

ROUTING MATTERS IN MOE: SCALING DIFFUSION TRANSFORMERS WITH EXPLICIT ROUTING GUIDANCE

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Mixture-of-Experts (MoE) has emerged as a powerful paradigm for scaling model
 012 capacity while preserving computational efficiency. Despite its notable success
 013 in large language models (LLMs), existing attempts to apply MoE to Diffusion
 014 Transformers (DiTs) have yielded limited gains. We attribute this gap to funda-
 015 mental differences between language and visual tokens. Language tokens are
 016 semantically dense with pronounced inter-token variation, while visual tokens ex-
 017 hibit spatial redundancy and functional heterogeneity, hindering expert special-
 018 ization in vision MoE. To this end, we present **ProMoE**, an MoE framework
 019 featuring a two-step router with explicit routing guidance that promotes expert
 020 specialization. Specifically, this guidance encourages the router to *first* partition
 021 image tokens into conditional and unconditional sets via conditional routing ac-
 022 cording to their functional roles, and *second* refine the assignments of conditional
 023 image tokens through prototypical routing with learnable prototypes based on se-
 024 mantic content. Moreover, the similarity-based expert allocation in latent space
 025 enabled by prototypical routing offers a natural mechanism for incorporating ex-
 026 plicit semantic guidance, and we validate that such guidance is crucial for vision
 027 MoE. Building on this, we propose a routing contrastive loss that explicitly en-
 028 hances the prototypical routing process, promoting intra-expert coherence and
 029 inter-expert diversity. Extensive experiments on ImageNet benchmark demon-
 030 strate that ProMoE surpasses state-of-the-art methods under both Rectified Flow
 031 and DDPM training objectives. Code and models will be made publicly available.

1 INTRODUCTION

035 Diffusion models (Ho et al., 2020) have made substantial advances for visual synthesis (Rombach
 036 et al., 2022b; Yang et al., 2024; Wan et al., 2025). Driven by the growing demand for higher fidelity
 037 and quality, research has focused on scaling up diffusion models (Esser et al., 2024b) and propelled
 038 an architectural shift from U-Net (Ronneberger et al., 2015) backbones to the now-prevalent Diffu-
 039 sion Transformers (DiTs) (Peebles & Xie, 2023). Despite the proven effectiveness of DiT-based
 040 models (Esser et al., 2024a), their dense activation of all parameters irrespective of task or input
 041 incurs substantial computational overhead, thereby hindering further scalability.

042 To scale toward larger and more capable models, the large language model (LLM) community
 043 has widely adopted the Mixture-of-Experts (MoE) (Jacobs et al., 1991; Shazeer et al., 2017)
 044 paradigm, which expands model capacity while maintaining computational efficiency. Conceptu-
 045 ally, an MoE layer dispatches input tokens to specialized “expert” sub-networks via a router and
 046 returns a weighted sum of the selected experts’ outputs. Despite MoE’s profound success in lan-
 047 guage modeling (Jiang et al., 2024; Dai et al., 2024), recent efforts to integrate it into DiT models
 048 have not yielded the significant gains observed in LLMs. Specifically, DiT-MoE (Fei et al., 2024),
 049 which employs token-to-expert routing, often underperforms dense counterparts despite activating
 050 the same number of parameters. In contrast, EC-DiT (Sun et al., 2024), which assigns each expert
 051 a fixed quota of tokens, delivers only marginal gains even with extended training. More recently,
 052 DiffMoE (Shi et al., 2025), which introduces a global token-distribution routing scheme, still re-
 053 ports relatively limited improvements. This pronounced gap between MoE’s transformative impact
 in LLMs and its modest returns in DiT models motivates a fundamental question: *What are the*
underlying factors that impede the effectiveness of MoE in DiT models?

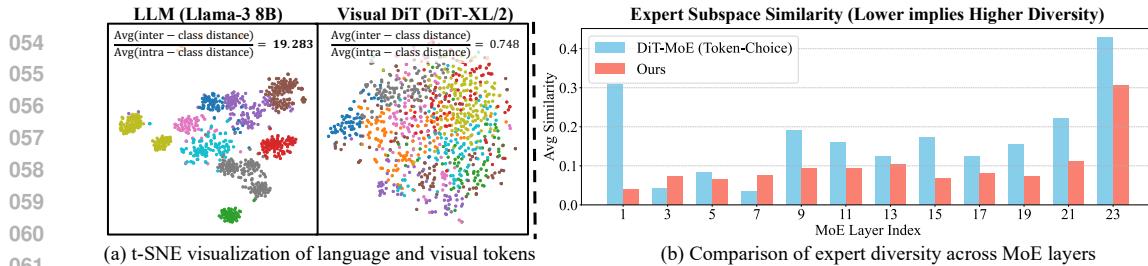


Figure 1: (a) We randomly sample 1k intermediate-layer tokens from 110 ImageNet classes for 10-cluster k-means clustering (differentiated by color). With class names/labels as inputs, LLM tokens form compact, well-separated clusters with high semantic density, whereas visual tokens are diffuse. This disparity is quantified by the ratio of inter- to intra-class distance ($19.283 \gg 0.748$). (b) We measure inter-expert diversity using singular value decomposition on each MoE layer’s expert weight matrices and computing the mean similarity of the subspaces spanned by their top-k left singular vectors (Hu et al., 2021). Incorporating routing guidance (Ours) enhances expert diversity.

To answer this question, we examine how linguistic and visual inputs differ in models and highlight the following two distinctive properties of visual inputs. **1) High Spatial Redundancy.** Unlike discrete text tokens, which are semantically dense with salient inter-token differences, visual tokens (*i.e.*, image patches) are continuous, spatially coupled, and substantially redundant (Fig. 1(a)). The high correlation between patches often leads experts to learn homogeneous features. **2) Functional Heterogeneity.** The practice of classifier-free guidance (Ho & Salimans, 2022) in diffusion models inherently introduces two functionally distinct input types: conditional and unconditional. A naive MoE treats them uniformly with undifferentiated routing, ignoring their different roles. These properties collectively impede effective expert diversity and specialization (Fig. 1(b)).

Motivated by these observations, we revisit the foundational principle of MoE design: expert specialization, in which each expert acquires focused and non-overlapping knowledge (Dai et al., 2024; Cai et al., 2025). We decompose this objective into two criteria: **Intra-Expert Coherence**, which ensures that an expert consistently processes similar patterns, maintaining a stable functional role; and **Inter-Expert Diversity**, which encourages different experts to specialize in distinct tasks to achieve functional differentiation. In language modeling, the semantic density and separability of discrete text tokens provide a potent inductive bias that naturally fosters expert specialization, satisfying both criteria. In contrast, for visual inputs, the combination of intrinsic redundancy and extrinsic functional heterogeneity makes expert specialization non-trivial. Therefore, in this paper, we move beyond implicit expert allocation, and *introduce explicit routing guidance designs to promote both intra-expert coherence and inter-expert diversity*.

To this end, we present **ProMoE**, a Mixture-of-Experts framework featuring a two-step router with explicit routing guidance to promote expert specialization. Specifically, this guidance provides two distinct routing signals: the token’s functional role and its semantic content. Guided by these signals, the router implements two steps: *conditional routing* and *prototypical routing*. *First*, conditional routing addresses functional heterogeneity by partitioning visual tokens into unconditional and conditional sets. Unconditional image tokens, derived from image patches under null conditioning (*e.g.*, empty labels or texts), are processed by dedicated *unconditional experts*. In contrast, conditional image tokens, obtained from patches under specific conditioning, are dispatched to standard MoE experts. This hard routing mechanism enforces functional segregation, fostering specialization across unconditional and standard experts. *Second*, prototypical routing further assigns conditional image tokens using a set of learnable prototypes, each associated with a specific expert, by computing cosine similarity between token embeddings and the prototypes in latent space.

While prototypical routing is flexible and effective, it still relies on implicit learning from token semantics. Fortunately, its similarity-based allocation in latent space provides a natural mechanism for injecting explicit semantic routing guidance. We validate the importance of semantic guidance in systematic experiments (Sec. 4.2), where both explicit (classification-based) and implicit (clustering-based) guidance yield clear improvements. Building on this, we propose a *routing contrastive loss* that explicitly enhances the prototypical routing process by assigning semantically similar tokens to the same expert while preserving distinct token distributions across experts. Compared with alternative guidance strategies, the proposed contrastive loss requires no manual labels and is more robust, promoting intra-expert coherence and inter-expert diversity in vision MoE.

Extensive experimental results demonstrate ProMoE’s superior performance and effective scalability on both Flow Matching and DDPM paradigms. Notably, ProMoE achieves significant gains over dense models despite using fewer activated parameters, and surpasses state-of-the-art methods that have $1.7\times$ more total parameters than ours.

In summary, our contributions are fourfold: 1) By analyzing differences between language and visual tokens, we present **ProMoE**, an MoE framework with explicit routing guidance for DiT models. 2) We design a two-step router, where conditional routing first partitions image tokens by functional roles, and prototypical routing then refines assignments using learnable prototypes based on semantic content. 3) We propose a routing contrastive loss that enhances prototypical routing, explicitly enforcing intra-expert coherence and inter-expert diversity. 4) Extensive experiments demonstrate that ProMoE outperforms dense models and state-of-the-art MoE methods across diverse settings.

2 RELATED WORK

Diffusion Models. Diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021) have made remarkable progress in visual synthesis. Early work (Rombach et al., 2022a; Podell et al., 2023) primarily use U-Net (Ronneberger et al., 2015) architectures trained with the DDPM denoising score-matching objective (Ho et al., 2020; Song et al., 2020). Recent models (Chen et al., 2023; Ma et al., 2024; Hatamizadeh et al., 2024; Chu et al., 2024; Esser et al., 2024a) have shifted to Diffusion Transformers (DiT) (Peebles & Xie, 2023), offering superior scalability and generative quality, and are trained with the more effective Rectified Flow (RF) (Liu et al., 2022), a flow-matching formulation (Lipman et al., 2022) that constructs a straight-line path between data and noise distributions. In this work, we adopt a standard DiT backbone and train with both DDPM and RF objectives, demonstrating the effectiveness and scalability of our approach across different training paradigms.

Mixture of Experts. Mixture-of-Experts (MoE) (Jacobs et al., 1991; Shazeer et al., 2017; Lepikhin et al., 2020) are designed to expand model capacity while minimizing computational overhead by sparsely activating sub-networks for distinct inputs. Inspired by MoE successes in LLMs (Dai et al., 2024; Liu et al., 2024; Li et al., 2025; Muennighoff et al., 2024), recent work has integrated MoE to scale diffusion models to improve generative quality (Riquelme et al., 2021). Early MoE applications in U-Net-based diffusion models (Lee et al., 2024; Balaji et al., 2022; Feng et al., 2023; Xue et al., 2023; Park et al., 2023; 2024; Zhao et al., 2024) often assign experts by diffusion timestep ranges, showing strong scaling potential. However, adapting MoE to DiT architecture (Shen et al., 2025; Sehwag et al., 2025; Cheng et al., 2025) faces several limitations. Token-choice routing methods (e.g., DiT-MoE (Fei et al., 2024)) suffer poor expert specialization due to imbalanced token assignments, whereas expert-choice methods (e.g., EC-DiT (Sun et al., 2024)) that fix token quotas per expert yield only marginal gains. More recently, DiffMoE (Shi et al., 2025) and Expert Race (Yuan et al., 2025) explore batch-level global token selection and mutual expert–token routing, yet still rely on implicit expert learning and struggle with limited expert specialization due to the redundancy and functional heterogeneity of visual tokens. In contrast, we analyze language–vision token differences and introduce explicit routing guidance to the MoE router based on the token’s functional role and its semantic content. We further enhance the routing process through the proposed routing contrastive loss, promoting intra-expert coherence and inter-expert diversity.

3 PRELIMINARIES

Diffusion Models. Diffusion models are generative models that learn data distributions by reversing a forward noising process. The continuous-time forward process can be formulated as $\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}$, with $t \in \mathcal{U}(0, 1)$ and $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$. α_t and σ_t are monotonically decreasing and increasing functions of t , respectively. For the reverse process, a denoising network \mathcal{F}_θ is trained to predict the target \mathbf{y} at each timestep t , conditioned on \mathbf{c} (e.g., class labels or text prompts):

$$\mathcal{L} = \mathbb{E}_{\mathbf{x}_0, \mathbf{c}, \boldsymbol{\epsilon}, t} \left[\|\mathbf{y} - \mathcal{F}_\theta(\mathbf{x}_t, \mathbf{c}, t)\|_2^2 \right], \quad (1)$$

where the training target \mathbf{y} can be the Gaussian noise $\boldsymbol{\epsilon}$ for DDPM models (Ho et al., 2020), or the vector field ($\boldsymbol{\epsilon} - \mathbf{x}_0$) for Rectified Flow models (Liu et al., 2022).

Mixture of Experts. Mixture-of-Experts (MoE) is an architectural paradigm that scales model capacity while preserving computational efficiency by selectively activating a subset of “experts”

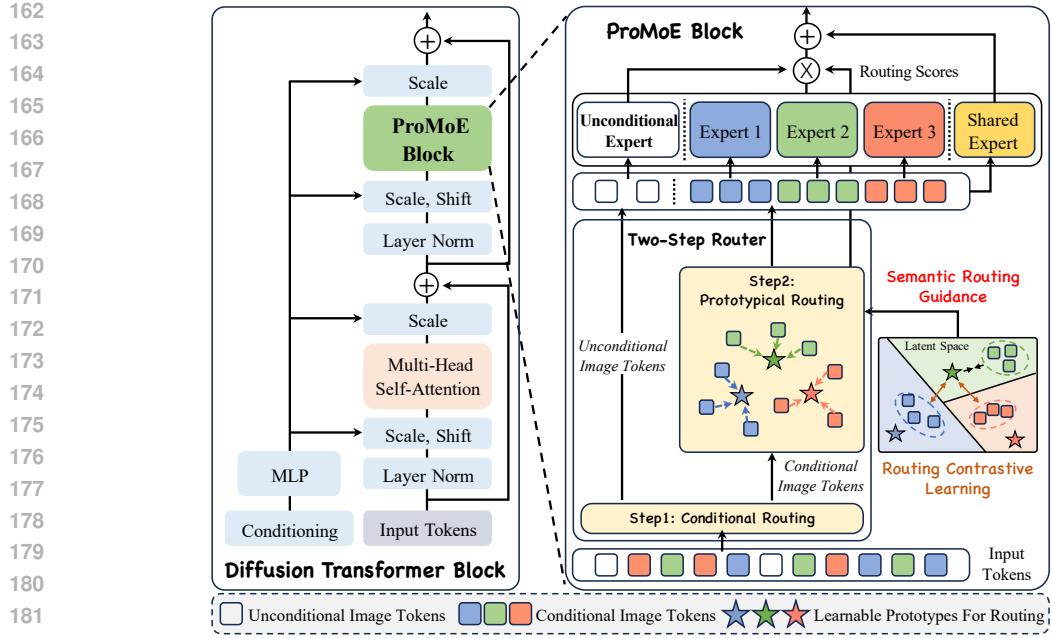


Figure 2: **Overview of ProMoE architecture.** The input tokens are split by conditional routing into unconditional and conditional subsets. Unconditional image tokens are processed by unconditional experts. Conditional image tokens are assigned by prototypical routing with learnable prototypes. The routing contrastive learning explicitly enhances semantic guidance in prototypical routing.

sub-networks. A standard MoE layer comprises N_E experts and a trainable router \mathcal{R} . Each expert E_i is implemented as a feed-forward network (FFN). Given input $\mathbf{X} \in \mathbb{R}^{B \times L \times D}$, where B is the batch size, L is the token length, D is the hidden dimension, the router \mathcal{R} maps the input \mathbf{X} to token-expert affinity scores $\mathbf{S} \in \mathbb{R}^{B \times L \times N_E}$ via an activation function \mathcal{A} :

$$\mathbf{S} = \mathcal{A}(\mathcal{R}(\mathbf{X})). \quad (2)$$

At each forward pass, the router activates the top- K highest-scoring experts and dispatches the input to them. The final output is the weighted sum of the activated experts' outputs with a gating function:

$$\mathbf{G} = \begin{cases} \mathbf{S}, & \text{if } \mathbf{S} \in \text{TopK}(\mathbf{S}) \\ 0, & \text{Otherwise} \end{cases}, \quad \text{MoE}(\mathbf{X}) = \sum_{i=1}^{N_E} \mathbf{G}_i * E_i(\mathbf{X}), \quad (3)$$

where $\mathbf{G} \in \mathbb{R}^{B \times L \times N_E}$ is the final gating tensor. There are two common routing paradigms in MoE: Token-Choice (TC) and Expert-Choice (EC). In TC, each token independently selects its top- K experts; in EC, each expert selects a fixed number of top- K tokens.

4 PROMOE

In this section, we present ProMoE, an MoE framework for DiTs that integrates a two-step router with explicit routing guidance. The overall pipeline is depicted in Fig. 2. We first detail the two-step router in Sec. 4.1. We then validate the importance of semantic routing guidance in visual MoEs in Sec. 4.2 and further propose routing contrastive learning to enhance semantic guidance in Sec. 4.3.

4.1 TWO-STEP ROUTER

The ProMoE router operates in two steps: conditional routing based on the token's functional role, followed by fine-grained prototypical routing based on token semantics.

Conditional Routing. Unlike LLMs, diffusion models typically employ classifier-free guidance (CFG) (Ho & Salimans, 2022) at inference to enhance sample quality. Specifically, CFG steers the

216 generation process by combining the model’s conditional and unconditional noise predictions. This
 217 paradigm naturally defines two functionally heterogeneous tokens: 1) unconditional image tokens,
 218 derived from image patches under null conditioning (e.g., empty labels or texts); and 2) conditional
 219 image tokens, obtained from patches under specific conditioning (e.g., class labels or texts).

220 To handle different token types, the first step of the ProMoE router employs hard routing based on
 221 input conditioning. Specifically, unconditional image tokens are deterministically assigned to N_u
 222 *unconditional experts*, each implemented as a feed-forward network (FFN), analogous to standard
 223 experts. Conversely, conditional image tokens are passed to the second step for fine-grained routing
 224 among standard MoE experts. This explicit partitioning encourages experts to learn the functional
 225 disparity between token types, facilitating the specialization of unconditional and standard experts.

226 **Prototypical Routing.** The second step of our ProMoE router is to dispatch conditional image to-
 227 kens for fine-grained expert allocation. Concretely, we introduce a novel prototypical routing mech-
 228 anism where the routing weights are parameterized by a set of learnable prototypes $\mathbf{P} \in \mathbb{R}^{N_E \times D}$,
 229 as illustrated in Fig. 2. Each prototype \mathbf{p}_i corresponds to an expert E_i and is trained to represent the
 230 shared characteristics of a cluster of semantically similar tokens.

231 Compared with standard MoE token assignment, which computes pre-activation scores $\mathbf{Z} \in$
 232 $\mathbb{R}^{B \times L \times N_E}$ via a linear layer, we assign tokens using cosine similarity, which is more effective and
 233 naturally suited for measuring semantic similarity in latent space between tokens and prototypes:

$$235 \quad \mathbf{Z}_{i,j} = [\mathcal{R}(\mathbf{X})]_{i,j} = \alpha \frac{\mathbf{x}_i \mathbf{p}_j^\top}{\|\mathbf{x}_i\| \|\mathbf{p}_j\|}, \quad (4)$$

236 where \mathbf{x}_i and \mathbf{p}_j are the i -th token in \mathbf{X} and the j -th prototype in \mathbf{P} . α is a scaling factor.

237 Then, the activation function \mathcal{A} transforms the pre-activation scores \mathbf{Z} into token-expert affinity
 238 scores \mathbf{S} . Instead of softmax, which is computationally expensive and sensitive to sequence length,
 239 we opt for a simple monotonic function that preserves relative rankings. We evaluate both sigmoid
 240 and identity functions, finding that the identity $\mathcal{A}(\mathbf{Z}) = \mathbf{Z}$ performs best in practice, as shown
 241 in Tab. 9. We argue that the identity activation enables direct top- K selection and provides stable
 242 training, thus improving performance. Consequently, we adopt identity activation as $\mathbf{S} = \mathbf{Z}$. Finally,
 243 each conditional image token is routed to the top- K experts with gating scores \mathbf{G} , as in Eq. (3).

244 **Forward Process.** Besides unconditional and standard experts, we also incorporate N_s *shared*
 245 *experts* that process all tokens to learn shared knowledge (Dai et al., 2024; Cheng et al., 2025). For
 246 each token, the output of our MoE block is defined as the sum of the shared experts’ output and a
 247 selective output determined by the token type (conditional or unconditional):

$$248 \quad \text{MoE}(\mathbf{x}) = \underbrace{\sum_{i=1}^{N_s} E_i^S(\mathbf{x})}_{\text{Shared}} + \begin{cases} \sum_{j=1}^{N_E} \mathbf{G}_j * E_j(\mathbf{x}) & \text{if } \mathbf{x} \in \mathbf{X}_c \\ \sum_{k=1}^{N_u} E_k^U(\mathbf{x}) & \text{if } \mathbf{x} \in \mathbf{X}_u \end{cases}, \quad (5)$$

249 where E_i^S , E_j , and E_k^U are the shared, standard, and unconditional experts, respectively. \mathbf{X}_c and \mathbf{X}_u
 250 are conditional and unconditional image token sets, respectively, and $\mathbf{X}_c \cup \mathbf{X}_u = \mathbf{X}$.

251 To maintain a constant number of activated parameters, MoE models often employ fine-grained
 252 expert segmentation (Dai et al., 2024), where the inner hidden dimension of each expert is divided
 253 by the number of activated experts. In our most settings, each forward pass of our model activates
 254 exactly two experts: the single shared expert and one expert selected from the combined pool of
 255 standard and unconditional experts. Therefore, to match the computational cost of a dense model,
 256 we divide the hidden dimension of each expert’s intermediate layer by a factor of two.

257 4.2 SEMANTIC ROUTING GUIDANCE

258 Due to the inherent high spatial redundancy of visual tokens, a naive MoE router fails to sufficiently
 259 distinguish tokens for effective routing, leading experts to learn homogeneous features. Conse-
 260 quently, additional semantic routing guidance is required to promote intra-expert coherence and
 261 inter-expert diversity. To validate this, we conduct experiments by augmenting the MoE router with
 262 two guidance types: 1) Explicit Routing Guidance and 2) Implicit Routing Guidance.

270 **Explicit Routing Guidance.** We design a routing classification loss that uses class labels to explicitly guide token assignment. Specifically, we manually partition the 1K ImageNet classes into 271 N_c superclasses based on coarse labels in (Feng & Patras, 2023), and allocate one expert per 272 superclass. Since labels are sample-level, we instantiate the router as a classifier \mathcal{C} : we average-pool 273 the input \mathbf{X} over the token length dimension to obtain $\bar{\mathbf{X}}$, feed $\bar{\mathbf{X}}$ into \mathcal{C} to produce sample-expert 274 affinity scores $\bar{\mathbf{S}} \in \mathbb{R}^{B \times N_c}$, and assign the expert with highest score. During training, we supervise 275 the routing process with a cross-entropy loss $\mathcal{L}_{\text{cls}} = \text{CE}(\bar{\mathbf{S}}, \bar{\mathbf{c}})$, where $\bar{\mathbf{c}}$ is the superclass label. 276

277 **Implicit Routing Guidance.** We replace the standard MoE router with k-means clustering, 278 assigning all tokens in a cluster to a single expert. Unlike the routing classification loss that provides 279 explicit supervision, this design offers implicit guidance by measuring token similarity, encouraging 280 semantically similar tokens to be co-assigned. Concretely, we initialize N_E cluster centroids by 281 randomly sampling tokens. At each forward pass, we compute each token’s distances to all centroids 282 to obtain distance-based token-expert affinity scores. Each token is then assigned to its nearest 283 centroid and thus routed to the corresponding expert. During training, centroids are updated iteratively 284 by replacing each with the mean of their currently assigned tokens.

285 Results for both routing guidance are reported 286 in Tab. 1, with all MoE models having the 287 same activated parameters and comparable total 288 parameters to ensure fairness. On the base 289 model size, DiT-MoE (Fei et al., 2024) and 290 DiffMoE (Shi et al., 2025) yield limited 291 performance improvements. In contrast, adding either 292 explicit or implicit guidance produces 293 substantial gains. Notably, for both guidance strategies, 294 we disable the load-balancing loss to isolate its 295 routing effects; despite its importance for TC routing, 296 guidance alone still markedly improves performance. These findings highlight the pivotal role of semantic 297 routing guidance in vision MoEs.

298 4.3 ENHANCING SEMANTIC ROUTING GUIDANCE VIA ROUTING CONTRASTIVE LEARNING

300 While the routing guidance strategies in Sec. 4.2 are effective, they suffer from key limitations: 1) 301 The classification-based routing loss is defined at the sample level, restricting token-level flexibility 302 and requiring costly manual annotations, hindering generalization. 2) Clustering-based routing 303 supports only top-1 assignment, and struggles to scale to top- K , as methods like k-means rely on 304 disjoint clusters, making multi-centroid assignment difficult. Moreover, k-means is sensitive to the 305 number of clusters and the cluster initialization (Arthur & Vassilvitskii, 2006), reducing robustness.

306 To address these limitations, we propose the Routing Contrastive Loss (RCL), as illustrated in Fig. 2, 307 to explicitly enhance semantic guidance in prototypical routing. Given a mini-batch of conditional 308 image tokens, RCL encourages semantically similar tokens to be routed to the same expert and 309 pushes dissimilar tokens toward different experts, prompting expert specialization in MoE. 310 Concretely, for each prototype \mathbf{p}_i associated with expert E_i , tokens assigned to \mathbf{p}_i form the positive set, 311 representing a cluster of semantically similar tokens, while tokens dispatched to other prototypes 312 constitute the negative sets, comprising multiple clusters with semantics different from \mathbf{p}_i .

313 Next, RCL pulls each prototype \mathbf{p}_i toward the centroid of its positive token set to enforce intra- 314 expert coherence, while pushing it away from the centroids of negative sets to encourage inter- 315 expert diversity. Let \mathbf{X}_i denote the tokens assigned to expert E_i in a mini-batch, its centroid \mathbf{m}_i is 316 computed as the token mean: $\mathbf{m}_i = \frac{1}{|\mathbf{X}_i|} \sum \mathbf{x} \in \mathbf{X}_i$. The RCL loss is then computed over the 317 prototypes of N_a experts that are assigned tokens in an online manner:

$$318 \mathcal{L}_{\text{RCL}} = -\frac{1}{N_a} \sum_{i=1}^{N_a} \log \frac{\exp(\text{sim}(\mathbf{p}_i, \mathbf{m}_i)/\tau)}{\sum_{j=1}^{N_a} \exp(\text{sim}(\mathbf{p}_i, \mathbf{m}_j)/\tau)}, \quad (6)$$

320 where $\text{sim}(\mathbf{a}, \mathbf{b}) = \frac{\mathbf{a}\mathbf{b}^\top}{\|\mathbf{a}\|\|\mathbf{b}\|}$ denotes cosine similarity, and τ is a temperature hyperparameter. Furthermore, 321 we empirically find that the push-away operation in RCL acts as a load-balancing regularizer based on token semantics, and is more effective than traditional load-balancing loss (Shazeer 322 et al., 2017) (see Appendix E.1). The final training loss of ProMoE is the combination of Eqs. (1) 323 and (6), weighting \mathcal{L}_{RCL} by a factor λ_{RCL} .

324
 325 **Table 2: Model configurations of ProMoE with different model sizes, aligning with DiT (Peebles
 326 & Xie, 2023).** “E14A1S1U1” denotes that a total of 14 experts are used, with 1 expert activated for
 327 each token, 1 expert shared by all tokens, and 1 unconditional expert for unconditional image tokens.

Model Config	#Activated Params.	#Total Params.	#Experts	#Blocks L	#Hidden dim. D	#Head n
ProMoE-S	33M	75M	E14A1S1U1	12	384	6
ProMoE-B	130M	300M	E14A1S1U1	12	768	12
ProMoE-L	458M	1.063B	E14A1S1U1	24	1024	16
ProMoE-XL	675M	1.568B	E14A1S1U1	28	1152	16

332 **Table 3: Quantitative comparison with Dense DiTs under Rectified Flow** on ImageNet
 333 (256×256) after 500K training steps, evaluated with CFG scales of 1.0 and 1.5.

Model (500K)	# Activated Params.	# Total Params.	cfg=1.0		cfg=1.5	
			FID50K ↓	IS ↑	FID50K ↓	IS ↑
Dense-DiT-B-Flow	130M	130M	30.61	49.89	9.02	131.13
ProMoE-B-Flow	130M	300M	24.44	60.38	6.39	154.21
Dense-DiT-L-Flow	458M	458M	15.44	84.20	3.56	209.03
ProMoE-L-Flow	458M	1.063B	11.61	100.82	2.79	244.21
Dense-DiT-XL-Flow	675M	675M	13.38	91.57	3.23	227.05
ProMoE-XL-Flow	675M	1.568B	9.44	114.94	2.59	265.62

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

347 **Baseline and model configurations.** We compare against Dense-DiT (Peebles & Xie, 2023) and
 348 MoE baselines, including DiT-MoE (Fei et al., 2024), EC-DiT (Sun et al., 2024), and DiffMoE (Shi
 349 et al., 2025). For a fair comparison, all MoE models are evaluated with equivalent activated parame-
 350 ters to the dense model and comparable total parameters, training with both DDPM (Ho et al., 2020)
 351 and Rectified Flow (Esser et al., 2024a) objectives. We scale ProMoE across four sizes (S/B/L/XL)
 352 to align with established DiT benchmarks, as shown in Tab. 2. Models are named as: [Model]-
 353 [Size]-[Training Type], with an additional expert configuration. For instance, expert configura-
 354 tion E14A1S1U1 denotes 14 total experts (E14), top-1 activation (A1) over 12 standard experts, 1 shared
 355 expert (S1), and 1 unconditional expert (U1). More details are provided in Appendix A.

356 **Implementation details.** We conduct experiments on class-conditional image generation using
 357 the ImageNet (Deng et al., 2009) dataset, which contains 1,281,167 training images across 1,000
 358 classes. Following (Peebles & Xie, 2023), we train all models with the AdamW optimizer with
 359 a learning rate of 1e-4. The batch size is 256, and weight decay is 0. We use horizontal flips as
 360 the only data augmentation, and a pretrained VAE from Stable Diffusion (Rombach et al., 2022b)
 361 to encode and decode images. We also maintain an exponential moving average (EMA) of model
 362 parameters during training with a decay rate of 0.9999, and all reported results use the EMA mode.

363 **Evaluation metrics.** We evaluate image generation quality of all methods using Fréchet Inception
 364 Distance (FID) (Heusel et al., 2017; Dhariwal & Nichol, 2021), calculated over 50K generated
 365 samples with 250 DDPM or Flow Matching Euler sampling steps. We also report Inception Score
 366 (IS) (Salimans et al., 2016) to measure the diversity of generated images.

5.2 MAIN RESULTS

369 **Comparison with Dense DiT.** The results in Fig. 3(a) and Tabs. 3 and 4 draw three conclusions:
 370 1) ProMoE consistently surpasses dense counterparts at equivalent activated parameters across all
 371 sizes, objectives, and CFG settings, demonstrating strong effectiveness, scalability, and generaliza-
 372 tion. 2) Gains are more pronounced under Rectified Flow, the current dominant training paradigm,
 373 highlighting ProMoE’s ability to scale modern diffusion models. Compared to dense models, with-
 374 out CFG, ProMoE-L-Flow reduces FID by 24.8% and increases IS by 19.7%; at the largest scale,
 375 ProMoE-XL-Flow reduces FID by 29.4%. With CFG=1.5, ProMoE-B-Flow reduces FID by 29.2%
 376 , while ProMoE-XL-Flow reduces FID by 19.8%. 3) ProMoE is notably parameter-efficient; it uses
 377 fewer activated parameters yet outperforms dense models with more. Specifically, ProMoE-L-Flow
 achieves FID 11.61/2.79 at CFG 1.0/1.5, versus 13.38/3.23 for Dense-DiT-XL-Flow.

Table 4: **Quantitative comparison with Dense DiTs under DDPM** on ImageNet (256×256) after 500K training steps, evaluated with CFG scales of 1.0 and 1.5.

Model (500K)	# Activated Params.	# Total Params.	cfg=1.0		cfg=1.5	
			FID50K ↓	IS ↑	FID50K ↓	IS ↑
Dense-DiT-B-DDPM	130M	130M	41.19	35.94	18.61	78.71
ProMoE-B-DDPM	130M	300M	40.37	37.84	17.90	82.65
Dense-DiT-L-DDPM	458M	458M	20.81	65.51	6.29	148.38
ProMoE-L-DDPM	458M	1.063B	18.75	73.07	5.12	168.91
Dense-DiT-XL-DDPM	675M	675M	17.67	74.05	5.07	165.81
ProMoE-XL-DDPM	675M	1.568B	15.87	81.90	4.11	187.86

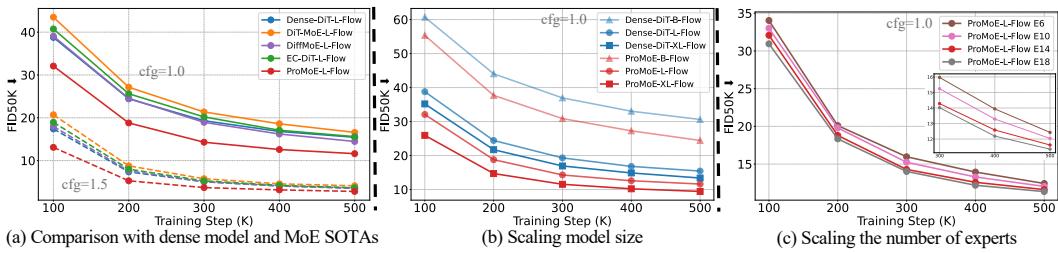


Figure 3: Comparisons and scaling results across diverse settings.

Figure 4: Samples generated by ProMoE-XL-Flow after 2M iterations with $\text{cfg}=4.0$.

Comparison with MoE SOTAs. The results in Fig. 3(a), Tab. 5 and Appendix Tab. 11 show that ProMoE outperforms all baselines across both objectives at equivalent activated parameters, with and without CFG. Without CFG, ProMoE-L-Flow reduces FID by 19.7% and increases IS by 15.2% relative to DiffMoE-L-Flow; with CFG=1.5, it reduces FID by 20.5% and increases IS by 14.8%. Notably, ProMoE-L-Flow (1.063B params) surpasses the larger DiffMoE-L-Flow with 16 experts (1.846B params), despite fewer total parameters, underscoring the effectiveness of our method.

Visualization Results. Fig. 4 shows the samples generated by ProMoE-XL-Flow on ImageNet (256×256) after 2M training steps with $\text{CFG}=4.0$; see Appendix C.3 for more analyses and results.

Comparison of training losses.

Fig. 5 shows training loss curves for our method, the dense model, and MoE baselines. ProMoE attains lower loss and faster convergence, even at the largest scale with extended training (up to 1.2M steps).

Comparison of computational cost

and efficiency. Tabs. 5 and 14 show that ProMoE achieves lower inference time and fewer GFLOPs than the SOTA MoE method DiffMoE, and maintains GFLOPs comparable to other MoE baselines while delivering substantially higher performance. This demonstrates that the performance gains primarily stem from our superior methodological design. More details about these experimental settings are provided in the Appendix A.

Comparison on text-to-image task. We conduct new text-to-image experiments to further demonstrate the generalization ability of ProMoE. The detailed experimental setup is provided in Appendix A, and we evaluate on the GenEval benchmark (Ghosh et al., 2023). As shown in Tab. 6, ProMoE significantly outperforms both the dense baseline and the Token-Choice MoE across the overall metric and all sub-tasks. These results strongly demonstrate ProMoE’s robust generalization capabilities in challenging generation scenarios. Furthermore, we also provide qualitative results in Fig. 14, further verifying ProMoE’s capability in high-quality text-to-image generation.

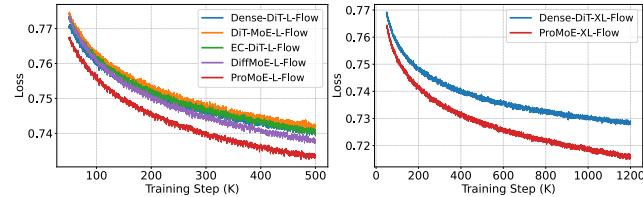


Figure 5: Training loss curve comparisons.

432 **Table 5: Quantitative comparison with MoE baselines under Rectified Flow on ImageNet**
 433 **(256×256) after 500K training steps, evaluated with CFG scales of 1.0 and 1.5.**

434 Model (500K)	#Experts	# Activated 435 Params.	# Total Params.	# GFLOPs	cfg=1.0		cfg=1.5	
					FID50K ↓	IS ↑	FID50K ↓	IS ↑
436 DiT-MoE-L-Flow	E8A1S0U0	458M	1.163B	77.50	16.57	80.25	4.10	199.05
437 EC-DiT-L-Flow	E8A1S0U0	458M	1.163B	77.50	15.58	84.11	3.65	209.06
438 DiffMoE-L-Flow	E8A1S0U0	458M	1.095B	82.53	14.46	87.55	3.51	212.78
439 DiffMoE-L-Flow	E16A1S0U0	458M	1.846B	90.03	13.55	92.33	3.30	222.40
440 ProMoE-L-Flow	E14A1S1U1	458M	1.063B	77.72	11.61	100.82	2.79	244.21

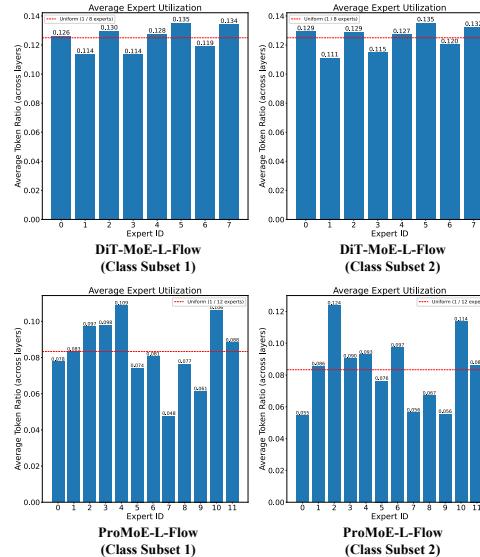
440 **Table 6: Comparisons on GenEval benchmark under Rectified Flow after 400K training steps.**

441 Model (400K)	#Experts	# Activated 442 Params.	# Total Params.	GenEval ↑						
				Single Obj.	Two Obj.	Counting	Colors	Position	Color Attr.	Overall
443 Dense Model	-	3B	3B	0.840	0.275	0.362	0.611	0.095	0.155	0.390
444 Token-Choice MoE	E5A1S0U0	3B	12B	0.856	0.320	0.334	0.627	0.157	0.207	0.417
445 ProMoE	E5A1S0U1	3B	12B	0.884	0.371	0.418	0.675	0.212	0.217	0.463

445 **Table 7: Quantitative comparison under Rectified Flow after more training steps** on ImageNet
 446 (256×256), evaluated with CFG scales of 1.0, 1.5, and 4.0.

447 Model (Training Steps)	# Activated 448 Params.	# Total 449 Params.	cfg=1.0		cfg=1.5		cfg=4.0	
			FID50K ↓	IS ↑	FID50K ↓	IS ↑	FID50K ↓	IS ↑
450 Dense-DiT-L-Flow (2M)	458M	458M	10.55	112.55	2.81	266.24	17.71	464.25
451 DiffMoE-L-Flow (2M)	458M	1.163B	10.09	122.01	2.57	276.75	15.70	465.60
452 ProMoE-L-Flow (2M)	458M	1.063B	9.67	125.88	2.22	290.61	14.05	466.96
453 Dense-DiT-XL-Flow (2M)	675M	675M	9.30	121.92	2.55	282.59	17.05	474.39
454 DiffMoE-XL-Flow (2M)	675M	1.735B	8.83	134.37	2.49	297.25	14.25	475.13
455 ProMoE-XL-Flow (2M)	675M	1.568B	8.16	139.66	2.08	304.26	11.95	478.60

455 **Quantitative analysis of expert utilization.** We
 456 compare the expert utilization of ProMoE against
 457 the DiT-MoE baseline using averaged token-per-
 458 expert ratios computed on two disjoint class sub-
 459 sets, each consisting of 200 randomly sampled
 460 classes and 10,000 generated images. As shown
 461 in Fig. 6, DiT-MoE exhibits very similar token-per-
 462 expert distributions across different class subsets,
 463 and shows minimal variation in token proportions
 464 among experts within each subset, indicating poor
 465 specialization and a failure to induce diversity. In
 466 contrast, ProMoE demonstrates clear expert spe-
 467 cialization, producing distinct utilization patterns
 468 across the disjoint subsets. Within each subset,
 469 experts exhibit varied usage frequencies without suf-
 470 fering from starvation or overuse. These results
 471 confirm that ProMoE achieves meaningful expert
 472 specialization and good load balancing.



472 **Comparison on 2M training steps and higher**

473 **CFG (4.0).** We evaluate L and XL ProMoE models against dense and SOTA DiffMoE baselines
 474 at 2M steps with CFG scales of 1.0, 1.5, and 4.0. As shown in Tab. 7, our ProMoE models con-
 475 sistently outperform baselines for both L/XL sizes under various settings. At CFG=4.0, for L-size,
 476 ProMoE reduces FID by ~21% over the dense model and 10% over DiffMoE; for XL-size, ProMoE
 477 reduces FID by ~30% over the dense model and 16% over DiffMoE, while also achieving the best
 478 IS. At lower CFG values, ProMoE still yields consistent improvements over both dense and Diff-
 479 MoE baselines. Furthermore, ProMoE-L at 2M steps surpasses Dense/DiffMoE-XL on FID with
 480 fewer activated parameters at CFG scales of 4.0 and 1.5. These results further solidify ProMoE's
 481 better performance and parameter efficiency under prolonged training and stronger guidance.

482 5.3 SCALING BEHAVIOR

484 **Scaling the model size.** As shown in Fig. 3(b), ProMoE exhibits consistent performance improve-
 485 ments over Dense-DiT when scaling from base (B) to large (L) to XL, with 130M, 458M, and 675M
 activated parameters, respectively, thereby validating the scalability of our method.

486 Table 8: **Ablation study of each component** on ImageNet (256×256) after 500K training steps,
 487 trained with Rectified Flow and evaluated with CFG scales of 1.0 and 1.5.

Model (500K)	cfg=1.0		cfg=1.5	
	FID50K ↓	IS ↑	FID50K ↓	IS ↑
Dense-DiT-B-Flow (Dense)	30.61	49.89	9.02	131.13
+ Prototypical Routing	27.93	53.35	7.92	140.86
+ Routing Contrastive Learning	24.97	58.59	6.75	150.15
+ Conditional Routing	24.44	60.38	6.39	154.21
Dense + Conditional Routing	28.36	53.01	8.50	135.05

496 Table 9: **Ablation of activation functions**,
 497 trained with Rectified Flow on ImageNet
 498 (256×256) for 500K steps.

Activation (500K)	cfg=1.0		cfg=1.5	
	FID↓	IS↑	FID↓	IS↑
Softmax	25.74	58.04	6.92	149.11
Sigmoid	25.49	58.51	6.63	150.94
Identity	24.44	60.38	6.39	154.21

Table 10: **Ablation of conditional routing in K-Means-based Routing**, trained with Rectified Flow on ImageNet (256×256) for 500K steps.

K-Means-based Routing (500K)	cfg=1.0		cfg=1.5	
	FID↓	IS↑	FID↓	IS↑
w/o Cond.	30.12	50.47	8.75	133.14
w/ Cond.	25.61	59.76	6.24	159.77

505 **Scaling the number of experts.** Fig. 3(c) shows monotonic gains as the expert number increases
 506 from 4 to 16, with 1 shared and 1 unconditional expert per setup. For a fair comparison, we maintain
 507 comparable total parameters over MoE baselines and use 14 experts across settings.

510 5.4 ABLATION STUDIES

511 **Ablation on each component.** Tab. 8 shows that using prototypical routing improves performance
 512 and surpasses DiT-MoE-B-Flow and DiffMoE-B-Flow (see Tab. 1). Adding routing contrastive
 513 learning (RCL) yields substantial gains, reducing FID by 10.6% and increasing IS by 9.8%, high-
 514 lighting the importance of semantic routing guidance. **Furthermore, while conditional routing alone**
 515 **improves performance, the gains are more significant when combined with our routing enhance-**
 516 **ments (prototypical routing and RCL).** These results validate the effectiveness of each component.

517 **Ablation on score activation function.** Since our prototypical routing computes similarities in
 518 latent space, choosing an appropriate activation to map similarities into routing scores is crucial.
 519 As shown in Tab. 9, the identity mapping yields the best performance, sigmoid is second-best, and
 520 softmax performs worst. Consequently, we adopt the identity function as the score activation.

521 **Ablation on conditional routing within the K-Means-based Routing.** We emphasize that the
 522 proposed conditional routing is a general, method-agnostic component that can benefit other routing
 523 schemes. We ablate it within the K-Means-based Routing method in Sec. 4.2. As shown in Tab. 10,
 524 removing conditional routing significantly degrades performance, underscoring its importance.

526 6 CONCLUSION

527 In this paper, we present ProMoE, a Mixture-of-Experts framework featuring a two-step router with
 528 explicit routing guidance to promote expert specialization. We analyze differences between lan-
 529 guage and vision tokens: discrete text tokens are semantically dense, whereas visual tokens exhibit
 530 high spatial redundancy and functional heterogeneity, hindering the effectiveness of MoE in DiT
 531 models. To address this, we introduce routing guidance based on the token’s functional role and se-
 532 mantic content, yielding a two-step router comprising conditional routing and prototypical routing.
 533 Furthermore, we propose a routing contrastive loss that enhances semantic guidance in prototypical
 534 routing, explicitly promoting intra-expert coherence and inter-expert diversity. Extensive experi-
 535 ments demonstrate that ProMoE outperforms dense DiT and existing MoE SOTAs, even with fewer
 536 activated or total parameters, providing a robust solution for applying MoE to DiT models.

537 **Limitations.** While we follow standard evaluation protocols and report FID50K and IS, these met-
 538 rics may not fully capture fine-grained perceptual quality or semantic faithfulness.

540 ETHICS STATEMENT
541

542 Our method achieves substantial improvements on the ImageNet benchmark over dense DiT and
543 state-of-the-art MoE methods, providing an effective solution for scaling DiT with MoE. Nonethe-
544 less, it inherits common risks of generative models, such as the potential to create fake data. Robust
545 image forgery detection may help mitigate these concerns. In addition, we adhere to ethical guide-
546 lines in all experiments.

548 REPRODUCIBILITY STATEMENT
549

550 We make the following efforts to ensure the reproducibility of ProMoE: (1) All experiments are
551 conducted on the publicly available ImageNet-1K benchmark. (2) Our code and trained model
552 weights will be made publicly available. (3) We provide implementation details in Sec. 5.1 and
553 Appendix A.

555 REFERENCES
556

557 David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical
558 report, Stanford, 2006.

559 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
560 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
561 2025.

562 Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Qinsheng Zhang, Karsten
563 Kreis, Miika Aittala, Timo Aila, Samuli Laine, et al. ediff-i: Text-to-image diffusion models with
564 an ensemble of expert denoisers. *arXiv preprint arXiv:2211.01324*, 2022.

566 Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on
567 mixture of experts in large language models. *IEEE Transactions on Knowledge and Data Engi-
568 neering*, 2025.

569 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
570 Kwok, Ping Luo, Huchuan Lu, et al. Pixart- α : Fast training of diffusion transformer for photore-
571 alistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023.

573 Kun Cheng, Xiao He, Lei Yu, Zhijun Tu, Mingrui Zhu, Nannan Wang, Xinbo Gao, and Jie Hu.
574 Diff-moe: Diffusion transformer with time-aware and space-adaptive experts. In *Forty-second
575 International Conference on Machine Learning*, 2025.

576 Xiangxiang Chu, Jianlin Su, Bo Zhang, and Chunhua Shen. Visionllama: A unified llama backbone
577 for vision tasks. In *European Conference on Computer Vision*, pp. 1–18. Springer, 2024.

578 Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
579 Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
580 of-experts language models. *arXiv preprint arXiv:2401.06066*, 2024.

582 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
583 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
584 pp. 248–255. Ieee, 2009.

585 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
586 in neural information processing systems*, 34:8780–8794, 2021.

587 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
588 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
589 *arXiv e-prints*, pp. arXiv–2407, 2024.

591 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
592 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
593 high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*,
2024a.

594 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 595 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 596 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 597 2024b.

598 Zhengcong Fei, Mingyuan Fan, Changqian Yu, Debang Li, and Junshi Huang. Scaling diffusion
 599 transformers to 16 billion parameters. *arXiv preprint arXiv:2407.11633*, 2024.

600 Chen Feng and Ioannis Patras. Maskcon: Masked contrastive learning for coarse-labelled dataset.
 601 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 602 19913–19922, 2023.

603 Zhida Feng, Zhenyu Zhang, Xintong Yu, Yewei Fang, Lanxin Li, Xuyi Chen, Yuxiang Lu, Jiaxi-
 604 ang Liu, Weichong Yin, Shikun Feng, et al. Ernie-vilg 2.0: Improving text-to-image diffusion
 605 model with knowledge-enhanced mixture-of-denoising-experts. In *Proceedings of the IEEE/CVF*
 606 *Conference on Computer Vision and Pattern Recognition*, pp. 10135–10145, 2023.

607 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
 608 for evaluating text-to-image alignment. *Advances in Neural Information Processing Systems*, 36:
 609 52132–52152, 2023.

610 Ali Hatamizadeh, Jiaming Song, Guilin Liu, Jan Kautz, and Arash Vahdat. Diffit: Diffusion vision
 611 transformers for image generation. In *European Conference on Computer Vision*, pp. 37–55.
 612 Springer, 2024.

613 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 614 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in
 615 neural information processing systems*, 30, 2017.

616 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint
 617 arXiv:2207.12598*, 2022.

618 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 619 neural information processing systems*, 33:6840–6851, 2020.

620 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 621 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint
 622 arXiv:2106.09685*, 2021.

623 Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
 624 local experts. *Neural computation*, 3(1):79–87, 1991.

625 Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
 626 ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
 627 Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.

628 Yunsung Lee, JinYoung Kim, Hyojun Go, Myeongho Jeong, Shinhyeok Oh, and Seungtaek Choi.
 629 Multi-architecture multi-expert diffusion models. In *Proceedings of the AAAI Conference on
 630 Artificial Intelligence*, volume 38, pp. 13427–13436, 2024.

631 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
 632 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
 633 computation and automatic sharding. *arXiv preprint arXiv:2006.16668*, 2020.

634 Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao
 635 Guo, Da Chen, Dong Li, et al. Minimax-01: Scaling foundation models with lightning attention.
 636 *arXiv preprint arXiv:2501.08313*, 2025.

637 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 638 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

639 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 640 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint
 641 arXiv:2412.19437*, 2024.

648 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 649 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

650

651 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
 652 ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 653 transformers. In *European Conference on Computer Vision*, pp. 23–40. Springer, 2024.

654 Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Wei-
 655 jia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts
 656 language models. *arXiv preprint arXiv:2409.02060*, 2024.

657

658 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 659 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.

660

661 Byeongjun Park, Sangmin Woo, Hyojun Go, Jin-Young Kim, and Changick Kim. Denoising task
 662 routing for diffusion models. *arXiv preprint arXiv:2310.07138*, 2023.

663

664 Byeongjun Park, Hyojun Go, Jin-Young Kim, Sangmin Woo, Seokil Ham, and Changick Kim.
 665 Switch diffusion transformer: Synergizing denoising tasks with sparse mixture-of-experts. In
 666 *European Conference on Computer Vision*, pp. 461–477. Springer, 2024.

667

668 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 669 the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

670

671 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 672 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 673 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

674

675 Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
 676 Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
 677 *Advances in Neural Information Processing Systems*, 34:8583–8595, 2021.

678

679 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 680 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 681 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022a.

682

683 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 684 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-
 685 ference on Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022b.

686

687 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 688 ical image segmentation. In *International Conference on Medical image computing and computer-
 689 assisted intervention*, pp. 234–241. Springer, 2015.

690

691 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 692 Improved techniques for training gans. *Advances in neural information processing systems*, 29,
 693 2016.

694

695 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 696 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 697 open large-scale dataset for training next generation image-text models. *Advances in neural in-
 698 formation processing systems*, 35:25278–25294, 2022.

699

700 Vikash Sehwag, Xianghao Kong, Jingtao Li, Michael Spranger, and Lingjuan Lyu. Stretching each
 701 dollar: Diffusion training from scratch on a micro-budget. In *Proceedings of the Computer Vision
 702 and Pattern Recognition Conference*, pp. 28596–28608, 2025.

703

704 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 705 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 706 *arXiv preprint arXiv:1701.06538*, 2017.

707

708 Ying Shen, Zhiyang Xu, Juhai Chen, Shizhe Diao, Jiaxin Zhang, Yuguang Yao, Joy Rimchala, Is-
 709 mini Lourentzou, and Lifu Huang. Latte-flow: Layerwise timestep-expert flow-based transformer.
 710 *arXiv preprint arXiv:2506.06952*, 2025.

702 Minglei Shi, Ziyang Yuan, Haotian Yang, Xintao Wang, Mingwu Zheng, Xin Tao, Wenliang Zhao,
 703 Wenzhao Zheng, Jie Zhou, Jiwen Lu, et al. Diffmoe: Dynamic token selection for scalable
 704 diffusion transformers. *arXiv preprint arXiv:2503.14487*, 2025.

705

706 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 707 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 708 *arXiv:2011.13456*, 2020.

709 Haotian Sun, Tao Lei, Bowen Zhang, Yanghao Li, Haoshuo Huang, Ruoming Pang, Bo Dai, and Nan
 710 Du. Ec-dit: Scaling diffusion transformers with adaptive expert-choice routing. *arXiv preprint*
 711 *arXiv:2410.02098*, 2024.

712 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 713 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
 714 models. *arXiv preprint arXiv:2503.20314*, 2025.

715

716 Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang
 717 Li, Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution image synthesis with linear diffu-
 718 sion transformers. *arXiv preprint arXiv:2410.10629*, 2024.

719 Zeyue Xue, Guanglu Song, Qiushan Guo, Boxiao Liu, Zhuofan Zong, Yu Liu, and Ping Luo.
 720 Raphael: Text-to-image generation via large mixture of diffusion paths. *Advances in Neural*
 721 *Information Processing Systems*, 36:41693–41706, 2023.

722

723 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 724 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 725 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.

726 Yike Yuan, Ziyu Wang, Zihao Huang, Defa Zhu, Xun Zhou, Jingyi Yu, and Qiyang Min. Expert
 727 race: A flexible routing strategy for scaling diffusion transformer with mixture of experts. *arXiv*
 728 *preprint arXiv:2503.16057*, 2025.

729

730 Wangbo Zhao, Yizeng Han, Jiasheng Tang, Kai Wang, Yibing Song, Gao Huang, Fan Wang, and
 731 Yang You. Dynamic diffusion transformer. *arXiv preprint arXiv:2410.03456*, 2024.

732 Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
 733 corrector framework for fast sampling of diffusion models. *Advances in Neural Information*
 734 *Processing Systems*, 36:49842–49869, 2023.

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

A EXPERIMENTAL SETUP

Baselines. We compare against open-source state-of-the-art DiT-based MoE methods, with activated parameters equivalent to the dense model and comparable total parameter counts. We implement DiT-MoE (Fei et al., 2024), EC-DiT (Sun et al., 2024), and DiffMoE (Shi et al., 2025) following their original papers and referring to the open-source repository¹. All methods are trained with the same training settings, including learning rate, batch size, and data augmentation.

Implementation details. We train ProMoE with two objectives: the standard DDPM objective (Ho et al., 2020), and Rectified Flow with Logit-Normal sampling from SD3 (Esser et al., 2024a) to align better with modern DiT training paradigms (e.g., Sana (Xie et al., 2024)). Besides the hyperparameters in Sec. 5.1, we provide additional details as follows. In prototypical routing, α in Eq. (4) is set to 1. For routing contrastive learning, the temperature is set to 0.07, and the loss weight λ_{RCL} is 1 unless stated otherwise.

Evaluation metrics. We follow the standard DiT evaluation protocol (Peebles & Xie, 2023), computing FID and IS on 50,000 generated images² at classifier-free guidance scales of 1.0 and 1.5.

Computational cost evaluation settings. We report the computational cost of our model in terms of training time, inference time, and FLOPs, and compare it against dense and MoE baselines. The inference time is measured for the core denoising process (excluding VAE decoding) with a batch size of 128, a classifier-free guidance (CFG) scale of 1.5, and 250 sampling steps. For a fair comparison, all experiments are conducted on 4 NVIDIA A800 GPUs under identical hardware settings.

Text-to-image experimental setup. We conduct new experiments on the text-to-image generation task to demonstrate the generalization of our ProMoE. Below, we detail the experimental setup. 1) For the model architecture, we adopt an MM-DiT-style architecture, where text and visual tokens are concatenated and jointly processed via self-attention for effective conditioning. The dense baseline uses 36 layers, 16 attention heads, a hidden size of 11,008, and has 3B parameters. We build on this backbone by extending it to an MoE architecture, where each expert is a visual FFN. As a comparison baseline, we adopt the standard MoE paradigm commonly used in LLMs, denoted as Token-Choice MoE, which uses 5 standard experts and has 12B total parameters with 3B activated parameters. Our ProMoE uses the same overall capacity (12B total, 3B activated parameters) and also employs 5 experts (1 unconditional and 4 standard), ensuring a fair comparison under matched parameter and activation budgets. 2) For implementation details, we train all models on a 2M-image subset of LAION-5B (Schuhmann et al., 2022) to enable rapid validation. We use the AdamW optimizer with a learning rate of 1e-4, a global batch size of 384, and a weight decay of 0.02. Images are encoded into the latent space using the pretrained Wan2.5-Preview VAE (Wan et al., 2025), and text is encoded with Qwen2.5-VL (Bai et al., 2025). The training objective is Rectified Flow. Both the baselines and our ProMoE are trained under the same settings to ensure a fair comparison. All experiments are conducted on 16 A800 GPUs for 400K training steps. For inference, we use the EMA model and adopt the UniPC (Zhao et al., 2023) sampler with 50 sampling steps, with a classifier-free guidance scale of 5.0.

B IMPLEMENTATION ALGORITHMS

The implementation algorithm of ProMoE is provided in Algorithm 1. In the algorithm, input class labels are used solely to distinguish conditional image tokens from unconditional image tokens. During inference, if classifier-free guidance (CFG) is disabled, all tokens are routed to the standard experts and the shared expert; the unconditional expert is not used. If CFG is enabled, class labels are replaced with a batch-level binary mask indicating which samples receive conditioning (i.e., treated as conditional image tokens). No routing contrastive loss is computed during inference.

¹<https://github.com/KwaiVGI/DiffMoE>

²<https://github.com/openai/guided-diffusion/tree/main/evaluations>

C MORE RESULTS

C.1 MORE t-SNE VISUALIZATIONS OF LANGUAGE AND VISUAL TOKENS

To further validate the findings on differences between language and visual tokens in Sec. 1, we extend the visualization results in Fig. 1(a). Figs. 11 and 12 present t-SNE visualizations of token embeddings from DiT-XL/2 (Peebles & Xie, 2023) and Llama-3 8B (Dubey et al., 2024) across different layers; for DiT-XL/2, we also visualize tokens at different diffusion timesteps. To facilitate comparison, we cluster token embeddings into 10 groups using k-means. For model inputs, we randomly sample 110 ImageNet classes, feed the corresponding class labels to DiT-XL/2 and the class names to Llama-3 8B, and randomly select 1K intermediate-layer tokens for visualization. The results in Figs. 11 and 12 further confirm that language tokens are semantically dense with high inter-token differences, whereas visual tokens exhibit high spatial redundancy.

C.2 T-SNE VISUALIZATIONS OF TOKEN ASSIGNMENTS

To assess the impact of visual-token redundancy on MoE expert selection, as indicated by Fig. 1(a) and Figs. 11 and 12, we visualize intermediate-layer token assignments of ProMoE-L-Flow and DiT-MoE-L-Flow at 500K training steps without classifier-free guidance, as shown in Fig. 7. Following Sec. C.1, we randomly sample 110 ImageNet classes, feed the corresponding class labels to both ProMoE and DiT-MoE, and randomly select 2,560 tokens from an intermediate-layer MoE block to visualize the expert selection of each token. Compared with token-choice MoE methods such as DiT-MoE, our approach assigns experts according to token semantics, producing well-formed clusters in the token-embedding space: semantically similar tokens form compact clusters and are routed to the same expert, whereas clusters assigned to different experts are clearly separated. These results further corroborate the importance of explicit routing guidance for visual MoE, and our method achieves effective intra-expert coherence and inter-expert diversity.

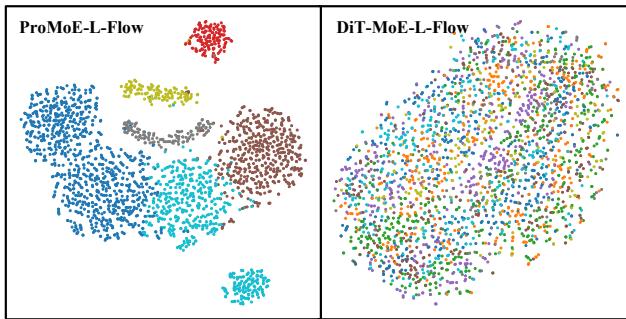


Figure 7: t-SNE visualization results of ProMoE and DiT-MoE on expert allocation (token assignment). Each color corresponds to a single expert.

C.3 MORE VISUALIZATION RESULTS

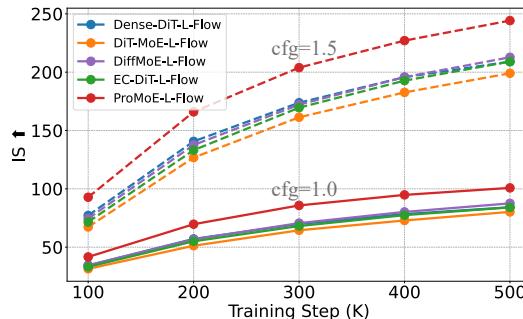
We provide additional generation results in Fig. 13. Our method produces high-quality images across both simple and challenging categories.

C.4 MORE COMPARISON RESULTS

We provide additional comparisons with dense models and MoE SOTAs. Besides the FID results in Fig. 3(a), we also report Inception Score comparisons, as shown in Fig. 8. In addition, we present quantitative comparisons with MoE SOTAs under the DDPM objective in Tab. 11. Across both training objectives and CFG settings, our method consistently outperforms the dense model and existing MoE SOTAs, demonstrating its effectiveness.

864
865 **Table 11: Quantitative comparison with MoE baselines under DDPM on ImageNet (256×256)**
866 after 500K training steps, and evaluated at CFG scales of 1.0 and 1.5.
867

867 Model (500K)	#Experts	# Activated 868 Params.	# Total 869 Params.	cfg=1.0		cfg=1.5	
				FID50K ↓	IS ↑	FID50K ↓	IS ↑
870 DiT-MoE-L-DDPM	E8A1S0U0	458M	1.163B	23.12	60.08	7.55	133.63
871 EC-DiT-L-DDPM	E8A1S0U0	458M	1.163B	20.76	64.77	6.48	146.49
872 DiffMoE-L-DDPM	E8A1S0U0	458M	1.095B	19.45	70.93	5.47	158.30
873 ProMoE-L-DDPM	E14A1S1U1	458M	1.063B	18.75	73.07	5.12	168.91



884 **Figure 8: Comparison with dense model and MoE SOTAs on Inception Score.**
885
886

887 C.5 COMPARISON WITH DENSE DiT ON MORE TRAINING STEPS

888 We provide comparison results between our ProMoE and Dense DiT on more training steps in
889 Tab. 12. We observe that ProMoE-L-Flow at 500K steps surpasses Dense-DiT-L-Flow at 1M steps
890 on FID, and ProMoE-XL-Flow at 500K steps surpasses Dense-DiT-XL-Flow at 1M steps on both
891 FID and IS. With longer training, ProMoE-L-Flow at 1M steps outperforms Dense-DiT-L-Flow at
892 2M steps and Dense-DiT-XL-Flow at 1M steps. These findings are consistent with those in Sec. 5.2,
893 demonstrating faster convergence and scalability of our method.
894

895 **Table 12: Quantitative comparison with Dense DiTs under Rectified Flow on ImageNet**
896 (256×256) after more training steps, evaluated with CFG scales of 1.0 and 1.5.
897

898 Model (Training Steps)	# Activated 899 Params.	# Total 900 Params.	cfg=1.0		cfg=1.5	
			FID50K ↓	IS ↑	FID50K ↓	IS ↑
901 Dense-DiT-L-Flow (1M)	458M	458M	12.21	<u>100.97</u>	2.97	245.63
902 ProMoE-L-Flow (500K)	458M	1.063B	<u>11.61</u>	100.82	<u>2.79</u>	244.21
903 ProMoE-L-Flow (1M)	458M	1.063B	9.88	118.91	2.75	278.22
904 Dense-DiT-L-Flow (2M)	458M	458M	10.55	112.55	2.81	266.24
905 ProMoE-L-Flow (2M)	458M	1.063B	9.67	125.88	2.22	290.61
906 Dense-DiT-XL-Flow (1M)	675M	675M	10.67	107.68	2.82	260.61
907 ProMoE-XL-Flow (500K)	675M	1.568B	<u>9.44</u>	<u>114.94</u>	<u>2.59</u>	<u>265.62</u>
908 ProMoE-XL-Flow (1M)	675M	1.568B	8.34	128.58	2.53	292.38

909 C.6 INCREASING THE NUMBER OF ACTIVATED EXPERTS

910 As discussed in Sec. 4.2, classification- and clustering-based routing inherently do not support top-k
911 assignment, permitting only top-1. In contrast, ProMoE is more flexible and scalable, and supports
912 top-k assignment. To validate this, we increase the number of activated standard experts from 1 to 3,
913 which raises the activated parameters while keeping the total parameter count unchanged. As shown
914 in Tab. 13, this increase yields improved performance, confirming the effectiveness and scalability
915 of our method.
916

918
919 Table 13: **Results of increasing the number of activated standard experts** on ImageNet
920 (256×256) after 500K steps, trained with Rectified Flow and evaluated at CFG scales 1.0 and 1.5.
921

Model (500K)	#Experts	# Activated Params.	# Total Params.	cfg=1.0		cfg=1.5	
				FID50K ↓	IS ↑	FID50K ↓	IS ↑
ProMoE-L-Flow	E14A1S1U1	458M	1.063B	11.61	100.82	2.79	244.21
ProMoE-L-Flow	E14A3S1U1	558M	1.063B	11.40	103.78	2.72	246.96

C.7 FULL DETAILS OF COMPUTATIONAL COST AND EFFICIENCY

We provide a comprehensive analysis of computational costs, including detailed comparisons of training time, inference time, and GFLOPs. These results verify the inherent efficiency of our approach and demonstrate that our significant performance gains are primarily attributable to superior methodological design rather than increased computational overhead.

928
929 Table 14: **Comparison of Training Time, Inference Time, and FLOPs with Dense Model and**
930 **MoE baselines under Rectified Flow** on ImageNet (256×256) after 500K training steps.
931

Model (500K)	#Experts	# Activated Params.	# Total Params.	# Training Time	# Inference Time (cfg=1.5)	# GFLOPs
Dense-DiT-L-Flow	-	458M	458M	166.67 GPU Hours	1.25 sec/sample	77.50
DiT-MoE-L-Flow	E8A1S0U0	458M	1.163B	333.33 GPU Hours	1.49 sec/sample	77.50
EC-DiT-L-Flow	E8A1S0U0	458M	1.163B	277.78 GPU Hours	1.49 sec/sample	77.50
DiffMoE-L-Flow	E8A1S0U0	458M	1.095B	333.33 GPU Hours	1.64 sec/sample	82.53
ProMoE-L-Flow	E14A1S1U1	458M	1.063B	333.33 GPU Hours	1.53 sec/sample	77.72

C.8 COMPARISON WITH OTHER UNSUPERVISED CLUSTERING METHODS

We conduct additional experiments comparing our ProMoE with a GMM-based routing baseline on the large (L) model. The results in Tab. 15 show that ProMoE consistently outperforms the GMM-based routing baseline across all metrics (FID and IS) and CFG scales under both top-1 (E14A1) and top-3 (E14A3) activation settings. We argue that GMM, like other clustering-based routing schemes, relies purely on implicit learning and lacks explicit guidance, which is insufficient for robust expert specialization in vision MoE, especially for large-scale models. In contrast, ProMoE achieves better performance, highlighting the robustness and effectiveness of our explicit semantic routing guidance strategies.

941
942
943
944 Table 15: **Quantitative comparison with GMM-based routing baseline under Rectified Flow** on
945 **ImageNet (256×256)** after 500K training steps, evaluated with CFG scales of 1.0 and 1.5.
946

Model (500K)	#Experts	# Activated Params.	# Total Params.	cfg=1.0		cfg=1.5	
				FID50K ↓	IS ↑	FID50K ↓	IS ↑
GMM-based Routing	E14A1S1U1	458M	1.063B	15.56	84.94	3.76	206.05
ProMoE-L-Flow	E14A1S1U1	458M	1.063B	11.61	100.82	2.79	244.21
GMM-based Routing	E14A3S1U1	558M	1.063B	15.44	86.09	3.72	208.15
ProMoE-L-Flow	E14A3S1U1	558M	1.063B	11.40	103.78	2.72	246.96

D MORE RESULTS ON SCALING BEHAVIOR

D.1 SCALING MODEL SIZE

Fig. 3(b) shows FID results for model size scaling at CFG=1.0. We additionally report FID results at CFG=1.5 and Inception Score at CFG=1.0 and 1.5, as shown in Fig. 9. ProMoE consistently outperforms its dense counterparts, and ProMoE-L-Flow surpasses Dense-XL-Flow in terms of FID and Inception Score at both CFG=1.0 and 1.5, despite using fewer activated parameters. These observations are consistent with those in Sec. 5.2.

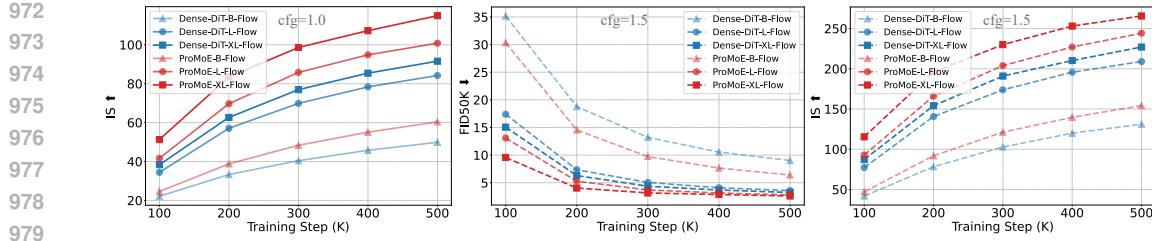


Figure 9: More scaling results on model size.

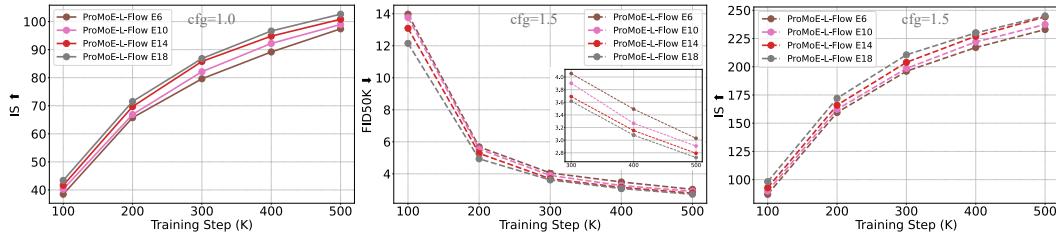


Figure 10: More scaling results on the number of experts.

D.2 SCALING THE NUMBER OF EXPERTS

We report Inception Score for scaling the number of experts at $\text{CFG}=1.0$ and 1.5 , and FID at $\text{CFG}=1.5$, as shown in Fig. 10. Performance of ProMoE improves as the number of experts increases, demonstrating the scalability of our approach.

D.3 SCALING THE NUMBER OF EXPERTS ON K-MEANS-BASED ROUTING

We conduct an additional experiment varying the expert number for K-means-based routing (unconditional routing is not used here). As shown in Tab. 16, K-means-based routing is highly sensitive to the expert number and fails to scale effectively: increasing experts yields fluctuating performance with no clear gain, despite the increased parameter count. This contrast further highlights the scalability and robustness of our ProMoE compared to clustering-based routing.

Table 16: **Ablation of expert number in K-Means-based Routing on base model size**, trained with Rectified Flow on ImageNet (256×256) for 500K steps, evaluated with $\text{CFG}=1.5$. The setup uses 1 activated expert and 1 shared expert.

Number of Experts	3	5	9	13	21
FID 10K \downarrow	12.55	11.52	12.43	11.41	12.15

E MORE ABLATION STUDIES

E.1 ABLATION ON LOAD-BALANCING LOSS

As discussed in Sec. 4.3, the push-away term in our routing contrastive learning (RCL) serves a role similar to load balancing. We verify this with an ablation in Tab. 17. Adding a conventional load-balancing loss on top of our method slightly degrades performance. We attribute this to RCL’s explicit semantic guidance: it leverages token semantics to maintain diverse expert assignments, whereas load balancing loss only regularizes token counts and ignores assignment quality and semantics, thereby interfering with RCL. These results indicate that the semantic routing guidance from RCL is more effective than traditional load-balancing losses.

1026
 1027 **Table 17: Ablation study of using load-balancing loss under Rectified Flow on ImageNet**
 1028 (256×256) after 500K training steps.

Model (500K)	cfg=1.0		cfg=1.5	
	FID50K ↓	IS ↑	FID50K ↓	IS ↑
w/ load-balancing loss	24.98	59.04	6.53	151.37
w/o load-balancing loss	24.44	60.38	6.39	154.21

1033
 1034 **E.2 ABLATION ON LOSS WEIGHT OF ROUTING CONTRASTIVE LEARNING**

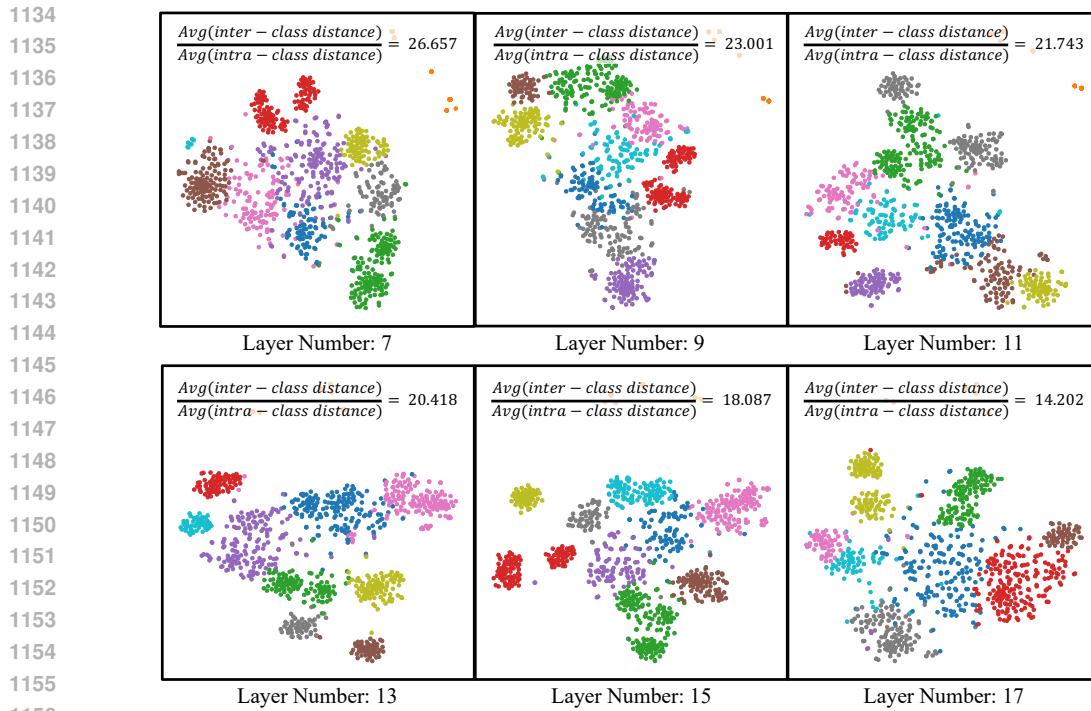
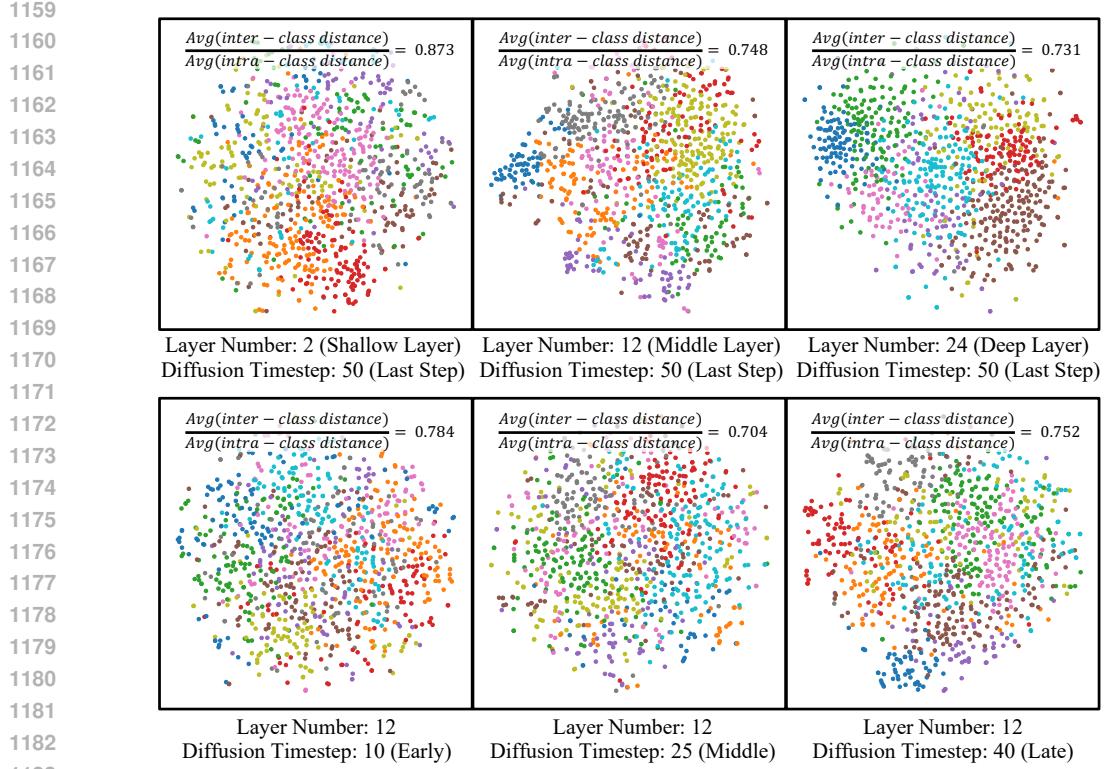
1035 We vary the loss weight of routing contrastive learning (RCL) and report the results in Tab. 18. We
 1036 observe that RCL is insensitive to the loss weight, as increasing it from 1 to 10 yields only marginal
 1037 gains. Therefore, we use a default weight of 1 for all experiments, except for ProMoE-B-DDPM,
 1038 which uses a weight of 10 based on this ablation study.

1041 **Table 18: Ablation study of λ_{RCL} in ProMoE-B-DDPM on ImageNet (256×256) after 500K train-
 1042 ing steps.**

λ_{RCL} (500K)	cfg=1.0		cfg=1.5	
	FID50K ↓	IS ↑	FID50K ↓	IS ↑
1	40.48	36.77	18.34	80.07
2	<u>40.37</u>	<u>37.46</u>	<u>18.01</u>	<u>81.88</u>
5	40.33	37.08	18.03	81.1
10	<u>40.37</u>	37.84	17.90	82.65

1043 **F USAGE OF LARGE LANGUAGE MODELS (LLMs)**

1051 In accordance with the ICLR 2026 policy, we report our use of a large language model (LLM)
 1052 in preparing this manuscript. The LLM’s role was strictly confined to language polishing, such
 1053 as correcting grammar, refining wording, and improving readability. All scientific contributions,
 1054 including the ideation, methodology, experimental design, and final conclusions, are entirely our
 1055 own. The LLM was used solely as a writing-enhancement tool and did not contribute to the scientific
 1056 aspects of the work. We have reviewed the manuscript and take full responsibility for its content.

Figure 11: **More t-SNE visualization results of Llama-3 8B** on different layers.Figure 12: **More t-SNE visualization results of DiT-XL/2** on different layers and diffusion timesteps.

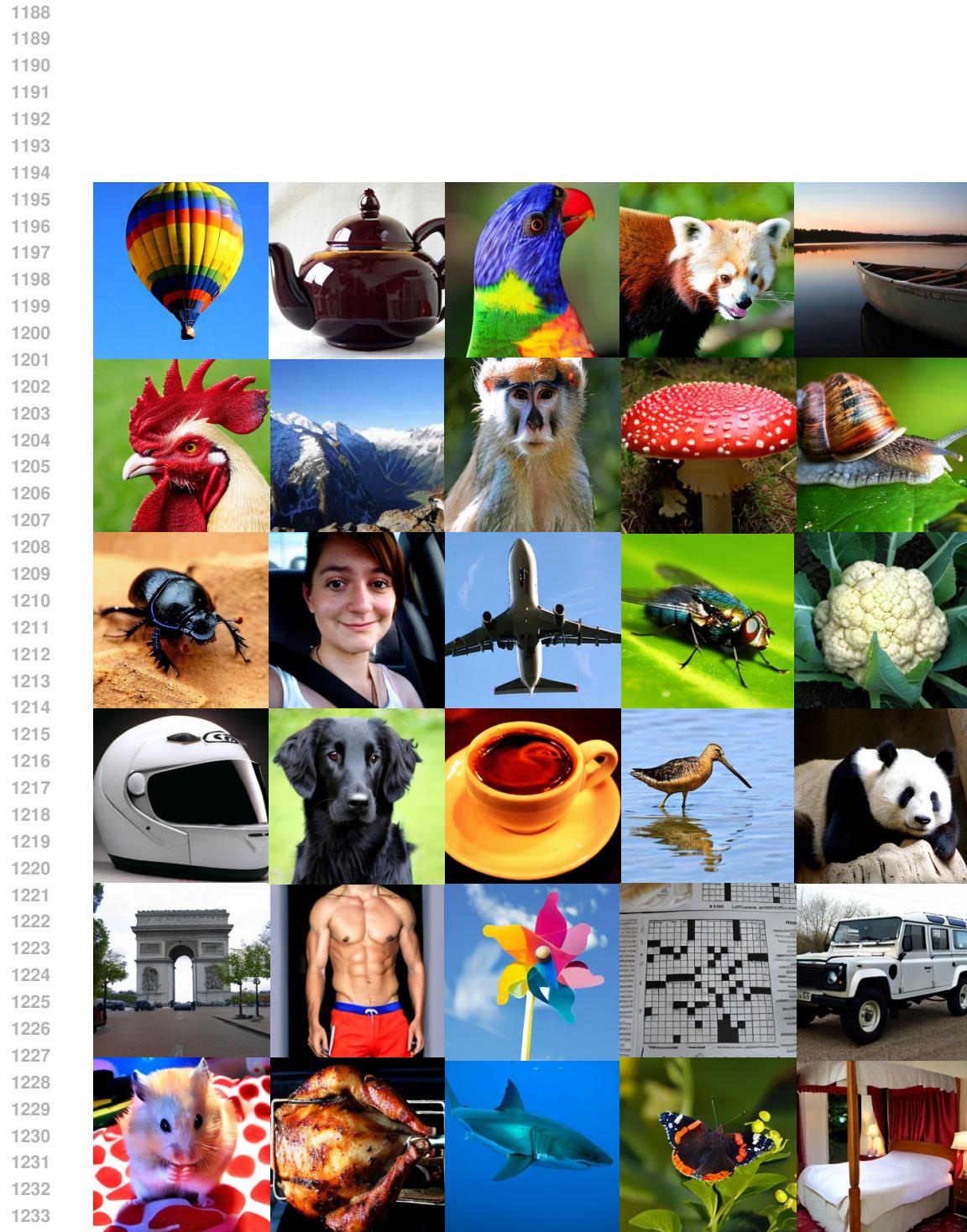


Figure 13: More samples generated by ProMoE-XL-Flow after 2M iterations with cfg=4.0.

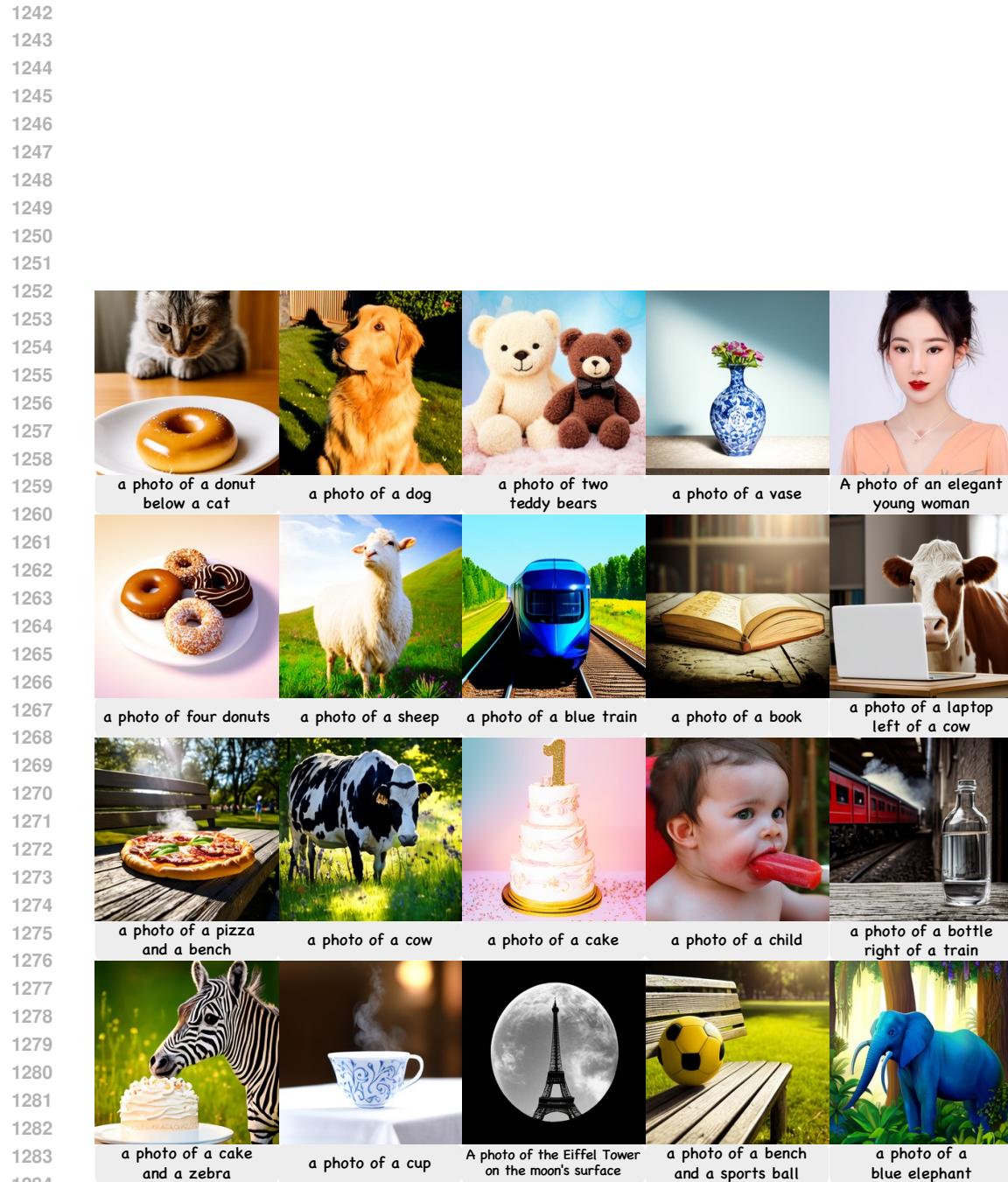


Figure 14: Samples generated by ProMoE on the Text-to-Image task.