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Abstract

Early-exiting predictions in a deep Transformer001
network evolve from layer to layer in a some-002
what smooth process. This has been exploited003
in language modeling to improve factuality004
(Chuang et al., 2023), with the observation that005
factual associations emerge in later layers. We006
find a similar process multiway emotion clas-007
sification, motivating Linear Layer Extrapola-008
tion, which finds stable improvements by re-009
casting contrastive inference as linear extrapo-010
lation. Experiments across multiple models and011
emotion classification datasets find that Lin-012
ear Layer Extrapolation outperforms standard013
classification on fine-grained emotion analysis014
tasks.015

1 Introduction016

Despite the success of large language models on017

a variety of NLP tasks (Brown et al., 2020; Wei018

et al., 2022), they still struggle with commonsense019

reasoning (Fu et al., 2023), often hallucinate incor-020

rect information (Ji et al., 2023) and struggle with021

factual recall (Wang et al., 2023).022

Recently, contrastive methods, which maximize023

differences between a desirable "expert" and un-024

desirable "amateur" model, have been proposed to025

address these issues (Li et al., 2022; O’Brien and026

Lewis, 2023; Shi et al., 2023). In particular, de-027

coding by contrasting layers (DoLa) (Chuang et al.,028

2023) improves factuality by contrasting model029

outputs against early-exit predictions from interme-030

diate layers of the same model. DoLa works under031

the premise that later layers encode factuality, and032

thus late-emerging changes to predictions likely033

update towards more factual predictions.034

Recent work has demonstrated that intermediate035

layer features can also effectively quantify emo-036

tions in text (Sharma et al., 2023). Moreover, early-037

exiting experiments indicated that distinctions be-038

tween interrelated emotions also tend to evolve039

gradually across layers (see Appendix C).040

Figure 1: Linearly extrapolating class scores from am-
ateur and expert layers to a nonexistent future layer
correctly flips the output from sadness to pessimism.

Identifying emotions in text is crucial in NLP 041

for applications ranging from detecting harmful be- 042

havior to enhancing conversational agents (Zhang 043

et al., 2023; Barbieri et al., 2020). While many 044

systems often focus on mutually exclusive emo- 045

tions like joy or sadness, fine-grained emotions like 046

grief and remorse are more nuanced and distinct. 047

Many language-model systems still struggle to clas- 048

sify fine-grained emotions and opinions (Demszky 049

et al., 2020; Zhang et al., 2023). Given this, we 050

explore DoLa-style layer contrast to improve fine- 051

grained emotion classification. 052

The main contributions of the paper are: 053

1. Demonstrating the merits of layer contrast on 054

fine-grained emotion classification. 055

2. Recasting contrastive inference as linear ex- 056

trapolation to obtain more stable performance 057

with a dynamic contrastive penalty. 058

2 Related Work 059

Fine-grained Emotion Analysis: Much work has 060

been done in identifying text sentiment (Rosenthal 061

et al., 2017; Socher et al., 2013) and understanding 062
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emotions in social media interactions (Mohammad063

et al., 2018; Chatterjee et al., 2019; Meaney et al.,064

2021). However, these efforts often focus on a065

limited set of emotions. Recent datasets on fine-066

grained emotion analysis (Demszky et al., 2020;067

Rashkin et al., 2019) indicate significant scope for068

improvement in this area.069

Early Exiting: Early-exiting predictions are ob-070

tained by applying the classification head of a071

model to the residual stream earlier in the network.072

These have been used to accelerate inference and073

dynamically allocate compute on a per-input basis074

(Teerapittayanon et al., 2016; Elbayad et al., 2020;075

Schuster et al., 2022).076

Contrastive Steering: Contrastive methods opti-077

mize the difference in predictions between a favor-078

able “expert" and an unfavorable “amateur," to steer079

text decoding in language models. (Liu et al., 2021)080

GeDi (Krause et al., 2020) contrasts between class-081

specific control codes to improve text-conditioned082

factuality and emotion control. Coherence boost-083

ing (Malkin et al., 2021) provides the language084

model with only the final k tokens of the prompt085

to obtain amateur scores, encouraging longer-term086

coherence over locality. Contrastive Decoding (Li087

et al., 2022; O’Brien and Lewis, 2023) improves088

long-form generation and reasoning ability by con-089

trasting between large and small models of the090

same family. Other works use CD-like methods to091

reduce model toxicity, surface biases and increase092

faithfulness to a provided context. (Liu et al., 2021;093

Yona et al., 2023; Shi et al., 2023)094

3 Method095

Here, we define the main components of CD and096

DoLa, along with our proposed method for dynam-097

ically selecting contrastive strength. We use early098

exit probability distributions to choose an amateur099

layer, contrasting its predictions it against the fi-100

nal layer (the expert). We apply mask candidate101

classes based on a plausibility constraint to filter102

out low-probability labels. We experiment with103

two methods for determining contrastive strength:104

static β and dynamic β. Details of each component105

are discussed next.106

3.1 Contrastive Classification107

We use the formulation of contrastive decoding108

defined by O’Brien and Lewis (2023). Let pa be109

the amateur probability scores and pe be the ex-110

pert probability scores. We define the contrastive111

classification function as: 112

f
(i)
CC =

{
(1 + β) log pie − β log pia i ∈ Vvalid

−∞ i ̸∈ Vvalid

113

where β is the strength of the contrastive penalty 114

and Vvalid is the adaptive plausibility constraint 115

(Li et al., 2022) which defines the set of candidate 116

classes on which contrastive action is applied. Let 117

pce be the expert probability for class c ∈ C. Then 118

Vvalid is defined as: 119

Vvalid = { c ∈ C, pce ≥ αmax
c ∈ C

pce } 120

α here is a hyperparameter that gates labels by 121

the scores assigned to them by the expert, protect- 122

ing against instabilities when dividing the scores 123

of two low-probability candidates admitting only 124

high-probability labels. argmaxi(f
(i)
CC) is taken as 125

the predicted label. 126

3.2 Dynamic premature layer selection 127

The central challenge with inference-time con- 128

trastive methods is the selection of a good amateur 129

model. The model must be similar enough to the 130

expert to model its error distribution, but not so 131

powerful that desirable behavior is penalized. 132

Contrasting against early-exiting layers provides 133

many potential amateurs to choose from. DoLa 134

selects the “amateur" from a pre-validated set of 135

earlier layers, selecting the one with the most dif- 136

ferent early-exit token distribution from the final 137

predictions, as measured by Jensen-Shannon Diver- 138

gence. In short, the amateur layer ℓa is chosen as 139

follows: 140

ℓa = argmax
ℓ∈Lvalid

d(P(ℓ),P(ℓfinal)) 141

where Lvalid is the pre-validated set of layers, P 142

maps a latent layer to its early-exited softmax dis- 143

tribution, and d is some divergence metric between 144

two probability distributions. 145

The original paper uses Jensen-Shannon Diver- 146

gence (JSD) for d, but we find slightly better per- 147

formance with cosine distance. 148

3.3 Linear Layer Extrapolation 149

Consider the classification of a single sample x to 150

c ∈ C, where C := {1, 2, · · · , |C|}. For this sam- 151

ple, let fc(i) be the un-normalized score assigned 152

by the model to class c by early-exiting at layer i. 153

fc is defined over the discrete space C. 154
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Let ℓa be the index of the selected early-exit155

amateur layer, ℓf > ℓa be the index of the final156

model layer, and ℓt be the desired post-final layer157

to be linearly approximated. Note that ℓt need not158

be discrete.159

Now let f̂c be the linear function passing through160

(ℓa, f(ℓa)) and (ℓf , f(ℓf )).161

f̂c(ℓ) = f(ℓf ) +

(
f(ℓf )− f(ℓa)

ℓf − ℓa

)
(ℓ− ℓf )

Now we can compare this extrapolative form162

against the common form of contrastive decoding163

in order to solve for the contrastive strength, β.164

f̂c(ℓt) = (1 + β)f(ℓf )− βf(ℓa)165

Combining the two, we obtain166

β =
ℓt − ℓf
ℓf − ℓa

(1)167

DoLa keeps β fixed, implicitly allowing ℓt to168

vary based as different earlier layers ℓa are adap-169

tively chosen. We find more stable performance by170

fixing ℓt and modifying β based on the earlier cho-171

sen layer ℓa, a process which we refer to as Linear172

Layer Extrapolation. Choosing an earlier layer will173

result in a reduced β value, and vice versa.174

4 Experimental Setup175

4.1 Datasets and Models176

In our experiments, we utilize four fine-grained177

datasets: goEmotions, SuperTweetEval (tweetEmo-178

tion, tweetHate), and EmpatheticDialogues. De-179

tailed descriptions of each dataset can be found180

in Appendix D. We evaluate performance using181

precision, recall, and F1 scores. Our experiments182

employ Flan-T5(L, XL) (Chung et al., 2022) and183

DeBERTa(L, XL) (He et al., 2021). For DeBERTa-184

xlarge, we fine-tuned after freezing the initial lay-185

ers (34/48); for DeBERTa-large, we fine-tuned all186

layers. For Flan-T5, we fine-tuned both large and187

xlarge variants after freezing the first (14/24) layers.188

We employed the Adam optimizer (Kingma and Ba,189

2014) with learning rates ranging from 1e-6 to 5e-6190

for DeBERTa and 1e-4 to 5e-4 for Flan-T5.191

4.2 Decoding Hyperparameters:192

Amateur layer: For selecting the amateur layer,193

we use the dynamic amateur layer selection as194

defined in Section 3.2. We restrict the amateur195

layer search space to only the finetuned layers. Let196

L = {ℓk, ℓk+1, ℓk+2, · · · , ℓf} be a subset of the197

finetuned layers, where k is a hyperparameter defin- 198

ing the start of the search space and, ℓf is the final 199

layer of the network. In our experiments, we sweep 200

through the values of k starting from the first fine- 201

tuned layer and pick the one that results in the best 202

performance. Results of the hyperparameter sweep 203

can be found in Appendix A. 204

Contrastive Strength (β): We experiment with 205

various fixed values of β between 0 to 1, finding 206

that the best β varies over the selection of model 207

and dataset. In general, values outside the range of 208

(0, 1) harmed performance. 209

Dynamic Contrastive Strength (β): As discussed 210

in Section 3.3, the post-contrast output is equivalent 211

to a linear extrapolation between the amateur and 212

the expert layer for a future layer(ℓt). We use that 213

idea to dynamically decide the value of contrastive 214

strength β. We use ℓt as a hyperparameter and 215

then calculate β as a function of amateur layer ℓa 216

and expert layer ℓf , where t ∈ (f, f + 25) in our 217

experiments. 218

5 Results 219

Table 1 contains the results of our experiments. 220

Traditional vs Contrastive Classification: We 221

observe that contrastive classification improves the 222

performance significantly in terms of Recall and 223

F1 score. This trend holds for all models used in 224

our experiments. 225

β vs Dynamic β: Dynamic β selection tends to 226

improve the overall performance over the static β 227

for F1 and recall scores. Figure 2a shows the trend 228

of recall scores across different models for dynamic 229

β selection on the goEmotions dataset. Figure 2b 230

shows the trend of F1 score across different models 231

against dynamic β for the tweetEmotion dataset. 232

Additionally, we observe that dynamic β is robust 233

to changes in the hyperparameter k, which defines 234

the start of the search space across earlier amateur 235

layers. Figure 3 shows no clear or stable relation- 236

ship between k and end performance when varying 237

β values. However, switching to linear layer extrap- 238

olation creates a constant trend with minor variance 239

as k is varied, a trend that holds for multiple values 240

of extrapolative layer t. This can be interpreted 241

as stabilizing the contrastive method to be more 242

robust to the dynamic choice of amateur layer. 243

goEmotions: We see a general improvement 244

across all models for the recall and F1 scores. Anal- 245

ysis showed that key improvement in recall was due 246

to flipping of the neutral samples to other under- 247
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(a) (b) (c)

Figure 2: (a) Recall vs. ℓt on goEmotions; increasing the extrapolative strength improves recall. (b) F1 vs. ℓt on
tweetEmotions exhibits a similar trend (c) F1 vs. k for tweetEmotion using DeBERTa-xl; including layers 40 to 42
in the valid layers is found to be particularly useful.

Model Type EmpatheticDialogue tweetHate tweetEmotion goEmotions Avg. F1
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Flan-T5-large ✗ .551 .556 .543 .565 .577 .570 .298 .296 .286 .521 .469 .478 .469
Flan-T5-large ✓ .551 .557 .543 .579 .606 .590 .300 .299 .291 .513 .485 .487 .478
Flan-T5-large β .551 .557 .543 .590 .636 .610 .349 .311 .309 .493 .502 .489 .488

Flan-T5-xl ✗ .582 .569 .565 .566 .566 .559 .320 .300 .302 .503 .456 .465 .473
Flan-T5-xl ✓ .581 .570 .565 .690 .603 .615 .318 .314 .313 .499 .494 .486 .495
Flan-T5-xl β .582 .570 .565 .695 .605 .619 .316 .314 .313 .513 .494 .490 .497

DeBERTa-large ✗ .614 .601 .592 .647 .601 .622 .322 .299 .301 .570 .521 .534 .512
DeBERTa-large ✓ .616 .606 .597 .676 .643 .658 .313 .311 .308 .562 .536 .540 .526
DeBERTa-large β .618 .609 .601 .708 .675 .690 .312 .331 .319 .558 .543 .541 .538

DeBERTa-xl ✗ .604 .605 .590 .607 .596 .599 .324 .300 .303 .529 .493 .502 .498
DeBERTa-xl ✓ .610 .606 .594 .727 .668 .686 .335 .324 .325 .509 .530 .514 .523
DeBERTa-xl β .614 .609 .597 .725 .668 .685 .333 .340 .334 .505 .555 .522 .535

Table 1: Results of our experiments. ✗, ✓, and β each represent normal classification, static β, and dynamic β

represented classes. Appendix B shows the statis-248

tics of the flipped labels.249

tweetEmotion: Contrastive classification with250

dynamic β performs significantly better over tradi-251

tional classification. We see a general increase in252

recall and F1 with a slight harm to Precision. We253

also observed the emotions corrected by layer con-254

trast were highly correlated. Appendix B contains255

more details about their statistics.256

tweetHate: We see the maximum improvement257

in the performance of this dataset across all models.258

This improvement owes in large part to corrected259

predictions on underrepresented classes.260

EmpatheticDialogue: For this dataset, we only261

see a slight increase in performance using the262

DeBERTa-xl model. Analyzing the probability263

distributions across layers, we observed no major264

change in probability distribution for different emo-265

tions across layers. The probability was distributed266

over a single label, increasing gradually across lay-267

ers. This led to minimal contribution from layer268

contrast.269

Effect of amateur layer selection: We use a270

bucket of layers for amateur layer selection de-271

fined by hyperparameter k. Figure 2c shows the272

trend of k against F1 using the DeBERTa-xl for 273

tweetEmotions dataset. We observe that the perfor- 274

mance generally increases up to a layer where the 275

benefit of contrastive action is maximum, followed 276

by a drop in performance. Upon evaluating early- 277

exiting on intermediate layers, we observed that 278

some layers are more adept at identifying specific 279

classes than others, providing a variety of skills to 280

contrast against for improved performance. 281

6 Conclusion 282

We propose a linear extrapolation approach for 283

dynamically determining contrastive strength in 284

layerwise contrastive decoding. Applied to fine- 285

grained emotion classification tasks, this method 286

enhances classifier performance by effectively ad- 287

dressing under-represented classes.This strength- 288

ens the promise of layer-contrast methods in do- 289

mains other than text generation, and provides a 290

technical contribution that reduces the variance of 291

the method with respect to a core hyperparameter 292

k, encouraging further research into how best to 293

exploit the layerwise emergence of textual under- 294

standing to improve performance on a wide range 295

of NLP tasks. 296
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7 Limitations297

Our study is restricted to fine-grained emotion clas-298

sification with relatively small models (FLAN-T5299

and DeBERTa). It remains to be seen whether our300

analysis of extrapolative classification will hold for301

prompt-based classification with larger models or302

across other datasets. We also found contrastive303

performance for smaller models to be sensitive to304

finetuning hyperparameters. Additionally, based305

on our results on EmpatheticDialogue we observe306

that CD tends to work better when model uncer-307

tainty is high i.e. probability distribution across308

labels changes more often across layers as shown309

in Figure 4. Extending the method to identify and310

better handle these cases is left to future work.311
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A Hyperparameter Sweep for k485

Table 2 contains the values of hyperparameter k486

used for reporting the results. We also show the487

effect of k on performance for the goEmotions488

dataset using both β and dynamic β in Figure 3.489

Model goEmotions tweetEmotion tweetHate Empathetic
Dialogue

Flan-T5-large 19 20 17 15
Flan-T5-xl 15 15 17 15

DeBERTa-large 15 19 17 19
DeBERTa-xl 39 41 38 43

Table 2: Our choice of hyperparameter k for defining the
amateur search space used in the final results. The final
layer is 48 for DeBERTa-xl and 23 for the remaining
models.

(a) β

(b) Dynamic β

Figure 3: Effect of k against β and dynamic β for goE-
motions dataset using DeBERTa-xlarge. The trend is
more stable with dynamic β.

B Analysis of corrected samples490

Table 3 shows the frequency of correctly flipped491

samples (true positives) vs. correctly flipped sam-492

ples (positives) from the neutral class (wrongly pre- 493

dicted as neutral). We observe that neutral forms 494

the majority of samples flipped to other under- 495

represented classes. Table 4 contains the count of 496

emotions that were correctly flipped from neutral. 497

Model Total Neutral
Flan-T5-large 105 80/105

Flan-T5-xl 72 57/72
DeBERTa-large 74 51/74

DeBERTa-xl 164 130/164

Table 3: Count of correctly flipped samples (all emo-
tions classes) vs. correctly flipped samples only from
the neutral class.

From To Count
neutral disapproval 22
neutral curiosity 19
neutral annoyance 13
neutral admiration 12
neutral approval 11

Table 4: Count of samples moved from neutral to other
classes for goEMotions using DeBERTa-xl.

We also report the most frequent samples cor- 498

rected for the tweetEmotion dataset using layer 499

contrast (dynamic β). We see that the emotions 500

for the pair of corrected samples were highly corre- 501

lated.

Model Emotion

Flan-T5-large
sadness 7→ pessimism: 7

joy 7→ anticipation: 6

Flan-T5-xl
sadness 7→ pessimism: 19

anger 7→ disgust: 17

deBERTa-large
anger 7→ disgust: 15
joy 7→ anticipation: 8

deBERTa-xl
sadness 7→ pessimism: 20

joy 7→ optimism: 7

Table 5: Count of top 2 emotion pairs that were con-
trastively flipped for each model.

502

C Knowledge pattern across layers 503

Fine-grained emotion analysis is challenging due 504

to non-mutually exclusive labels and similar po- 505

larity among different emotions, making it hard to 506

accurately classify them. Class imbalance further 507

biases the model towards more frequent emotions. 508

To study the change in probability distribution 509

for emotions across layers, we performed early ex- 510

iting on different layers of our fine-tuned models 511
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(a)

(b)

Figure 4: Probability distribution across the finetuned layers of DeBERTa-xl for a sample from each (a) goEmotions
and (b) tweetEmotion dataset. In the goEmotions sample, the model initially identifies the label as neutral but
increases the probabilities assigned to sadness and disappointment (the true label) over subsequent layers. For
the tweetEmotion sample, the probability distribution changes across layers and the model fails to assign a high
probability to a single emotion.

to visualize how the distributions across emotions512

evolve. We observed that for some emotions, the513

model makes a decision very early, passing it along514

the layers without much change. For others, the515

distribution tends to change in later layers, suggest-516

ing that the model is still adding information. We517

observed this pattern mostly around classes that518

are rarer in the training data or more closely re- 519

lated to each other. Figure 4 shows the change in 520

distribution for two examples. 521

Drawing from these observations, we combine 522

the idea of contrastive decoding and DoLa for fine- 523

grained emotion analysis. We build on DoLa, using 524

the early exited intermediate layers as amateur mod- 525
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els. We then use contrastive action against the final526

layer distribution chosen as our expert model. Addi-527

tionally, we deduce a method to dynamically select528

the contrastive strength which we show leads to529

better performance on fine-grained emotion tasks.530

D Dataset Details531

goEmotions (Demszky et al., 2020) introduces a532

new emotion taxonomy of emotions named goEmo-533

tions consisting of 28 emotions with neutral. The534

27 emotion classes are fine-grained over 7 emotions535

defined in Ekman taxonomy. It contains roughly536

58k samples overcoming the problems with ear-537

lier emotion datasets which were small in size and538

covered a very limited taxonomy. The dataset con-539

tained a few multilabel data-points, which we filter540

out for our experiments.541

SuperTweetEval (Antypas et al., 2023) aims to542

provide a unified benchmark to evaluate the per-543

formance of models on NLP tasks across social544

media. It is a heterogeneous collection of multiple545

datasets spanning NER, QA, and classification. For546

our experiments, we use tweetEmotion and tweet-547

Hate focused on multi-class classification, with548

each dataset containing 12 and 8 classes.549

EmpatheticDialogues (Rashkin et al., 2019)550

was introduced as a benchmark for training and551

evaluating models and their capability to under-552

stand and acknowledge empathetic text. The553

dataset contains conversations distributed across554

32 emotions. We use the first text of the conver-555

sation and the corresponding emotion for defining556

our fine-grained classification task.557

E Computational Resources Estimate558

Early compute was run on freely available Cloud559

T4 GPUs. Fine-tuning and later experiments were560

run on a cluster of A6000 GPUs, with a maximum561

of 8 used at a single time.562

Fine-tuning all models across all datasets takes563

roughly 2 GPU-hours. Hyperparameter searches564

are performed at classification time, which takes565

very little compute. A very rough estimate for566

GPU-hours in this project is 50.567
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