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Abstract001

Knowledge Graph Completion (KGC) is cru-002
cial for addressing Knowledge Graph (KG)003
incompleteness, a key limitation for down-004
stream applications. Existing KGC methods,005
including Large Language Model (LLM)-based006
approaches, often struggle with factual cor-007
rectness and transparent reasoning for predic-008
tions. We introduce ReflectKGC, a novel,009
training-free Plan-Act-Judge agent framework010
designed to tackle these challenges. Reflec-011
tKGC employs LLMs across three stages for012
interpretable and accurate KGC: 1) Planning:013
An LLM profiles relations from example triples,014
inferring semantics and entity type constraints.015
2) Acting: An Evaluator LLM assesses candi-016
dates, generating scores and human-readable017
rationales based on the profiled relation. 3)018
Judging: Critically, a Judge LLM scrutinizes019
the Evaluator’s rationales, re-scoring or filter-020
ing candidates based on flawed reasoning, ac-021
tively correcting predictions to enhance accu-022
racy. This rationale-driven active correction en-023
ables ReflectKGC to deliver more accurate and024
trustworthy results. Experiments on standard025
benchmarks demonstrate ReflectKGC’s state-026
of-the-art performance, yielding verifiable and027
accurate completions.028

1 Introduction029

Knowledge Graphs (KGs), representing facts as030

(head entity, relation, tail entity) triples like (egg,031

nutrient, Vitamin B5), underpin numerous applica-032

tions such as question answering and recommen-033

dation systems. Knowledge Graph Completion034

(KGC) aims to automatically infer missing links,035

enriching KGs by analyzing existing facts—for in-036

stance, predicting the missing tail entity in a query037

like (egg, nutrient, ?). However, while methods038

ranging from triple-based approaches (Sun et al.,039

2019; Zhu et al., 2021), PLM-driven text-based040

models (Yao et al., 2019; Wang et al., 2021), to041

recent techniques leveraging Large Language Mod-042

els (LLMs) (Wei et al., 2023; Liu et al., 2024; Li043

Query: 
(egg, nutrient, ?)

Candidate:
protein
Vitamin C
Copper
(+/-)-pantothenic acid
…

Vitamin C

(+/-)-pantothenic acid: Yes, it is a 
form of pantothenic acid (Vitamin B5), 
which is a nutrient found in eggs.

No explanation 
provided.

ReflectKGC

Baseline

Figure 1: ReflectKGC yields interpretable, accurate
completions over baselines. For (egg, nutrient, ?),
a baseline might wrongly predict ’Vitamin C’ without
explanation. ReflectKGC correctly identifies ’(+/-)-
pantothenic acid’ (Vitamin B5) in eggs, providing a
human-readable rationale for its prediction.

et al., 2025) have advanced KGC, many operate as 044

"black boxes." This opacity hinders scrutiny, can 045

propagate erroneous triples (e.g., incorrectly pre- 046

dicting (egg, nutrient, Vitamin C)), and critically 047

limits trust in high-stakes domains like healthcare 048

and finance, where understanding the "why" behind 049

a prediction is paramount (Di Mauro et al., 2024). 050

Explainability is thus evolving from a desirable 051

feature to a fundamental requirement. 052

While LLMs bring powerful semantic under- 053

standing to KGC, they are not immune to produc- 054

ing erroneous or poorly justified outputs. Critically, 055

existing research in explainable KGC has largely 056

focused on generating post-hoc explanations for 057

human understanding or subsequent model opti- 058

mization (Bikaun et al., 2024; Chen et al., 2024; 059

Chang et al., 2024; Di Mauro et al., 2024). The 060

direct use of these explanations to actively refine 061

KGC predictions for improved accuracy remains 062

largely unexplored. This gap highlights the need 063

for KGC methods that not only provide transparent 064

reasoning but also leverage this interpretability to 065

enhance the completion process itself. 066

To meet this demand for interpretable KGC 067

with active correction, LLMs present a compelling 068

avenue for generating the necessary nuanced ex- 069

planations. However, the inherent fallibility of 070
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LLMs—manifesting as potential factual inaccura-071

cies, domain-specific knowledge gaps, or difficul-072

ties with complex structured reasoning (Bang et al.,073

2023; Yang et al., 2024; Sun et al., 2023)—ne-074

cessitates a crucial second step: a mechanism to075

critically evaluate and refine these LLM-generated076

rationales to ensure the final accuracy of the077

KGC process. It is this dual imperative—to har-078

ness LLMs for explainable KGC while simul-079

taneously ensuring the reliability of their inter-080

pretations—that motivates our work. We intro-081

duce ReflectKGC, a novel, training-free KGC082

framework structured around a Plan-Act-Judge083

agent paradigm. ReflectKGC distinctively em-084

ploys LLMs at each stage, with a score-centric085

approach, to achieve both interpretability and en-086

hanced accuracy through active, rationale-based087

correction: 1) Planning (Relation Profiling): An088

LLM analyzes example triples to summarize the089

relation’s natural language description and infer090

entity type constraints. 2) Acting (Candidate Evalu-091

ation): An Evaluator LLM assesses each candidate092

entity against these constraints and semantic co-093

herence, outputting a score and a detailed, human-094

readable rationale. 3) Judging (Rationale-based095

Correction): Crucially, a Judge LLM scrutinizes096

the Evaluator’s rationale, correcting scores or filter-097

ing candidates based on flawed reasoning, thereby098

directly mitigating errors by leveraging these very099

explanations to improve final accuracy.100

Our main contributions are:101

• We introduce ReflectKGC, a novel training-102

free Plan-Act-Judge agent framework that103

uniquely integrates LLM-driven interpretabil-104

ity into the KGC process for enhanced accu-105

racy.106

• Our approach generates explicit, human-107

readable rationales that are actively employed108

by a Judge LLM for correction, directly im-109

proving the reliability and accuracy of KGC110

outputs.111

• Extensive ablation studies validate the effec-112

tiveness of each component within our pro-113

posed framework.114

2 Related Works115

Large Language Models in KGC LLMs have116

shown significant promise in KGC by leverag-117

ing their vast pre-trained knowledge. Key ap-118

proaches aim to bridge the gap between structured119

KGs and the unstructured nature of LLMs, ad- 120

dress grounding errors, and manage computational 121

costs. These frameworks represent different strate- 122

gies for LLM integration, from extensive context 123

augmentation and dataset-specific fine-tuning to 124

training-free prompt engineering. ReflectKGC’s 125

Distinction: ReflectKGC adopts a training-free 126

philosophy, akin to KICGPT, by leveraging pre- 127

trained LLMs for all its stages (Plan, Act, Judge) 128

through carefully designed prompting and inter- 129

LLM communication. This approach inherently 130

offers greater generalization capabilities across 131

diverse knowledge graphs and relations without 132

the need for dataset-specific fine-tuning, which 133

is a core component of methods like DIFT and 134

KGR3’s re-ranker. Consequently, ReflectKGC is 135

designed to be more readily adaptable to new KGs 136

with potentially lower setup overhead. Its core 137

novelty, however, remains its explicit Plan-Act- 138

Judge agentic structure, where the "Judge" LLM 139

actively scrutinizes and corrects the "Act" LLM’s 140

outputs based on the quality of its generated ratio- 141

nale. This rationale-driven internal correction loop 142

for enhancing accuracy and interpretability, built 143

upon a training-free foundation, is a key differen- 144

tiator. 145

LLM-as-a-Judge and Agentic Frameworks 146

The "LLM-as-a-Judge" paradigm leverages LLMs 147

to evaluate the quality of outputs against speci- 148

fied criteria, offering scalable automated assess- 149

ment. This is relevant for assessing KGC predic- 150

tion plausibility beyond standard metrics. Con- 151

currently, LLM-based Agentic frameworks (e.g., 152

ReAct (Yao et al., 2023)) are emerging, endowing 153

LLMs with capabilities like planning, tool use, and 154

reflection, often structured in plan-act-evaluate cy- 155

cles. For KGC, an agent might plan information 156

retrieval, execute queries, and refine its strategy. 157

Recent work also explores LLM self-correction 158

and critique, where models iteratively refine out- 159

puts based on internal or external feedback (Gu 160

et al., 2024). ReflectKGC’s Distinction: Reflec- 161

tKGC explicitly adopts a Plan-Act-Judge agentic 162

structure. The "Judge" stage directly embodies the 163

LLM-as-a-Judge concept, but critically, it’s not just 164

for post-hoc evaluation. Instead, the Judge’s as- 165

sessment of the Evaluator’s (Act stage) rationale 166

is an integral part of the KGC pipeline, leading to 167

active re-scoring and correction of the predictions 168

before they are finalized. This tight integration of 169

critique and refinement within the KGC process, 170

forming a specialized agent for interpretable and ac- 171
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curate completion, distinguishes ReflectKGC from172

general agentic frameworks or standalone LLM-as-173

a-Judge applications.174

3 Methods175

This section details the ReflectKGC framework,176

a novel Plan-Act-Judge agent approach designed177

for interpretable and accurate Knowledge Graph178

Completion (KGC). ReflectKGC systematically179

employs Large Language Models (LLMs) across180

three distinct stages: Relation Profiling (Plan),181

Candidate Evaluation and Rationale Generation182

(Act), and Rationale-based Correction and Verifi-183

cation (Judge). The core idea is to leverage LLM-184

generated rationales not just for human understand-185

ing, but as an active component for refining predic-186

tions and improving accuracy.187

3.1 Overall Framework of ReflectKGC188

Given a KGC query, typically in the form of an in-189

complete triple (h, r, ?) where h is the head entity,190

r is the relation, and ? denotes the missing tail en-191

tity (or similarly for missing head entities (?, r, t)),192

and a set of candidate entities, ReflectKGC pro-193

cesses them through a sequential pipeline.194

1. Plan (Relation Profiling): An LLM analyzes195

example triples sharing the same relation r196

from the knowledge graph. It profiles the rela-197

tion by generating a natural language descrip-198

tion (template) of its semantics and inferring199

plausible entity type constraints for its head200

and tail arguments. This stage provides crucial201

semantic context for subsequent evaluation.202

2. Act (Candidate Evaluation and Rationale203

Generation): An Evaluator LLM assesses204

each candidate tail entity against the profiled205

relation (template and type constraints) and206

its semantic coherence with the head entity207

h. For each candidate, this stage outputs an208

initial score (e.g., on a Likert scale) and, criti-209

cally, a detailed, human-readable textual ratio-210

nale explaining the basis for this score.211

3. Judge (Rationale-based Correction and212

Verification): A Judge LLM scrutinizes the213

rationales generated by the Evaluator LLM in214

the Act stage. Based on the factual correct-215

ness, logical soundness, and sufficiency of the216

rationale, the Judge LLM may confirm the217

initial score, correct it (Reflect), or even filter218

out the candidate if the rationale is found to219

be flawed or indicative of a misunderstanding. 220

This stage outputs a verified score, a verifica- 221

tion status (e.g., Correct, Unsure, Incorrect), 222

and a judge’s reason explaining any changes 223

or confirmations. 224

This three-stage process, particularly the active cor- 225

rection by the Judge LLM based on rationales, is 226

designed to produce more accurate and trustwor- 227

thy KGC results, complete with explanations for 228

each prediction. Figure 2 (as described in the user’s 229

initial draft) illustrates this overall workflow. 230

3.2 Stage 1: Plan - Relation Profiling and 231

Query Formulation 232

The motivation for this stage is that LLMs may 233

have an incomplete or incorrect understanding 234

of specific relations, especially those involving 235

domain-specific knowledge or nuanced semantic 236

distinctions. Effective relation profiling is essential 237

for guiding the subsequent evaluation of candidate 238

entities. 239

3.2.1 Relation Profiling 240

To understand the semantics of a given relation 241

R, we employ an LLM. For each distinct relation 242

present in the KG, a sufficient number of exam- 243

ple triples (e.g., up to 100) exhibiting this relation 244

are sampled from the training set. The LLM is 245

prompted to analyze these examples and perform 246

two tasks: 247

1. Generate a Natural Language Template: 248

The LLM summarizes the common seman- 249

tic pattern of the relation into a natural lan- 250

guage sentence template with placeholders 251

for the head and tail entities. For example, for 252

the relation nutrient, the template might be 253

"[Head] contains <MASK> as one of its nutri- 254

ents." This template captures the typical way 255

the relation is expressed. 256

2. Infer Entity Type Constraints: Based on the 257

example entities participating in the relation, 258

the LLM infers the general types of entities 259

that can plausibly act as the head and tail for 260

this relation. For instance, for nutrient, the 261

head entity type might be "Food items, Or- 262

ganisms" and the tail entity type "Nutrients, 263

Chemical compounds." 264

These generated templates and type constraints for 265

all relations are stored as a "relation profile mem- 266

ory" for the agent, to be used in subsequent stages. 267
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Entity Type 
Constraints

Sentence 
Template

Neighbor Triples Example Triples

Entity: egg Relation: R

Query: (egg, R, ?)

Relation 
Profiling

Evaluation
(+/-)-pantothenic acid

Copper

Vitamin D

Vitamin C

Water

Copper

(+/-)-pantothenic acid

Vitamin D

Vitamin C

Water

Reason: Copper is a
micronutrient. Eggs are a source 
of various 

Reason: It is a form of 
pantothenic acid (vitamin B5), 
which is a nutrient found in eggs.

Judge Reason: Evidence for eggs as a 
significant or commonly recognized 
source of copper is limited.

Judge Reason: The reason can fully
support the score.

Correction

Relation 
Alignment

Rewrited Query 
Rewrited Neighbor Facts

Entity Type 
Constraints

Figure 2: Overview of ReflectKGC. The framework processes a query and KGC candidates through Plan (Relation
Profiling), Act (Initial Candidate Evaluation & Rationale Generation), and Judge (Rationale-based Correction &
Verification) stages, yielding categorized completions (e.g., Correct, Unsure, Incorrect) with justifications.

Examples of R from KG
(cheese, R, fluoride ion)
(beef, R, glycine)
(coconut milk, R, water) 
…

Relation Profiling
Head type: Food items including 
raw ingredients, prepared dishes, 
and food products.
Tail type: Nutrients or hemical
compounds found in food.

Sentence Template:
[Head] contains 
[Tail] as one of its 
nutrients.

Query (Rewrited)
egg contains <MASK> as one of its nutrient.
Type for <MASK>:
Nutrients or hemical compounds found in food.

Query (Origin)
(egg, /food/food/nutrients./food/nutrition_fact/nutrient , ?)

(a)

(b) (c)

Figure 3: ReflectKGC Plan Stage. (a) Relation Profiling
uses KG examples of relation R to derive a sentence
template and entity type constraints. (b) Original KGC
query. (c) The query is rewritten and enriched with type
constraints for the Act stage.

This addresses challenges like understanding com-268

plex or composed relations, such as those found in269

datasets like FB15k-237 where intermediate CVT270

(Common Value Type) entities might obscure direct271

relationships. Figure 3 (a) depicts this process.272

3.2.2 Query Formulation273

Once a KGC query (h,R, ?) is received, the pre-274

computed profile for relation R (template and type275

constraints) is retrieved. The query is then formu-276

lated for the Act stage as follows:277

1. The natural language template for R is instan-278

tiated with the given head entity h, leaving279

a placeholder for the tail entity. For exam-280

ple, if h is "egg" and the template is "[Head]281

contains <MASK> as one of its nutrients.", the282

formulated query sentence becomes "egg con-283

tains <MASK> as one of its nutrients."284

2. The inferred tail entity type constraint for re-285

lation R is appended to this query sentence286

to guide the LLM. For example, "Type for287

<MASK>: Nutrients."288

This formulated query, enriched with semantic and 289

type information, is then passed to the Act stage. 290

This process is illustrated in Figure 3 (b) and (c). 291

This natural language rewriting is also applied to 292

any neighbor facts used for context in the Act stage. 293

3.3 Stage 2: Act - Candidate Evaluation and 294

Rationale Generation 295

The goal of the Act stage is to generate an assess- 296

ment, comprising a score and a supporting ratio- 297

nale, for each candidate tail entity. This stage re- 298

ceives the rewritten query from the Plan stage (e.g., 299

"egg contains <MASK> as one of its nutrient. Type 300

for <MASK>: Nutrients.") and a list of candidate tail 301

entities C = {c1, c2, ..., cn}, which can be sourced 302

from a base KGC model or a retrieval mechanism. 303

For each candidate entity cj in C, an Evaluator 304

LLM performs the following steps: 305

1. The LLM is prompted with the rewritten 306

query, where the <MASK> is replaced by the 307

candidate entity cj . For example, "egg con- 308

tains Vitamin C as one of its nutrient. Type 309

for Vitamin C: Nutrients." 310

2. It is instructed to assess the likelihood or cor- 311

rectness of cj being the true tail entity for h 312

under relation R. This assessment considers 313

the provided type constraints, the semantic 314

coherence of the completed triple, and the 315

LLM’s internal knowledge, potentially aug- 316

mented by retrieved neighbor facts of h. 317

3. The LLM outputs a Score reflecting this as- 318

sessment, using a Likert scale from 1 (defi- 319

nitely incorrect) to 7 (definitely correct), with 320

4 signifying "unsure." 321
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4. Finally, the LLM generates a Reason (a322

human-readable rationale) explaining the ba-323

sis for its assigned Score, adhering to prin-324

ciples of interpretability, sufficiency, con-325

ciseness, and faithfulness. For example,326

for (egg, nutrient, (+/-)-pantothenic327

acid), a good Reason might include: "(1) (+/-328

)-pantothenic acid is a form of Vitamin B5.329

(2) Vitamin B5 is a nutrient found in eggs."330

The output of this stage for each candidate is a331

(Candidate, Score, Reason) tuple. Figure 2332

illustrates this output, which provides the first pass333

of evaluation and the raw explanations for scrutiny334

by the Judge LLM.335

3.4 Stage 3: Judge - Rationale-based336

Correction and Verification337

This stage embodies the core "Reflect" mechanism338

and is a key novelty of the ReflectKGC frame-339

work. Its primary objective is to critically evaluate340

the Reasons generated in the Act stage alongside341

their associated Scores. Based on this scrutiny, the342

Judge LLM corrects the Scores, thereby aiming343

to improve the overall accuracy and trustworthi-344

ness of the KGC predictions. This approach, in-345

spired by "LLM-as-a-Judge" research (McAleese346

et al., 2024), allows ReflectKGC to actively mit-347

igate potential errors, biases, or overconfidence348

from the Act stage by leveraging interpretability349

for enhanced accuracy.350

The input to this stage consists of the351

(Candidate, Score, Reason) tuples produced352

by the Evaluator LLM in the Act stage. For each353

such tuple corresponding to a candidate cj with its354

Scorej and Reasonj , a distinct Judge LLM under-355

takes the following process:356

1. The Judge LLM is prompted to scrutinize the357

provided Reasonj .358

2. It is instructed to evaluate the factual correct-359

ness, logical soundness, and sufficiency of360

this Reasonj in supporting the accompany-361

ing Scorej . The Judge assesses whether the362

provided Reason logically leads to the Score363

and if the evidence cited or implied within the364

Reason is valid and adequate.365

3. Based on this critical assessment, the Judge366

LLM takes one of several actions:367

• Confirm the Score: If the Reason is368

deemed sound, factually correct, and369

fully supports the Score. In such cases, 370

the Score might be affirmed, or confi- 371

dence in it increased (e.g., for a candidate 372

like (+/-)-pantothenic acid with a 373

strong, verifiable Reason, its Score might 374

be maintained or slightly increased). 375

• Correct the Score (Reflect): If the Rea- 376

son is identified as flawed (e.g., con- 377

taining factual inaccuracies, logical falla- 378

cies), insufficient (e.g., relying on weak, 379

irrelevant, or generalized evidence not 380

specific enough to the query), or indica- 381

tive of overconfidence from the Evalu- 382

ator. The Judge LLM then adjusts the 383

Score accordingly. For instance, if "Cop- 384

per" received a high Score for the query 385

(egg, nutrient,?) but the Reason was 386

weak, its Score might be reduced. 387

• Mark as "Unsure": If the evidence pre- 388

sented in the Reason is limited, ambigu- 389

ous, or the reasoning itself is tenuous. 390

The candidate might then be marked as 391

"Unsure," often accompanied by a Score 392

adjustment towards the middle of the 393

scale (e.g., a Score of 4). 394

• Mark as "Incorrect": If the Reason is 395

found to be entirely nonsensical, demon- 396

strates a clear misunderstanding of the 397

query or relation, or is based on demon- 398

strably false premises. In such scenar- 399

ios, the candidate is typically marked as 400

"Incorrect," and its Score is significantly 401

lowered (e.g., to 1). 402

4. Finally, the Judge LLM outputs a Verified 403

Score, a Verification Status (e.g., "Correct," 404

"Unsure," "Incorrect" derived from the final 405

score and assessment), and a Judge Reason. 406

This Judge Reason explains any modifications 407

made to the Score or confirms the original 408

assessment, providing transparency into the 409

Judge’s decision-making (e.g., "The Reason 410

provided by the Evaluator fully supports the 411

Score." or "Evidence for eggs as a significant 412

or commonly recognized source of copper 413

is limited, hence the Score was reduced and 414

marked Unsure."). 415

The right side of Figure 2 illustrates this crucial 416

correction process. Upon completion of the Reflec- 417

tKGC pipeline, candidate entities are categorized 418

based on their verified scores and associated sta- 419
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tus, yielding a refined and interpretable set of KGC420

predictions.421

4 Experiments422

4.1 Setup423

Datasets. To assess the performance of our pro-424

posed method, we conduct experiments on two425

extensively utilized benchmark datasets: FB15k-426

237 and WN18RR. FB15k-237 is a subset of Free-427

base (Bollacker et al., 2008), a large-scale knowl-428

edge graph containing encyclopedic facts about a429

wide array of topics such as notable individuals,430

organizations, and cultural works. WN18RR, de-431

rived from WordNet (Miller, 1995), is a lexical432

knowledge graph that primarily captures informa-433

tion regarding English word meanings and rela-434

tionships. Crucially, to ensure a fair evaluation and435

prevent issues of data leakage, both FB15k-237 and436

WN18RR are curated by removing inverse relations437

from their original knowledge bases. Further de-438

tailed statistics for these datasets are provided in439

Table 1.

Dataset # Entities # Relations # Train # Valid # Test

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

Table 1: Statistics of the benchmark datasets.
440

Baselines. We compare our proposed method441

with several strong baseline methods spanning442

three main categories: triple-based, text-based,443

and large language model-based approaches.444

The triple-based methods include: TransE (Bor-445

des et al., 2013), ComplEx (Trouillon et al.,446

2016), RotatE (Sun et al., 2019), TuckER (Bal-447

azevic et al., 2019), GIE (Cao et al., 2022),448

CompGCN (Vashishth et al., 2020), and NBF-449

Net (Zhu et al., 2021). The text-based methods450

include: KG-BERT (Yao et al., 2019), MEM-451

KGC (Choi et al., 2021), SimKGC (Wang et al.,452

2022), and CoLE (Liu et al., 2022). The large453

language model-based methods include ChatGPT,454

KICGPT (Wei et al., 2023) and MKGL (Guo et al.,455

2024); the results for ChatGPT (1-shot) are adopted456

from the KICGPT paper (Wei et al., 2023).457

Metrics. For evaluating our proposed method,458

Mean Reciprocal Rank (MRR) and Hits@k (for459

k = 1, 3, and 10) are the standard metrics em-460

ployed. MRR provides the average of the recip-461

rocal ranks for the correct target entities over all462

test queries. Hits@k, on the other hand, indicates463

the proportion of test queries where the true target 464

entity is successfully ranked within the top-k pre- 465

dicted entities. Consistently, higher values across 466

all these metrics denote a more effective model 467

performance. 468

Implementation Details. For initial candidate 469

generation in ReflectKGC, we employ NBF- 470

Net (Zhu et al., 2021), selected for its leading per- 471

formance among triple-based methods (detailed in 472

Table 2) and configured as per its original publi- 473

cation. NBF-Net provides the top 20 candidates 474

per query. Our Plan, Act, and Judge modules then 475

re-score these candidates, primarily utilizing the 476

Qwen-72B API; the GPT-4o API was also used for 477

comparative experiments reported in Table 4. To 478

ensure deterministic outputs and reduce random- 479

ness, all LLM API calls used a temperature of 0. 480

The final ranking sorts the LLM-generated scores 481

and fuses this new order with NBF-Net’s original 482

candidate ranking using the Reciprocal Rank Fu- 483

sion (RRF) (Cormack et al., 2009)algorithm. Our 484

framework operates in a train-free manner, and all 485

reported experimental results are the average of 486

three runs. Approximate processing times are 30 487

minutes for the FB15k-237 dataset and 12 minutes 488

for the WN18RR dataset. Detailed prompts for 489

LLMs are available in Appendix A. 490

4.2 Main Results 491

Table 2 presents the main experimental results, un- 492

derscoring the efficacy of our ReflectKGC frame- 493

work. Notably, when compared to the KICGPT 494

baseline, ReflectKGC demonstrates significant per- 495

formance enhancements across both datasets. On 496

WN18RR, ReflectKGC achieves absolute improve- 497

ments of 0.114 in MRR and 0.129 in Hits@1 com- 498

pared to KICGPT. On FB15k-237, our method also 499

achieves improvements of 0.011 in MRR and 0.004 500

in Hits@1. These clear improvements highlight the 501

effectiveness of our proposed approach. 502

It is also noteworthy that ReflectKGC achieves 503

substantial improvements in Hits@3 and Hits@10 504

metrics when compared against traditional non- 505

LLM baselines across both datasets; for instance, 506

on WN18RR, it surpasses NBF-Net by up to 5.4% 507

in Hits@3 and 4% in Hits@10. This particular 508

strength underscores the efficacy of our Act mod- 509

ule, where the Evaluator LLM precisely identifies 510

target entities and assigns them high scores accom- 511

panied by detailed rationales, thereby ensuring ro- 512

bust recall of correct answers within the top can- 513
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Methods FB15k237 WN18RR

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Triple-based Methods
TransE 0.279 0.198 0.376 0.441 0.243 0.043 0.441 0.532
ComplEx 0.247 0.158 0.275 0.428 0.440 0.410 0.460 0.510
RotatE 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571
TuckER 0.358 0.266 0.394 0.544 0.470 0.443 0.482 0.526
GIE 0.362 0.271 0.401 0.552 0.491 0.452 0.505 0.575
HittER 0.373 0.279 0.409 0.558 0.503 0.462 0.516 0.584
CompGCN 0.355 0.264 0.390 0.535 0.479 0.443 0.494 0.546
NBF-Net 0.415 0.321 0.450 0.599 0.551 0.497 0.573 0.666

Text-based Methods
KG-BERT - - - 0.420 0.216 0.041 0.302 0.524
MEM-KGC 0.346 0.253 0.381 0.531 0.557 0.475 0.604 0.704
CoLE 0.387 0.293 0.426 0.570 0.585 0.532 0.607 0.689

Large Language Model-based Methods
ChatGPT (1-shot) - 0.267 - - - 0.212 - -
MKGL 0.415 0.325 0.454 0.591 0.552 0.500 0.577 0.656
KICGPT 0.410 0.321 0.430 0.581 0.564 0.478 0.612 0.677
ReflectKGC (Ours) 0.421 0.325 0.477 0.614 0.589 0.532 0.627 0.706

Table 2: Experiment results of the KGC task on FB15k-237 and WN18RR datasets. The best results are in bold
and the second-best ones are underlined. All results of baseline methods are referred from corresponding original
papers.

didates. While Hits@1 scores also see consistent514

enhancements, the pronounced gains in Hits@3515

and Hits@10 suggest ReflectKGC excels in sce-516

narios common in complex KGs, such as queries517

with multiple plausible entities like the (egg, nu-518

trient, ?) example in Figure1. In these cases, our519

framework adeptly positions the ground truth en-520

tity prominently among the top-ranked candidates,521

demonstrating strong discriminative power even522

when several options are semantically fitting.523

Furthermore, ReflectKGC establishes a new524

state-of-the-art when compared against prior LLM-525

based KGC methods. For instance, while KICGPT526

also operates on a training-free basis, its perfor-527

mance does not consistently surpass leading tradi-528

tional triple-based or text-based models; KICGPT’s529

MRR of 0.410 on FB15k-237 trails NBF-Net530

(0.415), and its 0.564 MRR on WN18RR is sub-531

stantially lower than that of SimKGC (0.671). We532

attribute ReflectKGC’s more effective LLM utiliza-533

tion to its comprehensive Plan-Act-Judge architec-534

ture: the Plan module provides crucial relational535

context and type constraints derived from the graph536

structure, guiding the Act module’s sophisticated537

candidate evaluation, which is then critically re-538

fined by the Judge module’s rationale-based cor-539

rection. This structured approach ensures a deeper540

and more reliable application of LLM capabilities.541

In contrast, methods like MKGL rely on LoRA-542

based fine-tuning, entailing a complex training543

process, and critically, their outputs lack explana- 544

tory rationales, which can diminish the persuasive- 545

ness of their results. ReflectKGC not only deliv- 546

ers stronger or comparable predictive performance 547

(e.g., achieving an MRR of 0.421 on FB15k-237 548

versus MKGL’s 0.415) but does so as a training- 549

free framework that inherently provides crucial in- 550

terpretability. 551

MRR Hits@1 Hits@3 Hits@10
ReflectKGC 0.421 0.325 0.477 0.614
w/o entity type constraints 0.395 0.301 0.440 0.605
w/o relation alignment 0.394 0.296 0.450 0.604
w/o neighbor triples 0.403 0.322 0.436 0.585
w/o judge 0.405 0.308 0.452 0.596

Table 3: Ablation results on FB15k-237.

4.3 Ablation Studies 552

To ascertain the individual contributions of key 553

components within our ReflectKGC framework, 554

we conducted a series of ablation studies on the 555

FB15k-237 dataset. The detailed results of these 556

experiments are presented in Table 3. 557

First, we examined the impact of entity type 558

constraints, an output of our Plan module’s Re- 559

lation Profiling. Removing these constraints led 560

to a notable performance decline across all met- 561

rics, with MRR dropping from 0.421 to 0.395 and 562

Hits@3 decreasing from 0.477 to 0.440. This 563

underscores their importance, particularly for a 564

dataset like FB15k-237 where relations such as 565
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"/film/film/film_festivals" can be ambiguous. While566

literally suggesting a link between a film and a567

festival, such relations often involve entities like568

individuals or awards associated with the festival.569

Without explicit type constraints, the Act module’s570

LLM may misjudge the typicality of correct enti-571

ties, assigning them unduly low scores.572

Next, we ablated the relation alignment tem-573

plate, also part of the Plan module, which aids the574

LLM in interpreting complex relation identifiers.575

Its removal resulted in a significant performance576

drop across all metrics, with Hits@1 decreasing577

from 0.325 to 0.296 and MRR from 0.421 to578

0.394. Many relations in FB15k-237, such as579

"/food/food/nutrients./food/nutrition_fact/nutrient"580

(as exemplified in Figure 2), are syntactically581

complex. Indeed, a substantial portion of the582

dataset exhibits this characteristic, with 144 out of583

the 237 distinct relations in FB15k-237 presenting584

similar structural intricacies, underscoring the585

prevalence of this challenge. The relation align-586

ment template is designed to normalize or clarify587

these convoluted identifiers, and its absence can588

lead to LLM confusion and a poorer understanding589

of the relational context, thereby impairing overall590

KGC performance.591

We then investigated the role of neighbor592

triples, which inform the Act module’s pattern-593

guided evaluation by providing contextual594

evidence from the knowledge graph. Removing595

access to these triples resulted in a significant drop596

in Hits@3 (from 0.477 to 0.436) and Hits@10597

(from 0.614 to 0.585), while Hits@1 remained598

relatively stable (0.325 to 0.322). The stability599

in Hits@1 can be attributed to the presence of600

numerous common-sense facts in FB15k-237 (e.g.,601

("Titanic","/film/film/language","English")), for602

which the LLM’s internal knowledge often suffices.603

However, for more complex queries requiring spe-604

cific factual evidence (e.g., ("52nd Annual Grammy605

Awards","/award/award_honor/award_winner","50606

Cent")), the absence of relevant neighbor triples607

makes it challenging for the model to make608

informed judgments, thus impacting broader recall.609

Finally, removing the Judge module led to a610

discernible decrease across all metrics, with MRR611

falling to 0.405 and Hits@1 to 0.308. While the per-612

formance drop might appear less substantial than613

other ablations, it highlights the Judge’s crucial614

role in refining the outputs from the Act module.615

This suggests that while the Act module’s Eval-616

uator LLM often generates consistent scores and617

Settings MRR Hits@1 Hits@3 Hits@10

Qwen-72B 0.421 0.325 0.477 0.614
GPT4o 0.420 0.325 0.479 0.617

Table 4: Ablation Experiments on FB15k-237 dataset
with different LLM.

rationales, the Judge module is vital for identifying 618

and correcting residual errors or flawed reasoning 619

from the Evaluator. This final verification step is 620

indispensable for enhancing the overall reliability 621

and accuracy of ReflectKGC, ensuring that the ex- 622

planations actively contribute to the trustworthiness 623

of the final predictions. 624

4.4 Analysis on different LLM 625

To assess framework generalizability, we evalu- 626

ated ReflectKGC on FB15k-237 using both Qwen- 627

72B and GPT-4o as the backbone LLM for all 628

modules. As shown in Table 4, performance re- 629

mained remarkably consistent across these distinct 630

models, indicating that ReflectKGC’s efficacy is 631

driven by its robust Plan-Act-Judge architecture 632

and rationale-based mechanisms rather than re- 633

liance on a specific LLM’s idiosyncratic knowl- 634

edge. This highlights the architectural soundness 635

and adaptability of our approach. 636

5 Conclusion 637

We introduced ReflectKGC, a novel training-free 638

Plan-Act-Judge agent framework that enhances 639

Knowledge Graph Completion by improving fac- 640

tual correctness and transparent reasoning where 641

existing methods often fall short. ReflectKGC sys- 642

tematically employs LLMs for relation profiling 643

(Plan), candidate evaluation with rationale gener- 644

ation (Act), and critically, rationale-based correc- 645

tion by a Judge LLM, enabling it to mitigate LLM 646

fallibility and deliver more accurate, trustworthy 647

results. Demonstrated state-of-the-art performance 648

on standard benchmarks underscores ReflectKGC’s 649

effectiveness in producing verifiable completions, 650

with future work poised to extend this reflective 651

framework. 652
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Limitations653

Despite its strengths, ReflectKGC’s performance654

is inherently linked to the capabilities of the un-655

derlying LLMs, and its sequential Plan-Act-Judge656

pipeline can introduce latency, potentially impact-657

ing suitability for real-time applications. The effi-658

cacy of the critical Judge module also depends on659

nuanced prompt engineering to ensure accurate cri-660

tique of the Act module’s rationales without being661

overly restrictive or lenient. Finally, the system’s662

overall recall is constrained by the quality of the663

initial candidate set provided by the external KGC664

model.665
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A Appendix 826

<Role>
You are a knowledge graph expert, skilled in analyzing entity relationships and extracting semantic information.
</Role>

<Task>
I will provide you with a series of triples in the format: head_entity\trelation\ttail_entity
All these triples share the same relation: {relation}
Please analyze these triples and complete the following tasks:
1. Summarize the types of head entities (there may be multiple types)
2. Summarize the types of tail entities (there may be multiple types)
3. Provide a concise one-sentence description of this relation.
4. Write a natural sentence template using [Head] and [Tail] that clearly expresses the meaning and direction of the relation. Keep 
it concise and intuitive. Do not use parentheses or examples.
</Task>

<Format>
Please return your response in JSON format as follows:
{
"head_entity_type": "type of head entities in one sentence or a python enumerate list",
"tail_entity_type": "type of head entities in one sentence or a python enumerate list",
"short_description": "brief description of the relation (one sentence)",
"template": "natural language template with [Head] and [Tail]"
}
<\Format>

<Input>
Here are the triple data: {triples}
Please provide the final answer in JSON format:
<\Input>

Prompt Template

Figure 4: Prompt fo Relation Profiling
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<Role>
You are a knowledge graph expert skilled in evaluating the validity of candidate entities in knowledge graph completion tasks.
</Role>

<Task>
- Question: Based on the provided context information and your general knowledge, does the candidate entity logically fit into the 
sentence and context? Choose a score from 1 to 7:
- 1: Completely Incorrect (creates a clear contradiction with known facts or context)
- 4: Uncertain (not sure)
- 7: Correct (logically consistent and fits perfectly with context and knowledge)
</Task>

<Rule>
Explain the provided score. Your explanation must be:

* **Readable:** Clear, straightforward, and easy for the target audience to understand.
* **Sufficient yet Concise:** Cover all crucial aspects and implications of the score thoroughly, while remaining brief and to the 
point, avoiding jargon or unnecessary details.
* **Faithful:** Accurately and truthfully represent the score's intended meaning, how it is derived (if applicable), and its 
correct interpretation within its given context.
</Rule>

<Format>
Please output your evaluation in the following JSON format:
{
"entity": "candidate_entity_name",
"reason": "Explanation for this score",
"score": score (1-7)
}
</Format>

<Input>
Triple to be completed: {triple}
Candidate entity: {candidate_entities}
Provided context: {context}
Please provide the final answer in JSON format:
<\Input>

Prompt Template

Figure 5: Prompt fo Evaluation

<Role>
You are a knowledge graph expert skilled in evaluating candidate entities based on previous judgments.
</Role>

<Task>
**Objective:**
Re-evaluate a candidate entity's fit for a triple, using a previously assigned score/reason and new `context`.

**Inputs You Will Receive:**
* `context`
* `current_score` (A 1-7 score from a previous judgment)
* `current_reason` (The explanation for the `current_score`)

**Reference 1: Scoring Scale (1-7)**
This scale indicates how well the candidate entity fits the triple:
* 1: **Completely Incorrect** (clear contradiction with known facts or `context`)
* 4: **Uncertain** (not sure)
* 7: **Correct** (logically consistent and fits perfectly with `context` and knowledge)
(Intermediate scores denote varying degrees of fit.)

**Reference 2: Reason Definition**
The `reason` explains the justification for a given `score`.

**Your Evaluation Steps:**
1.  **Context-Reason Analysis:** Does the provided `context` adequately support the `current_reason`?
2.  **Reason-Score Analysis:** Does the `current_reason` logically justify the `current_score` (based on the 1-7 scale defined 
above)?
3.  **Final Judgment & Explanation:** Based on your analysis in Steps 1 and 2:

* **If revision is needed:** Provide a `new_score` (1-7) and a clear, comprehensive `new_reason` explaining your revised 
judgment.

* **If no revision is needed:** Briefly explain why the `current_score` and `current_reason` remain appropriate and are well-
supported by the `context`.
</Task>

<Format>
Please output your evaluation in the following JSON format:
{
"entity": "candidate_entity_name",
"judgment": {
"score": score (1-7),
"reason": "Explanation based on the provided context, reason and score",
"final_assessment": "Whether this is a good candidate or not"
}
}
</Format>

<Input>
. . .
Please provide the final answer in JSON format:
</Format>

Prompt Template

Figure 6: Prompt fo Correction
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