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Abstract
We propose a computationally efficient alterna-
tive to generalized random forests (GRFs) for esti-
mating heterogeneous effects in large dimensions.
While GRFs rely on a gradient-based splitting
criterion, which in large dimensions is computa-
tionally expensive and unstable, our method intro-
duces a fixed-point approximation that eliminates
the need for Jacobian estimation. This gradient-
free approach preserves GRF’s theoretical guar-
antees of consistency and asymptotic normality
while significantly improving computational effi-
ciency. We demonstrate that our method achieves
a speedup of multiple times over standard GRFs
without compromising statistical accuracy. Ex-
periments on both simulated and real-world data
validate our approach. Our findings suggest that
the proposed method is a scalable alternative for
localized effect estimation in machine learning
and causal inference applications.

1. Introduction
In many real-world machine learning (ML) applications,
practitioners seek to estimate how quantities of interest vary
across different feature subgroups rather than assuming uni-
form effects. For example, medical interventions and policy
treatments often have heterogeneous impacts across subpop-
ulations, making localized estimation crucial for improving
outcomes (Imai & Ratkovic, 2013; Knaus et al., 2021; Mur-
doch et al., 2019; Lee et al., 2020). Similarly, individualized
recommendation systems adapt to user-specific features to
enhance performance (Kohavi et al., 2013).

A key example of localized estimation arises in causal infer-
ence, where modern applications prioritize individualized
treatment effects over average treatment effects (Neyman,

1Department of Mathematics and Statistics, McGill Uni-
versity, Montreal, Canada 2Mila - Quebec AI Institute, Mon-
treal, Quebec, Canada. Correspondence to: Archer Y. Yang
<archer.yang@mcgill.ca>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1923; Rubin, 1974). The double machine learning frame-
work (Chernozhukov et al., 2018) unifies various ML-based
causal estimation methods, including lasso (Belloni et al.,
2017), random forests (Athey et al., 2019; Cevid et al.,
2022), boosting (Powers et al., 2018), deep learning (Johans-
son et al., 2016; Shalit et al., 2017), and general-purpose
meta-algorithms (Nie & Wager, 2021; Künzel et al., 2019),
all of which focus on capturing variation over feature space.

Generalized random forests (GRFs) (Athey et al., 2019; Wa-
ger & Athey, 2018) have emerged as a powerful tool for
such tasks, leveraging adaptive partitioning with problem-
specific moment conditions instead of standard loss-based
splits. GRFs apply broadly to a wide range of important
statistical models – local linear regression (Friedberg et al.,
2020), survival analysis and missing data problems (Cui
et al., 2023), nonparametric quantile regression, heteroge-
neous treatment effect estimation, and nonlinear instrumen-
tal variables regression (Athey & Imbens, 2016; Athey et al.,
2019). Unlike local linear models (Fan et al., 1995; Fan &
Gijbels, 1996; Friedberg et al., 2020) or kernel-based models
(Staniswalis, 1989; Severini & Staniswalis, 1994; Lewbel,
2007; Speckman, 1988; Robinson, 1988) which suffer from
the curse of dimensionality (Robins & Ritov, 1997), the
tree-based approach of GRF offers a more scalable solution.

However, GRFs’ gradient-based approach (Athey et al.,
2019) becomes computationally expensive and unstable in
large dimensions due to the reliance on Jacobian estimators
for tree splitting. To address this, we propose a gradient-
free approach based on fixed-point iteration, eliminating
the need for Jacobian estimation while retaining GRF’s
theoretical guarantees of consistency and asymptotic nor-
mality. Our method significantly improves computational
efficiency while maintaining statistical accuracy, achiev-
ing significant speedups in experiments on simulated and
real-world datasets.

2. Background and Related Work
Given data (Xi, Oi) ∈ X × O, GRF estimates a target
function θ∗(x), defined as the solution to an estimating
equation of the form

0 = EO|X
[
ψθ∗(x),ν∗(x)(O) | X = x

]
, (1)
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for all x ∈ X , where ψ is a score function that identi-
fies the true (θ∗(x), ν∗(x)) as the root of (1), and ν∗(x)
is an optional nuisance function. GRF can be understood
from a nearest-neighbor perspective as approximating θ∗(x)
through a locally parametric θ∗ within small neighborhoods
of test point x. Suppose L(x) ⊂ {Xi}ni=1 is a subset of
training observations of the covariates found in a region
around x ∈ X over which θ∗(x) can be well-approximated
by a local parameter. Observations Xi ∈ L(x) serve as lo-
cal representatives for x in estimating θ∗(x) such that, given
sufficiently many training samples in a small enough neigh-
borhood of x, an empirical version of (1) over Xi ∈ L(x)
defines an estimator θ̂L(x) that approaches θ∗(x),

(θ̂L(x), ν̂L(x)) ∈ argmin
θ,ν

∥∥∥∥∥
n∑

i=1

1(Xi ∈ L(x))
|L(x)|

· ψθ,ν(Oi)

∥∥∥∥∥ .
(2)

In GRF, the set of local representatives L(x) is determined
by tree-based partitions which divide the input space into
disjoint regions, or leaves. The training samples Xi that fall
in the same leaf as x form the subset L(x). However, single
trees are known to have high variance with respect to small
changes in the training data (Amit & Geman, 1997; Breiman,
1996; 2001; Dietterich, 2000), leading to estimates (2) that
do not generalize well to values of x that are not part of the
training set. GRF improves its estimates by leveraging an
estimating function that averages many estimating functions
of the form (2). Specifically, let Lb(x) denote the set of
training covariates that fall in the same leaf as x, identified
by a tree trained on an independent subsample of the data,
indexed by b = 1, . . . , B. The GRF estimator is obtained by
aggregating the individual estimating functions (2) across a
forest of B independently trained trees, i.e. the solution to
the following forest-averaged estimating equation:

(θ̂(x), ν̂(x)) ∈ argmin
θ,ν

∥∥∥∥∥ 1

B

B∑
b=1

(
n∑

i=1

αbi(x)ψθ,ν(Oi)

)∥∥∥∥∥ .
(3)

where αbi(x) :=
1(Xi∈Lb(x))

|Lb(x)| . Define observational weights
αi(x) that measure the relative frequency with which train-
ing sample Xi falls in the same leaf as x, averaged over B
trees:

αi(x) :=
1

B

B∑
b=1

αbi(x), (4)

for i = 1, . . . , n. Then, the solution (θ̂(x), ν̂(x)) to the
forest-averaged model (3) is equivalent to solving the fol-
lowing locally weighted estimating equation

(θ̂(x), ν̂(x)) ∈ argmin
θ,ν

∥∥∥∥∥
n∑

i=1

αi(x)ψθ,ν(Oi)

∥∥∥∥∥ . (5)

Athey et al. (2019) present (5) as the definition of the GRF
estimator, motivated in part by the mature analyses of lo-
cal kernel methods (Newey, 1994) alongside more recent
work on tree-based partitioning and estimating equations
(Athey & Imbens, 2016; Zeileis & Hornik, 2007; Zeileis
et al., 2008). The GRF algorithm for estimating θ∗(x) can
be summarized as a two-stage procedure. Stage I: Use trees
to calculate weight functions αi(x) for any test observation
x ∈ X , measuring the relative importance of the i-th train-
ing sample to estimating θ∗(·) near x. Stage II: Given a
test observation x ∈ X , compute estimate θ̂(x) of θ∗(x) by
solving the locally weighted empirical estimating equation
(5).

Our contribution improves the computational cost of Stage
I by introducing a more efficient procedure to train the trees.
Training the forest is the most resource-intensive step of
GRF, and the cost of each split in the existing approach
scales quadratically with the dimension of θ∗(x). We adopt
a gradient-free splitting mechanism and significantly reduce
both the time and memory demands of Stage I. Crucially,
solving Stage II with weights αi(x) following our stream-
lined Stage I produces an estimator θ̂(x) that preserves the
finite-sample performance and asymptotic guarantees of
GRF.

3. Our Method
In this section we describe the details of our accelerated
algorithm for GRF. We closely follow the approach of Athey
et al. (2019), and define θ̂(x) as the solution to a locally
weighted problem (5) with weighting functions αi(x) of the
form (4). The weight functions are induced by a collection
of local subsets {Lb(x)}Bb=1, such that each subset Lb(x)
is determined by the partition rules of a tree trained on
a subsample. The construction of each tree, in turn, is
determined by recursive splits of the subsample based on
a splitting criterion designed to identify regions of X that
are homogeneous with respect to θ∗(x). Therefore, to fully
specify the weight functions αi(x), we must describe a
feasible criterion for producing a split of X .

3.1. The target tree-splitting criterion for Stage I

In GRF, the goal of Stage I is to use recursive tree-based
splits of the training data to induce a partition over the
input space. Each split starts with a parent node P ⊂ X and
results in child nodes C1, C2 ⊂ X , defined by a binary, axis-
aligned splitting rule of the form C1 = {Xi : Xi,ℓ ≤ t}
and C2 = {Xi : Xi,ℓ > t}, where ℓ denotes a candidate
splitting feature/axis and t ∈ R the splitting threshold. For a
parent P and any child nodes C1, C2 of P , let (θ̂P , ν̂P ) and
(θ̂Cj , ν̂Cj ) denote local solutions analogous to (2) defined
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over the samples in P and Cj , respectively:

(θ̂P , ν̂P ) ∈ argmin
θ,ν

∥∥∥∥∥∥
∑

{i:Xi∈P}

ψθ,ν(Oi)

∥∥∥∥∥∥ , (6)

(θ̂Cj
, ν̂Cj

) ∈ argmin
θ,ν

∥∥∥∥∥∥
∑

{i:Xi∈Cj}

ψθ,ν(Oi)

∥∥∥∥∥∥ , (7)

for j = 1, 2. A strategy to split P into two subsets of
greater homogeneity with respect to θ∗(·) is as follows:
Find child nodes C1 and C2 such that the total deviation
between the local solutions θ̂Cj

and the target θ∗(X) is
minimized, conditional on X ∈ Cj , j = 1, 2. A natural
measure of deviation is the squared-error loss,

err(C1, C2) :=
∑
j=1,2

P (X ∈ Cj | X ∈ P )

× E
[∥∥∥θ∗(X)− θ̂Cj

∥∥∥2 ∣∣∣∣ X ∈ Cj

]
,

such that the resulting split (C1, C2) corresponds to
least-squares optimal solutions θ̂C1

and θ̂C2
. However,

err(C1, C2) is intractable since θ∗(·) is unknown. GRF
considers a criterion that measures heterogeneity across a
pair of local solutions over a candidate split

∆(C1, C2) :=
nC1

nC2

n2P

∥∥∥θ̂C1 − θ̂C2

∥∥∥2 , (8)

where nC1 , nC2 , and nP denote the number of observations
in C1, C2, and P , respectively. In particular, rather than
minimizing err(C1, C2), one can seek a split of P such
that the cross-split heterogeneity between θ̂C1

and θ̂C2
is

maximized. Athey et al. (2019) observe that err(C1, C2)
and ∆(C1, C2) are coupled according to err(C1, C2) =
K(P ) − E [∆(C1, C2)] + o(r2), where r > 0 is a small
radius term tied to the sampling variance, and K(P ) does
not depend on the split of P . That is, splits that maximize
∆(C1, C2) – which emphasize the heterogeneity of θ̂Cj

across a split – will asymptotically minimize err(C1, C2),
which aims to improve the homogeneity of θ̂Cj

within a
split.

Although the criterion ∆(C1, C2) is computable, evaluating
it is very computationally expensive since it requires solving
(7) to obtain θ̂C1

, θ̂C2
for all possible splits of P , and closed-

form solutions for θ̂Cj are generally not available except in
special cases of ψ. Instead, GRF approximates the target
∆-criterion based on a criterion of the form

∆̃grad(C1, C2) :=
nC1

nC2

n2P

∥∥∥θ̃gradC1
− θ̃gradC2

∥∥∥2 , (9)

where θ̃gradCj
denotes a gradient-based approximation of θ̂Cj

.

Specifically, θ̃gradCj
is a first-order approximation interpreted

as the result of taking a gradient step away from the parent
estimate in the direction towards the true child solution θ̂Cj :

θ̃gradCj
:= θ̂P −

1

nCj

∑
{i:Xi∈Cj}

ξ⊤A−1
P ψθ̂P ,ν̂P

(Oi), (10)

where (θ̂P , ν̂P ) is the local solution over the parent, AP

is any consistent estimator of the local Jacobian matrix
∇(θ,ν)E[ψθ̂P ,ν̂P

(Oi) | Xi ∈ P ], and ξ⊤ can be thought of
as a term that selects a θ-subvector from a (θ, ν)-vector, e.g.
if θ ∈ RK and ν ∈ R, then ξ⊤ such that θ = ξ⊤(θ, ν)⊤ is
the rectangular diagonal matrix ξ⊤ = [IK 0]. When the
scoring function ψ is continuously differentiable in (θ, ν),
the Jacobian estimator AP can be computed as

AP = ∇(θ,ν)
1

nP

∑
{i:Xi∈P}

ψθ̂P ,ν̂P
(Oi)

=
1

nP

∑
{i:Xi∈P}

∇(θ,ν)ψθ̂P ,ν̂P
(Oi). (11)

3.2. Limitations of gradient-based approximation

The use of the Jacobian estimator AP in (10) introduces
considerable computational challenges. First, each parent
node P in every tree of the forest requires a distinct AP

matrix, which imposes a significant computational burden
when explicitly calculating A−1

P ψθ̂P ,ν̂P
(Oi) to determine

θ̃gradCj
. Second, if the local Jacobian∇(θ,ν)E[ψθ̂P ,ν̂P

(Oi) |
Xi ∈ P ] is ill-conditioned, then the resulting AP estimator
may be nearly singular. This instability can lead to highly
variable gradient-based approximations θ̃gradCj

and highly
variable splits of P . For example, consider the following
varying-coefficient model for an outcome Yi given regres-
sors Wi = (Wi,1, . . . ,Wi,K)⊤ in the presence of mediating
auxiliary covariates Xi:

E[Yi | Xi = x] = ν∗(x) +W⊤
i θ

∗(x), (12)

where ν∗(·) is a nuisance intercept function and θ∗(x) =
(θ∗1(x), . . . , θ

∗
K(x))⊤ are the target coefficients. Models of

the form (12) encompass time- or spatially-varying coef-
ficient frameworks, where (Xi, Yi,Wi) represent the i-th
sample associated with spatiotemporal values Xi. Such
models are particularly relevant in applications like hetero-
geneous treatment effects; see Section 5 for a more in-depth
discussion. The local estimating function ψθ,ν(Yi,Wi),
identifying (θ∗(x), ν∗(x)) through moment conditions as
in (1), is given by:

ψθ,ν(Yi,Wi) :=

[
(Yi −W⊤

i θ − ν) ·Wi

Yi −W⊤
i θ − ν

]
.
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Figure 1: Splits values (top) and split variance (bottom), with 10th
and 90th percentile bands, across correlations of Wi,1 and Wi,2.

Consequently, the corresponding local Jacobian estimator is

AP =
1

nP

∑
{i:Xi∈P}

∇(θ,ν)ψθ,ν(Yi,Wi)

=− 1

nP

∑
{i:Xi∈P}

[
WiW

⊤
i W⊤

i

Wi 1

]
. (13)

When the regressors are highly correlated, the summation
over the WiW

⊤
i block of the AP matrix leads to nearly sin-

gular values of AP , resulting in an unstable matrix inverse
A−1

P , and therefore unstable values of θ̃gradCj
and unstable

splits. This issue becomes more pronounced as the number
of parent samples nP decreases, as is the case at deeper
levels of the tree. These challenges highlight the limitations
of relying on AP as part of an approximation for the child
solutions θ̂Cj .

As an illustration, consider a simple varying coefficient
model with primary regressorsWi,1,Wi,2 ∼ N (0, 1), auxil-
iary covariatesXi ∼ Unif(0, 1), and outcomes Yi generated
as

Yi = 1(Xi > 0.5)Wi,1 +Wi,2 + ϵi, (14)

where ϵi ∼ N (0, 1). Figure 1 illustrates the distribution
of 2000 ∆̃grad-optimal binary splits (gradient-based tree
stumps) fit over 1000 samples of the varying coefficient
model (14), repeated over different regressor correlation
levels Corr(Wi,1,Wi,2) ∈ {0.80, 0.81, . . . , 0.98, 0.99}. It
is clear that splits based on the ∆̃grad-criterion exhibit high
variability when the correlation between the regressors is
large. In contrast, our proposed method, discussed in the
next section, does not suffer from the same problem.

3.3. Fixed-point approximation

To address the limitations of gradient-based approxima-
tions, we propose a gradient-free approach based on the
form of a single fixed-point iteration. Let ΨCj

(θ, ν) :=
1

nCj

∑
{i:Xi∈Cj} ψθ,ν(Oi) denote the empirical estimating

function for the child solution (θ̂Cj
, ν̂Cj

) such that (7) is
equivalently written as:

(θ̂Cj , ν̂Cj ) ∈ argmin
θ,ν

∥∥ΨCj (θ, ν)
∥∥ , j = 1, 2. (15)

Under mild regularity conditions, (θ̂Cj , ν̂Cj ) is a Z-
estimator that solves the estimating equation ΨCj (θ, ν) = 0.
Reformulating this equation as a fixed-point problem, we
write:

(θ, ν) = (θ, ν)− ηΨCj (θ, ν)︸ ︷︷ ︸
=:f(θ,ν)

, η > 0. (16)

A necessary and sufficient condition for (θ̂Cj
, ν̂Cj

) to be a
solution of (15) is characterized by the fixed-point problem
(θ̂Cj , ν̂Cj ) = f(θ̂Cj , ν̂Cj ), where f is as defined in (16).
Iterative fixed-point methods (Picard, 1890; Lindelöf, 1894;
Banach, 1922; Ryu & Boyd, 2016; Yang et al., 2021) solve
such problems by considering an update rule of the form

(θ+, ν+)← f(θ, ν). (17)

The form of (17) inspires us to approximate the true child
solution θ̂Cj

using a single fixed-point update taken from
the parent solution θ̂P :

θ̃FPTCj
:=θ̂P − ηξ⊤ΨCj

(θ̂P , ν̂P )

=θ̂P −
η

nCj

ξ⊤
∑

{i:Xi∈Cj}

ψθ̂P ,ν̂P
(Oi), (18)

where the product with ξ⊤ is interpreted similarly to its role
in the gradient-based approximation (10) and to express the
update (17) solely in terms of the target θ-quantity. We in-
terpret θ̃FPTCj

as an approximation of θ̂Cj obtained by taking

a step from θ̂P in a direction that reduces the magnitude
of the local estimating function ΨCj . Notably, the approxi-
mation θ̃FPTCj

does not involve the AP matrix, relying only
on the scores ψθ̂P ,ν̂P

(Oi) evaluated at the parent solutions.
In general, removing the inverse A−1

P provides computa-
tional cost savings of O(K3). The corresponding splitting
criterion, which uses the fixed-point approximations θ̃FPTCj

as substitutes for θ̂Cj
is given by

∆̃FPT(C1, C2) :=
nC1

nC2

n2P

∥∥∥θ̃FPTC1
− θ̃FPTC2

∥∥∥2 . (19)

Revisiting the varying coefficient example from Section 3.2,
we see that splits based on fixed-point approximations θ̃FPTCj
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are significantly more stable than those based on θ̃gradCj
.

Specifically, Figure 1 illustrates that splits that maximize
∆̃FPT(C1, C2) are more robust to ill-conditioning in the
underlying local Jacobian ∇(θ,ν)E[ψθ̂P ,ν̂P

(Oi) | Xi ∈ P ],
as is the case for highly correlated regressors in the varying
coefficient model (14), and leading to highly stable splits.

3.4. Pseudo-outcomes

Approximations θ̃Cj of the form (10) and (18) offer an addi-
tional benefit: they enable the ∆̃-criteria of the form (9) and
(19) to be efficiently optimized through a single multivariate
CART split. A CART split performed with respect to vector-
valued responses ρi ∈ RK over a parent node P produces
a split (C1, C2) that minimizes the following least-squares
criterion:∑

{i :Xi∈C1}

∥ρi − ρ̄C1∥
2
+

∑
{i :Xi∈C2}

∥ρi − ρ̄C2∥
2
, (20)

where ρ̄Cj
:= 1

nCj

∑
{i:Xi∈Cj} ρi.

1 Equivalently, a CART
split that minimizes (20) will maximize:

nC1
∥ρ̄C1

∥2 + nC2
∥ρ̄C2

∥2 . (21)

The equivalence between the split that minimizes the least-
squares CART criterion (20) and the split that maximizes
(21) is shown in Appendix B.1.1. GRF performs its splits
by adopting gradient-based pseudo-outcomes, defined as

ρgradi := −ξ⊤A−1
P ψθ̂P ,ν̂P

(Oi) (22)

such that the gradient-based approximation θ̃gradCj
in (10) is

equivalently written:

θ̃gradCj
= θ̂P +

1

nCj

∑
{i:Xi∈Cj}

ρgradi = θ̂P + ρ̄ grad
Cj

.

In the case of fixed-point approximation, we define fixed-
point pseudo-outcomes:

ρFPTi := −ηξ⊤ψθ̂P ,ν̂P
(Oi), η ̸= 0, (23)

such that the fixed-point approximation θ̃FPTCj
in (18) is equiv-

alently written as

θ̃FPTCj
= θ̂P +

1

nCj

∑
{i:Xi∈Cj}

ρFPTi = θ̂P + ρ̄ FPT
Cj

. (24)

Substitute the above form of θ̃FPTCj
into the ∆̃FPT-criterion

(19) to equivalently express the criterion in terms of the FPT
pseudo-outcomes:

∆̃FPT(C1, C2) =
nC1nC2

n2P

∥∥ρ̄ FPT
C1
− ρ̄ FPT

C2

∥∥2 , (25)

1The multivariate CART criterion uses a sum of squares impu-
rity measure, as in De’ath (2002); Segal (1992).

where an analogous equivalence holds for ∆̃grad in terms
of the gradient-based pseudo-outcomes. We demonstrate in
Lemma B.1 (in Appendix B.1.2) that maximizing the fixed-
point criterion ∆̃FPT(C1, C2) is equivalent to maximizing
the CART criterion (21), and extend this property to any
∆̃-style criterion induced by pseudo-outcomes that can be
expressed as a split-independent linear transformation of the
parent scores ψθ̂P ,ν̂P

(Oi).

Note that our method does not rely on iterative fixed-point
procedures at all. Instead, it uses only a single step of
fixed-point approximation to simplify the pseudo-outcomes.
These simplified pseudo-outcomes are then passed directly
to a standard CART algorithm for splitting. The numeri-
cal convergence of our method therefore relies solely on
CART’s established and well-known stability, not on fixed-
point iteration. CART splits on pseudo-outcomes are com-
putationally efficient. Given a parent node P , the value
ρi = −Bψθ̂P ,ν̂P

(Oi) does not depend on a candidate split
(C1, C2) for any matrix B that is fixed with respect to the
parent. This allows much of the computation required to
maximize ∆̃FPT(C1, C2) to be done at the parent level, and
in particular avoids re-calculating the approximations θ̃FPTC1

and θ̃FPTC2
across the sequence of candidate splits. Once P

is fixed and ρFPTi are computed, the value of ∆̃FPT(C1, C2)
for the first candidate split requires O(nP ) time, and the
value for all other candidate splits of P are queried in O(1)
time. While gradient-based pseudo-outcomes share this
property, the use of fixed-point pseudo-outcomes eliminates
the computational overhead and instability associated with
estimating AP , as discussed in Section 3.2.

We show in Lemma B.2 (Appendix B.1.3) that choosing
different values of η does not change the outcome of the
fixed-point splitting mechanism. Specifically, the optimal
split identified by CART on pseudo-outcomes ρFPTi of the
form (23) does not depend on η. This can be heuristi-
cally understood by studying how the criterion changes
as a function of the candidate splits. To illustrate, we
consider a VCM model of the form (12) for bivariate re-
gressors Wi, univariate Xi ∈ [0, 1], and scalar outcomes
Yi. A detailed summary of the settings is found in Ap-
pendix D.1. The sequence of valid candidate child nodes
obtained by a split over univariate Xi can be parameter-
ized through scalar t as C1(t) := {Xi : Xi ≤ t} and
C2(t) := {Xi : Xi > t}. Let ∆(t) := ∆(C1(t), C2(t))
denote the parameterized target criterion (8), and consider
the behavior of ∆(t), ∆̃grad(t), and two fixed-point criteria
∆̃FPT

1 (t) and ∆̃FPT
2 (t) of the form (25) based on pseudo-

outcomes with scale factors η = 1 and η = 1/
√
2, respec-

tively. Figure 2 illustrates the different splitting criteria
values plotted against the sequence of candidate splits. The
visualization clearly shows that the criteria curves for ∆(t),
∆̃grad(t), and ∆̃FPT

1 (t) with η = 1 are all very close to one
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another. Critically, the fixed-point criterion with η = 1/
√
2,

i.e. ∆̃FPT
2 (t), although scaled differently, still identifies the

same maximizing split as ∆̃FPT
1 (t). This is because CART

chooses a split based on a rank ordering of the criterion over
all candidate splits. The absolute scale of the CART crite-
rion does not matter, and it is only criterion rankings over
the candidates that determines the optimal split. Therefore,
choosing a different scalar η does not change the outcome
of the splitting process.

Based on the scale-invariance of our splitting criterion, we
now detail the recursive procedure for growing our fixed-
point trees pseudo-outcomes with η = 1.

The fixed-point tree algorithm. The entire fixed-point
tree-growing procedure recursively applies the following
two steps on a given parent node P :

(i) Labeling: Solve (6) over P to obtain the parent esti-
mate (θ̂P , ν̂P ). Compute the pseudo-outcomes:

ρFPTi := −ξ⊤ψθ̂P ,ν̂P
(Oi), (26)

for all i such that Xi ∈ P .

(ii) Regression: Maximize ∆̃FPT(C1, C2) by performing
a CART split on the pseudo-outcomes ρFPTi over P .

3.5. Estimates of θ̂(x) for Stage II

The fixed-point tree algorithm generates a single tree-based
partition of X . Repeating this process over subsamples of
the training data yields a forest of trees, each specifying
local leaf functions Lb(x). These leaf functions define the
local weight functions αi(x) via (4), completing Stage I
of GRF. The full fixed-point tree training algorithm is de-
scribed in Algorithm 1, while Algorithm 2 provides the
pseudocode for the forest-wide Stage I procedure.

To compute the final GRF estimates θ̂(x) for the target
θ∗(x), we follow the standard GRF mechanism for Stage
II. After the fixed-point trees are trained in Stage I, a test
observation x0 ∈ X is assigned to local leaves Lb(x0),
indexed by trees b ∈ {1, . . . , B}. Each leaf Lb(x0) contains
the training observations that fall into the same leaf as x0
in tree b. Using these local leaves, the forest computes
training weights αi(x0) as in (4). The final estimate θ̂(x0) is
obtained by solving the locally weighted estimating equation
(5).

Importantly, as discussed in Section 2, solving for θ̂(x0)
in Stage II is independent of the specific mechanism used
in Stage I. The only requirement is that Stage I produces
valid weights. This ensures that Stage II remains a stan-
dard weighted estimating equation, enabling the fixed-point
tree algorithm to integrate seamlessly into GRF’s two-stage
framework. We refer to the complete algorithm for es-
timating θ∗(x) using fixed-point trees as GRF-FPT. By
preserving Stage II of GRF, the GRF-FPT estimator θ̂(x)
retains GRF’s theoretical guarantees of consistency and
asymptotic normality while offering a computationally effi-
cient tree-building method. Pseudocode for Stage II of the
GRF-FPT algorithm is provided in Algorithm 3, located in
Appendix C.3.

4. Theoretical Analysis
In this section, we provide a theoretical foundation for the
GRF-FPT estimator θ̂(x). For Stage I, Proposition 4.1 estab-
lishes an asymptotic equivalence between the FPT criterion
and a weighted oracle criterion ∆V (C1, C2) in (27), while
Lemma 4.2 demonstrates that the Specifications A.2 are met
by a forest based on the ∆V -criterion whenever they are
met by a forest based on the ∆-criterion. Assumptions A.1
and Specifications A.2 are the sufficient conditions for the
consistency and asymptotic normality of θ̂(x) in (5), and
thus are used to formally justify the FPT algorithm as a
mechanism for specifying an estimator of θ∗(x).

Proposition 4.1. Suppose Assumptions A.1 hold, and
assume moreover Neyman orthogonal moment condi-
tions (defined in Appendix A.4). Denote by r :=
sup{i:Xi∈P} ∥Xi − xP ∥ the radius of the parent P , where
xP denotes the center of mass over Xi ∈ P . Let Vθθ(xP )
denote the θ-block of V (xP ) in (37). Denote by ∥·∥V
the weighted Euclidean norm ∥z∥V := ∥Vθθ(xP )z∥2 =√
z⊤V ⊤

θθ(xP )Vθθ(xP )z. Define the weighted oracle crite-
rion ∆V (C1, C2):

∆V (C1, C2) :=
nC1nC2

n2P

∥∥∥θ̂C1
− θ̂C2

∥∥∥2
V
. (27)

Then, treating the split as fixed with r−2 ≪ nC1 , nC2 and
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sufficiently small r > 0,

∆̃FPT(C1, C2) = ∆V (C1, C2) + oP

(
r2,

1

nC1

,
1

nC2

)
.

Lemma 4.2. Let T (∆) denote a tree whose splitting mech-
anism seeks splits that maximize ∆(C1, C2) defined in (8),
and let T (∆V ) denote a tree whose splitting mechanism
seeks splits that maximize ∆V (C1, C2) defined in (27). Sup-
pose Assumptions A.1 hold and assume moreover that T (∆)
is a tree that satisfies Specifications A.2. Then, T (∆V )
satisfies Specifications A.2.

For Stage II, Theorem 4.3 establishes the consistency of the
GRF-FPT estimator θ̂(x):

Theorem 4.3. Suppose that Assumptions A.1 hold, and let
(θ̂(x), ν̂(x)) be estimates that solve (5) based on weights
induced by a forest of trees grown under the fixed-point tree
algorithm satisfying Specifications A.2. Then, (θ̂(x), ν̂(x))
converges in probability to (θ∗(x), ν∗(x)).

The proof of Theorem 4.3 follows directly from Theorem 3
of Athey et al. (2019), which, under Assumptions A.1, estab-
lishes consistency for estimates (θ̂(x), ν̂(x)) that solve (5)
with weights from a forest that satisfies Specifications 1-5.
Thanks to Lemma 4.2, these forest specifications must also
apply to a forest grown under the FPT mechanism. Specifi-
cations 1-3 collectively impose mild boundary conditions on
the splitting procedure. Meanwhile, Specification 4 requires
that trees are trained on subsamples drawn without replace-
ment (Biau et al., 2008; Scornet et al., 2015; Wager et al.,
2014; Wager & Athey, 2018), and Specification 5 requires
that trees must be grown using an additional subsample split-
ting mechanism known as honesty (Athey & Imbens, 2016;
Biau, 2012; Denil et al., 2014). Appendix C.1 provides a
detailed explanation of the subsampling and honest sample
splitting procedure.

Finally, Theorem 4.4 establishes the asymptotic normality
of the GRF-FPT estimator θ̂(x):

Theorem 4.4. Under the conditions of Theorem 4.3, sup-
pose moreover that Regularity Condition 1 holds, and
that a forest is grown on subsamples of size s scal-
ing as s = nβ , where β satisfies Regularity Con-
dition 2. Then, there exists a sequence σn(x) such
that (θ̂n(x) − θ∗(x))/σn(x) ⇝ N (0, 1) and σ2

n(x) =
polylog(n/s)−1s/n, where polylog(n/s) is a function that
is bounded away from 0 and increases at most polynomially
with the log of the inverse sampling ratio log(n/s).

The proof of Theorem 4.4 is an immediate consequence of
Theorem 5 of Athey et al. (2019). Theorems 4.3 and 4.4
demonstrate that the GRF-FPT estimator is able to meet key
statistical guarantees.

5. Applications
In this section, we explore applications of GRF-FPT for two
related models: varying coefficient models and heteroge-
neous treatment effects. We consider an outcome model of
the form introduced in Section 3.2. For each observation, let
Yi denote the observed outcome, Wi = (Wi,1, . . . ,Wi,K)⊤

a K-dimensional regressor, and Xi a set of mediating auxil-
iary variables, such that

Yi = ν∗(Xi) +W⊤
i θ

∗(Xi) + ϵi, (28)

where ν∗(·) is a nuisance intercept function, θ∗(x) =
(θ∗1(x), . . . , θ

∗
K(x))⊤ are the target effect functions local

to Xi = x, under the assumptions E[ϵi | Xi = x] = 0 and
E[ϵiWi | Xi = x] = 0.

Varying coefficient models (VCM). Given regressorsWi ∈
RK , models of the form (28) can be characterized as vary-
ing coefficient models (Hastie & Tibshirani, 1993). As
discussed in Section 3.2, we must also assume that the re-
gressors Wi are conditionally exogenous given Xi = x.

Heterogeneous treatment effects (HTE). A special case
of (28) arises within the Neyman-Rubin potential outcome
framework, which models the causal effect of treatment on
an outcome (Neyman, 1923; Rubin, 1974). Here, θ∗(x) =
(θ∗1(x), . . . , θ

∗
K(x))⊤ represents heterogeneous treatment

effects associated with K discrete treatment levels. Let
Ti ∈ {1, . . . ,K} denote the observed treatment level for the
i-th observation, and Yi(k) the potential outcome that would
have been observed if treatment level k had been applied.
The regressors Wi ∈ {0, 1}K in (28) are interpreted as a
vector of dummy variables indicating the observed treatment
level, Wi,k := 1(Ti = k). The auxiliary variables Xi

account for potential confounding effects. The conditional
average treatment effect of treatment level k ∈ {2, . . . ,K}
relative to the baseline level k = 1 is then defined as:

θ∗k(x) := E [Yi(k)− Yi(1) | Xi = x] ,

where the baseline contrast is set to θ∗1(x) := 0.

Under exogeneity of the regressors, the target effects θ∗(x)
in models (28) are identified by moment conditions (1) for
scoring function (Angrist & Pischke, 2009; Athey et al.,
2019)

ψθ,ν(Yi,Wi) :=

[
(Yi −W⊤

i θ − ν) ·Wi

Yi −W⊤
i θ − ν

]
.

The gradient-based pseudo-outcomes (22) are computed as

ρgradi = −A−1
P (Wi−WP )

(
Yi − Y P − (Wi −WP )

⊤θ̂P

)
,

(29)
where WP and Y P are the local means of Wi and Yi over
the observations in P . Centering Yi − Y P and Wi −WP
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removes the baseline effect of the mean ν̂P on ρgradi , and
where AP is given by (13) as:

AP = − 1

nP

∑
{i:Xi∈P}

(Wi −WP )(Wi −WP )
⊤. (30)

Computing ρgradi in (29) involves the OLS coefficients θ̂P
from regressing Yi−Y P onWi−WP , over the observations
in P :

θ̂P := −A−1
P

1

nP

∑
{i:Xi∈P}

(Wi −WP )(Yi − Y P ). (31)

In comparison, ρFPTi in (26) are computed as:

ρFPTi := −ξ⊤ψθ̂P ,ν̂P
(Yi,Wi),

= −(Wi −WP )
(
Yi − Y P − (Wi −WP )

⊤θ̂P

)
,

(32)

The relationship ρgradi = A−1
P ρFPTi reveals a significant

benefit of FPT pseudo-outcomes. The form of ρFPTi elimi-
nates the computational cost associated with the multipli-
cation of A−1

P , leading to O(K3) computational savings.
Furthermore, the computation of θ̂P in (32) no longer re-
quires solving for A−1

P . Therefore, we can further enhance
computational efficiency by using an accelerated form of
pseudo-outcome ϕFPTi instead of ρFPTi :

ϕFPTi := −(Wi −WP )
(
Yi − Y P − (Wi −WP )

⊤θ̃P

)
,

(33)
where θ̂P is replaced by θ̃P in (32), which is defined as a
one-step gradient descent approximation of θ̂P taken from
the origin:

θ̃P := γ
1

nP

∑
{i:Xi∈P}

(Wi −WP )(Yi − Y P ). (34)

Here, γ denotes the exact line search step size for the regres-
sion of Yi − Y P on Wi −WP over P :

γ :=

∥∥(W −WP )
⊤(Y − Y P )

∥∥2
2∥∥(W −WP )(W −WP )⊤(Y − Y P )

∥∥2
2

, (35)

whereW = [W1 · · · WnP ]
⊤ and Y = [Y1 · · · YnP ]

⊤ with
the notation W −WP and Y −Y P understood as row-wise
centering.

The computational cost associated with θ̃P is comparatively
small because many of the products that appear in (34) and
(35) are already computed as part of ρFPTi in (32). Mean-
while, we show in Appendix B.3 that the approximation for
the FPT child estimator:

θ̄FPTCj
:= θ̂P +

1

nCj

∑
{i:Xi∈Cj}

ϕFPTi ,

is consistent for the original FPT child estimator θ̃FPTCj
as

∥θ̃FPTCj
− θ̄FPTCj

∥ = oP (1), meaning that this approximation
does not alter the asymptotic behavior of our estimator.
These accelerations are particularly compelling when the
dimension of θ∗(x) is large and computational efficiency is
critical, as in large-scale A/B testing with multiple concur-
rent treatment arms or observational studies with numerous
treatment levels (Kohavi et al., 2013; Bakshy et al., 2014).

6. Simulations
In this section, we perform empirical evaluations of the
computational efficiency and estimation accuracy of the
GRF-FPT method. We let GRF-FPT1 denote the FPT algo-
rithm using the exact form of the FPT VCM/HTE pseudo-
outcomes (32) and we let GRF-FPT2 denote the acceler-
ated FPT algorithm based on the form of the FPT pseudo-
outcome approximation (33) in Section 5. We compare
both implementations relative to GRF-grad under VCM
and HTE designs. Implementation details and links to the
reproducible code are found in Appendix C.4.

Settings. We follow the structural model in (28). The aux-
iliary variables Xi are drawn from the Gaussian copula
with latent covariance matrix Σ, where [Σ]j,k = (0.3)|j−k|.
Supporting experiments for multicollinearity in Xi can be
found in Appendix D.2. The outcomes Yi follow (28) with
Gaussian noise ϵi ∼ N (0, 1). For VCM experiments, re-
gressors Wi ∈ RK are sampled from NK(0, I). For HTE
experiments, Wi ∈ {0, 1}K follows a multinomial distribu-
tion, Wi | Xi = x ∼ Multinomial(1, (π1(x), . . . , πK(x))),
where πk(x) is the probability of treatment level k ∈
{1, . . . ,K}, characterizing a variety of different location-
specific dependence structures through the setting of πk(·).
We set ν∗(x) := 0 and vary the target effect functions θ∗k(x)
and treatment probabilities πk(x) across different settings,
fully detailed in Appendix C.4. Throughout our experi-
ments we use subsampling ratio s/n = 0.5. Supporting
experiments under different subsample ratios are found in
Appendix D.2.

Results. The relative computational advantage of forests
trained under GRF-FPT is displayed in Figure 3, while Fig-
ure 5 (in Appendix D.3) summarizes the absolute fit times
across the three methods. These data show that the FPT
mechanism is able to consistently offer a relative advantage,
observing speedups of up to 3.5× faster than the gradient-
based approach at the largest dimension K = 256. Figure 3
also shows increasing gains with increasing K and provides
an empirical measurement of the theoretical scaling benefits
discussed in Section 5. Moreover, the absolute fit times
in Figure 5 (in Appendix D.3) illustrate that our method
consistently remains faster than GRF-grad, with no clear
computational or algorithmic bottleneck as a function of
either n or K. Supporting experiments exploring the ef-
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Figure 3: Speedup factor for GRF-FPT in comparison to GRF-
grad for VCM timing experiments.

fects of sample sizes up to n = 500, 000 are presented in
Appendix D.2, while Figures 7 and 8 (in Appendix D.3)
show that even when n is small, GRF-FPT still observes a
noticeable gain relative to GRF-grad. Additional timing
benchmarks for VCM experiments and all HTE experiments
are discussed in Appendix D.3.

To assess estimation accuracy, we evaluate the mean squared
error (MSE) of θ̂(x) across 50 replications of the model and
testing on a separate set of 5, 000 observations. Figure 6 in
Appendix D.3 confirms that GRF-FPTmatches the accuracy
of GRF-grad, while significantly reducing computation
time. Further comparisons for both VCM and HTE settings
are provided in Appendix D.3.

7. Real Data Application
Data. In this section we apply GRF-FPT to the analysis
of geographically-varying effects θ∗(x) on housing prices.
The data, first appearing in Kelley Pace & Barry (1997), con-
tains 20,640 observations of housing prices taken from the
1990 California census. Each observation corresponds to
measurements aggregated over a small geographical census
block, and contains measurements of 9 variables: median
housing value, longitude, latitude, median housing age, total
rooms, total bedrooms, population, households, and median
income. We employ a VCM design of the form (28) where
Yi denotes the housing value, Xi denote the spatial coor-
dinates, and Wi = (Wi,1, . . . ,Wi,6)

⊤ are the remaining
six regressors. Details of the model and data transforma-
tions used for the California housing analysis is found in
Appendix F.

Results. Table 7 summarizes the computational benefit of
GRF-FPT applied to the California housing data. Figure 4
illustrates the six geographically-varying effect estimates
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Figure 4: Geographically-varying GRF-FPT2 estimates θ̂(x).

under GRF-FPT2, with qualitatively similar results shown
in Figure 16 for GRF-FPT1 and GRF-grad in Appendix F.
Figure 4 shows clearly the geographically-dependent rela-
tionship between different housing features and housing
prices. In major urban centers such as LA, San Francisco,
and Sacramento, housing prices tend to decrease with an
increasing number of households, and may reflect over-
crowding in densely populated areas. In contrast, rural
regions show the opposite trend: prices rise slightly when
rural areas have a larger number of housing units. This
suggests that, in sparsely populated rural areas, a modest
increase in households makes these places more attractive
and livable. Median income, however, consistently shows a
positive effect on prices across nearly all of California, while
population size tends to show a negative effect, highlighting
broader state-wide pressures on housing affordability.

8. Conclusion
Our results demonstrate that the FPT algorithm offers a
substantial computational advantage over GRF-grad with
comparable statistical accuracy, and highlights GRF-FPT as
a powerful method for multi-dimensional estimation, partic-
ularly when estimates of the target function must be learned
from the data rather than observed directly. Future work
may explore extensions to larger-scale problems and alter-
native estimation tasks, as in unsupervised learning and
structured prediction. Our findings position GRF-FPT as
a scalable and robust alternative for practitioners seeking
efficient localized estimation.
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A. Technical Preliminaries
A.1. Assumptions

We follow the key assumptions of Athey et al. (2019) made for the theoretical analyses of GRF. The predictor and parameter
spaces are both subsets of Euclidean space such that x ∈ X = [0, 1]p and (θ, ν) ∈ B ⊂ RK , where B is a compact
subset of RK . Under the analyses of Wager & Walther (2015), we suppose that the features of the auxiliary covariates
Xi = (Xi,1, . . . , Xi,p)

⊤ have density fX that is bounded away from 0 and ∞, i.e. c ≤ fX(x) ≤ C < ∞, for some
constants c > 0 and C < ∞. GRF does not require that the score function ψ is continuous in (θ, ν), as is the case for
quantile estimation, one does require that the expected score/moment function

Mθ,ν(x) := EO|X [ψθ,ν(O) | X = x] , (36)

is smoothly varying in its parameters (θ, ν).

ASSUMPTION 1. For fixed (θ, ν), the M -function (36) is Lipschitz continuous in x.

ASSUMPTION 2. For fixed x, the M -function is twice-differentiable in (θ, ν) with uniformly bounded second derivative,���∇2
(θ,ν)Mθ,ν(x)

��� <∞,

where �·� denotes the appropriate tensor norm for the second derivative of Mθ,ν taken with respect to (θ, ν). Let
V (x) := ∇(θ,ν)Mθ,ν(x)

∣∣
θ=θ∗(x),ν=ν∗(x)

denote the population Jacobian at the true (θ∗(x), ν∗(x)), and assume that V (x)

is invertible for all x ∈ X . We write V (x) in block form as

V (x) =

[
Vθθ(x) Vθν(x)
Vνθ(x) Vνν(x)

]
. (37)

ASSUMPTION 3. The score functions ψθ,ν(Oi) have a continuous covariance structure in the following sense: Let γ(·, ·)
denote the worst-case variogram:

γ

([
θ1
ν1

]
,

[
θ2
ν2

])
:= sup

x∈X

{∥∥VarO|X (ψθ1,ν1(Oi)− ψθ2,ν2(Oi) | Xi = x)
∥∥
F

}
,

then, for some L > 0,

γ

([
θ1
ν1

]
,

[
θ2
ν2

])
≤ L

∥∥∥∥[θ1ν1
]
−
[
θ2
ν2

]∥∥∥∥
2

, for all (θ1, ν1), (θ2, ν2).

ASSUMPTION 4. The score function ψθ,ν(Oi) can be written as

ψθ,ν(Oi) = λ(θ, ν;Oi) + ζθ,ν(g(Oi)),

where λ is Lipschitz-continuous in (θ, ν), g : {Oi} → R a univariate summary of the observables Oi, and ζθ : R→ R any
family of monotone and bounded functions.

ASSUMPTION 5. For any weights αi with
∑
αi = 1, the minimizer (θ̂, ν̂) of the weighted empirical estimation problem

(5) satisfies: ∥∥∥∥∥
n∑

i=1

αiψθ̂,ν̂(Oi)

∥∥∥∥∥
2

≤ C max
1≤i≤n

{αi}, for C ≥ 0.

ASSUMPTION 6. The score function ψθ,ν(Oi) is a negative subgradient of a convex function, and the moment function
Mθ,ν(Xi) is the negative gradient of a strongly convex function.
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A.2. Forest specifications

The consistency and asymptotic normality results, Theorems 4.3 and 4.4, require that the forest trained following Algorithm 2
consists of trees that satisfy a certain set of specifications. These forest specifications are precisely those imposed by Athey
et al. (2019) for forests of gradient-based trees, and collectively, these specifications describe fairly mild conditions on the
tree splitting mechanism, as well as specific requirements for the sampling procedure.

SPECIFICATION 1. (Symmetric) Tree estimates are invariant to permutations of the training indices. In other words, the
output of a tree does not depend on the order in which the training samples are indexed.

SPECIFICATION 2. (Balanced/ω-regular) The proportion of parent observations assigned into either child is bound below
by some ω > 0, i.e. nCj

≥ ωnP .

SPECIFICATION 3. (Randomized/random-split) The probability of splitting along any feature/dimension of the input space
is bound below by some π > 0.

SPECIFICATION 4. (Subsampling) Trees are trained on subsample of size s, drawn without replacement from n training
samples, where s/n→ 0 as s→∞.

SPECIFICATION 5. (Honesty) Trees are trained using the sample splitting procedure described in Appendix C.1.

A.3. Regularity conditions

REGULARITY CONDITION 1. Let V (x) be as defined in Assumption 2 and let ρ∗i (x) denote the influence function of the
i-th observation with respect to the target θ∗(x):

ρ∗i (x) := −ξ⊤V (x)−1ψθ∗(x),ν∗(x)(Oi).

Then,
Var(ρ∗i (x) | Xi = x) > 0, for all x ∈ X .

REGULARITY CONDITION 2. Trees are grown on subsamples of size s scaling as s = nβ , for some subsample scaling
exponent β bound according to βmin < β < 1, such that

βmin := 1−

(
1 +

1

π
·

log
(
ω−1

)
log ((1− ω)−1)

)−1

< β < 1,

where 0 < π, ω < 1 are constants defined in forest Specifications 2 and 3.

A.4. Neyman orthogonality

To identify the underlying local parameters (θ∗(x), ν∗(x)) ∈ RK one must have a score ψθ,ν(O) with at leastK = Kθ+Kν

components, where here we use Kθ and Kν to denote the dimensions of the component subvectors θ∗(x) ∈ RKθ and
ν∗(x) ∈ RKν . Conceptually, a score ψθ,ν(O) can be partitioned into the components that identify the θ-coordinates, denoted
by ψ1, and those that identify the ν-coordinates, denoted by ψ2, and thus the moment functions Mθ,ν(x) in (36) can also be
partitioned the same way:

ψθ,ν(O) =

[
ψ1(θ, ν;O)
ψ2(θ, ν;O)

]
, Mθ,ν(x) =

[
M1(θ, ν;x)
M2(θ, ν;x)

]
=

[
E[ψ1(θ, ν;O) | X = x]
E[ψ2(θ, ν;O) | X = x]

]
.

The corresponding Jacobian matrix of Mθ,ν(x) taken with respect to (θ, ν) and evaluated at the truth (θ∗(x), ν∗(x)) is

V (x) = ∇(θ,ν) M(θ, ν;x)|θ=θ∗(x),ν=ν∗(x) =

[
Vθθ(x) Vθν(x)
Vνθ(x) Vνν(x)

]
,
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where here the subscripts in the block expressions of V (x) indicate the coordinates with which the gradient is taken, and in
all cases are evaluated at the truth (θ∗(x), ν∗(x)):

Vθθ(x) = ∇θ M1(θ, ν;x)|θ=θ∗(x),ν=ν∗(x) ,

Vθν(x) = ∇ν M1(θ, ν;x)|θ=θ∗(x),ν=ν∗(x) ,

Vνθ(x) = ∇θ M2(θ, ν;x)|θ=θ∗(x),ν=ν∗(x) ,

Vνν(x) = ∇ν M2(θ, ν;x)|θ=θ∗(x),ν=ν∗(x) .

In this context, the assumption of Neyman orthogonal moment conditions is more completely labeled as Neyman orthog-
onality for the estimation of θ∗(x) with respect to the nuisance ν∗(x), and can be summarized as an assumption that the
moment conditions for θ∗(x) are insensitive to first-order changes in ν around the truth ν∗(x) whenever θ = θ∗(x). For
GRF, this means that one assumes (1) satisfies M1(θ

∗(x), ν∗(x);x) = 0, and in other words, the partial derivatives of the
moment functions for θ∗(x) with respect to ν are zero at (θ∗(x), ν∗(x)):

Vθν(x) = 0.

A.5. Example: Neyman orthogonality for VCM and HTE

Consider the VCM/HTE model with data (Yi,Wi, Xi) related according to

E[Yi | Xi = x] = ν∗(x) +W⊤
i θ

∗(x),

such that, as discussed in Section 3.2, the score function ψθ,ν that identifies the underlying (θ∗(x), ν∗(x)) is

ψθ,ν(Yi,Wi) :=

[
(Yi −W⊤

i θ − ν)Wi

Yi −W⊤
i θ − ν

]
,

and the corresponding local Jacobian V (x) has block form

V (x) = −E
[[
WiW

⊤
i W⊤

i

Wi 1

] ∣∣∣∣ Xi = x

]
= −

[
E[WiW

⊤
i | Xi = x] E[W⊤

i | Xi = x]
E[Wi | Xi = x] 1

]
.

Therefore, for Neyman orthogonality to hold one requires that E[Wi | Xi = x] = 0.

B. Derivations and Proofs
B.1. Proofs for Section 3.4

B.1.1. MULTIVARIATE CART CRITERIA

Let ρi ∈ RK be vector-valued responses associated with covariates Xi ∈ P . A standard CART split (C1, C2) of P
minimizes the conventional least-squares criterion:∑

{i :Xi∈C1}

∥ρi − ρ̄C1
∥2 +

∑
{i :Xi∈C2}

∥ρi − ρ̄C2
∥2 , (38)

where ρ̄Cj
:= n−1

Cj

∑
{i:Xi∈Cj} ρi is the local prediction over child node Cj . We verify that a split (C1, C2) minimizes (38)

if and only if it maximizes
nC1 ∥ρ̄C1∥

2
+ nC2 ∥ρ̄C2∥

2
. (39)

Proof. Each sum in (38) can be expanded as∑
{i :Xi∈Cj}

∥∥ρi − ρ̄Cj

∥∥2 =
∑

{i:Xi∈P}

∥∥ρi − ρ̄Cj

∥∥2 · 1(Xi ∈ Cj),

=
∑

{i:Xi∈P}

(
∥ρi∥2 − 2ρ⊤i ρ̄Cj

+
∥∥ρ̄Cj

∥∥2) · 1(Xi ∈ Cj),

=
∑

{i:Xi∈P}

∥ρi∥2 · 1(Xi ∈ Cj)− nCj

∥∥ρ̄Cj

∥∥2 .
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Therefore, the least-squares criterion CART (38) is equivalently written as

∑
j=1,2

∑
{i :Xi∈Cj}

∥∥ρi − ρ̄Cj

∥∥2 =
∑
j=1,2

 ∑
{i:Xi∈P}

∥ρi∥2 · 1(Xi ∈ Cj)− nCj

∥∥ρ̄Cj

∥∥2 ,

=
∑
j=1,2

 ∑
{i:Xi∈P}

∥ρi∥2 · 1(Xi ∈ Cj)

− (nC1
∥ρ̄C1

∥2 + nC2
∥ρ̄C2

∥2
)
,

=
∑

{i:Xi∈P}

∥ρi∥2 −
(
nC1 ∥ρ̄C1∥

2
+ nC2

∥ρ̄C2
∥2
)
.

The first term does not depend on the choice of split, and therefore the split that minimizes (38) is equivalent to the split that
maximizes (39). ■

B.1.2. SPLITS VIA CART ON PSEUDO-OUTCOMES

The following result is a generalization to the claim made in Section 3.4 that a CART split on pseudo-outcomes ρFPTi will
produce a split that maximizes the ∆̃FPT-criterion, and is sufficiently general to cover gradient-based pseudo-outcomes
ρgradi and the corresponding ∆̃grad-criterion.

Lemma B.1. Suppose we can write

θ̃Cj
= a+

1

nCj

∑
{i:Xi∈Cj}

ρi, ρi = −Bψθ̂P ,ν̂P
(Oi), (40)

where a and B denote appropriately sized vectors and matrices whose values do not depend on the candidate child node Cj .
Under Assumptions A.1, the split (C1, C2) that maximizes

∆̃(C1, C2) =
nC1nC2

n2P

∥∥∥θ̃C1 − θ̃C2

∥∥∥2 ,
is exactly the split chosen by CART for vector-valued responses ρi fit over covariates Xi ∈ P .

Proof of Lemma B.1. The scores ψθ,ν(Oi) satisfy subgradient conditions by Assumption 6, and therefore the parent
solutions (θ̂P , ν̂P ) satisfy the first-order conditions∑

{i:Xi∈P}

ψθ̂P ,ν̂P
(Oi) = 0.

Hence,

0 =
∑

{i:Xi∈P}

ψθ̂P ,ν̂P
(Oi) =

∑
{i:Xi∈C1}

ψθ̂P ,ν̂P
(Oi) +

∑
{i:Xi∈C2}

ψθ̂P ,ν̂P
(Oi),

= −B

 ∑
{i:Xi∈C1}

ψθ̂P ,ν̂P
(Oi) +

∑
{i:Xi∈C2}

ψθ̂P ,ν̂P
(Oi)

 ,

=
∑

{i:Xi∈C1}

ρi +
∑

{i:Xi∈C2}

ρi.

Each sum in the previous expression is equivalently written as
∑
ρi = nCj

(θ̃Cj
− a). Hence,

0 =
∑

{i:Xi∈C1}

ρi +
∑

{i:Xi∈C2}

ρi,

= nC1(θ̃C1 − a) + nC2(θ̃C2 − a),

⇐⇒ a =
nC1

nP
θ̃C1

+
nC2

nP
θ̃C2

.
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Writing ρ̄Cj
:= 1

nCj

∑
{i:Xi∈Cj} ρi, one has:

ρ̄C1 = θ̃C1 − a,

= θ̃C1 −
nC1

nP
θ̃C1 −

nC2

nP
θ̃C2 ,

=
nC2

nP

(
θ̃C1
− θ̃C2

)
,

and
nC1

nP
∥ρ̄C1

∥2 =
nC1n

2
C2

n3P

∥∥∥θ̃C1
− θ̃C2

∥∥∥2 .
Applying analogous arguments with respect to C2, one has the symmetric result:

nC2

nP
∥ρ̄C2∥

2
=
nC2

n2C1

n3P

∥∥∥θ̃C1 − θ̃C2

∥∥∥2 .
Therefore,

1

nP

(
nC1
∥ρ̄C1

∥2 + nC2
∥ρ̄C2

∥2
)
=
nC1

n2C2

n3P

∥∥∥θ̃C1
− θ̃C2

∥∥∥2 + nC2
n2C1

n3P

∥∥∥θ̃C1
− θ̃C2

∥∥∥2 ,
=
nC1

nC1

n2P

∥∥∥θ̃C1
− θ̃C2

∥∥∥2 ,
= ∆̃(C1, C2).

Based on the arguments in Appendix B.1.1, a split (C1, C2) maximizes nC1
∥ρ̄C1

∥2+nC2
∥ρ̄C2

∥2 if and only if it is a CART
split performed on the ρi over P . That is, ∆̃(C1, C2) is precisely maximized by a single CART split on ρi = −Bψθ̂P ,ν̂P

(Oi)
fit over covariates Xi ∈ P , as desired. ■

B.1.3. SCALE INVARIANCE OF CART SPLITS

Lemma B.2 (Argmax equivalence of FPT criteria). The optimal split identified by CART on pseudo-outcomes ρFPTi of the
form (23) does not depend on the scale factor η, for any η ̸= 0.

Proof of Lemma B.2. Denote by ρ(η)i FPT pseudo-outcomes based on an arbitrary scale factor η ̸= 0 of the form (23):

ρ
(η)
i := −ηξ⊤ψθ̂P ,ν̂P

(Oi), (41)

and let ψCj
denote the child-leaf average score evaluated at the parent solution (θ̂P , ν̂P ):

ψCj
:=

1

nCj

∑
{i:Xi∈Cj}

ψθ̂P ,ν̂P
(Oi),

such that the corresponding child-leaf pseudo-outcome averages ρ̄ (η)
Cj

:= 1
nCj

∑
{i:Xi∈Cj} ρ

(η)
i are equivalently written as

ρ̄
(η)
Cj

= −ηξ⊤ ψCj

Let ∆̃FPT
η (C1, C2) denote the FPT criterion of the form (25) based on pseudo-outcomes (41):

∆̃FPT
η (C1, C2) =

nC1
nC2

n2P

∥∥∥ρ̄ (η)
C1
− ρ̄ (η)

Cj

∥∥∥2 =
nC1

nC2

n2P

∥∥ηξ⊤(ψC1
− ψC2

)
∥∥2 .

One has: ∥∥ηξ⊤(ψC1
− ψC2

)
∥∥2 = η2

∥∥ξ⊤(ψC1
− ψC2

)
∥∥2 ,
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and hence the ∆̃FPT
η -criteria obey the scaling relation:

∆̃FPT
η (C1, C2) = η2 · ∆̃FPT

1 (C1, C2), (42)

where ∆̃FPT
1 denotes the FPT criterion induced by pseudo-outcomes ρ(1)i based on unit scale factor η = 1. The relation (42)

implies that any nonzero split-independent rescaling ρ(η)i = ηρ
(1)
i will induce a splitting criterion ∆̃FPT

η (C1, C2) with the
same maximizer as ∆̃FPT

1 (C1, C2):

argmax
(C1,C2)

{
∆̃FPT

η (C1, C2)
}
= argmax

(C1,C2)

{
η2 · ∆̃FPT

1 (C1, C2)
}
= argmax

(C1,C2)

{
∆̃FPT

1 (C1, C2)
}
.

Intuitively, a CART split is chosen by ranking the criterion values among the candidate splits and selecting the maximizing
split (C1, C2). Therefore, the FPT splitting mechanism is unaffected by the scale factor η used to specify fixed-point
pseudo-outcomes (23). The absolute scale of the ∆̃FPT-criterion does not matter when searching for the optimal split, and
only the criterion rankings across the candidate splits determine the final partition. ■

B.2. Proofs for Section 4

Notation and definitions.

• Let oP (a, b, c) := oP (max{a, b, c}), with an analogous abbreviation for OP (·).

• For a fixed parent node P , denote by xP the center of mass of theXi ∈ P , and let r := sup{i:Xi∈P} ∥Xi − xP ∥ denote
the radius of the parent P . Throughout, we consider an asymptotic regime where nCj

→∞ and r → 0, corresponding
to leaves over X of vanishing radius. Further, r and nCj

are related under the conditions of GRF Proposition 1, namely,
r−2 ≪ nCj

and hence nCj
r2 →∞ and 1/

√
nCj

= o(r).

• Let θ∗Cj
denote the true parameter expectation over the child node:

θ∗Cj
:= E[θ∗(X) | X ∈ Cj ], j = 1, 2, (43)

and let θ̃∗Cj
(xP ) denote an oracle version of the gradient-based leaf statistic:

θ̃∗Cj
(xP ) := θ∗(xP )−

1

nCj

∑
{i:Xi∈Cj}

ξ⊤V (xP )
−1ψθ∗(xP ),ν∗(xP )(Oi),

where V (x) is the underlying local Jacobian in Assumption 2. Equivalently, in terms of the oracle pseudo-
outcome/influence function ρ∗i (·) defined in Regularity Condition 1,

θ̃∗Cj
(xP ) := θ∗(xP ) +

1

nCj

∑
{i:Xi∈Cj}

ρ∗i (xP ).

The following are technical lemmas used for the proof of Proposition 4.1.

Lemma B.3. Suppose Assumptions A.1 and Specifications A.2 hold. Then,

∆(C1, C2) =
nC1

nC2

n2P

∥∥θ∗C1
− θ∗C2

∥∥2 + oP

(
r2,

1

nC1

,
1

nC2

)
.

Proof of Lemma B.3. Write the difference θ̂Cj − θ∗Cj
as

θ̂Cj
− θ∗Cj

=
(
θ̂Cj
− θ̃∗Cj

(xP )
)

︸ ︷︷ ︸
T1

+
(
θ̃∗Cj

(xP )− E[θ̃∗Cj
(xP ) | X ∈ Cj ]

)
︸ ︷︷ ︸

T2

+
(
E[θ̃∗Cj

(xP ) | X ∈ Cj ]− θ∗Cj

)
︸ ︷︷ ︸

T3

.
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Under standard LLN arguments, the second term satisfies T2 = OP (1/
√
nCj

), and in an asymptotic regime with r−2 ≪ nCj

one has T2 = oP (r). Meanwhile, the first and third terms appear in the proofs of Propositions 2 and 1 of Athey et al. (2019),
respectively, and satisfy T1 = oP (r, 1/

√
nCj ) and T3 = O(r2) =⇒ T3 = o(r). It follows

θ̂Cj − θ∗Cj
= oP

(
r, 1/

√
nCj

)
,

and in particular

θ̂C1 − θ̂C2 = θ∗C1
− θ∗C2

+ oP

(
r,

1
√
nC1

,
1
√
nC2

)
.

Write A = θ∗C1
− θ∗C2

and let E be any term satisfying E = oP (r, 1/
√
nC1 , 1/

√
nC2) such that ∆(C1, C2) is equivalently

written ∆(C1, C2) = (nC1nC2/n
2
P ) · ∥A+ E∥2. Consider the difference

∆(C1, C2)−
nC1nC2

n2P

∥∥θ∗C1
− θ∗C2

∥∥2 =
nC1nC2

n2P

(
∥A+ E∥2 − ∥A∥2

)
,

=
nC1

nC2

n2P

(
2⟨A,E⟩+ ∥E∥2

)
.

Under Specification 2 there exists a fixed proportion ω > 0 such that nC1
, nC2

≥ ωnP , and hence nC1
nC2

/n2
P ≥

ω(1 − ω) and also nC1nC2/n
2
P ≤ 1/4 for all nC1 + nC2 = nP . Therefore nC1nC2/n

2
P = O(1). Meanwhile, ∥E∥2 =

oP (r
2, 1/nC1 , 1/nC2) is true by definition of E, and under our assumptions one may follow the arguments of Athey et al.

(2019) Proposition 1 to see that A = θ∗C1
− θ∗C2

= O(r). Thus,

⟨A,E⟩ = O(r) · oP
(
r,

1
√
nC1

,
1
√
nC2

)
= oP

(
r2,

r
√
nC1

,
r
√
nC2

)
,

and therefore

∆(C1, C2)−
nC1nC2

n2P

∥∥θ∗C1
− θ∗C2

∥∥2 = oP

(
r2,

1

nC1

,
1

nC2

)
,

as desired. ■

Lemma B.4. Suppose the conditions of Lemma B.3 hold, and assume moreover Neyman orthogonal moment conditions
such that the underlying Jacobian V (x) defined in Assumption 2 with block form (37). Then,

∆̃FPT
η (C1, C2) =

nC1nC2

n2P
η2
∥∥Vθθ(xP )(θ∗C1

− θ∗C2
)
∥∥2 + oP

(
r2,

1

nC1

,
1

nC2

)
,

where ∆FPT
η defined in Lemma B.2 denotes the FPT criterion with arbitrary scale factor η ̸= 0.

Proof of Lemma B.4. From the proof of Lemma B.2 one finds that ∆FPT
η (C1, C2) is equivalently written

∆FPT
η (C1, C2) :=

nC1
nC2

n2P
η2
∥∥ξ⊤(ψC1

− ψC2
)
∥∥2 , ψCj

:=
1

nC1

∑
{i:Xi∈Cj}

ψθ̂P ,ν̂P
(Oi).

Under standard LLN arguments the average scores ψCj
satisfy

ψCj
= E[ψθ̂P ,ν̂P

(O) | X ∈ Cj ] +OP (1/
√
nCj

). (44)

One applies iterated expectation to see

E[ψθ̂P ,ν̂P
(O) | X ∈ Cj ] = E

[
E
[
ψθ̂P ,ν̂P

(O) | X
]
| X ∈ Cj

]
= E[Mθ̂P ,ν̂P

(X) | X ∈ Cj ],

and hence
ψCj

= E[Mθ̂P ,ν̂P
(X) | X ∈ Cj ] +OP (1/

√
nCj ). (45)
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Expansion of Mθ̂P ,ν̂P
(X). Under Assumption 2 one considers the Taylor expansion of Mθ̂P ,ν̂P

(X) about (θ, ν) =

(θ∗(xP ), ν
∗(xP )):

Mθ̂P ,ν̂P
(X) =Mθ∗(xP ),ν∗(xP )(X)

+
[
∇(θ,ν)Mθ∗(xP ),ν∗(xP )(X)

] [θ̂P − θ∗(xP )
ν̂P − ν∗(xP )

]
+OP

(∥∥∥∥[θ̂P − θ∗(xP )ν̂P − ν∗(xP )

]∥∥∥∥2
)
.

The consistency of the parent solutions (θ̂P , ν̂P ) for (θ∗(xP ), ν∗(xP )) is established by Athey et al. (2019), and in particular
(θ̂P , ν̂P )− (θ∗(xP ), ν

∗(xP )) = OP (r, 1/
√
nP ). The asymptotic regime r−2 ≪ nP implies 1/

√
nP = o(r) and therefore

the higher order quadratic term is equivalently expressed:

Mθ̂P ,ν̂P
(X) =Mθ∗(xP ),ν∗(xP )(X) +

[
∇(θ,ν)Mθ∗(xP ),ν∗(xP )(X)

] [θ̂P − θ∗(xP )
ν̂P − ν∗(xP )

]
+OP (r

2),

and therefore

E
[
Mθ̂P ,ν̂P

(X) | X ∈ Cj

]
= E

[
Mθ∗(xP ),ν∗(xP )(X) | X ∈ Cj

]
+ E

[
∇(θ,ν)Mθ∗(xP ),ν∗(xP )(X)

∣∣X ∈ Cj

] [θ̂P − θ∗(xP )
ν̂P − ν∗(xP )

]
+OP (r

2).

One has∇(θ,ν)Mθ∗(xP ),ν∗(xP )(X) = V (xP )+OP (r) becauseMθ,ν(x) is Lipschitz in x, and the expansion in the previous
display becomes:

E
[
Mθ̂P ,ν̂P

(X) | X ∈ Cj

]
= E

[
Mθ∗(xP ),ν∗(xP )(X) | X ∈ Cj

]
+ V (xP )

[
θ̂P − θ∗(xP )
ν̂P − ν∗(xP )

]
+OP (r

2). (46)

Expansion of Mθ∗(xP ),ν∗(xP )(X). Following similar arguments, the term Mθ∗(xP ),ν∗(xP )(X) is expanded about
(θ, ν) = (θ∗(X), ν∗(X)) as:

Mθ∗(xP ),ν∗(xP )(X) =Mθ∗(X),ν∗(X)(X) + V (X)

[
θ∗(xP )− θ∗(X)
ν∗(xP )− ν∗(X)

]
+OP (r

2),

= V (X)

[
θ∗(xP )− θ∗(X)
ν∗(xP )− ν∗(X)

]
+OP (r

2),

where Mθ∗(X),ν∗(X)(X) = 0 holds because (θ∗(X), ν∗(X)) are defined as satisfying the GRF moment conditions (1) local
to X . One takes the conditional expectation of the previous display:

E
[
Mθ∗(xP ),ν∗(xP )(X) | X ∈ Cj

]
= E

[
V (X)

[
θ∗(xP )− θ∗(X)
ν∗(xP )− ν∗(X)

] ∣∣∣∣X ∈ Cj

]
+OP (r

2).

Whenever X ∈ Cj one has ∥X − xP ∥ = O(r), and the same Lipschitz arguments can be applied to see V (X) =
V (xP ) +OP (r) conditional on X ∈ Cj , and the previous display simplifies:

E
[
Mθ∗(xP ),ν∗(xP )(X) | X ∈ Cj

]
= V (xP )

[
θ∗(xP )− θ∗Cj

ν∗(xP )− ν∗Cj

]
+OP (r

2), (47)

where θ∗Cj
:= E[θ∗(X) | X ∈ Cj ] and ν∗Cj

:= E[ν∗(X) | X ∈ Cj ]. Substitute (47) into the conditional expectation (46):

E
[
Mθ̂P ,ν̂P

(X) | X ∈ Cj

]
= V (xP )

[
θ∗(xP )− θ∗Cj

ν∗(xP )− ν∗Cj

]
+ V (xP )

[
θ̂P − θ∗(xP )
ν̂P − ν∗(xP )

]
+OP (r

2),

= V (xP )

[
θ̂P − θ∗Cj

ν̂P − ν∗Cj

]
+OP (r

2).
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Therefore, the child node score averages ψCj
in (45) satisfy

ψCj
= V (xP )

[
θ̂P − θ∗Cj

ν̂P − ν∗Cj

]
+OP

(
r2, 1/

√
nCj

)
,

and the difference ψC1
− ψC2

satisfies

ψC1
− ψC2

= V (xP )

[
θ̂P − θ∗C1

ν̂P − ν∗C1

]
− V (xP )

[
θ̂P − θ∗C2

ν̂P − ν∗C2

]
+OP

(
r2,

1
√
nC1

,
1
√
nC2

)
,

= −V (xP )

[
θ∗C1
− θ∗C2

ν∗C1
− ν∗C2

]
+OP

(
r2,

1
√
nC1

,
1
√
nC2

)
.

We assume η is a fixed scalar and ξ⊤ a fixed matrix, it follows:

ηξ⊤(ψC1
− ψC2

) = −ηξ⊤V (xP )

[
θ∗C1
− θ∗C2

ν∗C1
− ν∗C2

]
+OP

(
r2,

1
√
nC1

,
1
√
nC2

)
. (48)

The fixed matrix ξ⊤ selects the coordinates of the target effect as ξ⊤(θ, ν)⊤ = θ, and hence the product ξ⊤V (xP ) simplifies:

ξ⊤V (xP ) = ξ⊤
[
Vθθ(xP ) Vθν(xP )
Vνθ(xP ) Vνν(xP )

]
=
[
Vθθ(xP ) Vθν(xP )

]
.

Under Neyman orthogonality one has Vθν(xP ) = 0, implying that ξ⊤V (xP ) = [Vθθ(xP ) 0], and (48) becomes

ηξ⊤(ψC1
− ψC2

) = −ηVθθ(xP )(θ∗C1
− θ∗C2

) +OP

(
r2,

1
√
nC1

,
1
√
nC2

)
. (49)

Asymptotic analysis. Let E be any term satisfying E = OP (r
2, 1/

√
nC1 , 1/

√
nC2). In our asymptotic regime with

r−2 ≪ nCj =⇒ 1/
√
nCj = o(r), one has

E = OP

(
r2,

1
√
nC1

,
1
√
nC2

)
=⇒ E = oP

(
r,

1
√
nC1

,
1
√
nC2

)
and therefore (49) satisfies

ηξ⊤(ψC1
− ψC2

) = −ηVθθ(xP )(θ∗C1
− θ∗C2

) + oP

(
r,

1
√
nC1

,
1
√
nC2

)
. (50)

Write A = Vθθ(θ
∗
C1
− θ∗C2

) such that ∆̃FPT
η (C1, C2) is equivalently written ∆̃FPT

η (C1, C2) = (nC1
nC2

/n2P ) · η2 ∥A+ E∥2.
Consider the difference

∆̃FPT
η (C1, C2)−

nC1nC2

n2P
η2
∥∥Vθθ(θ∗C1

− θ∗C2
)
∥∥2 =

nC1nC2

n2P
η2
(
∥A+ E∥2 − ∥A∥2

)
,

=
nC1nC2

n2P
η2
(
2⟨A,E⟩+ ∥E∥2

)
.

One repeats the same arguments used in the final asymptotic analysis of Lemma B.3 to show

2⟨A,E⟩+ ∥E∥2 = oP

(
r2,

1

nC1

,
1

nC2

)
,

and thus

∆̃FPT
η (C1, C2)−

nC1nC2

n2P
η2
∥∥Vθθ(xP )(θ∗C1

− θ∗C2
)
∥∥2 = oP

(
r2,

1

nC1

,
1

nC2

)
,

as desired. ■

21



Generalized Random Forests using Fixed-Point Trees

Proof of Proposition 4.1. First, under Assumptions A.1 the θ-block Vθθ(xP ) of the local Jacobian V (xP ) is strictly
positive definite and thus ∥·∥V defines a true norm. From the proof of Lemma B.3:

θ̂C1
− θ̂C2

= θ∗C1
− θ∗C2

+ oP

(
r,

1
√
nC1

,
1
√
nC2

)
.

The matrix V (xP ) is non-random and fixed given P and η is a fixed scalar. It follows:

ηVθθ(xP )(θ̂C1 − θ̂C2) = ηVθθ(xP )(θ
∗
C1
− θ∗C2

) + oP

(
r,

1
√
nC1

,
1
√
nC2

)
.

Up to a negative factor, the expression on the right is precisely the same as (50) in the proof of Lemma B.4, and thus one
repeats the arguments to arrive at∥∥∥ηVθθ(xP )(θ̂C1

− θ̂C2
)
∥∥∥2
2
=
∥∥ηVθθ(xP )(θ∗C1

− θ∗C2
)
∥∥2
2
+ oP

(
r2,

1

nC1

,
1

nC2

)
,

and hence

∆ηV (C1, C2) =
nC1

nC2

n2P
η2
∥∥Vθθ(xP )(θ∗C1

− θ∗C2
)
∥∥2
2
+ oP

(
r2,

1

nC1

,
1

nC2

)
.

The right hand side is precisely the same as in the statement of Lemma B.4 established for ∆̃FPT
η (C1, C2), and thus

∆̃FPT
η (C1, C2)−∆ηV (C1, C2) = oP

(
r2,

1

nC1

,
1

nC2

)
, (51)

as desired. ■

Proof of Lemma 4.2. Firstly, Specifications 4 (subsampling) and 5 (honesty) describe conditions imposed on the sampling
mechanism and are not affected by the form of the splitting criterion. It remains to verify whether Specification 1 (symmetry),
Specification 2 (balanced/ω-regular), and Specification 3 (randomized/random-split) are satisfied by T (∆V ).

1. Specification 1: Symmetry. A tree is said to be symmetric if its estimates are invariant under permutations of the tree’s
training samples. Conditional on a sequence of criterion values computed over splits of P , the CART mechanism of
selecting the best split by scanning over the collection of candidates does not depend on the parent samples at all. This
means that asymmetry could only enter through the criterion values. Therefore, a sufficient condition for symmetry in
the tree estimates with respect to permutations of the tree samples is whether the criterion ∆V (C1, C2) is symmetric.
Conditional on the child solutions θ̂C1

, θ̂C2
, the map (θ̂C1

, θ̂C2
) 7→ ∆V (C1, C2) does not depend on the parent samples

at all, and therefore asymmetry could only enter through child solutions θ̂Cj . However, both criteria use precisely
the same child solutions θ̂Cj in (7), and therefore ∆V (C1, C2) will be symmetric whenever ∆(C1, C2) is symmetric
(specifically, whenever ψθ,ν(Oi) is symmetric with respect to permutations of i).

2. Specification 2: Balanced/ω-regular. This condition is enforced by by GRF by adding an additional stopping condition
to the gradient-based version of Algorithm 1. Specifically, GRF stops a recursive splitting path if a proposed ∆-optimal
split were to send fewer than ωnP of the parent samples into either child. Simply stated, GRF enforces balanced
splits by defining the set of valid candidate splits as those with at least ωnP parent samples in each child. This is left
unchanged by our method.

3. Specification 3: Randomized/random-split. The asymptotic theory of GRF requires that, at each node, each variable is
selected for a split with some lower bound probability π > 0. In order to satisfy the minimum split probability GRF uses
the feature sampling device of Denil et al. (2014) which, at each step, considers only min{max{Poisson(m), 1}, p}
randomly selected features as candidate variables, where p = dim(X ) and m is a GRF tuning parameter. In other
words, GRF defines the set of valid candidate splits such that the set of valid splitting dimensions is itself a random
variable. This mechanism is left unchanged under our method.

No column of V (xP ) is all-zero V·,k(xP ) ̸= 0 because V (xP ) is strictly positive definite symmetric, and therefore
∆V (C1, C2) will not systematically ignore signals along parameter dimensions θk that can be detected by the ∆-
criterion. Finally,

θ̂C1 − θ̂C1 ̸= 0 =⇒ Vθθ(xP )(θ̂C1 − θ̂C2) ̸= 0,
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because V (x) is strictly positive definite symmetric by Assumption 2. Therefore ∆(C1, C2) > 0 =⇒ ∆V (C1, C2) >
0 meaning that the ∆V -criterion is non-degenerate and will always be able to select at least one feature whenever the
∆-criterion can select a feature.

Therefore, all five specifications are met, and one concludes that T (∆V ) must satisfy the forest Specifications A.2 whenever
they are satisfied by T (∆). ■

B.3. Asymptotic equivalence of the pseudo-outcome approximation for VCM/HTE models

In this section we establish the asymptotic equivalence of the further acceleration of the fixed-point method proposed in
Section 5 for VCM/HTE models. The accelerated algorithm is based on FPT pseudo-outcomes that use an approximation
θ̃P for the actual parent solutions θ̂P in (31). Specifically, the parent-leaf approximations θ̃P are found by a single gradient
descent step towards θ̂P taken from the origin (54). Let ρFPTi denote the original FPT pseudo-outcomes for VCM/HTE
models:

ρFPTi := −(Wi −WP )
(
Yi − Y P − (Wi −WP )

⊤θ̂P

)
, (52)

where the solution θ̂P for the local model over the parent P are precisely the OLS coefficients from the regression the
centered outcomes Yi − Y P ∈ R on the centered regressors Wi −WP ∈ RK . In contrast, let ϕFPTi denote approximations
of ρFPTi pseudo-outcomes that are of the form

ϕFPTi := −(Wi −WP )
(
Yi − Y P − (Wi −WP )

⊤θ̃P

)
, (53)

where θ̃P approximates θ̂P as:

θ̃P := γ · 1

nP

∑
{i:Xi∈P}

(Wi −WP )(Yi − Y P ) = γ · 1

nP
W⊤

P YP . (54)

Here, WP ∈ RnP×K and YP ∈ RnP denote the centered data matrices, WP := [Wi −WP ]i:Xi∈P and YP := [Yi −
Y P ]i:Xi∈P , and the scalar γ > 0 denotes the exact line search step size corresponding to the regression of the centered
outcomes on the centered regressors:

γ :=

∥∥W⊤
P YP

∥∥2
2∥∥WPW⊤

P YP
∥∥2
2

. (55)

Lemma B.5. Let θ̃Cj
denote the FPT estimator of the form (24) for the child solution θ̂Cj

for VCM/HTE models. One can
express θ̃Cj in terms of the corresponding fixed-point pseudo-outcomes:

θ̃Cj
:= θ̂P +

1

nCj

∑
i:Xi∈Cj

ρFPTi .

Similarly, denote by θ̄Cj the FPT estimator of θ̂Cj induced by pseudo-outcomes approximations ϕFPTi :

θ̄Cj
:= θ̂P +

1

nCj

∑
{i:Xi∈Cj}

ϕFPTi .

Then, under the assumptions of Proposition 4.1, θ̄Cj is consistent for θ̃Cj
as:∥∥∥θ̃Cj − θ̄Cj

∥∥∥ = oP (1).

Proof. A direct calculation reveals that the difference between the original FPT pseudo-outcomes ρFPTi in (52) and the
approximations ϕFPTi in (53) satisfy

ρFPTi − ϕFPTi = −(Wi −WP )
([
Yi − Y P − (Wi −WP )

⊤θ̂P

]
−
[
Yi − Y P − (Wi −WP )

⊤θ̃P

])
,

= (Wi −WP )(Wi −WP )
⊤(θ̂P − θ̃P ). (56)
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Therefore, the difference between the original FPT child estimator θ̃Cj
and the approximation θ̄Cj

satisfies

θ̃Cj
− θ̄Cj

=
1

nCj

∑
{i:Xi∈Cj}

(ρFPTi − ϕFPTi ),

=
1

nCj

∑
{i:Xi∈Cj}

(Wi −WP )(Wi −WP )
⊤(θ̂P − θ̃P ),

= SCj
(θ̂P − θ̃P ),

where we denote SCj
:= 1

nCj

∑
{i:Xi∈Cj}(Wi −WP )(Wi −WP )

⊤. Therefore,∥∥∥θ̃Cj
− θ̄Cj

∥∥∥ =
∥∥∥SCj

(θ̂P − θ̃P )
∥∥∥ ≤ ∥∥SCj

∥∥
F

∥∥∥θ̂P − θ̃P∥∥∥ . (57)

Under GRF’s regularity conditions, in a limit where nCj
→∞ and the parent radius r := sup{i:Xi∈P}

∥∥Xi −XP

∥∥ goes

to zero r → 0, we have SCj

p→ Q for some positive semidefinite symmetric matrix Q, and hence
∥∥SCj

∥∥
F

= OP (1).
Meanwhile, by definition (31) for the OLS coefficients θ̂P and definition (54) for the one-step approximations θ̄P , we have∥∥∥θ̂P − θ̃P∥∥∥ =

∥∥(−A−1
P · n

−1
P W⊤

P YP
)
−
(
γ · n−1

P W⊤
P YP

)∥∥ ,
=
∥∥(−A−1

P − γI
)
· n−1

P W⊤
P YP

∥∥ ,
≤
∥∥−A−1

P − γI
∥∥
F

∥∥n−1
P W⊤

P YP
∥∥ ,

=
∥∥∥[n−1

P W⊤
P WP

]−1 − γI
∥∥∥
F

∥∥n−1
P W⊤

P YP
∥∥ , (58)

where −AP = n−1
P W⊤

P WP follows from the definition of AP as an estimator of the Jacobian∇ψ, e.g. (13) in the context
of VCM/HTE models. Under the Lipschitz continuity Assumptions 1 & 3, one has the standard stochastic bound for the
cross term n−1

P W⊤
P YP : ∥∥n−1

P W⊤
P YP

∥∥ = OP

(
r,

1
√
nP

)
, (59)

while the difference [n−1
P W⊤

P WP ]
−1 − γI is stochastically bound as∥∥∥[n−1

P W⊤
P WP

]−1 − γI
∥∥∥
F
= OP (1),

because n−1
P W⊤

P WP
p→ Cov(Wi | Xi ∈ P ) is non-singular under Assumption 2. Coupling these stochastic bounds together

according to (58) gives ∥∥∥θ̂P − θ̃P∥∥∥ = OP

(
r,

1
√
nP

)
,

and trivially, because nCj
< nP , ∥∥∥θ̂P − θ̃P∥∥∥ = OP

(
r,

1
√
nCj

)
. (60)

Under Proposition 1 of GRF one assumes r−2 ≪ nC1
, nC2

and thus, in an asymptotic regime where nCj
→∞ and r → 0,

one has 1/√nCj = o(r), and hence: ∥∥∥θ̂P − θ̃P∥∥∥ = oP (1). (61)

Returning to (57), the consistency of the parent approximation θ̃P as (61) implies that the approximation θ̄Cj
is itself

consistent for the original FPT child estimator θ̃Cj
:∥∥∥θ̃Cj
− θ̄Cj

∥∥∥ = oP (1), (62)

as desired. ■
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C. Implementation Details
C.1. Honest subsampling

In this section we present the honest subsampling mechanism. Trees are used to form partitions of the input space such as to
to specify weight functions αi(x), defined as

αi(x) :=
1

B

B∑
b=1

αbi(x), for αbi(x) :=
1(Xi ∈ Lb(x))

|Lb(x)|
, i = 1, . . . , n, (63)

where Lb(x) denotes a subset training samples that fall alongside x according to the partition of tree b. The honesty
mechanism ensures that no observation in leaf Lb(x) was used to build the partition rules of tree b. This is achieved by
separating an initial subsample into two subsets: One for building the partition rules, and the other allocated as samples to
the local leaves Lb(x) according to the trained rules. Below, we give a detailed outline of how subsampling and honest
sample splitting is used to train a forest of trees, then show that weight function αi(x) given by honest trees according to
(63) is conditionally independent of Oi given Xi.

Honest subsampling for GRF

For tree b ∈ {1, . . . , B},

1. (Subsampling). Draw an initial subsample I(b) of size s := |I(b)| from the training set (without replacement).

2. (Honest splitting). Split I(b) into disjoint sets J (b)
1 and J (b)

2 of size |J (b)
1 | = ⌊s/2⌋ and |J (b)

2 | = ⌈s/2⌉.

(a) Train tree T (J (b)
1 ) based on the first subsample {(Xi, Oi) : i ∈ J (b)

1 }. Let R(b)
1 , . . . ,R(b)

M denote the
partition of X induced by T (J (b)

1 ) such that

R(b)
m :=

{
x ∈ X : x satisfies the partition rules for leaf m of T (J (b)

1 )
}
.

(b) Subset the samples from the second subsample {Xi : i ∈ J (b)
2 } according to the trained rules of T (J (b)

1 ),
i.e. the samples of J (b)

2 in the leaves are determined by the rules of T (J (b)
1 ).

For any x ∈ X , the local leaf Lb(x) that appears in (63) is defined as the specific subset of J (b)
2 samples belonging to the

same leaf of tree T (J (b)
1 ) as x,

Lb(x) = {Xi ∈ R(b)
m : i ∈ J (b)

2 and x ∈ R(b)
m },

Conditional independence of αi(x) and Oi given Xi. By definition, the partition rules of tree T (J (b)
1 ) depend only on

the J (b)
1 subsample. The rules of a tree operate only on covariate values, and therefore the task of subsetting {Xi : i ∈ J (b)

2 }
into leaves according to the rules of T (J (b)

1 ) requires knowledge of the Xi values from the J (b)
2 subsample but not

necessarily the Oi. Based on this understanding, we will show that αi(x) is conditionally independent of Oi given Xi.
Based on (63), it is sufficient to show

E[αbi(x) | Oi, Xi] = E[αbi(x) | Xi].

Case 1. Suppose i /∈ J (b)
2 . By definition Lb(x) ⊂ {Xj : j ∈ J (b)

2 }. It is immediate that 1({Xi ∈ Lb(x)}) = 0, and therefore
αbi(x) = 0, and trivially

E[αbi(x) | Oi, Xi] = E[αbi(x) | Xi] = 0, for all i /∈ J (b)
2 .

Case 2. Suppose i ∈ J (b)
2 . We show that each component used to specify αbi(x) in (63) is conditionally independent of Oi

given Xi:

• Tree T (J (b)
1 ) is trained using only the J (b)

1 subsample. This does not depend onOi, for all i ∈ J (b)
2 , conditionally

on Xi or otherwise.
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• The rules of tree T (J (b)
1 ) operate only on input values. Therefore, conditionally on Xi for all i ∈ J (b)

2 , the leaves
of the J (b)

2 subsample specified by tree T (J (b)
1 ) do not depend on the value of Oi.

• Leaf Lb(x) is the specific subset of the J (b)
2 samples satisfying the same partition rules of T (J (b)

1 ) as x. Given
the leaves have been specified by the previous step, this depends only on x.

Therefore, the individual component functions αbi(x) = 1({Xi ∈ Lb(x)})/|Lb(x)| are conditionally independent of
Oi given Xi,

E[αbi(x) | Oi, Xi] = E[αbi(x) | Xi], for all i ∈ J (b)
2 .

Demonstration of honest subsampling. Let {(Xi, Oi)}ni=1 denote a training set of n = 20 observations, where each
Xi = (Xi,1, Xi,2) is over X ≡ R2. We will use a forest of a single tree (B = 1) to specify the functional form of weights
αi(x).

1. (Subsampling). Draw an initial subsample I of size s = 10.

2. (Honest splitting). Split I into two disjoint sets J1 and J2 , each with s/2 = 5 samples.

i Xi,1 Xi,2 Oi

1
...

20

I

i ∈ I Xi,1 Xi,2 Oi

2
3
5
8

10
11
14
15
16
20

J1

J2

i ∈ J1 Xi,1 Xi,2 Oi

2
3
8

15
20

i ∈ J2 Xi,1 Xi,2 Oi

5 1 0
10 2 -2
11 0 1
14 1 -2
16 2 2

(a) Train a tree using the data from the first subsample J1 , inducing a partition of X ≡ R2. Suppose the fitted tree
has the following structure:

Xi,1 < 3

Xi,2 < −1 R3

R1 R2

yes no

yes no

−1 1 2 3

−2

−1

1

2

R3

R2

R1

Xi,1

Xi,2

(b) Use the trained partition rules to subset the J2 subsample into separate leaves.
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X5

X10

X11

X14

X16

R3

R2

R1

Xi,1

Xi,2

The tree trained on the J1 subsample will subset the J2 subsample as

{Xi : i ∈ J2} = {X10, X14} ∪ {X5, X11, X16} ∪ ∅,

where we include the trivial union with ∅ to note that the tree assigns none of the J2 samples to the partition of
R2 where Xi,1 ≥ 3.

The leaf Lb(x) is the specific subset of the J2 subsample such that Xi ∈ J2 satisfy the same partition rules as x. Given a
test point x = x0, there are three possible scenarios for Lb(x0) that correspond to the three regions R1, R2, R3 ⊂ R2 in
which the test point x0 can appear.

Region 1. If x0 ∈ R1 then Lb(x0) = {X10, X14} and

αbi(x0) =
1({Xi ∈ Lb(x0)})

|Lb(x0)|
=

{
1
2 if i ∈ {10, 14},
0 otherwise.

Therefore, αi(x0) =
1
2 for i = 10, 14 and zero for i ∈ {1, . . . , 20} \ {10, 14}.

Region 2. If x0 ∈ R2 then Lb(x0) = {X5, X11, X16} and

αbi(x0) =
1({Xi ∈ Lb(x0)})

|Lb(x0)|
=

{
1
3 if i ∈ {5, 11, 16},
0 otherwise.

Therefore, αi(x0) =
1
3 for i = 5, 11, 16 and zero i ∈ {1, . . . , 20} \ {5, 11, 16}.

Region 3. If x0 ∈ R3 then Lb(x0) = ∅. This is a degenerate case such that

αbi(x0) =
1({Xi ∈ Lb(x0)})

|Lb(x0)|

is undefined, leading to a non-identifiability problem whenever x0 ∈ R3. When this occurs, Tibshirani et al. (2024)
recommends calculating αi(x0) based on only the trees with non-emptyLb(x0). LetB := {b ∈ {1, . . . , B} : |Lb(x0)| > 0}
denote the indices of non-empty leaves associated with x0. Then, the GRF weight functions based on this recommendation
can be written as

αi(x0) =
1

|B|
∑
b∈B

αbi(x0).
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Algorithm 1 The fixed-point tree algorithm

function TRAINFIXEDPOINTTREE
Input: node N
node P0 ← GETSAMPLES(N )
queue Q ← INITIALIZEQUEUE(P0)
while NOTNULL(node P ← POP(Q)) do
(θ̂P , ν̂P )← SOLVEESTIMATINGEQUATION(P ) ▷ Computes (6).
ρFPT ← FPTPSEUDOOUTCOMES(θ̂P , ν̂P ) ▷ Applies (26) over P .
split Σ← CARTSPLIT(P , ρFPT) ▷ Optimizes (19).
if SPLITSUCCEEDED(Σ) then

SETCHILDREN(P , GETLEFTCHILD(Σ), GETRIGHTCHILD(Σ))
ADDTOQUEUE(Q, GETLEFTCHILD(Σ))
ADDTOQUEUE(Q, GETRIGHTCHILD(Σ))

end if
end while
Output: tree with root node P0

end function

POP returns and removes the oldest element of queue a Q, unless Q is empty, in which case it returns NULL. CARTSPLIT
runs a multivariate CART split on the pseudo-outcomes ρFPT := {ρFPTi }i∈P , and either returns a pair of child nodes or
indicates that no split of P is possible.

C.2. In-sample predictions

There is additional bias associated with making predictions based on in-sample observations Xi that may have been used
either to train the tree structure or to populate the local leaves Lb(x). The recommendation of Tibshirani et al. (2024) is
along the lines of the out-of-bag mechanism used by Breiman (2001). For an in-sample observation x′ ∈ {Xi}ni=1, calculate
weights αoobi (x′) based only on those trees whose initial subsample I(b) does not contain x′. Then the out-of-bag weight is
defined as:

αoobi (x′) :=
1

|{b : x′ /∈ I(b)}|
∑

{b:x′ /∈I(b)}

αoobbi (x′) for αoobbi (x′) :=
1(Xi ∈ Lb(x

′))

|Lb(x′)|
.

The in-sample prediction θ̂oob(x′) for x′ is made by GRF by solving a version of the locally weighted estimating equation
(5) using out of bag weights αoobi (x′)

(
θ̂oob(x′), ν̂oob(x′)

)
∈ argmin

θ,ν

∥∥∥∥∥
n∑

i=1

αoobi (x′)ψθ,ν(Oi)

∥∥∥∥∥ ,
which preserve the consistency and asymptotic normality of the GRF estimator at in-sample observations.

C.3. Algorithms and Pseudocode

C.4. Simulation Details

Implementation details. We implement the GRF-FPT algorithm in a fork of grf (Tibshirani et al.,
2024) available at https://github.com/dfleis/grf. The functions grf::lm forest and
grf::multi arm causal forest provide an easy to use interface for VCM and HTE estimation, respectively, and
we allow the choice GRF-FPT1, GRF-FPT2, or GRF-grad to be controlled via the method argument. Code and data for
reproducing all experiments and figures are available at https://github.com/dfleis/grf-experiments.

Data-generating settings. The different setting for the target effects θ∗k(x) include a sparse linear setting, a sparse logistic
setting with interaction, a dense logistic setting, and a random function generator setting. Tables 2 and 3 provide the details of
each regime for VCM and HTE experiments, respectively, for the data-generating model (28). These tables also summarize
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Algorithm 2 Stage I GRF-FPT: Training a generalized random forest using fixed-point trees

function TRAINGENERALIZEDRANDOMFORESTFPT
Input: samples S, number of trees B
for b = 1, . . . , B do

set of samples I ← SUBSAMPLE(S)
sets of samples JBUILD,JPOPULATE ← HONESTSPLIT(I) ▷ See honesty: Appendix C.1.
tree Tb ← TRAINFIXEDPOINTTREE(JBUILD) ▷ See Algorithm 1.
leaves Lb ← POPULATELEAVES(Tb,JPOPULATE) ▷ See honesty: Appendix C.1.

end for
Output: forest F ← {L1, . . . ,LB}

end function

POPULATELEAVES creates a collection of subsets (leaves) of the JPOPULATE samples based on the partition rules of tree
Tb. For weight functions αi(x), see GETWEIGHTS in Algorithm 3. For Stage II, see ESTIMATE in Algorithm 3, where
estimates θ̂(x) are made given a forest F .

Algorithm 3 GRF-FPT: Estimates of θ∗(x)

function ESTIMATE
Input: forest F , test observation x ∈ X
weights α← GETWEIGHTS(F , x)
Output: θ̂(x), the solution to the weighted estimating equation (5) using weights α

end function

function GETWEIGHTS
Input: forest F , test observation x
vector of weights α← ZEROS(n) ▷ Initialize weights; n = |S| used to train F .
for indices i : Xi ∈ Lb(x) do
α[i] += 1/|Lb(x)|

end for
Output: local weights α← α/|F| ▷ Weights (4).

end function

Stage II of the GRF-FPT algorithm. The procedure ESTIMATE returns an estimate of θ∗(x) given a forest F trained under
Stage I and a test observation x; see Algorithm 2.

the different settings used to generate the K-dimensional regressors Wi = (Wi,1, . . . ,Wi,K)⊤. For VCM experiments,
Wi,k ∼ N (0, 1) for all k = 1, . . . ,K. For HTE experiments, Wi | Xi = x ∼ Multinomial(1, (π1(x), . . . , πK(x))), where
πk(x) denotes the underlying probability the sample is observed as having treatment level k ∈ {1, . . . ,K}.

Random function generator. The effect functions θ∗k(x) = RFG(x) under VCM Setting 4 (in Table 2) and HTE Setting
5 (in Table 3) follow the random function generator design of Friedman (2001). The idea is to measure the performance of
the estimator under a variety of randomly generated targets. Each θ∗k(·) is randomly generated as a linear combination of
functions {gℓ(·)}20ℓ of the form

θ∗k(x) =

20∑
ℓ=1

aℓgℓ(zℓ),

where the coefficients {aℓ}20ℓ=1 are randomly generated from a uniform distribution aℓ ∼ U([−1, 1]). Each gl(zl) is a
function of a randomly selected pℓ-size subset of the p-dimensional variable x, where the size of each subset pℓ is randomly
chosen by pℓ = min(⌊1.5 + rℓ⌋ , p), and rℓ is generated from an exponential distribution with mean 2, rℓ ∼ Exp(0.5).
Each g(zℓ) uses a pℓ-sized random subset zℓ ∈ Rpℓ of the p-dimensional input x ∈ Rp:

zℓ :=
(
xϕℓ(1), . . . , xϕℓ(pℓ)

)
∈ Rpℓ ,
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Parameter Values
K 4; 16; 64; 256
n 10,000; 20,000; 100,000
dim(X ) 5
nTrees 100

Parameter Values
K 4; 16;
n 1000; 4000
dim(X ) 2
nTrees 100; 500

Table 1: Parameter values for VCM and HTE experiments in Section 6. Target/regressor dimension K, number of observations n,
dimension of the auxiliary variables dim(X ), and number of trees nTrees. Experiments include a large-n setting (left table) and a small-n
setting (right table).

VCM Setting Effect function θ∗k(x) Wi,k

1 θ∗k(x) = βk1x1, βk1 ∼ N (0, 1) N (0, 1)
2 θ∗k(x) = ς(βk1x1)ς(βk2x2), βk1, βk2 ∼ N (0, 1) N (0, 1)
3 θ∗k(x) = ς(β⊤

k x), for βk ∼ Np(0, I) N (0, 1)
4 θ∗k(x) = RFG(x) N (0, 1)

Table 2: Settings for the true effects θ∗k(·) and the regressors Wi,k for VCM experiments in Section 6. The function ς(u) := 1 + (1 +

e−20(u−1/3))−1 is a logistic-type function in (Athey et al., 2019). The random function generator RFG(x) is described in Appendix C.4.

HTE Setting Treatment effect θ∗k(x) Treatment probability πk(x) for Wi,k

1 θ∗k(x) = βk1x1, βk1 ∼ N (0, 1) πk(x) = 1/K for all k.

2 θ∗k(x) = βk1x1, βk1 ∼ N (0, 1) πk(x) =

{
x1 k = 1,

1
K−1 (1− x1) k = 2, . . . ,K

3 θ∗k(x) = ς(βk1x1)ς(βk2x2) πk(x) = 1/K for all k.
for βk1, βk2 ∼ N (0, 1)

4 θ∗k(x) = ς(β⊤
k x), for βk ∼ Np(0, I) πk(x) =

{
x1 k = 1,

1
K−1 (1− x1) k = 2, . . . ,K.

5 θ∗k(x) = RFG(x) πk(x) =
exp{γ⊤

k x}∑K
j=1 exp{γ⊤

j x}
for γk ∼ Np(0, I).

Table 3: Settings for the underlying treatment effects θ∗k(·) and treatment probabilities πk(x) for HTE experiments in Section 6. The
function ς(u) := 1+(1+ e−20(u−1/3))−1 is a logistic-type function used in (Athey et al., 2019). The random function generator RFG(x)
is described in Appendix C.4.

such that {ϕℓ(1), . . . , ϕℓ(pℓ)} is a length-pℓ permutation of indices drawn from {1, . . . , p}, without replacement. The
functions gℓ(·) are Gaussian functions of the pℓ sampled variables:

gℓ(zℓ) := exp

{
−1

2
(zℓ − µℓ)

⊤Vℓ(zℓ − µℓ)

}
,

where the mean vector µℓ ∈ Rpℓ is randomly generated from a standard multivariate Gaussian, µℓ ∼ Npℓ
(0, I). The pl × pl

covariance matrix Vl are formed through the spectral decomposition:

Vℓ = UℓDℓU
⊤
ℓ ,

where Uℓ is a random pℓ × pℓ orthonormal matrix and Dℓ := diag(d1,ℓ, . . . , dpℓ,ℓ) with diagonal entries dj,ℓ generated
from a uniform distribution according to

√
dj,ℓ ∼ U(0.1, 2.0).

D. Additional Simulations
D.1. Settings for the criterion value experiment in Section 3.4

The criterion value experiment in Section 3.4 was run under a varying coefficient model of the form

Yi :=W⊤
i θ

∗(Xi) + ϵi, ϵi ∼ N (0, 0.52), (64)
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where the regressors Wi were generated as bivariate standard Gaussian samples Wi ∼ N2(0, I) and the auxiliary covariates
were generated as standard uniform samples Xi ∼ U(0, 1). The data-generating coefficient functions were θ∗(x) :=
(sin(2πx), x) and the criterion values were computed based on n = 1000 samples following (64).

D.2. Supporting experiments for Section 6

Multicollinearity in auxiliary covariates. We conducted a VCM experiment with highly correlated auxiliary covariate
features. We ran a modified version of VCM Setting 3 by generating auxiliary covariates as Xi ∼ N (0,Σ), where
[Σ]j,k = ω|j−k| for ω ∈ {0, 0.5, 0.9}. Table 4 provides a clear summary of the computational performance of GRF-FPT
relative to GRF-grad and statistical accuracy (MSE – multiplied by 100 for readability). All experiments were run over
a forest of 10 trees and MSE estimates were computed over 50 replications of the model and evaluated on a separate set
of n = 5, 000 samples, carried out using GRF-FPT2 and GRF-grad. These results demonstrate clearly that GRF-FPT
remains robust, stable, and computationally efficient, even under high multicollinearity in Xi.

dim(X ) n K ω Speedup 100×MSE grad 100×MSE FPT2
5 10,000 64 0.00 2.55 16.60 16.83
5 10,000 64 0.50 2.53 15.48 15.47
5 10,000 64 0.90 2.35 10.95 11.09

Table 4: Effect of multicollinearity in the auxiliary covariates Xi on the relative computational gain of GRF-FPT2, as well as the statistical
accuracy of both GRF-FPT and GRF-grad estimators.

Subsampling ratio. We carried out an experiment to show that the subsample proportion does not affect the com-
putational advantage or statistical accuracy of GRF-FPT relative to GRF-grad. We varied the subsampling ratio
s/n ∈ {0.25, 0.50, 0.75} under VCM Setting 3 over a forest of 10 trees carried out using GRF-FPT2 and GRF-grad.
Table 5 summarizes our results, averaged over 50 replications of the model, with a test set of 5,000 samples. These results
show clearly that the statistical accuracy (MSE) of GRF-FPT2 relative to GRF-grad does not depend strongly on the
subsample ratio.

dim(X ) n K s/n Speedup 100×MSE grad 100×MSE FPT2
2 10,000 64 0.25 2.77 2.86 2.90
2 10,000 64 0.50 3.10 2.91 2.90
2 10,000 64 0.75 2.98 3.21 3.19

Table 5: Effect of the subsampling ratio s/n on the relative computational gain of GRF-FPT2, as well as the statistical accuracy of both
GRF-FPT and GRF-grad estimators.

Large sample size. We ran additional experiments to clearly show how our method scales for very large datasets. Using
a forest of 10 trees, we tested our method on VCM Setting 3 with sample sizes up to n = 500, 000, carried out using
GRF-FPT2 and GRF-grad. The results are summarized in Table 6 and demonstrate that, even as the dataset grows
very large, our method consistently remains faster than GRF-grad. While the relative speedup slightly decreases at
first, it stabilizes towards a consistent advantage as grows n grows sufficiently large, suggesting that the advantage is not
bottlenecked by n and maintains a robust advantage at scale.

dim(X ) K n Speedup
2 256 10,000 4.54
2 256 20,000 3.59
2 256 50,000 3.49
2 256 100,000 3.11
2 256 200,000 3.04
2 256 500,000 3.08

Table 6: Effect of increasing sample sizes n on the relative computational gain of GRF-FPT2.
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Figure 5: Absolute fit times for VCM timing experiments under the settings in Table 2 and large-n settings in Table 1.

D.3. Supporting figures for Section 6

D.3.1. VCM EXPERIMENTS

Large n VCM simulations. Figure 5 illustrates the absolute fit times for the GRF-FPT algorithms under the four VCM
settings for θ∗k(x) described in Table 2 over the large-n settings in Table 1. Across all settings and all dimensions, GRF-FPT
is consistently several factors faster than GRF-grad. The speedup factor is summarized in Figure 3, which illustrates the
relative speedup of GRF-FPT, calculated as the ratio of GRF-grad fit times over GRF-FPT fit times. Consistent with the
observations in Section 5, we find that the speed advantage of GRF-FPT increases as the dimension of the target increases.

Figure 6 shows that this speed advantage comes while performing comparably to GRF-grad in terms of statistical accuracy.
Across all settings for VCMs with K = 4 dimensional targets, the MSE estimates from GRF-FPT is highly similar to the
MSE estimates of GRF-grad, while for K = 256 dimensional targets one sees more variation in MSE estimates across the
methods. This effect likely reflects the increased variance associated with high-dimensional estimation. In some cases we
see GRF-FPT1 slightly outperform both GRF-FPT2 and GRF-grad, in other cases we see GRF-grad slightly outperform
both GRF-FPT methods, and in others GRF-FPT2 yields the lowest MSE. One sees that these differences are typically small.
The key benefit we emphasize is that GRF-FPT is able to achieve nearly identical statistical accuracy with a substantial
improvement in computational speed.

Small n VCM simulations. Figures 8 and 7 illustrate the absolute fit times and relative speed advantage, respectively, of
GRF-FPT under the VCM design of θ∗k(x) over the small-n settings. One sees that even when n is more modest, GRF-FPT
consistently offers a computational advantage over GRF-grad, with possible outliers under VCM Setting 2 at K = 4. We
believe this negative relative advantage to be caused by random fluctuations in computation and are not representative of the
FPT algorithm itself, particularly in light of the fact that the negative effect vanishes when the number of trees increases
from 100 to 500. As one would expect based on the large-n results, the relative advantage tends to increase with increasing
K, and generally stabilizes with increasing n. Figure 9 shows that the GRF-FPT speed advantage does not come at any
material cost in statistical accuracy, with similar performance to GRF-grad across all settings.
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Figure 6: Estimates of MSE E[∥θ∗(X)− θ̂(X)/K∥22] for VCM for K = 256 dimensional (top) and K = 4 dimensional targets (bottom)
under the large-n settings in Table 1.
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Figure 7: Speedup factor for GRF-FPT in comparison to GRF-grad for VCM timing experiments under the small-n settings in Table 1.

D.4. HTE experiments

Large n HTE simulations. Figure 11 illustrates the absolute fit times for the GRF-FPT algorithm under the five HTE
settings of θ∗k(x) and πk(x) described in Table 3 over the large-n settings in Table 1. We find that GRF-FPT is consistently
faster than GRF-grad. The speedup factor of GRF-FPT relative to GRF-grad is summarized in Figure 10, calculated
as the ratio of GRF-grad fit times over GRF-FPT fit times. As was seen for VCM experiments, the speed advantage
of GRF-FPT scales with the dimensionality K of the target. One sees from both Figures 10 and 11 that GRF-FPT’s
computational advantage is less dramatic than under the VCM experiments. This can be understood based on the fact
that the VCM regressors Wi are continuous while the HTE regressors represent binary indicators. Continuous regressors
provide more granularity when fitting the child statistics θ̃Cj , and as a result provide a larger set of candidate splits over the
covariates. Nevertheless, one sees in Figure 10 that the FPT splitting mechanism is still up to 1.5× faster under the largest
regressor setting K = 256, with a more modest, but persistent savings across all settings.

The statistical benchmarks for our HTE experiments are shown in Figure 12. Consistent with the VCM experiments, one
sees that the computational advantage of GRF-FPT does not come at the cost of in terms of its statistical accuracy.

Small n HTE simulations. Figures 13 and 14 summarize the relative speed advantage and absolute fit times for the
GRF-FPT algorithm under the small-n HTE design. Consistent with the large-n HTE experiments the FPT2 mechanism
sees a stable computational advantage across all settings, with an increasing effect in increasing K, while the FPT1
mechanism displays a persistent advantage for K = 16 and comparable computational performance for K = 4. The more
modest relative advantage for the small-n experiments is itself consistent with the VCM small-n experiments, owing in
large part due to the smaller values of K. Figure 15 compares the statistical performance of GRF-FPT to GRF-grad, with
no material difference between either GRF-FPT1, GRF-FPT2, or GRF-grad’s estimation accuracy.
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Figure 8: Absolute fit times for VCM timing experiments under the settings in Table 2 and small-n settings in Table 1.
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Figure 9: Estimates of MSE E[∥θ∗(X)− θ̂(X)/K∥22] for VCM for K = 16 dimensional (top) and K = 4 dimensional targets (bottom)
under the small-n settings in Table 1.
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Figure 10: Speedup factor for GRF-FPT in comparison to GRF-grad for HTE timing experiments under the large-n setting in Table 1.

E. Additional Examples
E.1. Pseudo-outcomes for nonparametric regression

Consider the task of estimating the conditional mean function θ∗(x) := E[Y |X = x]. The target θ∗(x) is identified by a
moment condition of the form (1) with scoring function ψθ(Yi) := Yi − θ, the residual associated with using θ as the local
estimate with respect to the i-th sample. The local solution θ̂P over P is the mean observed response over the parent,

θ̂P = Y P :=
1

nP

∑
{i:Xi∈P}

Yi.

The fixed-point pseudo-outcomes are simple the (negative) residuals that result from fitting (6) over P

ρFPTi = −(Yi − θ̂P ) = −(Yi − Y P ).

The gradient of the score function is ∇θψθ(y) = −1, and hence AP = −1. Therefore, up to a constant factor, the
gradient-based pseudo-outcomes ρgradi for conditional mean estimation reduce to their fixed-point counterparts ρFPTi ,

ρgradi = −A−1
P ψθ̂P

(Yi) = Yi − Y P = −ρFPTi .

In this special case, we recover the conventional splitting algorithm used for univariate responses (Breiman et al., 1984;
Breiman, 2001) or for multivariate responses (De’ath, 2002; Segal, 1992). Trees grown using ρFPTi , ρgradi , or Yi will be
identical to one another because CART splits are scale and translation invariant with respect to the response.

More generally, for targets θ∗(x) beyond the conditional mean, the form of ρgradi will be equivalent to ρFPTi whenever the
target function θ∗ : X → Θ is a map from the input space X a one-dimensional parameter space Θ.
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Figure 11: Absolute fit times for HTE timing experiments under the settings in Table 3 and large-n settings in Table 1.

F. Real Data Comparison: California Housing
Data. The California housing data appeared in Kelley Pace & Barry (1997) and can be directly obtained from the Carnegie
Mellon StatLib repository (https://lib.stat.cmu.edu/datasets/houses.zip). The data includes 20640
observations, where each observation corresponds to measurements over an individual census block group in California
taken from the 1990 census. A census block is the smallest geographical area for which the U.S. Census Bureau publishes
sample data, typically with a population between 600 and 3000 people per block. Each observation from the California
housing data set contains measurements of 9 variables: median housing value (dollars), longitude, latitude, median housing
age (years), total rooms (count, aggregated over the census block), total bedrooms (count, aggregated over the census block),
population (count), households (count), median income (dollars).

Model. We consider a varying coefficient model of the form

Yi = ν∗(Xi) + θ∗1(Xi)Wi,1 + · · ·+ θ∗6(Xi)Wi,6 + ϵi (65)

where we suppose that our effects are local to spatial coordinates x := (latitudei,longitudei), Yi denotes the log
median housing value of the census block, and the primary regressors Wi = (Wi,1, . . . ,Wi,6) passed to the model were
median housing age, log(total rooms), log(total bedrooms), log(population), log(households), and log(median income).
Here, each θ∗k(x) denotes the geographically-varying effect of the corresponding regressor Wi,k, for k = 1, . . . , 6. The
empirical distribution of the transformed regressors passed to each of the GRF models is seen in Figure 17.

38

https://lib.stat.cmu.edu/datasets/houses.zip


Generalized Random Forests using Fixed-Point Trees

HTE Setting 1 HTE Setting 2 HTE Setting 3 HTE Setting 4 HTE Setting 5
n =

 10000
n =

 20000
n =

 100000

grad FPT1 FPT2 grad FPT1 FPT2 grad FPT1 FPT2 grad FPT1 FPT2 grad FPT1 FPT2

20

25

30

35

15.0

17.5

20.0

22.5

11

12

13

14

14

15

16

11

12

13

7.0

7.5

8.0

8.5

9.0

20

24

28

32

10

15

20

3

4

5

6

7

16

18

20

12

13

14

15

16

4.0

4.5

5.0

10.0
12.5
15.0
17.5
20.0

5
6
7
8
9

10

1.5

2.0

2.5

3.0

nTrees =
 100

Method

10
0

×
M

S
E

50 model replications, 5000 test observations
K = 256

MSE estimates: Heterogeneous treatment effects (HTE)

HTE Setting 1 HTE Setting 2 HTE Setting 3 HTE Setting 4 HTE Setting 5

n =
 10000

n =
 20000

n =
 100000

grad FPT1 FPT2 grad FPT1 FPT2 grad FPT1 FPT2 grad FPT1 FPT2 grad FPT1 FPT2

2
3
4
5
6
7

2

4

6

1

2

3

2

4

6

8

2

4

6

1.5
2.0
2.5
3.0
3.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

0.6

0.8

1.0

1.2

2

3

4

1.0

1.5

2.0

2.5

0.7

0.9

1.1

1.3

1.5

1.00

1.25

1.50

1.75

0.8

1.0

1.2

0.60
0.65
0.70
0.75
0.80
0.85

nTrees =
 100

Method

10
0

×
M

S
E

50 model replications, 5000 test observations
K = 4

MSE estimates: Heterogeneous treatment effects (HTE)

Figure 12: Estimates of MSE E[∥θ∗(X)− θ̂(X)/K∥22] for HTE for K = 256 dimensional (top) and K = 4 dimensional targets (bottom)
under the large-n settings in Table 1.

Algorithms. We target GRF estimates θ̂(x) = (θ̂1(x), . . . , θ̂6(x))
⊤ of θ∗(x) = (θ∗1(x), . . . , θ

∗
6(x))

⊤ based on the GRF-
FPT1 and GRF-FPT2 algorithms described in Section 6, and compare those to GRF-grad. All forests were fit using
the grf::lm forest function, which trains the Stage I forest and optionally solves for the Stage II estimates θ̂(x) for
varying coefficient models (65). All versions fit a forest of 2000 trees, the default settings of the original R implementation
(Tibshirani et al., 2024), a subsample ratio of 0.5, and a target minimum node size of 5 observations.

Algorithm Training time (sec.) Speedup factor
GRF-grad 19.1
GRF-FPT1 15.4 1.24
GRF-FPT2 12.6 1.52

Table 7: Fit times to train a forest of 2000 trees on the California housing data.
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Figure 13: Speedup factor for GRF-FPT in comparison to GRF-grad for HTE timing experiments under the small-n settings in Table 1.

Results. Table 7 summarizes the computational benefit of GRF-FPT applied to the California housing data. Figures 4
illustrates the local estimates θ̂(x) made by GRF-FPT2, while Figure 16 illustrates the fits under GRF-FPT1 and GRF-
grad.
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Figure 14: Absolute fit times for HTE timing experiments under the settings in Table 3 and small-n settings in Table 1.
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Figure 15: Estimates of MSE E[∥θ∗(X)− θ̂(X)/K∥22] for HTE for K = 16 dimensional (top) and K = 4 dimensional targets (bottom)
under the small-n settings in Table 1.
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Figure 16: Geographically-varying local estimates θ̂(x) = (θ̂1(x), . . . , θ̂6(x)), fit under GRF-FPT1 (top) and GRF-grad (bottom).
Results for GRF-FPT2 are presented in Figure 4 found in Section 7.
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Figure 17: Empirical distribution of the regressors from the California housing data passed to GRF.
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