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ABSTRACT

Mixture-of-Experts (MoE) has emerged as a powerful paradigm for scaling model
capacity while preserving computational efficiency. Despite its notable success
in large language models (LLMs), existing attempts to apply MoE to Diffusion
Transformers (DiTs) have yielded limited gains. We attribute this gap to fun-
damental differences between language and visual tokens. Language tokens are
semantically dense with pronounced inter-token variation, while visual tokens ex-
hibit spatial redundancy and functional heterogeneity, hindering expert special-
ization in vision MoE. To this end, we present ProMoE, an MoE framework
featuring a two-step router with explicit routing guidance that promotes expert
specialization. Specifically, this guidance encourages the router to first partition
image tokens into conditional and unconditional sets via conditional routing ac-
cording to their functional roles, and second refine the assignments of conditional
image tokens through prototypical routing with learnable prototypes based on se-
mantic content. Moreover, the similarity-based expert allocation in latent space
enabled by prototypical routing offers a natural mechanism for incorporating ex-
plicit semantic guidance, and we validate that such guidance is crucial for vision
MoE. Building on this, we propose a routing contrastive loss that explicitly en-
hances the prototypical routing process, promoting intra-expert coherence and
inter-expert diversity. Extensive experiments on ImageNet benchmark demon-
strate that ProMoE surpasses state-of-the-art methods under both Rectified Flow
and DDPM training objectives. Code and models will be made publicly available.

1 INTRODUCTION

Diffusion models (Ho et al., 2020) have made substantial advances for visual synthesis (Rombach
et al., 2022b; Yang et al., 2024; Wan et al., 2025). Driven by the growing demand for higher fidelity
and quality, research has focused on scaling up diffusion models (Esser et al., 2024b) and propelled
an architectural shift from U-Net (Ronneberger et al., 2015) backbones to the now-prevalent Dif-
fusion Transformers (DiTs) (Peebles & Xie, 2023). Despite the proven effectiveness of DiT-based
models (Esser et al., 2024a), their dense activation of all parameters irrespective of task or input
incurs substantial computational overhead, thereby hindering further scalability.

To scale toward larger and more capable models, the large language model (LLM) community
has widely adopted the Mixture-of-Experts (MoE) (Jacobs et al., 1991; Shazeer et al., 2017)
paradigm, which expands model capacity while maintaining computational efficiency. Conceptu-
ally, an MoE layer dispatches input tokens to specialized “expert” sub-networks via a router and
returns a weighted sum of the selected experts’ outputs. Despite MoE’s profound success in lan-
guage modeling (Jiang et al., 2024; Dai et al., 2024), recent efforts to integrate it into DiT models
have not yielded the significant gains observed in LLMs. Specifically, DiT-MoE (Fei et al., 2024),
which employs token-to-expert routing, often underperforms dense counterparts despite activating
the same number of parameters. In contrast, EC-DiT (Sun et al., 2024), which assigns each expert
a fixed quota of tokens, delivers only marginal gains even with extended training. More recently,
DiffMoE (Shi et al., 2025), which introduces a global token-distribution routing scheme, still re-
ports relatively limited improvements. This pronounced gap between MoE’s transformative impact
in LLMs and its modest returns in DiT models motivates a fundamental question: What are the
underlying factors that impede the effectiveness of MoE in DiT models?
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LLM (Llama-3 8B) Visual DiT (DiT-XL/2)

(a) t-SNE visualization of language and visual tokens

Expert Subspace Similarity (Lower implies Higher Diversity)

(b) Comparison of expert diversity across MoE layers

Avg(inter − class	distance)
Avg(intra − class	distance)

= 	0.748
Avg(inter − class	distance)
Avg(intra − class	distance)

= 	𝟏𝟗. 𝟐𝟖𝟑

Figure 1: (a) We randomly sample 1k intermediate-layer tokens from 110 ImageNet classes for
10-cluster k-means clustering (differentiated by color). With class names/labels as inputs, LLM
tokens form compact, well-separated clusters with high semantic density, whereas visual tokens are
diffuse. This disparity is quantified by the ratio of inter- to intra-class distance (19.283≫ 0.748). (b)
We measure inter-expert diversity using singular value decomposition on each MoE layer’s expert
weight matrices and computing the mean similarity of the subspaces spanned by their top-k left
singular vectors (Hu et al., 2021). Incorporating routing guidance (Ours) enhances expert diversity.

To answer this question, we examine how linguistic and visual inputs differ in models and highlight
the following two distinctive properties of visual inputs. 1) High Spatial Redundancy. Unlike
discrete text tokens, which are semantically dense with salient inter-token differences, visual tokens
(i.e., image patches) are continuous, spatially coupled, and substantially redundant (Fig. 1(a)). The
high correlation between patches often leads experts to learn homogeneous features. 2) Functional
Heterogeneity. The practice of classifier-free guidance (Ho & Salimans, 2022) in diffusion mod-
els inherently introduces two functionally distinct input types: conditional and unconditional. A
naive MoE treats them uniformly with undifferentiated routing, ignoring their different roles. These
properties collectively impede effective expert diversity and specialization (Fig. 1(b)).

Motivated by these observations, we revisit the foundational principle of MoE design: expert spe-
cialization, in which each expert acquires focused and non-overlapping knowledge (Dai et al., 2024;
Cai et al., 2025). We decompose this objective into two criteria: Intra-Expert Coherence, which
ensures that an expert consistently processes similar patterns, maintaining a stable functional role;
and Inter-Expert Diversity, which encourages different experts to specialize in distinct tasks to
achieve functional differentiation. In language modeling, the semantic density and separability of
discrete text tokens provide a potent inductive bias that naturally fosters expert specialization, sat-
isfying both criteria. In contrast, for visual inputs, the combination of intrinsic redundancy and
extrinsic functional heterogeneity makes expert specialization non-trivial. Therefore, in this paper,
we move beyond implicit expert allocation, and introduce explicit routing guidance designs to pro-
mote both intra-expert coherence and inter-expert diversity.

To this end, we present ProMoE, a Mixture-of-Experts framework featuring a two-step router with
explicit routing guidance to promote expert specialization. Specifically, this guidance provides two
distinct routing signals: the token’s functional role and its semantic content. Guided by these signals,
the router implements two steps: conditional routing and prototypical routing. First, conditional
routing addresses functional heterogeneity by partitioning visual tokens into unconditional and con-
ditional sets. Unconditional image tokens, derived from image patches under null conditioning
(e.g., empty labels or texts), are processed by dedicated unconditional experts. In contrast, condi-
tional image tokens, obtained from patches under specific conditioning, are dispatched to standard
MoE experts. This hard routing mechanism enforces functional segregation, fostering specialization
across unconditional and standard experts. Second, prototypical routing further assigns conditional
image tokens using a set of learnable prototypes, each associated with a specific expert, by comput-
ing cosine similarity between token embeddings and the prototypes in latent space.

While prototypical routing is flexible and effective, it still relies on implicit learning from token
semantics. Fortunately, its similarity-based allocation in latent space provides a natural mechanism
for injecting explicit semantic routing guidance. We validate the importance of semantic guidance in
systematic experiments (Sec. 4.2), where both explicit (classification-based) and implicit (clustering-
based) guidance yield clear improvements. Building on this, we propose a routing contrastive loss
that explicitly enhances the prototypical routing process by assigning semantically similar tokens
to the same expert while preserving distinct token distributions across experts. Compared with
alternative guidance strategies, the proposed contrastive loss requires no manual labels and is more
robust, promoting intra-expert coherence and inter-expert diversity in vision MoE.
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Extensive experimental results demonstrate ProMoE’s superior performance and effective scalability
on both Flow Matching and DDPM paradigms. Notably, ProMoE achieves significant gains over
dense models despite using fewer activated parameters, and surpasses state-of-the-art methods that
have 1.7× more total parameters than ours.

In summary, our contributions are fourfold: 1) By analyzing differences between language and vi-
sual tokens, we present ProMoE, an MoE framework with explicit routing guidance for DiT models.
2) We design a two-step router, where conditional routing first partitions image tokens by functional
roles, and prototypical routing then refines assignments using learnable prototypes based on seman-
tic content. 3) We propose a routing contrastive loss that enhances prototypical routing, explicitly
enforcing intra-expert coherence and inter-expert diversity. 4) Extensive experiments demonstrate
that ProMoE outperforms dense models and state-of-the-art MoE methods across diverse settings.

2 RELATED WORK

Diffusion Models. Diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021) have made re-
markable progress in visual synthesis. Early work (Rombach et al., 2022a; Podell et al., 2023)
primarily use U-Net (Ronneberger et al., 2015) architectures trained with the DDPM denoising
score-matching objective (Ho et al., 2020; Song et al., 2020). Recent models (Chen et al., 2023; Ma
et al., 2024; Hatamizadeh et al., 2024; Chu et al., 2024; Esser et al., 2024a) have shifted to Diffusion
Transformers (DiT) (Peebles & Xie, 2023), offering superior scalability and generative quality, and
are trained with the more effective Rectified Flow (RF) (Liu et al., 2022), a flow-matching formula-
tion (Lipman et al., 2022) that constructs a straight-line path between data and noise distributions.
In this work, we adopt a standard DiT backbone and train with both DDPM and RF objectives,
demonstrating the effectiveness and scalability of our approach across different training paradigms.

Mixture of Experts. Mixture-of-Experts (MoE) (Jacobs et al., 1991; Shazeer et al., 2017; Lep-
ikhin et al., 2020) are designed to expand model capacity while minimizing computational overhead
by sparsely activating sub-networks for distinct inputs. Inspired by MoE successes in LLMs (Dai
et al., 2024; Liu et al., 2024; Li et al., 2025; Muennighoff et al., 2024), recent work has integrated
MoE to scale diffusion models to improve generative quality (Riquelme et al., 2021). Early MoE
applications in U-Net-based diffusion models (Lee et al., 2024; Balaji et al., 2022; Feng et al., 2023;
Xue et al., 2023; Park et al., 2023; 2024; Zhao et al., 2024) often assign experts by diffusion timestep
ranges, showing strong scaling potential. However, adapting MoE to DiT architecture (Shen et al.,
2025; Sehwag et al., 2025; Cheng et al., 2025) faces several limitations. Token-choice routing meth-
ods (e.g., DiT-MoE (Fei et al., 2024)) suffer poor expert specialization due to imbalanced token as-
signments, whereas expert-choice methods (e.g., EC-DiT (Sun et al., 2024)) that fix token quotas per
expert yield only marginal gains. More recently, DiffMoE (Shi et al., 2025) and Expert Race (Yuan
et al., 2025) explore batch-level global token selection and mutual expert–token routing, yet still rely
on implicit expert learning and struggle with limited expert specialization due to the redundancy and
functional heterogeneity of visual tokens. In contrast, we analyze language–vision token differences
and introduce explicit routing guidance to the MoE router based on the token’s functional role and its
semantic content. We further enhance the routing process through the proposed routing contrastive
loss, promoting intra-expert coherence and inter-expert diversity.

3 PRELIMINARIES

Diffusion Models. Diffusion models are generative models that learn data distributions by re-
versing a forward noising process. The continuous-time forward process can be formulated as
xt = αtx0 + σtϵ, with t ∈ U(0, 1) and ϵ ∼ N (0, I). αt and σt are monotonically decreasing and
increasing functions of t, respectively. For the reverse process, a denoising network Fθ is trained to
predict the target y at each timestep t, conditioned on c (e.g., class labels or text prompts):

L = Ex0,c,ϵ,t

[
∥y −Fθ (xt, c, t)∥22

]
, (1)

where the training target y can be the Gaussian noise ϵ for DDPM models (Ho et al., 2020), or the
vector field (ϵ− x0) for Rectified Flow models (Liu et al., 2022).

Mixture of Experts. Mixture-of-Experts (MoE) is an architectural paradigm that scales model
capacity while preserving computational efficiency by selectively activating a subset of “experts”

3
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Figure 2: Overview of ProMoE architecture. The input tokens are split by conditional routing into
unconditional and conditional subsets. Unconditional image tokens are processed by unconditional
experts. Conditional image tokens are assigned by prototypical routing with learnable prototypes.
The routing contrastive learning explicitly enhances semantic guidance in prototypical routing.

sub-networks. A standard MoE layer comprises NE experts and a trainable router R. Each expert
Ei is implemented as a feed-forward network (FFN). Given input X ∈ RB×L×D, where B is the
batch size, L is the token length, D is the hidden dimension, the router R maps the input X to
token–expert affinity scores S ∈ RB×L×NE via an activation function A:

S = A(R(X)). (2)

At each forward pass, the router activates the top-K highest-scoring experts and dispatches the input
to them. The final output is the weighted sum of the activated experts’ outputs with a gating function:

G =

{
S, if S ∈ TopK(S)

0, Otherwise
, MoE(X) =

NE∑
i=1

Gi ∗ Ei(X), (3)

where G ∈ RB×L×NE is the final gating tensor. There are two common routing paradigms in MoE:
Token-Choice (TC) and Expert-Choice (EC). In TC, each token independently selects its top-K
experts; in EC, each expert selects a fixed number of top-K tokens.

4 PROMOE

In this section, we present ProMoE, an MoE framework for DiTs that integrates a two-step router
with explicit routing guidance. The overall pipeline is depicted in Fig. 2. We first detail the two-step
router in Sec. 4.1. We then validate the importance of semantic routing guidance in visual MoEs in
Sec. 4.2 and further propose routing contrastive learning to enhance semantic guidance in Sec. 4.3.

4.1 TWO-STEP ROUTER

The ProMoE router operates in two steps: conditional routing based on the token’s functional role,
followed by fine-grained prototypical routing based on token semantics.

Conditional Routing. Unlike LLMs, diffusion models typically employ classifier-free guidance
(CFG) (Ho & Salimans, 2022) at inference to enhance sample quality. Specifically, CFG steers the
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generation process by combining the model’s conditional and unconditional noise predictions. This
paradigm naturally defines two functionally heterogeneous tokens: 1) unconditional image tokens,
derived from image patches under null conditioning (e.g., empty labels or texts); and 2) conditional
image tokens, obtained from patches under specific conditioning (e.g., class labels or texts).

To handle different token types, the first step of the ProMoE router employs hard routing based on
input conditioning. Specifically, unconditional image tokens are deterministically assigned to Nu
unconditional experts, each implemented as a feed-forward network (FFN), analogous to standard
experts. Conversely, conditional image tokens are passed to the second step for fine-grained routing
among standard MoE experts. This explicit partitioning encourages experts to learn the functional
disparity between token types, facilitating the specialization of unconditional and standard experts.

Prototypical Routing. The second step of our ProMoE router is to dispatch conditional image to-
kens for fine-grained expert allocation. Concretely, we introduce a novel prototypical routing mech-
anism where the routing weights are parameterized by a set of learnable prototypes P ∈ RNE×D,
as illustrated in Fig. 2. Each prototype pi corresponds to an expert Ei and is trained to represent the
shared characteristics of a cluster of semantically similar tokens.

Compared with standard MoE token assignment, which computes pre-activation scores Z ∈
RB×L×NE via a linear layer, we assign tokens using cosine similarity, which is more effective and
naturally suited for measuring semantic similarity in latent space between tokens and prototypes:

Zi,j = [R(X)]i,j = α
xip

⊤
j

∥xi∥∥pj∥
, (4)

where xi and pj are the i-th token in X and the j-th prototype in P. α is a scaling factor.

Then, the activation function A transforms the pre-activation scores Z into token–expert affinity
scores S. Instead of softmax, which is computationally expensive and sensitive to sequence length,
we opt for a simple monotonic function that preserves relative rankings. We evaluate both sigmoid
and identity functions, finding that the identity A(Z) = Z performs best in practice, as shown
in Tab. 9. We argue that the identity activation enables direct top-K selection and provides stable
training, thus improving performance. Consequently, we adopt identity activation as S = Z. Finally,
each conditional image token is routed to the top-K experts with gating scores G, as in Eq. (3).

Forward Process. Besides unconditional and standard experts, we also incorporate Ns shared
experts that process all tokens to learn shared knowledge (Dai et al., 2024; Cheng et al., 2025). For
each token, the output of our MoE block is defined as the sum of the shared experts’ output and a
selective output determined by the token type (conditional or unconditional):

MoE(x) =
Ns∑
i=1

ES
i (x)︸ ︷︷ ︸

Shared

+



NE∑
j=1

Gj ∗ Ej(x) if x ∈ Xc

Nu∑
k=1

EU
k (x) if x ∈ Xu

, (5)

where ES
i , Ej , and EU

k are the shared, standard, and unconditional experts, respectively. Xc and Xu

are conditional and unconditional image token sets, respectively, and Xc ∪Xu = X.

To maintain a constant number of activated parameters, MoE models often employ fine-grained
expert segmentation (Dai et al., 2024), where the inner hidden dimension of each expert is divided
by the number of activated experts. In our most settings, each forward pass of our model activates
exactly two experts: the single shared expert and one expert selected from the combined pool of
standard and unconditional experts. Therefore, to match the computational cost of a dense model,
we divide the hidden dimension of each expert’s intermediate layer by a factor of two.

4.2 SEMANTIC ROUTING GUIDANCE

Due to the inherent high spatial redundancy of visual tokens, a naive MoE router fails to sufficiently
distinguish tokens for effective routing, leading experts to learn homogeneous features. Conse-
quently, additional semantic routing guidance is required to promote intra-expert coherence and
inter-expert diversity. To validate this, we conduct experiments by augmenting the MoE router with
two guidance types: 1) Explicit Routing Guidance and 2) Implicit Routing Guidance.
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Explicit Routing Guidance. We design a routing classification loss that uses class labels to ex-
plicitly guide token assignment. Specifically, we manually partition the 1K ImageNet classes into
Nc superclasses based on coarse labels in (Feng & Patras, 2023), and allocate one expert per su-
perclass. Since labels are sample-level, we instantiate the router as a classifier C: we average-pool
the input X over the token length dimension to obtain X̄, feed X̄ into C to produce sample–expert
affinity scores S̄ ∈ RB×Nc , and assign the expert with highest score. During training, we supervise
the routing process with a cross-entropy loss Lcls = CE(S̄, c̄), where c̄ is the superclass label.

Implicit Routing Guidance. We replace the standard MoE router with k-means clustering, as-
signing all tokens in a cluster to a single expert. Unlike the routing classification loss that provides
explicit supervision, this design offers implicit guidance by measuring token similarity, encouraging
semantically similar tokens to be co-assigned. Concretely, we initialize NE cluster centroids by ran-
domly sampling tokens. At each forward pass, we compute each token’s distances to all centroids
to obtain distance-based token–expert affinity scores. Each token is then assigned to its nearest cen-
troid and thus routed to the corresponding expert. During training, centroids are updated iteratively
by replacing each with the mean of their currently assigned tokens.

Table 1: Comparison results under Rectified Flow on
ImageNet (256×256) after 500K training steps, evalu-
ated with CFG=1.5.

Model (500K) FID50K ↓ IS ↑
Dense-DiT-B-Flow 9.02 131.13
DiT-MoE-B-Flow 8.94 131.66
DiffMoE-B-Flow 8.22 137.46

Classification-based Routing 5.91 165.45
K-Means-based Routing 6.24 159.77

Results for both routing guidance are reported
in Tab. 1, with all MoE models having the
same activated parameters and comparable to-
tal parameters to ensure fairness. On the base
model size, DiT-MoE (Fei et al., 2024) and
DiffMoE (Shi et al., 2025) yield limited perfor-
mance improvements. In contrast, adding either
explicit or implicit guidance produces substan-
tial gains. Notably, for both guidance strategies,
we disable the load-balancing loss to isolate its
routing effects; despite its importance for TC routing, guidance alone still markedly improves per-
formance. These findings highlight the pivotal role of semantic routing guidance in vision MoEs.

4.3 ENHANCING SEMANTIC ROUTING GUIDANCE VIA ROUTING CONTRASTIVE LEARNING

While the routing guidance strategies in Sec. 4.2 are effective, they suffer from key limitations: 1)
The classification-based routing loss is defined at the sample level, restricting token-level flexibil-
ity and requiring costly manual annotations, hindering generalization. 2) Clustering-based routing
supports only top-1 assignment, and struggles to scale to top-K, as methods like k-means rely on
disjoint clusters, making multi-centroid assignment difficult. Moreover, k-means is sensitive to the
number of clusters and the cluster initialization (Arthur & Vassilvitskii, 2006), reducing robustness.

To address these limitations, we propose the Routing Contrastive Loss (RCL), as illustrated in Fig. 2,
to explicitly enhance semantic guidance in prototypical routing. Given a mini-batch of conditional
image tokens, RCL encourages semantically similar tokens to be routed to the same expert and
pushes dissimilar tokens toward different experts, prompting expert specialization in MoE. Con-
cretely, for each prototype pi associated with expert Ei, tokens assigned to pi form the positive set,
representing a cluster of semantically similar tokens, while tokens dispatched to other prototypes
constitute the negative sets, comprising multiple clusters with semantics different from pi.

Next, RCL pulls each prototype pi toward the centroid of its positive token set to enforce intra-
expert coherence, while pushing it away from the centroids of negative sets to encourage inter-
expert diversity. Let Xi denote the tokens assigned to expert Ei in a mini-batch, its centroid mi

is computed as the token mean: mi = 1
|Xi|

∑
x ∈ Xi. The RCL loss is then computed over the

prototypes of Na experts that are assigned tokens in an online manner:

LRCL = − 1

Na

Na∑
i=1

log
exp(sim(pi,mi)/τ)∑Na
j=1 exp(sim(pi,mj)/τ)

, (6)

where sim(a,b) = ab⊤

∥a∥∥b∥ denotes cosine similarity, and τ is a temperature hyperparameter. Fur-
thermore, we empirically find that the push-away operation in RCL acts as a load-balancing regu-
larizer based on token semantics, and is more effective than traditional load-balancing loss (Shazeer
et al., 2017) (see Appendix E.1). The final training loss of ProMoE is the combination of Eqs. (1)
and (6), weighting LRCL by a factor λRCL.
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Table 2: Model configurations of ProMoE with different model sizes, aligning with DiT (Peebles
& Xie, 2023). “E14A1S1U1” denotes that a total of 14 experts are used, with 1 expert activated for
each token, 1 expert shared by all tokens, and 1 unconditional expert for unconditional image tokens.

Model Config #Activated Params. #Total Params. #Experts #Blocks L #Hidden dim. D #Head n

ProMoE-S 33M 75M E14A1S1U1 12 384 6
ProMoE-B 130M 300M E14A1S1U1 12 768 12
ProMoE-L 458M 1.063B E14A1S1U1 24 1024 16
ProMoE-XL 675M 1.568B E14A1S1U1 28 1152 16

Table 3: Quantitative comparison with Dense DiTs under Rectified Flow on ImageNet
(256×256) after 500K training steps, evaluated with CFG scales of 1.0 and 1.5.

Model (500K) # Activated
Params. # Total

Params.
cfg=1.0 cfg=1.5

FID50K ↓ IS ↑ FID50K ↓ IS ↑
Dense-DiT-B-Flow 130M 130M 30.61 49.89 9.02 131.13
ProMoE-B-Flow 130M 300M 24.44 60.38 6.39 154.21

Dense-DiT-L-Flow 458M 458M 15.44 84.20 3.56 209.03
ProMoE-L-Flow 458M 1.063B 11.61 100.82 2.79 244.21

Dense-DiT-XL-Flow 675M 675M 13.38 91.57 3.23 227.05
ProMoE-XL-Flow 675M 1.568B 9.44 114.94 2.59 265.62

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Baseline and model configurations. We compare against Dense-DiT (Peebles & Xie, 2023) and
MoE baselines, including DiT-MoE (Fei et al., 2024), EC-DiT (Sun et al., 2024), and DiffMoE (Shi
et al., 2025). For a fair comparison, all MoE models are evaluated with equivalent activated parame-
ters to the dense model and comparable total parameters, training with both DDPM (Ho et al., 2020)
and Rectified Flow (Esser et al., 2024a) objectives. We scale ProMoE across four sizes (S/B/L/XL)
to align with established DiT benchmarks, as shown in Tab. 2. Models are named as: [Model]-
[Size]-[Training Type], with an additional expert configuration. For instance, expert configuration
E14A1S1U1 denotes 14 total experts (E14), top-1 activation (A1) over 12 standard experts, 1 shared
expert (S1), and 1 unconditional expert (U1). More details are provided in Appendix A.

Implementation details. We conduct experiments on class-conditional image generation using
the ImageNet (Deng et al., 2009) dataset, which contains 1,281,167 training images across 1,000
classes. Following (Peebles & Xie, 2023), we train all models with the AdamW optimizer with
a learning rate of 1e-4. The batch size is 256, and weight decay is 0. We use horizontal flips as
the only data augmentation, and a pretrained VAE from Stable Diffusion (Rombach et al., 2022b)
to encode and decode images. We also maintain an exponential moving average (EMA) of model
parameters during training with a decay rate of 0.9999, and all reported results use the EMA mode.

Evaluation metrics. We evaluate image generation quality of all methods using Fréchet Inception
Distance (FID) (Heusel et al., 2017; Dhariwal & Nichol, 2021), calculated over 50K generated
samples with 250 DDPM or Flow Matching Euler sampling steps. We also report Inception Score
(IS) (Salimans et al., 2016) to measure the diversity of generated images.

5.2 MAIN RESULTS

Comparison with Dense DiT. The results in Fig. 3(a) and Tabs. 3 and 4 draw three conclusions:
1) ProMoE consistently surpasses dense counterparts at equivalent activated parameters across all
sizes, objectives, and CFG settings, demonstrating strong effectiveness, scalability, and generaliza-
tion. 2) Gains are more pronounced under Rectified Flow, the current dominant training paradigm,
highlighting ProMoE’s ability to scale modern diffusion models. Compared to dense models, with-
out CFG, ProMoE-L-Flow reduces FID by 24.8% and increases IS by 19.7%; at the largest scale,
ProMoE-XL-Flow reduces FID by 29.4%. With CFG=1.5, ProMoE-B-Flow reduces FID by 29.2%
, while ProMoE-XL-Flow reduces FID by 19.8%. 3) ProMoE is notably parameter-efficient; it uses
fewer activated parameters yet outperforms dense models with more. Specifically, ProMoE-L-Flow
achieves FID 11.61/2.79 at CFG 1.0/1.5, versus 13.38/3.23 for Dense-DiT-XL-Flow.
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Table 4: Quantitative comparison with Dense DiTs under DDPM on ImageNet (256×256) after
500K training steps, evaluated with CFG scales of 1.0 and 1.5.

Model (500K) # Activated
Params. # Total

Params.
cfg=1.0 cfg=1.5

FID50K ↓ IS ↑ FID50K ↓ IS ↑
Dense-DiT-B-DDPM 130M 130M 41.19 35.94 18.61 78.71
ProMoE-B-DDPM 130M 300M 40.37 37.84 17.90 82.65

Dense-DiT-L-DDPM 458M 458M 20.81 65.51 6.29 148.38
ProMoE-L-DDPM 458M 1.063B 18.75 73.07 5.12 168.91

Dense-DiT-XL-DDPM 675M 675M 17.67 74.05 5.07 165.81
ProMoE-XL-DDPM 675M 1.568B 15.87 81.90 4.11 187.86

(b) Scaling model size (c) Scaling the number of experts

cfg=1.0

cfg=1.5

cfg=1.0 cfg=1.0

(a) Comparison with dense model and MoE SOTAs
Figure 3: Comparisons and scaling results across diverse settings.

Figure 4: Samples generated by ProMoE-XL-Flow after 2M iterations with cfg=4.0.

Comparison with MoE SOTAs. The results in Fig. 3(a), Tab. 5 and Appendix Tab. 11 show that
ProMoE outperforms all baselines across both objectives at equivalent activated parameters, with
and without CFG. Without CFG, ProMoE-L-Flow reduces FID by 19.7% and increases IS by 15.2%
relative to DiffMoE-L-Flow; with CFG=1.5, it reduces FID by 20.5% and increases IS by 14.8%.
Notably, ProMoE-L-Flow (1.063B params) surpasses the larger DiffMoE-L-Flow with 16 experts
(1.846B params), despite fewer total parameters, underscoring the effectiveness of our method.

Visualization Results. Fig. 4 shows the samples generated by ProMoE-XL-Flow on ImageNet
(256×256) after 2M training steps with CFG=4.0; see Appendix C.3 for more analyses and results.

Figure 5: Training loss curve comparisons.

Comparison of training losses.
Fig. 5 shows training loss curves
for our method, the dense model,
and MoE baselines. ProMoE attains
lower loss and faster convergence,
even at the largest scale with ex-
tended training (up to 1.2M steps).

Comparison of computational cost
and efficiency. Tabs. 5 and 14 show that ProMoE achieves lower inference time and fewer
GFLOPs than the SOTA MoE method DiffMoE, and maintains GFLOPs comparable to other MoE
baselines while delivering substantially higher performance. This demonstrates that the performance
gains primarily stem from our superior methodological design. More details about these experimen-
tal settings are provided in the Appendix A.

Comparison on text-to-image task. We conduct new text-to-image experiments to further
demonstrate the generalization ability of ProMoE. The detailed experimental setup is provided in
Appendix A, and we evaluate on the GenEval benchmark (Ghosh et al., 2023). As shown in Tab. 6,
ProMoE significantly outperforms both the dense baseline and the Token-Choice MoE across the
overall metric and all sub-tasks. These results strongly demonstrate ProMoE’s robust generalization
capabilities in challenging generation scenarios. Furthermore, we also provide qualitative results in
Fig. 14, further verifying ProMoE’s capability in high-quality text-to-image generation.
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Table 5: Quantitative comparison with MoE baselines under Rectified Flow on ImageNet
(256×256) after 500K training steps, evaluated with CFG scales of 1.0 and 1.5.

Model (500K) #Experts # Activated
Params. # Total

Params. # GFLOPs cfg=1.0 cfg=1.5

FID50K ↓ IS ↑ FID50K ↓ IS ↑
DiT-MoE-L-Flow E8A1S0U0 458M 1.163B 77.50 16.57 80.25 4.10 199.05
EC-DiT-L-Flow E8A1S0U0 458M 1.163B 77.50 15.58 84.11 3.65 209.06
DiffMoE-L-Flow E8A1S0U0 458M 1.095B 82.53 14.46 87.55 3.51 212.78
DiffMoE-L-Flow E16A1S0U0 458M 1.846B 90.03 13.55 92.33 3.30 222.40
ProMoE-L-Flow E14A1S1U1 458M 1.063B 77.72 11.61 100.82 2.79 244.21

Table 6: Comparisons on GenEval benchmark under Rectified Flow after 400K training steps.
Model (400K) #Experts # Activated

Params. # Total
Params.

GenEval ↑
Single Obj. Two Obj. Counting Colors Position Color Attr. Overall

Dense Model - 3B 3B 0.840 0.275 0.362 0.611 0.095 0.155 0.390
Token-Choice MoE E5A1S0U0 3B 12B 0.856 0.320 0.334 0.627 0.157 0.207 0.417
ProMoE E5A1S0U1 3B 12B 0.884 0.371 0.418 0.675 0.212 0.217 0.463

Table 7: Quantitative comparison under Rectified Flow after more training steps on ImageNet
(256×256), evaluated with CFG scales of 1.0, 1.5, and 4.0.

Model (Training Steps) # Activated
Params. # Total

Params.
cfg=1.0 cfg=1.5 cfg=4.0

FID50K ↓ IS ↑ FID50K ↓ IS ↑ FID50K ↓ IS ↑
Dense-DiT-L-Flow (2M) 458M 458M 10.55 112.55 2.81 266.24 17.71 464.25
DiffMoE-L-Flow (2M) 458M 1.163B 10.09 122.01 2.57 276.75 15.70 465.60
ProMoE-L-Flow (2M) 458M 1.063B 9.67 125.88 2.22 290.61 14.05 466.96

Dense-DiT-XL-Flow (2M) 675M 675M 9.30 121.92 2.55 282.59 17.05 474.39
DiffMoE-XL-Flow (2M) 675M 1.735B 8.83 134.37 2.49 297.25 14.25 475.13
ProMoE-XL-Flow (2M) 675M 1.568B 8.16 139.66 2.08 304.26 11.95 478.60

DiT-MoE-L-Flow 
(Class Subset 1)

DiT-MoE-L-Flow 
(Class Subset 2)

ProMoE-L-Flow
(Class Subset 1)

ProMoE-L-Flow
(Class Subset 2)

Figure 6: Analysis of expert utilization.

Quantitative analysis of expert utilization. We
compare the expert utilization of ProMoE against
the DiT-MoE baseline using averaged token-per-
expert ratios computed on two disjoint class sub-
sets, each consisting of 200 randomly sampled
classes and 10,000 generated images. As shown
in Fig. 6, DiT-MoE exhibits very similar token-per-
expert distributions across different class subsets,
and shows minimal variation in token proportions
among experts within each subset, indicating poor
specialization and a failure to induce diversity. In
contrast, ProMoE demonstrates clear expert spe-
cialization, producing distinct utilization patterns
across the disjoint subsets. Within each subset, ex-
perts exhibit varied usage frequencies without suf-
fering from starvation or overuse. These results
confirm that ProMoE achieves meaningful expert
specialization and good load balancing.

Comparison on 2M training steps and higher
CFG (4.0). We evaluate L and XL ProMoE models against dense and SOTA DiffMoE baselines
at 2M steps with CFG scales of 1.0, 1.5, and 4.0. As shown in Tab. 7, our ProMoE models con-
sistently outperform baselines for both L/XL sizes under various settings. At CFG=4.0, for L-size,
ProMoE reduces FID by∼21% over the dense model and 10% over DiffMoE; for XL-size, ProMoE
reduces FID by ∼30% over the dense model and 16% over DiffMoE, while also achieving the best
IS. At lower CFG values, ProMoE still yields consistent improvements over both dense and Diff-
MoE baselines. Furthermore, ProMoE-L at 2M steps surpasses Dense/DiffMoE-XL on FID with
fewer activated parameters at CFG scales of 4.0 and 1.5. These results further solidify ProMoE’s
better performance and parameter efficiency under prolonged training and stronger guidance.

5.3 SCALING BEHAVIOR

Scaling the model size. As shown in Fig. 3(b), ProMoE exhibits consistent performance improve-
ments over Dense-DiT when scaling from base (B) to large (L) to XL, with 130M, 458M, and 675M
activated parameters, respectively, thereby validating the scalability of our method.
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Table 8: Ablation study of each component on ImageNet (256×256) after 500K training steps,
trained with Rectified Flow and evaluated with CFG scales of 1.0 and 1.5.

Model (500K) cfg=1.0 cfg=1.5

FID50K ↓ IS ↑ FID50K ↓ IS ↑
Dense-DiT-B-Flow (Dense) 30.61 49.89 9.02 131.13
+ Prototypical Routing 27.93 53.35 7.92 140.86
+ Routing Contrastive Learning 24.97 58.59 6.75 150.15
+ Conditional Routing 24.44 60.38 6.39 154.21

Dense + Conditional Routing 28.36 53.01 8.50 135.05

Table 9: Ablation of activation functions,
trained with Rectified Flow on ImageNet
(256×256) for 500K steps.

Activation
(500K)

cfg=1.0 cfg=1.5

FID↓ IS↑ FID↓ IS↑
Softmax 25.74 58.04 6.92 149.11
Sigmoid 25.49 58.51 6.63 150.94
Identity 24.44 60.38 6.39 154.21

Table 10: Ablation of conditional routing in
K-Means-based Routing, trained with Rectified
Flow on ImageNet (256×256) for 500K steps.

K-Means-based
Routing (500K)

cfg=1.0 cfg=1.5

FID↓ IS↑ FID↓ IS↑
w/o Cond. 30.12 50.47 8.75 133.14
w/ Cond. 25.61 59.76 6.24 159.77

Scaling the number of experts. Fig. 3(c) shows monotonic gains as the expert number increases
from 4 to 16, with 1 shared and 1 unconditional expert per setup. For a fair comparison, we maintain
comparable total parameters over MoE baselines and use 14 experts across settings.

5.4 ABLATION STUDIES

Ablation on each component. Tab. 8 shows that using prototypical routing improves performance
and surpasses DiT-MoE-B-Flow and DiffMoE-B-Flow (see Tab. 1). Adding routing contrastive
learning (RCL) yields substantial gains, reducing FID by 10.6% and increasing IS by 9.8%, high-
lighting the importance of semantic routing guidance. Furthermore, while conditional routing alone
improves performance, the gains are more significant when combined with our routing enhance-
ments (prototypical routing and RCL). These results validate the effectiveness of each component.

Ablation on score activation function. Since our prototypical routing computes similarities in
latent space, choosing an appropriate activation to map similarities into routing scores is crucial.
As shown in Tab. 9, the identity mapping yields the best performance, sigmoid is second-best, and
softmax performs worst. Consequently, we adopt the identity function as the score activation.

Ablation on conditional routing within the K-Means–based Routing. We emphasize that the
proposed conditional routing is a general, method-agnostic component that can benefit other routing
schemes. We ablate it within the K-Means–based Routing method in Sec. 4.2. As shown in Tab. 10,
removing conditional routing significantly degrades performance, underscoring its importance.

6 CONCLUSION

In this paper, we present ProMoE, a Mixture-of-Experts framework featuring a two-step router with
explicit routing guidance to promote expert specialization. We analyze differences between lan-
guage and vision tokens: discrete text tokens are semantically dense, whereas visual tokens exhibit
high spatial redundancy and functional heterogeneity, hindering the effectiveness of MoE in DiT
models. To address this, we introduce routing guidance based on the token’s functional role and se-
mantic content, yielding a two-step router comprising conditional routing and prototypical routing.
Furthermore, we propose a routing contrastive loss that enhances semantic guidance in prototypical
routing, explicitly promoting intra-expert coherence and inter-expert diversity. Extensive experi-
ments demonstrate that ProMoE outperforms dense DiT and existing MoE SOTAs, even with fewer
activated or total parameters, providing a robust solution for applying MoE to DiT models.
Limitations. While we follow standard evaluation protocols and report FID50K and IS, these met-
rics may not fully capture fine-grained perceptual quality or semantic faithfulness.
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ETHICS STATEMENT

Our method achieves substantial improvements on the ImageNet benchmark over dense DiT and
state-of-the-art MoE methods, providing an effective solution for scaling DiT with MoE. Nonethe-
less, it inherits common risks of generative models, such as the potential to create fake data. Robust
image forgery detection may help mitigate these concerns. In addition, we adhere to ethical guide-
lines in all experiments.

REPRODUCIBILITY STATEMENT

We make the following efforts to ensure the reproducibility of ProMoE: (1) All experiments are
conducted on the publicly available ImageNet-1K benchmark. (2) Our code and trained model
weights will be made publicly available. (3) We provide implementation details in Sec. 5.1 and
Appendix A.
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APPENDIX

A EXPERIMENTAL SETUP

Baselines. We compare against open-source state-of-the-art DiT-based MoE methods, with acti-
vated parameters equivalent to the dense model and comparable total parameter counts. We im-
plement DiT-MoE (Fei et al., 2024), EC-DiT (Sun et al., 2024), and DiffMoE (Shi et al., 2025)
following their original papers and referring to the open-source repository1. All methods are trained
with the same training settings, including learning rate, batch size, and data augmentation.

Implementation details. We train ProMoE with two objectives: the standard DDPM objec-
tive (Ho et al., 2020), and Rectified Flow with Logit-Normal sampling from SD3 (Esser et al.,
2024a) to align better with modern DiT training paradigms (e.g., Sana (Xie et al., 2024)). Besides
the hyperparameters in Sec. 5.1, we provide additional details as follows. In prototypical routing,
α in Eq. (4) is set to 1. For routing contrastive learning, the temperature is set to 0.07, and the loss
weight λRCL is 1 unless stated otherwise.

Evaluation metrics. We follow the standard DiT evaluation protocol (Peebles & Xie, 2023), com-
puting FID and IS on 50,000 generated images2 at classifier-free guidance scales of 1.0 and 1.5.

Computational cost evaluation settings. We report the computational cost of our model in terms
of training time, inference time, and FLOPs, and compare it against dense and MoE baselines.
The inference time is measured for the core denoising process (excluding VAE decoding) with a
batch size of 128, a classifier-free guidance (CFG) scale of 1.5, and 250 sampling steps. For a
fair comparison, all experiments are conducted on 4 NVIDIA A800 GPUs under identical hardware
settings.

Text-to-image experimental setup. We conduct new experiments on the text-to-image generation
task to demonstrate the generalization of our ProMoE. Below, we detail the experimental setup. 1)
For the model architecture, we adopt an MM-DiT–style architecture, where text and visual tokens are
concatenated and jointly processed via self-attention for effective conditioning. The dense baseline
uses 36 layers, 16 attention heads, a hidden size of 11,008, and has 3B parameters. We build on
this backbone by extending it to an MoE architecture, where each expert is a visual FFN. As a
comparison baseline, we adopt the standard MoE paradigm commonly used in LLMs, denoted as
Token-Choice MoE, which uses 5 standard experts and has 12B total parameters with 3B activated
parameters. Our ProMoE uses the same overall capacity (12B total, 3B activated parameters) and
also employs 5 experts (1 unconditional and 4 standard), ensuring a fair comparison under matched
parameter and activation budgets. 2) For implementation details, we train all models on a 2M-image
subset of LAION-5B (Schuhmann et al., 2022) to enable rapid validation. We use the AdamW
optimizer with a learning rate of 1e-4, a global batch size of 384, and a weight decay of 0.02. Images
are encoded into the latent space using the pretrained Wan2.5-Preview VAE (Wan et al., 2025), and
text is encoded with Qwen2.5-VL (Bai et al., 2025). The training objective is Rectified Flow. Both
the baselines and our ProMoE are trained under the same settings to ensure a fair comparison.
All experiments are conducted on 16 A800 GPUs for 400K training steps. For inference, we use
the EMA model and adopt the UniPC (Zhao et al., 2023) sampler with 50 sampling steps, with a
classifier-free guidance scale of 5.0.

B IMPLEMENTATION ALGORITHMS

The implementation algorithm of ProMoE is provided in Algorithm 1. In the algorithm, input class
labels are used solely to distinguish conditional image tokens from unconditional image tokens.
During inference, if classifier-free guidance (CFG) is disabled, all tokens are routed to the standard
experts and the shared expert; the unconditional expert is not used. If CFG is enabled, class labels
are replaced with a batch-level binary mask indicating which samples receive conditioning (i.e.,
treated as conditional image tokens). No routing contrastive loss is computed during inference.

1https://github.com/KwaiVGI/DiffMoE
2https://github.com/openai/guided-diffusion/tree/main/evaluations
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C MORE RESULTS

C.1 MORE T-SNE VISUALIZATIONS OF LANGUAGE AND VISUAL TOKENS

To further validate the findings on differences between language and visual tokens in Sec. 1, we
extend the visualization results in Fig. 1(a). Figs. 11 and 12 present t-SNE visualizations of token
embeddings from DiT-XL/2 (Peebles & Xie, 2023) and Llama-3 8B (Dubey et al., 2024) across
different layers; for DiT-XL/2, we also visualize tokens at different diffusion timesteps. To facilitate
comparison, we cluster token embeddings into 10 groups using k-means. For model inputs, we
randomly sample 110 ImageNet classes, feed the corresponding class labels to DiT-XL/2 and the
class names to Llama-3 8B, and randomly select 1K intermediate-layer tokens for visualization.
The results in Figs. 11 and 12 further confirm that language tokens are semantically dense with high
inter-token differences, whereas visual tokens exhibit high spatial redundancy.

C.2 T-SNE VISUALIZATIONS OF TOKEN ASSIGNMENTS

To assess the impact of visual-token redundancy on MoE expert selection, as indicated by Fig. 1(a)
and Figs. 11 and 12, we visualize intermediate-layer token assignments of ProMoE-L-Flow and DiT-
MoE-L-Flow at 500K training steps without classifier-free guidance, as shown in Fig. 7. Following
Sec. C.1, we randomly sample 110 ImageNet classes, feed the corresponding class labels to both
ProMoE and DiT-MoE, and randomly select 2,560 tokens from an intermediate-layer MoE block
to visualize the expert selection of each token. Compared with token-choice MoE methods such
as DiT-MoE, our approach assigns experts according to token semantics, producing well-formed
clusters in the token-embedding space: semantically similar tokens form compact clusters and are
routed to the same expert, whereas clusters assigned to different experts are clearly separated. These
results further corroborate the importance of explicit routing guidance for visual MoE, and our
method achieves effective intra-expert coherence and inter-expert diversity.

ProMoE-L-Flow DiT-MoE-L-Flow

Figure 7: t-SNE visualization results of ProMoE and DiT-MoE on expert allocation (token
assignment). Each color corresponds to a single expert.

C.3 MORE VISUALIZATION RESULTS

We provide additional generation results in Fig. 13. Our method produces high-quality images
across both simple and challenging categories.

C.4 MORE COMPARISON RESULTS

We provide additional comparisons with dense models and MoE SOTAs. Besides the FID results in
Fig. 3(a), we also report Inception Score comparisons, as shown in Fig. 8. In addition, we present
quantitative comparisons with MoE SOTAs under the DDPM objective in Tab. 11. Across both
training objectives and CFG settings, our method consistently outperforms the dense model and
existing MoE SOTAs, demonstrating its effectiveness.
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Table 11: Quantitative comparison with MoE baselines under DDPM on ImageNet (256×256)
after 500K training steps, and evaluated at CFG scales of 1.0 and 1.5.

Model (500K) #Experts # Activated
Params. # Total

Params.
cfg=1.0 cfg=1.5

FID50K ↓ IS ↑ FID50K ↓ IS ↑
DiT-MoE-L-DDPM E8A1S0U0 458M 1.163B 23.12 60.08 7.55 133.63
EC-DiT-L-DDPM E8A1S0U0 458M 1.163B 20.76 64.77 6.48 146.49
DiffMoE-L-DDPM E8A1S0U0 458M 1.095B 19.45 70.93 5.47 158.30
ProMoE-L-DDPM E14A1S1U1 458M 1.063B 18.75 73.07 5.12 168.91

cfg=1.5

cfg=1.0

Figure 8: Comparison with dense model and MoE SOTAs on Inception Score.

C.5 COMPARISON WITH DENSE DIT ON MORE TRAINING STEPS

We provide comparison results between our ProMoE and Dense DiT on more training steps in
Tab. 12. We observe that ProMoE-L-Flow at 500K steps surpasses Dense-DiT-L-Flow at 1M steps
on FID, and ProMoE-XL-Flow at 500K steps surpasses Dense-DiT-XL-Flow at 1M steps on both
FID and IS. With longer training, ProMoE-L-Flow at 1M steps outperforms Dense-DiT-L-Flow at
2M steps and Dense-DiT-XL-Flow at 1M steps. These findings are consistent with those in Sec. 5.2,
demonstrating faster convergence and scalability of our method.

Table 12: Quantitative comparison with Dense DiTs under Rectified Flow on ImageNet
(256×256) after more training steps, evaluated with CFG scales of 1.0 and 1.5.

Model (Training Steps) # Activated
Params. # Total

Params.
cfg=1.0 cfg=1.5

FID50K ↓ IS ↑ FID50K ↓ IS ↑
Dense-DiT-L-Flow (1M) 458M 458M 12.21 100.97 2.97 245.63
ProMoE-L-Flow (500K) 458M 1.063B 11.61 100.82 2.79 244.21
ProMoE-L-Flow (1M) 458M 1.063B 9.88 118.91 2.75 278.22

Dense-DiT-L-Flow (2M) 458M 458M 10.55 112.55 2.81 266.24
ProMoE-L-Flow (2M) 458M 1.063B 9.67 125.88 2.22 290.61

Dense-DiT-XL-Flow (1M) 675M 675M 10.67 107.68 2.82 260.61
ProMoE-XL-Flow (500K) 675M 1.568B 9.44 114.94 2.59 265.62
ProMoE-XL-Flow (1M) 675M 1.568B 8.34 128.58 2.53 292.38

C.6 INCREASING THE NUMBER OF ACTIVATED EXPERTS

As discussed in Sec. 4.2, classification- and clustering-based routing inherently do not support top-k
assignment, permitting only top-1. In contrast, ProMoE is more flexible and scalable, and supports
top-k assignment. To validate this, we increase the number of activated standard experts from 1 to 3,
which raises the activated parameters while keeping the total parameter count unchanged. As shown
in Tab. 13, this increase yields improved performance, confirming the effectiveness and scalability
of our method.
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Table 13: Results of increasing the number of activated standard experts on ImageNet
(256×256) after 500K steps, trained with Rectified Flow and evaluated at CFG scales 1.0 and 1.5.

Model (500K) #Experts # Activated
Params. # Total

Params.
cfg=1.0 cfg=1.5

FID50K ↓ IS ↑ FID50K ↓ IS ↑
ProMoE-L-Flow E14A1S1U1 458M 1.063B 11.61 100.82 2.79 244.21
ProMoE-L-Flow E14A3S1U1 558M 1.063B 11.40 103.78 2.72 246.96

C.7 FULL DETAILS OF COMPUTATIONAL COST AND EFFICIENCY

We provide a comprehensive analysis of computational costs, including detailed comparisons of
training time, inference time, and GFLOPs. These results verify the inherent efficiency of our ap-
proach and demonstrate that our significant performance gains are primarily attributable to superior
methodological design rather than increased computational overhead.

Table 14: Comparison of Training Time, Inference Time, and FLOPs with Dense Model and
MoE baselines under Rectified Flow on ImageNet (256×256) after 500K training steps.

Model (500K) #Experts # Activated
Params. # Total

Params. # Training Time # Inference Time
(cfg=1.5) # GFLOPs

Dense-DiT-L-Flow - 458M 458M 166.67 GPU Hours 1.25 sec/sample 77.50
DiT-MoE-L-Flow E8A1S0U0 458M 1.163B 333.33 GPU Hours 1.49 sec/sample 77.50
EC-DiT-L-Flow E8A1S0U0 458M 1.163B 277.78 GPU Hours 1.49 sec/sample 77.50
DiffMoE-L-Flow E8A1S0U0 458M 1.095B 333.33 GPU Hours 1.64 sec/sample 82.53
ProMoE-L-Flow E14A1S1U1 458M 1.063B 333.33 GPU Hours 1.53 sec/sample 77.72

C.8 COMPARISON WITH OTHER UNSUPERVISED CLUSTERING METHODS

We conduct additional experiments comparing our ProMoE with a GMM-based routing baseline on
the large (L) model. The results in Tab. 15 show that ProMoE consistently outperforms the GMM-
based routing baseline across all metrics (FID and IS) and CFG scales under both top-1 (E14A1) and
top-3 (E14A3) activation settings. We argue that GMM, like other clustering-based routing schemes,
relies purely on implicit learning and lacks explicit guidance, which is insufficient for robust expert
specialization in vision MoE, especially for large-scale models. In contrast, ProMoE achieves better
performance, highlighting the robustness and effectiveness of our explicit semantic routing guidance
strategies.

Table 15: Quantitative comparison with GMM-based routing baseline under Rectified Flow on
ImageNet (256×256) after 500K training steps, evaluated with CFG scales of 1.0 and 1.5.

Model (500K) #Experts # Activated
Params. # Total

Params.
cfg=1.0 cfg=1.5

FID50K ↓ IS ↑ FID50K ↓ IS ↑
GMM-based Routing E14A1S1U1 458M 1.063B 15.56 84.94 3.76 206.05
ProMoE-L-Flow E14A1S1U1 458M 1.063B 11.61 100.82 2.79 244.21
GMM-based Routing E14A3S1U1 558M 1.063B 15.44 86.09 3.72 208.15
ProMoE-L-Flow E14A3S1U1 558M 1.063B 11.40 103.78 2.72 246.96

D MORE RESULTS ON SCALING BEHAVIOR

D.1 SCALING MODEL SIZE

Fig. 3(b) shows FID results for model size scaling at CFG=1.0. We additionally report FID results
at CFG=1.5 and Inception Score at CFG=1.0 and 1.5, as shown in Fig. 9. ProMoE consistently
outperforms its dense counterparts, and ProMoE-L-Flow surpasses Dense-XL-Flow in terms of FID
and Inception Score at both CFG=1.0 and 1.5, despite using fewer activated parameters. These
observations are consistent with those in Sec. 5.2.
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cfg=1.0 cfg=1.5 cfg=1.5

Figure 9: More scaling results on model size.

cfg=1.5 cfg=1.5cfg=1.0

Figure 10: More scaling results on the number of experts.

D.2 SCALING THE NUMBER OF EXPERTS

We report Inception Score for scaling the number of experts at CFG=1.0 and 1.5, and FID at
CFG=1.5, as shown in Fig. 10. Performance of ProMoE improves as the number of experts in-
creases, demonstrating the scalability of our approach.

D.3 SCALING THE NUMBER OF EXPERTS ON K-MEANS-BASED ROUTING

We conduct an additional experiment varying the expert number for K-means-based routing (uncon-
ditional routing is not used here). As shown in Tab. 16, K-means-based routing is highly sensitive
to the expert number and fails to scale effectively: increasing experts yields fluctuating performance
with no clear gain, despite the increased parameter count. This contrast further highlights the scala-
bility and robustness of our ProMoE compared to clustering-based routing.

Table 16: Ablation of expert number in K-Means-based Routing on base model size, trained
with Rectified Flow on ImageNet (256×256) for 500K steps, evaluated with CFG=1.5. The setup
uses 1 activated expert and 1 shared expert.

Number of Experts 3 5 9 13 21

FID 10K↓ 12.55 11.52 12.43 11.41 12.15

E MORE ABLATION STUDIES

E.1 ABLATION ON LOAD-BALANCING LOSS

As discussed in Sec. 4.3, the push-away term in our routing contrastive learning (RCL) serves a
role similar to load balancing. We verify this with an ablation in Tab. 17. Adding a conventional
load-balancing loss on top of our method slightly degrades performance. We attribute this to RCL’s
explicit semantic guidance: it leverages token semantics to maintain diverse expert assignments,
whereas load balancing loss only regularizes token counts and ignores assignment quality and se-
mantics, thereby interfering with RCL. These results indicate that the semantic routing guidance
from RCL is more effective than traditional load-balancing losses.
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Table 17: Ablation study of using load-balancing loss under Rectified Flow on ImageNet
(256×256) after 500K training steps.

Model (500K) cfg=1.0 cfg=1.5

FID50K ↓ IS ↑ FID50K ↓ IS ↑
w/ load-balancing loss 24.98 59.04 6.53 151.37
w/o load-balancing loss 24.44 60.38 6.39 154.21

E.2 ABLATION ON LOSS WEIGHT OF ROUTING CONTRASTIVE LEARNING

We vary the loss weight of routing contrastive learning (RCL) and report the results in Tab. 18. We
observe that RCL is insensitive to the loss weight, as increasing it from 1 to 10 yields only marginal
gains. Therefore, we use a default weight of 1 for all experiments, except for ProMoE-B-DDPM,
which uses a weight of 10 based on this ablation study.

Table 18: Ablation study of λRCL in ProMoE-B-DDPM on ImageNet (256×256) after 500K train-
ing steps.

λRCL (500K) cfg=1.0 cfg=1.5

FID50K ↓ IS ↑ FID50K ↓ IS ↑
1 40.48 36.77 18.34 80.07
2 40.37 37.46 18.01 81.88
5 40.33 37.08 18.03 81.1

10 40.37 37.84 17.90 82.65

F USAGE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR 2026 policy, we report our use of a large language model (LLM)
in preparing this manuscript. The LLM’s role was strictly confined to language polishing, such
as correcting grammar, refining wording, and improving readability. All scientific contributions,
including the ideation, methodology, experimental design, and final conclusions, are entirely our
own. The LLM was used solely as a writing-enhancement tool and did not contribute to the scientific
aspects of the work. We have reviewed the manuscript and take full responsibility for its content.
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Algorithm 1 ProMoE Layer (Training)
Input: X ∈ RB×L×D (input sequence), c ∈ ZB (batch labels)
Variables: NE (number of standard experts), K (number of activated standard experts), P ∈
RNE×D (Learnable prototypes for routing), E (List of standard expert FFNs), EU (Unconditional
expert FFN), ES (Shared expert FFN), λRCL (coef of Routing contrastive loss), τ (temperature)

1: Initialize: O← zeros like(X) ▷ Initialize final output
2: /*** Step 1. Functional Routing ***/
3: Mu ← (c == empty conditioning) ▷ Get mask of unconditional image tokens
4: Mc ← ¬Mu ▷ Get mask of conditional image tokens
5: Xu ← X[expand(Mu)] ▷ Get unconditional image tokens
6: Xc ← X[expand(Mc)] ▷ Get conditional image tokens
7: /*** Step 2. Unconditional Image Tokens Processing ***/
8: OU ← EU(Xu)
9: O[Mu]← OU

10: if any(Mc) then
11: /*** Step 3. Prototypical Routing ***/
12: X′

c ← reshape(Xc, (−1, D)) ▷ Flatten conditional image tokens
13: nc ← X′

c.shape[0] ▷ Get number of conditional image tokens
14: Z ∈ Rnc×NE ← L2 Normalize(X′

c)× L2 Normalize(P)⊤ ▷ Get pre-activation scores
15: S← Identity(Z) ▷ Get token–expert affinity scores
16: G ∈ Rnc×K , indices ∈ Znc×K ← TopK(S,K) ▷ Get gating tensor and indices
17: /*** Step 4. Conditional Image Tokens Processing ***/
18: O′

C ← zeros like(X′
c)

19: for i← 0 to NE − 1 do
20: mi ← (indices == i).any(dim = 1) ▷ Mask of tokens routed to expert i
21: if any(mi) then
22: Gi ← sum(G[mi]× (indices[mi] == i), dim = 1) ▷ Final gating scores
23: O′

C[mi]← O′
C[mi] +Gi.unsqueeze(1)× Ei(X

′
c[mi]) ▷ Update final output

24: end if
25: end for
26: OC ← reshape(O′

C,Xc.shape)
27: O[Mc]← O[Mc] +OC

28: /*** Step 5. Routing Contrastive Learning ***/
29: aux loss← λRCL × LRCL(Xc, indices,P, τ)
30: end if
31: /*** Step 6. Shared Expert Processing ***/
32: O← O+ ES(X)
33: Return: O, aux loss
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Layer Number: 13 Layer Number: 15 Layer Number: 17

Layer Number: 9 Layer Number: 7 Layer Number: 11 

𝐴𝑣𝑔(𝑖𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
𝐴𝑣𝑔(𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) = 	20.418

𝐴𝑣𝑔(𝑖𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
𝐴𝑣𝑔(𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) = 	18.087

𝐴𝑣𝑔(𝑖𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
𝐴𝑣𝑔(𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) = 	14.202

𝐴𝑣𝑔(𝑖𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
𝐴𝑣𝑔(𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) = 	26.657

𝐴𝑣𝑔(𝑖𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
𝐴𝑣𝑔(𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) = 	23.001

𝐴𝑣𝑔(𝑖𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
𝐴𝑣𝑔(𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) = 	21.743

Figure 11: More t-SNE visualization results of Llama-3 8B on different layers.

Layer Number: 12
Diffusion Timestep: 10 (Early)

Layer Number: 12
Diffusion Timestep: 25 (Middle)

Layer Number: 12
Diffusion Timestep: 40 (Late)

Layer Number: 12 (Middle Layer)
Diffusion Timestep: 50 (Last Step)

Layer Number: 2 (Shallow Layer)
Diffusion Timestep: 50 (Last Step)

Layer Number: 24 (Deep Layer)
Diffusion Timestep: 50 (Last Step)

𝐴𝑣𝑔(𝑖𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
𝐴𝑣𝑔(𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) = 	0.873

𝐴𝑣𝑔(𝑖𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
𝐴𝑣𝑔(𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) = 	0.748

𝐴𝑣𝑔(𝑖𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
𝐴𝑣𝑔(𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) = 	0.731

𝐴𝑣𝑔(𝑖𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
𝐴𝑣𝑔(𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

= 	0.784
𝐴𝑣𝑔(𝑖𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
𝐴𝑣𝑔(𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

= 	0.704
𝐴𝑣𝑔(𝑖𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
𝐴𝑣𝑔(𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑎𝑠𝑠	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

= 	0.752

Figure 12: More t-SNE visualization results of DiT-XL/2 on different layers and diffusion
timesteps.
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Figure 13: More samples generated by ProMoE-XL-Flow after 2M iterations with cfg=4.0.
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a photo of a cow

a photo of a cup

a photo of a dog

a photo of a sheep

a photo of a cake 
and a zebra

a photo of a pizza 
and a bench

a photo of four donuts

a photo of a donut 
below a cat

a photo of a blue train

a photo of a cake

a photo of two 
teddy bears

A photo of the Eiffel Tower 
on the moon's surface

a photo of a book

a photo of a vase

a photo of a bench 
and a sports ball

a photo of a child

a photo of a 
blue elephant

a photo of a laptop 
left of a cow

a photo of a bottle 
right of a train

A photo of an elegant 
young woman

Figure 14: Samples generated by ProMoE on the Text-to-Image task.
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