteratively picking the heaviest leaf in the tree and then choosing the split that minimizes the expected
Bayes risk of the tempered loss, computing using the same ¢ values as for t--ADABOOST, and with
the constraint to not get pure leaves (otherwise, the real prediction at the leaves, which relies on the
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Table A4: Experiments on t-ADABOOST comparing with ADABOOST (¢ = 1, bullets) on domain
sonar, when trained without noise (7 = 0.0, top row) and with noise (n = 0.1, bottom row).
Columns are, from left to right, the estimated true error of non-clipped and clipped models, and the
min and max codensity weights. The set of ¢ values used is displayed in each plot with a colormap
(right), and varying thickness of curves for an additional ease of reading (the thicker the curve, the
larger t). ADABOOST’s reference results are displayed with bullets. Averages shown for readability.

link of the loss, would be infinite for ADABOOST). In our implementation of decision-tree induction,
when the number of possible splits exceeds a fixed number S (currently, 2 000), we pick the best split
in a subset of S splits picked at random.

Results First, one may notice in several plots that the average test error increases with the number
of trees. This turns out to be a sign of overfitting, as exemplified for domains hillnonoise and
hillnoise, for which we provide the training curves. If we align the training curves at 7' = 1 (the
value is different because the splitting criterion for training the tree is different), we notice that the
experimental convergence on training is similar for all values of ¢ (Tables[AT0land[AT2). The other
key experimental result, already visible from Table 2] (MF), is that pretty much all tested values of ¢
are necessary to get the best results. One could be tempted to conclude that ¢ slightly smaller than
1.0 seems to be a good fit from Table 2] (MF), but the curves show that this is more a consequence
of the Table being computed for J = 20 trees. The case of eeg illustrates this phenomenon best:
while small ¢-values are clearly the best when there is no noise, the picture is completely reversed
when there is training noise. Notice that this ordering is almost reversed on creditcard and adult:
when there is noise, small values of ¢ tend to give better results. Hence, in addition to getting (i) a
pruning mechanism that works for all instances of the tempered loss and (ii) a way to guess the right
number of models in the ensemble, a good problem to investigate is in fact appropriately tuning ¢ in a
domain-dependent way. Looking at all plots reveals that substantial gains could be obtained with an
accurate procedure (over the strategy that would be to always pick a fixed ¢, e.g. t = 1).

III.3 Supplementary experiments: learning with more trees / against more noise

We have performed some additional experiments on several domains, on which we have trained
bigger ensembles and / or considered more noise levels than in the previous experiments, with the
objective to see if / when overfitting happens and how performances degrade with noise as a function
of t. Table summarizes the results obtained. A few comments we can make based on those
experiments are:

* overfitting can indeed happen (sonar for n = 0.4) but affects differently the algorithm

depending on ¢ and whether clipped models are learned instead of regular linear models;
results also display that tuning ¢ can also have the purpose of handling overfitting;
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Table AS: Experiments on t-ADABOOST comparing with ADABOOST (¢ = 1, bullets) on domain
winered. Conventions follow Table[A4]
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Table A6: Experiments on t-ADABOOST comparing with ADABOOST (¢ = 1, bullets) on domain
abalone. Conventions follow Table[A4d]

* clamped models can be very useful to handle overfitting (sonar for = 0.4, gsar for
1 = 0.2); this provides another justification to learn clamped models;

* the overall diversity of curves as a function of ¢ supports the idea that good strategies could
in fact tune ¢ at training time and change its value with iterations.
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Table A7: Experiments on t-ADABOOST comparing with ADABOOST (¢ = 1, bullets) on domain
gsar. Conventions follow Table [Ad]
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Table A8: Experiments on -ADABOOST comparing with ADABOOST (¢ = 1, bullets) on domain
winewhite. Conventions follow Table[A4]

35



perr (not clipped) perr (clipped) min weight max weight
039 =10 A 4 AdaBoost (t=1.0) Adaboost (t=10) @ & 0.0016 Adaboost (t=1.0) '@ 4
0.385 0.38 | 0.0015
0.38 | 5
0375 0880375 - 08@00014 08
5 037 H S
S & 037 % 0.0013
< 0365 0.6ﬁ 1062 D 06
= =0.365 ¢ T 0.0012
g 036 043 04
O“0-355 = 036 |} % 0.0011
| 035 0.2 102 02
S| o03as 0.355 0.001
0 035 0 0.0009 0

o
IS

TUe TSk (avg

0.395
0.39

” 0.385

2 4 6 8 1012141618207
#trees

Lo
2 4 6 8101214161820
#1trees

2 4 6 8 1012141618207
#trees

Adaboost (t=10) ' @

#trees

o
2 4 6 8 101214 16 18 20

2 46 8 101214161825
#1rees

2 46 8 10121416182&
#trees

Adaboost (;=10) @

0

| 08D
1 083 0.0014

L 062

102

Adaboost (t51.0) @

0.0015

>
20,0013
5 ¢
2 00012 o0
3

% 0.0011
£

0.001

0.0009

2 46 8 1012141618207
#trees

2 46 8 10121416182(;
# frees

08

06

04

02

Table A9: Experiments on -ADABOOST comparing with ADABOOST (¢ = 1, bullets) on domain
hillnonoise. Conventions follow Table [Ad]
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Table A10: Experiments on --ADABOOST comparing with ADABOOST (¢ = 1, bullets) on domain
hillnonoise: training errors displayed for all algorithms using conventions from Table[A4] See
text for details.
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Table A11: Experiments on t-ADABOOST comparing with ADABOOST (¢ = 1, bullets) on domain
hillnoise. Conventions follow Table [Ad]
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Table A12: Experiments on --ADABOOST comparing with ADABOOST (¢ = 1, bullets) on domain
hillnoise: training errors displayed for all algorithms using conventions from Table[A4] See text

for details.
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Table A13: Experiments on t-ADABOOST comparing with ADABOOST (¢ = 1, bullets) on domain
eeg. Conventions follow Table[A4d]
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Table A14: Experiments on t-ADABOOST comparing with ADABOOST (¢ = 1, bullets) on domain
creditcard. Conventions follow Table [Ad]
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Table A15: Experiments on --ADABOOST comparing with ADABOOST (¢ = 1, bullets) on domain
adult. Conventions follow Table[Ad]
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Table A16: Additional experiments with a larger number of trees and various levels of noise, on
winered (J = 150 trees, T' = 2 splits per tree) and sonar and gsar (J = 100, T" = 2). Note that
the range of noise levels tested is broader than for the other experiments.
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