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Abstract

Knowledge Graph Completion (KGC) is cru-
cial for addressing Knowledge Graph (KG)
incompleteness, a key limitation for down-
stream applications. Existing KGC methods,
including Large Language Model (LLM)-based
approaches, often struggle with factual cor-
rectness and transparent reasoning for predic-
tions. We introduce ReflectKGC, a novel,
training-free Plan-Act-Judge agent framework
designed to tackle these challenges. Reflec-
tKGC employs LLMs across three stages for
interpretable and accurate KGC: 1) Planning:
An LLM profiles relations from example triples,
inferring semantics and entity type constraints.
2) Acting: An Evaluator LLM assesses candi-
dates, generating scores and human-readable
rationales based on the profiled relation. 3)
Judging: Critically, a Judge LLM scrutinizes
the Evaluator’s rationales, re-scoring or filter-
ing candidates based on flawed reasoning, ac-
tively correcting predictions to enhance accu-
racy. This rationale-driven active correction en-
ables ReflectKGC to deliver more accurate and
trustworthy results. Experiments on standard
benchmarks demonstrate ReflectKGC'’s state-
of-the-art performance, yielding verifiable and
accurate completions.

1 Introduction

Knowledge Graphs (KGs), representing facts as
(head entity, relation, tail entity) triples like (egg,
nutrient, Vitamin B5), underpin numerous applica-
tions such as question answering and recommen-
dation systems. Knowledge Graph Completion
(KGC) aims to automatically infer missing links,
enriching KGs by analyzing existing facts—for in-
stance, predicting the missing tail entity in a query
like (egg, nutrient, 7). However, while methods
ranging from triple-based approaches (Sun et al.,
2019; Zhu et al., 2021), PLM-driven text-based
models (Yao et al., 2019; Wang et al., 2021), to
recent techniques leveraging Large Language Mod-
els (LLMs) (Wei et al., 2023; Liu et al., 2024; Li
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Figure 1: ReflectKGC yields interpretable, accurate
completions over baselines. For (egg, nutrient, ?),
a baseline might wrongly predict *Vitamin C’ without
explanation. ReflectKGC correctly identifies ’(+/-)-
pantothenic acid’ (Vitamin B5) in eggs, providing a
human-readable rationale for its prediction.

et al., 2025) have advanced KGC, many operate as
"black boxes." This opacity hinders scrutiny, can
propagate erroneous triples (e.g., incorrectly pre-
dicting (egg, nutrient, Vitamin C)), and critically
limits trust in high-stakes domains like healthcare
and finance, where understanding the "why" behind
a prediction is paramount (Di Mauro et al., 2024).
Explainability is thus evolving from a desirable
feature to a fundamental requirement.

While LLMs bring powerful semantic under-
standing to KGC, they are not immune to produc-
ing erroneous or poorly justified outputs. Critically,
existing research in explainable KGC has largely
focused on generating post-hoc explanations for
human understanding or subsequent model opti-
mization (Bikaun et al., 2024; Chen et al., 2024;
Chang et al., 2024; Di Mauro et al., 2024). The
direct use of these explanations to actively refine
KGC predictions for improved accuracy remains
largely unexplored. This gap highlights the need
for KGC methods that not only provide transparent
reasoning but also leverage this interpretability to
enhance the completion process itself.

To meet this demand for interpretable KGC
with active correction, LLMs present a compelling
avenue for generating the necessary nuanced ex-
planations. However, the inherent fallibility of



LLMs—manifesting as potential factual inaccura-
cies, domain-specific knowledge gaps, or difficul-
ties with complex structured reasoning (Bang et al.,
2023; Yang et al., 2024; Sun et al., 2023)—ne-
cessitates a crucial second step: a mechanism to
critically evaluate and refine these LLM-generated
rationales to ensure the final accuracy of the
KGC process. It is this dual imperative—to har-
ness LLMs for explainable KGC while simul-
taneously ensuring the reliability of their inter-
pretations—that motivates our work. We intro-
duce ReflectKGC, a novel, training-free KGC
framework structured around a Plan-Act-Judge
agent paradigm. ReflectKGC distinctively em-
ploys LLMs at each stage, with a score-centric
approach, to achieve both interpretability and en-
hanced accuracy through active, rationale-based
correction: 1) Planning (Relation Profiling): An
LLM analyzes example triples to summarize the
relation’s natural language description and infer
entity type constraints. 2) Acting (Candidate Evalu-
ation): An Evaluator LLM assesses each candidate
entity against these constraints and semantic co-
herence, outputting a score and a detailed, human-
readable rationale. 3) Judging (Rationale-based
Correction): Crucially, a Judge LLM scrutinizes
the Evaluator’s rationale, correcting scores or filter-
ing candidates based on flawed reasoning, thereby
directly mitigating errors by leveraging these very
explanations to improve final accuracy.
Our main contributions are:

* We introduce ReflectKGC, a novel training-
free Plan-Act-Judge agent framework that
uniquely integrates LL.M-driven interpretabil-
ity into the KGC process for enhanced accu-
racy.

* Our approach generates explicit, human-
readable rationales that are actively employed
by a Judge LLM for correction, directly im-
proving the reliability and accuracy of KGC
outputs.

» Extensive ablation studies validate the effec-
tiveness of each component within our pro-
posed framework.

2 Related Works

Large Language Models in KGC LLMs have
shown significant promise in KGC by leverag-
ing their vast pre-trained knowledge. Key ap-
proaches aim to bridge the gap between structured

KGs and the unstructured nature of LLMs, ad-
dress grounding errors, and manage computational
costs. These frameworks represent different strate-
gies for LLM integration, from extensive context
augmentation and dataset-specific fine-tuning to
training-free prompt engineering. ReflectKGC’s
Distinction: ReflectKGC adopts a training-free
philosophy, akin to KICGPT, by leveraging pre-
trained LLMs for all its stages (Plan, Act, Judge)
through carefully designed prompting and inter-
LLM communication. This approach inherently
offers greater generalization capabilities across
diverse knowledge graphs and relations without
the need for dataset-specific fine-tuning, which
is a core component of methods like DIFT and
KGR3’s re-ranker. Consequently, ReflectKGC is
designed to be more readily adaptable to new KGs
with potentially lower setup overhead. Its core
novelty, however, remains its explicit Plan-Act-
Judge agentic structure, where the "Judge" LLM
actively scrutinizes and corrects the "Act" LLM’s
outputs based on the quality of its generated ratio-
nale. This rationale-driven internal correction loop
for enhancing accuracy and interpretability, built
upon a training-free foundation, is a key differen-
tiator.

LLM-as-a-Judge and Agentic Frameworks
The "LLM-as-a-Judge" paradigm leverages LLMs
to evaluate the quality of outputs against speci-
fied criteria, offering scalable automated assess-
ment. This is relevant for assessing KGC predic-
tion plausibility beyond standard metrics. Con-
currently, LLM-based Agentic frameworks (e.g.,
ReAct (Yao et al., 2023)) are emerging, endowing
LLMs with capabilities like planning, tool use, and
reflection, often structured in plan-act-evaluate cy-
cles. For KGC, an agent might plan information
retrieval, execute queries, and refine its strategy.
Recent work also explores LLM self-correction
and critique, where models iteratively refine out-
puts based on internal or external feedback (Gu
et al., 2024). ReflectKGC'’s Distinction: Reflec-
tKGC explicitly adopts a Plan-Act-Judge agentic
structure. The "Judge" stage directly embodies the
LLM-as-a-Judge concept, but critically, it’s not just
for post-hoc evaluation. Instead, the Judge’s as-
sessment of the Evaluator’s (Act stage) rationale
is an integral part of the KGC pipeline, leading to
active re-scoring and correction of the predictions
before they are finalized. This tight integration of
critique and refinement within the KGC process,
forming a specialized agent for interpretable and ac-



curate completion, distinguishes ReflectKGC from
general agentic frameworks or standalone LLM-as-
a-Judge applications.

3 Methods

This section details the ReflectKGC framework,
a novel Plan-Act-Judge agent approach designed
for interpretable and accurate Knowledge Graph
Completion (KGC). ReflectKGC systematically
employs Large Language Models (LLMs) across
three distinct stages: Relation Profiling (Plan),
Candidate Evaluation and Rationale Generation
(Act), and Rationale-based Correction and Verifi-
cation (Judge). The core idea is to leverage LLM-
generated rationales not just for human understand-
ing, but as an active component for refining predic-
tions and improving accuracy.

3.1 Opverall Framework of ReflectKGC

Given a KGC query, typically in the form of an in-
complete triple (h,r,?7) where h is the head entity,
r is the relation, and ? denotes the missing tail en-
tity (or similarly for missing head entities (?,r,t)),
and a set of candidate entities, ReflectKGC pro-
cesses them through a sequential pipeline.

1. Plan (Relation Profiling): An LLM analyzes
example triples sharing the same relation r
from the knowledge graph. It profiles the rela-
tion by generating a natural language descrip-
tion (template) of its semantics and inferring
plausible entity type constraints for its head
and tail arguments. This stage provides crucial
semantic context for subsequent evaluation.

2. Act (Candidate Evaluation and Rationale
Generation): An Evaluator LLM assesses
each candidate tail entity against the profiled
relation (template and type constraints) and
its semantic coherence with the head entity
h. For each candidate, this stage outputs an
initial score (e.g., on a Likert scale) and, criti-
cally, a detailed, human-readable textual ratio-
nale explaining the basis for this score.

3. Judge (Rationale-based Correction and
Verification): A Judge LLM scrutinizes the
rationales generated by the Evaluator LLM in
the Act stage. Based on the factual correct-
ness, logical soundness, and sufficiency of the
rationale, the Judge LLM may confirm the
initial score, correct it (Reflect), or even filter
out the candidate if the rationale is found to

be flawed or indicative of a misunderstanding.
This stage outputs a verified score, a verifica-
tion status (e.g., Correct, Unsure, Incorrect),
and a judge’s reason explaining any changes
or confirmations.

This three-stage process, particularly the active cor-
rection by the Judge LLM based on rationales, is
designed to produce more accurate and trustwor-
thy KGC results, complete with explanations for
each prediction. Figure 2 (as described in the user’s
initial draft) illustrates this overall workflow.

3.2 Stage 1: Plan - Relation Profiling and
Query Formulation

The motivation for this stage is that LLMs may
have an incomplete or incorrect understanding
of specific relations, especially those involving
domain-specific knowledge or nuanced semantic
distinctions. Effective relation profiling is essential
for guiding the subsequent evaluation of candidate
entities.

3.2.1 Relation Profiling

To understand the semantics of a given relation
R, we employ an LLM. For each distinct relation
present in the KG, a sufficient number of exam-
ple triples (e.g., up to 100) exhibiting this relation
are sampled from the training set. The LLM is
prompted to analyze these examples and perform
two tasks:

1. Generate a Natural Language Template:
The LLM summarizes the common seman-
tic pattern of the relation into a natural lan-
guage sentence template with placeholders
for the head and tail entities. For example, for
the relation nutrient, the template might be
"[Head] contains <MASK> as one of its nutri-
ents.” This template captures the typical way
the relation is expressed.

2. Infer Entity Type Constraints: Based on the
example entities participating in the relation,
the LLM infers the general types of entities
that can plausibly act as the head and tail for
this relation. For instance, for nutrient, the
head entity type might be "Food items, Or-
ganisms" and the tail entity type "Nutrients,
Chemical compounds."

These generated templates and type constraints for
all relations are stored as a "relation profile mem-
ory" for the agent, to be used in subsequent stages.
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Figure 2: Overview of ReflectKGC. The framework processes a query and KGC candidates through Plan (Relation
Profiling), Act (Initial Candidate Evaluation & Rationale Generation), and Judge (Rationale-based Correction &
Verification) stages, yielding categorized completions (e.g., Correct, Unsure, Incorrect) with justifications.

Examples of R from KG

Head type: Food items including
(cheese, R, fluoride ion)

raw ingredients, prepared dishes,
and fosd producls

Sentence Template:
Relation Profiling | [Head] contains
[Tail] as one of its
nutrients.

(beef, R, glycine)
(coconut milk, R, water)

Tail type: Nutrients or hemical
compounds found in food.

(@)

Query (Rewrited)
egg contains <MASK> as one of its nutrient.
Type for <MASK>:

utrients or hemical compounds found in food.

(b) (c)

Query (Origin)
(egg, /food/food/nutrients. /food/nutrition_fact/nutrient , ?)

Figure 3: ReflectKGC Plan Stage. (a) Relation Profiling
uses KG examples of relation R to derive a sentence
template and entity type constraints. (b) Original KGC
query. (c) The query is rewritten and enriched with type
constraints for the Act stage.

This addresses challenges like understanding com-
plex or composed relations, such as those found in
datasets like FB15k-237 where intermediate CVT
(Common Value Type) entities might obscure direct
relationships. Figure 3 (a) depicts this process.

3.2.2 Query Formulation

Once a KGC query (h, R, ?) is received, the pre-
computed profile for relation R (template and type
constraints) is retrieved. The query is then formu-
lated for the Act stage as follows:

1. The natural language template for R is instan-
tiated with the given head entity h, leaving
a placeholder for the tail entity. For exam-
ple, if h is "egg" and the template is "[Head]
contains <MASK> as one of its nutrients.", the
formulated query sentence becomes "egg con-
tains <MASK> as one of its nutrients."

2. The inferred tail entity type constraint for re-
lation R is appended to this query sentence
to guide the LLM. For example, "Type for
<MASK>: Nutrients."

This formulated query, enriched with semantic and
type information, is then passed to the Act stage.
This process is illustrated in Figure 3 (b) and (c).
This natural language rewriting is also applied to
any neighbor facts used for context in the Act stage.

3.3 Stage 2: Act - Candidate Evaluation and
Rationale Generation

The goal of the Act stage is to generate an assess-
ment, comprising a score and a supporting ratio-
nale, for each candidate tail entity. This stage re-
ceives the rewritten query from the Plan stage (e.g.,
"egg contains <MASK> as one of its nutrient. Type
for <MASK>: Nutrients.") and a list of candidate tail
entities C' = {c1, ¢a, ..., ¢, }, which can be sourced
from a base KGC model or a retrieval mechanism.

For each candidate entity c; in C, an Evaluator
LLM performs the following steps:

1. The LLM is prompted with the rewritten
query, where the <MASK> is replaced by the
candidate entity c;. For example, "egg con-
tains Vitamin C as one of its nutrient. Type
for Vitamin C: Nutrients."

2. Itis instructed to assess the likelihood or cor-
rectness of ¢; being the true tail entity for h
under relation R. This assessment considers
the provided type constraints, the semantic
coherence of the completed triple, and the
LLM’s internal knowledge, potentially aug-
mented by retrieved neighbor facts of h.

3. The LLM outputs a Score reflecting this as-
sessment, using a Likert scale from 1 (defi-
nitely incorrect) to 7 (definitely correct), with
4 signifying "unsure."



4. Finally, the LLM generates a Reason (a
human-readable rationale) explaining the ba-
sis for its assigned Score, adhering to prin-
ciples of interpretability, sufficiency, con-
ciseness, and faithfulness. For example,
for (egg, nutrient, (+/-)-pantothenic
acid), a good Reason might include: "(1) (+/-
)-pantothenic acid is a form of Vitamin BS5.
(2) Vitamin B35 is a nutrient found in eggs."

The output of this stage for each candidate is a
(Candidate, Score, Reason) tuple. Figure 2
illustrates this output, which provides the first pass
of evaluation and the raw explanations for scrutiny
by the Judge LLM.

3.4 Stage 3: Judge - Rationale-based
Correction and Verification

This stage embodies the core "Reflect” mechanism
and is a key novelty of the ReflectKGC frame-
work. Its primary objective is to critically evaluate
the Reasons generated in the Act stage alongside
their associated Scores. Based on this scrutiny, the
Judge LLM corrects the Scores, thereby aiming
to improve the overall accuracy and trustworthi-
ness of the KGC predictions. This approach, in-
spired by "LLM-as-a-Judge" research (McAleese
et al., 2024), allows ReflectKGC to actively mit-
igate potential errors, biases, or overconfidence
from the Act stage by leveraging interpretability
for enhanced accuracy.

The input to this stage consists of the
(Candidate, Score, Reason) tuples produced
by the Evaluator LLM in the Act stage. For each
such tuple corresponding to a candidate c; with its
Score; and Reasonj, a distinct Judge LLM under-
takes the following process:

1. The Judge LLM is prompted to scrutinize the
provided Reason;.

2. Itis instructed to evaluate the factual correct-
ness, logical soundness, and sufficiency of
this Reason; in supporting the accompany-
ing Score;. The Judge assesses whether the
provided Reason logically leads to the Score
and if the evidence cited or implied within the
Reason is valid and adequate.

3. Based on this critical assessment, the Judge
LLM takes one of several actions:

e Confirm the Score: If the Reason is
deemed sound, factually correct, and

fully supports the Score. In such cases,
the Score might be affirmed, or confi-
dence in it increased (e.g., for a candidate
like (+/-)-pantothenic acid with a
strong, verifiable Reason, its Score might
be maintained or slightly increased).

¢ Correct the Score (Reflect): If the Rea-
son is identified as flawed (e.g., con-
taining factual inaccuracies, logical falla-
cies), insufficient (e.g., relying on weak,
irrelevant, or generalized evidence not
specific enough to the query), or indica-
tive of overconfidence from the Evalu-
ator. The Judge LLM then adjusts the
Score accordingly. For instance, if "Cop-
per" received a high Score for the query
(egg, nutrient,?) butthe Reason was
weak, its Score might be reduced.

* Mark as "Unsure'': If the evidence pre-
sented in the Reason is limited, ambigu-
ous, or the reasoning itself is tenuous.
The candidate might then be marked as
"Unsure," often accompanied by a Score
adjustment towards the middle of the
scale (e.g., a Score of 4).

* Mark as "Incorrect': If the Reason is
found to be entirely nonsensical, demon-
strates a clear misunderstanding of the
query or relation, or is based on demon-
strably false premises. In such scenar-
ios, the candidate is typically marked as
"Incorrect," and its Score is significantly
lowered (e.g., to 1).

4. Finally, the Judge LLM outputs a Verified
Score, a Verification Status (e.g., "Correct,"
"Unsure," "Incorrect" derived from the final
score and assessment), and a Judge Reason.
This Judge Reason explains any modifications
made to the Score or confirms the original
assessment, providing transparency into the
Judge’s decision-making (e.g., "The Reason
provided by the Evaluator fully supports the
Score." or "Evidence for eggs as a significant
or commonly recognized source of copper
is limited, hence the Score was reduced and
marked Unsure.").

The right side of Figure 2 illustrates this crucial
correction process. Upon completion of the Reflec-
tKGC pipeline, candidate entities are categorized
based on their verified scores and associated sta-



tus, yielding a refined and interpretable set of KGC
predictions.

4 Experiments

4.1 Setup

Datasets. To assess the performance of our pro-
posed method, we conduct experiments on two
extensively utilized benchmark datasets: FB15k-
237 and WN18RR. FB15k-237 is a subset of Free-
base (Bollacker et al., 2008), a large-scale knowl-
edge graph containing encyclopedic facts about a
wide array of topics such as notable individuals,
organizations, and cultural works. WN18RR, de-
rived from WordNet (Miller, 1995), is a lexical
knowledge graph that primarily captures informa-
tion regarding English word meanings and rela-
tionships. Crucially, to ensure a fair evaluation and
prevent issues of data leakage, both FB15k-237 and
WN18RR are curated by removing inverse relations
from their original knowledge bases. Further de-
tailed statistics for these datasets are provided in
Table 1.

Dataset # Entities  # Relations  # Train  # Valid  # Test
FB15k-237 14,541 237 272,115 17,535 20,466
WNI18RR 40,943 11 86,835 3,034 3,134

Table 1: Statistics of the benchmark datasets.

Baselines. We compare our proposed method
with several strong baseline methods spanning
three main categories: triple-based, text-based,
and large language model-based approaches.
The triple-based methods include: TransE (Bor-
des et al., 2013), ComplEx (Trouillon et al.,
2016), RotatE (Sun et al., 2019), TuckER (Bal-
azevic et al., 2019), GIE (Cao et al., 2022),
CompGCN (Vashishth et al., 2020), and NBF-
Net (Zhu et al., 2021). The text-based methods
include: KG-BERT (Yao et al., 2019), MEM-
KGC (Choi et al., 2021), SimKGC (Wang et al.,
2022), and CoLE (Liu et al., 2022). The large
language model-based methods include ChatGPT,
KICGPT (Wei et al., 2023) and MKGL (Guo et al.,
2024); the results for ChatGPT (1-shot) are adopted
from the KICGPT paper (Wei et al., 2023).

Metrics. For evaluating our proposed method,
Mean Reciprocal Rank (MRR) and Hits@Fk (for
k = 1,3, and 10) are the standard metrics em-
ployed. MRR provides the average of the recip-
rocal ranks for the correct target entities over all
test queries. Hits@£, on the other hand, indicates

the proportion of test queries where the true target
entity is successfully ranked within the top-£ pre-
dicted entities. Consistently, higher values across
all these metrics denote a more effective model
performance.

Implementation Details. For initial candidate
generation in ReflectKGC, we employ NBF-
Net (Zhu et al., 2021), selected for its leading per-
formance among triple-based methods (detailed in
Table 2) and configured as per its original publi-
cation. NBF-Net provides the top 20 candidates
per query. Our Plan, Act, and Judge modules then
re-score these candidates, primarily utilizing the
Qwen-72B API; the GPT-40 API was also used for
comparative experiments reported in Table 4. To
ensure deterministic outputs and reduce random-
ness, all LLM API calls used a temperature of 0.
The final ranking sorts the LLM-generated scores
and fuses this new order with NBF-Net’s original
candidate ranking using the Reciprocal Rank Fu-
sion (RRF) (Cormack et al., 2009)algorithm. Our
framework operates in a train-free manner, and all
reported experimental results are the average of
three runs. Approximate processing times are 30
minutes for the FB15k-237 dataset and 12 minutes
for the WN18RR dataset. Detailed prompts for
LLMs are available in Appendix A.

4.2 Main Results

Table 2 presents the main experimental results, un-
derscoring the efficacy of our ReflectKGC frame-
work. Notably, when compared to the KICGPT
baseline, ReflectKGC demonstrates significant per-
formance enhancements across both datasets. On
WNI8RR, ReflectKGC achieves absolute improve-
ments of 0.114 in MRR and 0.129 in Hits@1 com-
pared to KICGPT. On FB15k-237, our method also
achieves improvements of 0.011 in MRR and 0.004
in Hits@1. These clear improvements highlight the
effectiveness of our proposed approach.

It is also noteworthy that ReflectKGC achieves
substantial improvements in Hits@3 and Hits@ 10
metrics when compared against traditional non-
LLM baselines across both datasets; for instance,
on WN18RR, it surpasses NBF-Net by up to 5.4%
in Hits@3 and 4% in Hits@10. This particular
strength underscores the efficacy of our Act mod-
ule, where the Evaluator LLM precisely identifies
target entities and assigns them high scores accom-
panied by detailed rationales, thereby ensuring ro-
bust recall of correct answers within the top can-



FB15k237 WNI18RR
Methods
MRR Hits@l Hits@3 Hits@1l0 MRR Hits@l Hits@3 Hits@10
Triple-based Methods
TransE 0.279 0.198 0.376 0.441 0.243 0.043 0.441 0.532
ComplEx 0.247 0.158 0.275 0.428 0.440 0.410 0.460 0.510
RotatE 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571
TuckER 0.358 0.266 0.394 0.544 0.470 0.443 0.482 0.526
GIE 0.362 0.271 0.401 0.552 0.491 0.452 0.505 0.575
HittER 0.373 0.279 0.409 0.558 0.503 0.462 0.516 0.584
CompGCN 0.355 0.264 0.390 0.535 0.479 0.443 0.494 0.546
NBF-Net 0.415 0.321 0.450 0.599 0.551 0.497 0.573 0.666
Text-based Methods
KG-BERT - - - 0.420 0.216 0.041 0.302 0.524
MEM-KGC 0.346 0.253 0.381 0.531 0.557 0.475 0.604 0.704
CoLE 0.387 0.293 0.426 0.570 0.585 0.532 0.607 0.689
Large Language Model-based Methods

ChatGPT (1-shot) - 0.267 - - - 0.212 - -
MKGL 0.415 0.325 0.454 0.591 0.552 0.500 0.577 0.656
KICGPT 0.410 0.321 0.430 0.581 0.564 0.478 0.612 0.677
ReflectKGC (Ours)  0.421 0.325 0.477 0.614 0.589 0.532 0.627 0.706

Table 2: Experiment results of the KGC task on FB15k-237 and WN18RR datasets. The best results are in bold
and the second-best ones are underlined. All results of baseline methods are referred from corresponding original

papers.

didates. While Hits@1 scores also see consistent
enhancements, the pronounced gains in Hits@3
and Hits@10 suggest ReflectKGC excels in sce-
narios common in complex KGs, such as queries
with multiple plausible entities like the (egg, nu-
trient, ?7) example in Figurel. In these cases, our
framework adeptly positions the ground truth en-
tity prominently among the top-ranked candidates,
demonstrating strong discriminative power even
when several options are semantically fitting.

Furthermore, ReflectKGC establishes a new
state-of-the-art when compared against prior LLM-
based KGC methods. For instance, while KICGPT
also operates on a training-free basis, its perfor-
mance does not consistently surpass leading tradi-
tional triple-based or text-based models; KICGPT’s
MRR of 0.410 on FB15k-237 trails NBF-Net
(0.415), and its 0.564 MRR on WN18RR is sub-
stantially lower than that of SimKGC (0.671). We
attribute ReflectKGC’s more effective LLM utiliza-
tion to its comprehensive Plan-Act-Judge architec-
ture: the Plan module provides crucial relational
context and type constraints derived from the graph
structure, guiding the Act module’s sophisticated
candidate evaluation, which is then critically re-
fined by the Judge module’s rationale-based cor-
rection. This structured approach ensures a deeper
and more reliable application of LLM capabilities.
In contrast, methods like MKGL rely on LoRA-
based fine-tuning, entailing a complex training

process, and critically, their outputs lack explana-
tory rationales, which can diminish the persuasive-
ness of their results. ReflectKGC not only deliv-
ers stronger or comparable predictive performance
(e.g., achieving an MRR of 0.421 on FB15k-237
versus MKGL’s 0.415) but does so as a training-
free framework that inherently provides crucial in-
terpretability.

MRR Hits@1 Hits@3 Hits@10
ReflectKGC 0421  0.325 0.477 0.614
w/o entity type constraints  0.395  0.301 0.440 0.605
w/o relation alignment 0.394  0.296 0.450 0.604
w/o neighbor triples 0.403 0322 0.436 0.585
w/o judge 0.405  0.308 0.452 0.596

Table 3: Ablation results on FB15k-237.

4.3 Ablation Studies

To ascertain the individual contributions of key
components within our ReflectKGC framework,
we conducted a series of ablation studies on the
FB15k-237 dataset. The detailed results of these
experiments are presented in Table 3.

First, we examined the impact of entity type
constraints, an output of our Plan module’s Re-
lation Profiling. Removing these constraints led
to a notable performance decline across all met-
rics, with MRR dropping from 0.421 to 0.395 and
Hits@3 decreasing from 0.477 to 0.440. This
underscores their importance, particularly for a
dataset like FB15k-237 where relations such as



"film/film/film_festivals" can be ambiguous. While
literally suggesting a link between a film and a
festival, such relations often involve entities like
individuals or awards associated with the festival.
Without explicit type constraints, the Act module’s
LLM may misjudge the typicality of correct enti-
ties, assigning them unduly low scores.

Next, we ablated the relation alignment tem-
plate, also part of the Plan module, which aids the
LLM in interpreting complex relation identifiers.
Its removal resulted in a significant performance
drop across all metrics, with Hits@1 decreasing
from 0.325 to 0.296 and MRR from 0.421 to
0.394. Many relations in FB15k-237, such as
"/food/food/mutrients./food/nutrition_fact/nutrient”
(as exemplified in Figure 2), are syntactically
complex. Indeed, a substantial portion of the
dataset exhibits this characteristic, with 144 out of
the 237 distinct relations in FB15k-237 presenting
similar structural intricacies, underscoring the
prevalence of this challenge. The relation align-
ment template is designed to normalize or clarify
these convoluted identifiers, and its absence can
lead to LLM confusion and a poorer understanding
of the relational context, thereby impairing overall
KGC performance.

We then investigated the role of neighbor
triples, which inform the Act module’s pattern-
guided evaluation by providing contextual
evidence from the knowledge graph. Removing
access to these triples resulted in a significant drop
in Hits@3 (from 0.477 to 0.436) and Hits@10
(from 0.614 to 0.585), while Hits@1 remained
relatively stable (0.325 to 0.322). The stability
in Hits@1 can be attributed to the presence of
numerous common-sense facts in FB15k-237 (e.g.,
("Titanic", "/film/film/language ", "English")), for
which the LLM’s internal knowledge often suffices.
However, for more complex queries requiring spe-
cific factual evidence (e.g., ("52nd Annual Grammy
Awards","/award/award_honor/award_winner","50
Cent")), the absence of relevant neighbor triples
makes it challenging for the model to make
informed judgments, thus impacting broader recall.

Finally, removing the Judge module led to a
discernible decrease across all metrics, with MRR
falling to 0.405 and Hits@1 to 0.308. While the per-
formance drop might appear less substantial than
other ablations, it highlights the Judge’s crucial
role in refining the outputs from the Act module.
This suggests that while the Act module’s Eval-
uator LLM often generates consistent scores and

Settings MRR Hits@1l Hits@3 Hits@10
Qwen-72B  0.421  0.325 0.477 0.614
GPT4o0 0420 0.325 0.479 0.617

Table 4: Ablation Experiments on FB15k-237 dataset
with different LLM.

rationales, the Judge module is vital for identifying
and correcting residual errors or flawed reasoning
from the Evaluator. This final verification step is
indispensable for enhancing the overall reliability
and accuracy of ReflectKGC, ensuring that the ex-
planations actively contribute to the trustworthiness
of the final predictions.

4.4 Analysis on different LLM

To assess framework generalizability, we evalu-
ated ReflectKGC on FB15k-237 using both Qwen-
72B and GPT-40 as the backbone LLM for all
modules. As shown in Table 4, performance re-
mained remarkably consistent across these distinct
models, indicating that ReflectKGC'’s efficacy is
driven by its robust Plan-Act-Judge architecture
and rationale-based mechanisms rather than re-
liance on a specific LLM’s idiosyncratic knowl-
edge. This highlights the architectural soundness
and adaptability of our approach.

5 Conclusion

We introduced ReflectKGC, a novel training-free
Plan-Act-Judge agent framework that enhances
Knowledge Graph Completion by improving fac-
tual correctness and transparent reasoning where
existing methods often fall short. ReflectKGC sys-
tematically employs LLMs for relation profiling
(Plan), candidate evaluation with rationale gener-
ation (Act), and critically, rationale-based correc-
tion by a Judge LLM, enabling it to mitigate LLM
fallibility and deliver more accurate, trustworthy
results. Demonstrated state-of-the-art performance
on standard benchmarks underscores ReflectKGC'’s
effectiveness in producing verifiable completions,
with future work poised to extend this reflective
framework.



Limitations

Despite its strengths, ReflectKGC’s performance
is inherently linked to the capabilities of the un-
derlying LLMs, and its sequential Plan-Act-Judge
pipeline can introduce latency, potentially impact-
ing suitability for real-time applications. The effi-
cacy of the critical Judge module also depends on
nuanced prompt engineering to ensure accurate cri-
tique of the Act module’s rationales without being
overly restrictive or lenient. Finally, the system’s
overall recall is constrained by the quality of the
initial candidate set provided by the external KGC
model.
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A Appendix

<Role>
You are a knowledge graph expert, skilled in analyzing entity relationships and extracting semantic information.
</Role>

<Task>

I will provide you with a series of triples in the format: head_entity\trelation\ttail_entity

ALl these triples share the same relation: {relation}

Please analyze these triples and complete the following tasks:

1. Summarize the types of head entities (there may be multiple types)

2. Summarize the types of tail entities (there may be multiple types)

3. Provide a concise one-sentence description of this relation

4. Write a natural sentence template using [Head] and [Tail] that clearly expresses the meaning and direction of the relation. Keep
it concise and intuitive. Do not use parentheses or examples

</Task>

<Format>
Please return your response in JSON format as follows:

"head_entity_type’
"tail_entity_type'
"short_descriptio
"template":

"type of head entities in one sentence or a python enumerate list",
"type of head entities in one sentence or a python enumerate list",
"brief description of the relation (one sentence)",

‘natural language template with [Head] and [Taill"

<\Format>

<Input>

Here are the triple data: {triples}

Please provide the final answer in JSON format:
<\Input>

Figure 4: Prompt fo Relation Profiling
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Prompt Template |

| )
<Role>
You are a knowledge graph expert skilled in evaluating the validity of candidate entities in knowledge graph completion tasks.
</Role>
<Task>
- Question: Based on the provided context information and your general knowledge, does the candidate entity logically fit into the
sentence and context? Choose a score from 1 to 7:
- 1: Completely Incorrect (creates a clear contradiction with known facts or context)
- 4: Uncertain (not sure)
- 7: Correct (logically consistent and fits perfectly with context and knowledge)
</Task>
<Rule>
Explain the provided score. Your explanation must be:
* xkReadable:xk Clear, straightforward, and easy for the target audience to understand.
* xxSufficient yet Concise:sk Cover all crucial aspects and implications of the score thoroughly, while remaining brief and to the
point, avoiding jargon or unnecessary details.
* *kFaithfulisx Accurately and truthfully represent the score's intended meaning, how it is derived (if applicable), and its
correct interpretation within its given context.
</Rule>
<Format>
Please output your evaluation in the following JSON format:
"entity": "candidate_entity_name",
"reason": "Explanation for this score"
"score": score (1-7)
</Format>
<Input>
Triple to be completed: {triple}
Candidate entity: {candidate_entities}
Provided context: {context}
Please provide the final answer in JSON format:
<\Input>
J/
Figure 5: Prompt fo Evaluation
Prompt Template ! N
<Role>
You are a knowledge graph expert skilled in evaluating candidate entities based on previous judgments.
</Role>
<Task>
*k0bjective: sk
Re-evaluate a candidate entity's fit for a triple, using a previously assigned score/reason and new 'context'.
s+Inputs You Will Receive:kk
* “context’
* ‘current_score’ (A 1-7 score from a previous judgment)
* ‘current_reason’ (The explanation for the ‘current_score’)
*kReference 1: Scoring Scale (1-7)x%xk
This scale indicates how well the candidate entity fits the triple:
* 1: #xCompletely Incorrectsx (clear contradiction with known facts or “context’)
* 4: skUncertainkx (not sure)
* 7: skCorrectsk (logically consistent and fits perfectly with ‘context’ and knowledge)
(Intermediate scores denote varying degrees of fit.)
*kReference 2: Reason Definition¥x
The ‘reason’ explains the justification for a given ‘score’.
*kYour Evaluation Steps:sk
1. skContext-Reason Analysis:*k Does the provided ‘context’ adequately support the current_reason'?
2. *+Reason-Score Analysis:xk Does the “current_reason” logically justify the “current_score’ (based on the 1-7 scale defined
above)?
3. #xFinal Judgment & Explanation:s* Based on your analysis in Steps 1 and 2:
* *kIf revision is needed:** Provide a 'new_score' (1-7) and a clear, comprehensive ‘new_reason’ explaining your revised
judgment.
* *kIf no revision is needed:xx Briefly explain why the ‘current_score’ and “current_reason’ remain appropriate and are well-
supported by the ‘context'.
</Task>
<Format>
Please output your evaluation in the following JSON format:
{
"entity": "candidate_entity_name",
"judgment": {
"score": score (1-7),
"reason": "Explanation based on the provided context, reason and score"
“final_assessment": "Whether this is a good candidate or not"
s
</Format>
<Input>
Please provide the final answer in JSON format:
</Format>
J

Figure 6: Prompt fo Correction
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