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Abstract—The fractional Fourier transform, denoted by Fθ,
which is a generalization of the Fourier transform, depends
on a parameter 0 ≤ θ ≤ π/2, so that when θ = 0, F0 is
the identity transformation and when θ = π/2, Fπ/2 is the
standard Fourier transform. The transform has been extended to
higher dimensions by taking tensor products of one-dimensional
transforms.

In 2018 the author of this article introduced a novel gener-
alization of the fractional Fourier transform to two dimensions,
which is called the coupled fractional Fourier transform and is
denoted by Fα,β . This transform depends on two independent
angles α and β, with 0 ≤ α, β ≤ π/2, so that F0,0 is the
identity transformation and Fπ/2,π/2, is the two-dimensional
Fourier transform. For other values of α and β, we obtain
other interesting configurations of the transform. One immediate
application of this transform is in time-frequency representation
because of its close relationship to the Wigner distribution
function.

The goal of this article is to extend the transform to a space
of generalized functions and then introduce a sampling theorem
for signals that are bandlimited in the domain of the transform.

The Fourier transform is an important mathematical tool
used in many disciplines from mathematics to physics and
engineering. In 1980 V. Namais [3]introduced the concept of
Fourier transform of fractional order in which the ordinary
Fourier transform is regarded as a transform of order one and
the identity transform as a transform of order zero, and what is
in between is called fractional Fourier transform. Moreover, he
sought to maintain the additive property so that two successive
applications of the transform of order one half would yield the
ordinary Fourier transform.

More explicitly, the fractional Fourier transform can be
viewed as a family of transformations, {Fα} indexed by a
parameter α, with 0 ≤ α ≤ 1, such that F0 is the identity
transformation and F1, is the standard Fourier transformation.
That is

F0[f ] = f, F1[f ] = f̂ ,

where f̂ is the Fourier transform of f, and, in addition,
FαFβ = Fα+β . The range of the parameter does not have
to be the interval [0, 1] because this interval can be mapped
by a simple substitution into the interval [a, b], a < b.
Because of its periodicity, the fractional Fourier transform is
parameterized by an angle 0 ≤ θ ≤ 2π, where F0, is the
identity transformation and the conventional Fourier transform
is obtained when θ = π/2.

The fractional Fourier Transform or FrFT of a function
f(t) ∈ L1(R), is defined by [1], [2], [4],

Fθ [f ] (x) = Fθ(x) =

∫ ∞
−∞

f(t)Kθ (x, t) dt, (1)

where

Kθ(x, t) =

 c(θ) · e−i[a(θ)(t
2+x2)−b(θ)xt], θ 6= pπ

δ(t− x), θ = 2pπ
δ(t+ x), θ = (2p− 1)π

(2)

is the transformation kernel with

a(θ) = cot θ/2, b(θ) = csc θ, c(θ) =
√

1+i cot θ
2π .

The fractional Fourier transform in n-variables is defined by
taking the tensor product of n copies of the one-dimensional
fractional Fourier transforms [4]. That is

Fθ1,··· ,θn(ω1, · · · , ωn)

=

∫
R
· · ·
∫
R
Kθ1 (t1, ω1) · · ·Kθn (tn, ωn)

× f(t1, · · · , tn)dt1 · · · dtn,

where Kθi (ti, ωi) , i = 1, 2, · · · , n, is the kernel of the one-
dimensional fractional Fourier transform given by (2)

In particular, in two dimensions we have

Fθ1,θ2(ω1, ω2) =

∫
R

∫
R
Kθ1 (t1, ω1)Kθ2 (t2, ω2)

f(t1, t2)dt1dt2,

In 2020 a novel two-dimensional fractional Fourier trans-
form Fα,β that is not a tensor product of two one-dimensional
fractional Fourier transforms was introduced [5], [6]. Unlike
in the tensor product case, this transform does not depend on
the two angles α and β separately but depends on the the
sum and the difference of the two angles. This is the reason
this transform is sometime called the coupled two-dimensional
fractional Fourier transform (CFrFT).

Now we introduce the definition of the two-dimensional
fractional Fourier transform.

Definition 1. For a function f ∈ L1
(
R2
)

we define the two-
dimensional fractional Fourier transform as

Fα,β (z1, z1) =

∫
R2

kα,β (z1, z1, z2, z2) f(z2, z2)dz2



where γ = (α+ β)/2 6= nπ and δ = (α− β)/2. Or

Fα,β (u, v) =

∫
R2

kα,β (x, y, u, v) f(x, y)dxdy, (3)

where z1 = u+ iv, z2 = x+ iy, where

kα,β (z1, z1, z2, z2)

= d(γ) exp
{
−a(γ)

(
x2 + y2 + u2 + v2

)
+ b(γ, δ) (ux+ vy) + c(γ, δ) (vx− uy)} , (4)

where

a(γ) = i
cot γ

2
, b(γ, δ) =

i cos δ

sin γ
(5)

c(γ, δ) =
i sin δ

sin γ
, d(γ) =

ie−iγ

2π sin γ
. (6)

From now on we will write a, b, c, d instead of
a(γ), b(γ, δ), c(γ, δ), d(γ) for short. We will also use the
notation ã, b̃, c̃, d̃ to denote the same quantities but without the
imaginary number i =

√
−1, that is, a = iã, b = ib̃, .. etc. The

definition may be extended to f ∈ L2
(
R2
)

in the usual way.
When α = β, δ = 0, and γ = α and the two-dimensional
fraction Fourier transform becomes a tensor product of two
one-dimensional fractional Fourier transforms, i.e.,

Fα,α (u, v) = d(α)

∫
R2

exp {−a(α)

×
(
x2 + y2 + u2 + v2

)
+ b(α) (ux+ vy)} f(x, y)dxdy,

where a(α) = i cotα/2, b(α) = i cscα, which is the standard
fractional Fourier transform defined in (1). Furthermore, if α =
β = π/2, the two-dimensional fraction Fourier transforms
reduces to the standard two-dimensional Fourier transform.

I. EXTENSION OF THE CFRFT

The coupled fractional Fourier transform is defined for f ∈
Lp(R2), 1 ≤ p ≤ 2. In this section we extend the transform
to a space of generalized functions. The following lemma will
be needed.

Lemma 1. To simplify the notation, let k = kα,β(x, y;u, v) be
the kernel of the coupled fractional Fourier transform given
by Eq. (4), (5) and (6). We have

∂m+nk

∂um∂vn
= k [(−2au)m + Pm(x, y;u)]

×
[
(−2av)n + P̃n(x, y; v)

]
,

where Pm(x, y;u) and P̃n(x, y; v) are polynomials of degree
m and n in x and y and of degree m− 1 in u and n− 1 in
v, respectively.

Proof. It is easy to see that

∂k

∂u
= kH,

∂k

∂v
= kH̃,

where

H = H(x, y;u) = −2au+ η(x, y), η(x, y) = bx− cy,

and
H̃ = −2av + η̃(x, y), η̃(x, y) = by + cx.

Hence
∂2k

∂u2
− 2ak + kH2 = k

(
4a2u2 + η2 − 4auη − 2a

)
= k

[
(−2au)2 + P2(x, y;u)

]
,

where P2(x, y;u) = η2−4auη−2a is a polynomial of degree
2 in x and y and of degree 1 in u. In general,

∂nk

∂un
= k [(−2au)n + Pn(x, y;u)] ,

where Pn(x, y;u) is a polynomial of degree n in x and y and
of degree n− 1 in u.

We prove it by induction. By differentiating the last equation
with respect to u , we have

∂n+1k

∂un+1
=

∂

∂u
k [(−2au)n + Pn(x, y;u)]

= k

[
n(−2a)nun−1 +

∂

∂u
Pn(x, y;u)

]
+ [(−2au)n + Pn(x, y;u)]Hk

= k

[
n(−2a)nun−1 +

∂

∂u
Pn(x, y;u)

+ {(−2au)n + Pn(x, y;u)} (−2au+ η(x, y))]

= k
[
(−2au)n+1 + Pn+1(x, y;u)

]
,

where

Pn+1(x, y;u) = n(−2a)nun−1 +
∂

∂u
Pn(x, y;u)

+ (−2au)nη + (−2au)Pn(x, y;u) + Pn(x, y;u)η

is a polynomial of degree n + 1 in x and y and of degree n
in u because Pn(x, y;u) is of degree n in x and y and n− 1
in u. Similarly,

∂nk

∂vn
= k

[
(−2av)n + P̃n(x, y; v)

]
,

where P̃n(x, y;u) is a polynomial of degree n in x and y and
of degree n− 1 in v. Since

∂2k

∂u∂v
= kHH̃,

it can be easily shown as above that

∂m+nk

∂um∂vn
= k [(−2au)m + Pm(x, y;u)]

×
[
(−2av)n + P̃n(x, y; v)

]
,

where Pm(x, y;u) and P̃n(x, y; v) are polynomials of degree
m and n in x and y and of degree m − 1 in u and n − 1 in
v, respectively.

Now we extend the transform to a space of generalized
functions. Let E(R2) be the testing-function space of all
infinitely differentiable functions on R2, and E∗ be its dual
space which is the space of all generalized functions with



compact support. It is known that E∗ is a subspace of the space
D∗ of Schwartz distributions. Since the kernel of the coupled
fractional Fourier transform k(x, y;u, v) is in the space E(R2),
we have the following definition

Definition 2. Let f ∈ E∗. We define the coupled fractional
Fourier transform of f as

F (u, v) = Fα,β(u, v) = 〈f(x, y), kα,β(x, y;u, v)〉.

Theorem 1. Let f ∈ E∗. Then its coupled fractional Fourier
transform F (u, v) is in the space E(R2) and satisfies∣∣∣∣ ∂m+nF

∂um∂vn

∣∣∣∣ ≤ C|u|m|v|n
for sufficiently large u and v. That is F is a C∞(R2) function
in both u and v and does not grow faster than a polynomial
as |u| and |v| go to infinity, i.e, F is a tempered function.

Proof. By taking the derivatives of F with respect to u and
v, we have by Lemma1

∂m+nF

∂um∂vn
= 〈f, ∂

m+nk

∂um∂vn
〉

= 〈f, k [(−2au)m + Pm(x, y;u)] [(−2av)n

+ P̃n(x, y;u)
]
〉

= 〈f, (−2au)m(−2av)nk

[
1 +

P̃n
(−2av)n

+
Pm

(−2au)m
+

PmP̃n
(−2au)m(−2av)n

]
〉

= (−2au)m(−2av)n〈f, k [1 +G(x, y, ;u, v)]〉
= (−2au)m(−2av)n {〈f, k〉+ 〈f, kG〉}

where

G(x, y;u, v) =
P̃n

(−2av)n
+

Pm
(−2au)m

+
PmP̃n

(−2au)m(−2av)n
.

Since G is a polynomial in x and y it is a multiplier of
the space E(R2) and hence 〈f, kG〉 is well defined and
consequently so is ∂m+nF

∂um∂vn . Finally, since |G(x, y;u, v)| can
be made arbitrary small for u and v sufficiently large, it would
follow that ∣∣∣∣ ∂m+nF

∂um∂vn

∣∣∣∣ ≤ C|u|m|v|n,
for some constant C.

Remark: The coupled fractional Fourier transform maps the
space E∗ into a subspace of the space of tempered distribution.
Next we derive the inversion formula for the fractional Fourier
transform of the generalized function f.

Theorem 2. Let Fα,β [f ](u, v) = Fα,β(u, v) be the coupled
FrFT of a generalized function f with compact support. Then

f(x, y) = lim
r→∞

lim
R→∞

∫ r

−r

∫ R

−R
Fα,β(u, v)k−α,−β(x, y;u, v) dudv

where the limits are taken in the space S∗ of tempered
distributions.

Proof. We need to show that

〈f(x, y), φ(x, y)〉 = lim
r→∞

lim
R→∞

〈
∫ r

−r

∫ R

−R
Fα,β(u, v)

k−α,−β(x, y, u, v) dudv, φ(x, y)〉 ,

for all φ ∈ S(R2), where S(R2) is the Schwartz space of all
infinitely differentiable functions with rapid decay . We have

〈
∫ r

−r

∫ R

−R
Fα,β(u, v)k−α,−β(x, y, u, v) dudv, φ(x, y)〉

=

∫
R2

φ(x, y) dxdy

∫ r

−r

∫ R

−R
Fα,β(u, v)k−α,−β(x, y, u, v) dudv

=

∫
R2

φ(x, y) dxdy

∫ r

−r

∫ R

−R
〈f(w, z), kα,β(w, z, u, v)〉

× k−α,−β(x, y, u, v) dudv

= 〈f(w, z),

∫
R2

φ(x, y) dxdy

∫ r

−r

∫ R

−R
kα,β(w, z, u, v)

× k−α,−β(x, y, u, v) dudv〉

Changing the order of integration is possible because φ is
infinitely differentiable with rapid decay and the integrant is
a continuous function of x, y and u, v. Therefore,

lim
r→∞

lim
R→∞

〈
∫ r

−r

∫ R

−R
Fα,β(u, v)

× k−α,−β(x, y;u, v) dudv, φ(x, y)〉

= lim
r→∞

lim
R→∞

〈f(w, z),

∫
R2

φ(x, y) dxdy

∫ r

−r

∫ R

−R
kα,β(w, z;u, v)

× k−α,−β(x, y;u, v) dudv〉

= 〈f(w, z), lim
r→∞

lim
R→∞

∫
R2

φ(x, y) dxdy

∫ r

−r

∫ R

−R
kα,β(w, z;u, v)

× k−α,−β(x, y;u, v) dudv〉

= 〈f(w, z),

∫
R2

φ(x, y) dxdy

∫
R2

kα,β(w, z;u, v)

× k−α,−β(x, y;u, v) dudv〉

= 〈f(w, z),

∫
R2

φ(x, y) δ(x, y;w, z)dxdy〉 = 〈f(w, z), φ(w, z)〉.

II. SAMPLING THEOREM

Here we state the sampling theorem for the coupled frac-
tional Fourier transform without proof because the long proof
will exceed the page limitation, but the proof will be published
somewhere else.

Theorem 3. Let f be bandlimited to Ω = [−r, r]× [−R,R],
in the FrFT domain. Then f can be reconstructed from its
samples via the formula

f̃(x, y) =

∞∑
m,n=−∞

f̃(xm,n, ym,n)
sin(mπ − rw1) sin(nπ −Rw2)

(mπ − rw1)(nπ −Rw2)
,

(7)



where f̃(x, y) = e−a(x
2+y2)f(x, y), γ = (α+ β)/2, and δ =

(α− β)/2,

w2 = b̃y + c̃x and w1 = b̃x− c̃y, (8)

and
xm,n = π sin γ

(m
r

cos δ +
n

R
sin δ

)
,

and
ym,n = π sin γ

( n
R

cos δ − m

r
sin δ

)
.
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