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Abstract

Theory of Mind (ToM) can be used to assess the001
capabilities of Large Language Models (LLMs)002
in complex scenarios where social reasoning is003
required. While the research community has004
proposed many ToM benchmarks, their hard-005
ness varies greatly, and their complexity is not006
well defined. This work proposes a framework007
to measure the complexity of ToM tasks. We008
quantify a problem’s complexity as the number009
of states necessary to solve it correctly. Our010
complexity measure also accounts for spurious011
states of a ToM problem designed to make it012
apparently harder. We use our method to as-013
sess the complexity of five widely adopted ToM014
benchmarks. On top of this framework, we de-015
sign a prompting technique that augments the016
information available to a model with a descrip-017
tion of how the environment changes with the018
agents’ interactions. We name this technique019
Discrete World Models (DWM) and show how020
it elicits superior performance on ToM tasks.1021

1 Introduction022

Theory of Mind (ToM) studies how agents form023

and use beliefs to reason in dynamic environ-024

ments (Premack and Woodruff, 1978). Originally025

developed to describe human interactions (Preston026

and De Waal, 2002; Tomasello, 2009) as well as027

toddlers’ psychological development (Wimmer and028

Perner, 1983; Baron-Cohen et al., 1985), ToM has029

been quickly adopted by other fields, including030

artificial intelligence (McCarthy, 1979; Scassel-031

lati, 2002) and machine learning (Rabinowitz et al.,032

2018). In machine learning, ToM has both descrip-033

tive and prescriptive usage: on the one hand, ToM034

benchmarks assess the capabilities of a model in035

complex environments; on the other, ToM’s frame-036

works such as theory-theory (Gopnik and Wellman,037

1994) and simulation theory (Churchland, 2013)038

1Code and data for full reproducibility are available in
the Code Material.

Figure 1: Example of the DWM prompting technique
on a classical Sally-Anne QA task (Baron-Cohen et al.,
1985). Inspired by our complexity framework (Sec-
tion 3.1), DWM takes the original task and splits it into
sequences, the state events (see Def. 3.1), and prompts
the LLMs to describe the states. We show that, in most
cases, this aids the LLM in providing correct answers.

have been widely adopted to test the proficiency 039

of Large Language Models (LLMs) in social tasks 040

where humans excel (Strachan et al., 2024). 041

In this work, we propose a framework to charac- 042

terise a ToM benchmark’s difficulty, i.e., its com- 043

plexity, as the number of state events that are suf- 044

ficient to track the state of an object, including 045

kth-order beliefs. 046

We characterise the complexity of five standard 047

ToM benchmarks, from false belief to common- 048

sense and social reasoning, and compute their com- 049

plexity as a proxy of their inherent difficulty. In- 050

spired by prompting techniques that split a task 051

into elementary sub-problems that are solved se- 052

quentially, like Tree of Thoughts (Yao et al., 2023) 053

and least-to-most prompting (Zhou et al., 2023a), 054

we introduce a technique that stimulates a model’s 055

reasoning capabilities via Discrete World Mod- 056

els (DWM). DWM leverages the notion of state- 057
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fulness via a succinct and coherent representa-058

tion of each state events, as illustrated in Fig-059

ure 1. We test DWM on ToMi (Le et al., 2019),060

MindGames (Sileo and Lernould, 2023), Adv-061

CSFB (Shapira et al., 2023), SocialIQA (Sap et al.,062

2019), and FANToM (Kim et al., 2023), elicit-063

ing superior performance than Chain of Thoughts064

(CoT) (Wei et al., 2022) and Tree of Thoughts065

(ToT) (Yao et al., 2023) on those problems whose066

state spaces are informative. We further as-067

sess whether memorisation affects a model’s per-068

formance, and we discover that while this phe-069

nomenon happens for standard benchmarks such070

as ToMi (Le et al., 2019), with input-output pairs071

that can be retrieved word for word via prompt-072

ing, it does not correlate with a drop of perfor-073

mance. We conduct our experiments on a vari-074

ety of open- and closed-source LLMs, including075

GPT-3.5-Turbo, GPT-4 (OpenAI, 2023), LLaMA3-076

70B (AI@Meta, 2024) and Mixtral 8x7B (Jiang077

et al., 2024). In summary, in this paper:078

• We introduce the concept of complexity of a079

ToM task to quantify the hardness of keeping080

track of the elements (e.g., agents’ beliefs or081

objects’ states) that are sufficient to produce082

the correct answer to different problems.083

• We propose DWM, a simple yet effective084

prompting technique that improves a model’s085

capability by making implicit information ex-086

plicit while not necessitating exogenous in-087

formation (i.e., it does not require RAG or088

fine-tuning).089

We consider our work a step towards a framework090

that formalizes the hardness of a ToM problem091

univocally inspired by the theory of World Mod-092

els (Wong et al., 2023).093

2 Related Work094

Over 40 years of research on ToM in psychol-095

ogy (Premack and Woodruff, 1978; Baron-Cohen096

et al., 1985; Dennett, 1988; Wellman, 2017) on hu-097

man development has created a fertile ground for098

the development of these ideas in adjacent fields. In099

the last decade, many works studied ToM in artifi-100

cial intelligence and machine learning (Baker et al.,101

2011; Rabinowitz et al., 2018), with applications102

to multi-agent systems and reinforcement learn-103

ing (Gronauer and Diepold, 2022). More recently,104

the rise in popularity of LLMs shifted the inter-105

est towards understanding and benchmarking large106

models’ capacity to solve increasingly complex 107

ToM tasks (Aru et al., 2023; Zhou et al., 2023b; 108

Mahowald et al., 2024). While some researchers 109

believe LLMs have already become proficient in 110

solving ToM tasks (Bubeck et al., 2023; Kosinski, 111

2023; Strachan et al., 2024), others show scepti- 112

cism and illustrate cases where they fail on trivial 113

variations of well-known problems (Ullman, 2023; 114

Shapira et al., 2023; Sap et al., 2023). In a joint 115

effort between computer scientists and psycholo- 116

gists, many ToM benchmarks have been developed 117

and used to test neural-network models, includ- 118

ing LLMs (Gandhi et al., 2022; Chen et al., 2024; 119

Strachan et al., 2024). Recently, concepts such as 120

World Models (Ha and Schmidhuber, 2018) have 121

found applicability and mostly as discrete prompt- 122

ing techniques in conjunction with optimisation 123

procedures (Hao et al., 2023; Moghaddam and 124

Honey, 2023). Researchers have found evidence 125

of an emergent internal representation (e.g., World 126

Model’s surrogates) of the state games (Li et al., 127

2022; Toshniwal et al., 2021) and state-tracking 128

abilities (Li et al., 2021; Kim and Schuster, 2023; 129

Kim et al., 2024), necessary for correct belief track- 130

ing in ToM problems. The works more similar to 131

our complexity framework are only tangentially re- 132

lated to ToM. Inspired by the work in (Zhou et al., 133

2023a) and the results in (Zhou et al., 2023b). Our 134

prompting technique is inspired by (Park et al., 135

2023) and (Nye et al., 2021): the former devel- 136

ops an architecture to record the agent’s experi- 137

ences. The latter proposes a prompting technique 138

that forces a model to express the intermediate com- 139

putational steps to solve a problem. 140

3 Methodology 141

In this section, we introduce a notion of complexity 142

for ToM problems: such notion quantifies the hard- 143

ness of a problem as the number of computational 144

steps humans take to solve them. We then present 145

the DWM prompting technique within the com- 146

plexity framework and show how it differs from 147

standard methods like CoT and ToT. We further 148

characterise its efficiency with the number of in- 149

put/output tokens and queries to a model as the 150

control variables. 151

3.1 On the Complexity of ToM 152

Providing a consistent representation of the envi- 153

ronment, including each agent’s beliefs, inspired us 154

to characterise the complexity of a ToM problem 155
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Figure 2: How statefulness and statelessness (Def. 3.2) are computed for the motivating example in Fig. 1. For
obj1, an optimal split to track the apple merges the first two states and chunks of the input prompt. For obj2, which
involves the 1st-order belief of Bob, the statefulness is higher, with e2 that cannot be merged with e3 as it introduces
partial observability. The complexity of the task (bottom) is computed as per Eq. 2, with the complexity of stateless
objects that is discounted as not directly relevant to the question/answer.

in terms of sufficient elements to track to output156

the correct result. Consider a problem prompt p,157

expressed in natural language, that describes how158

multiple agents interact with an environment ob-159

ject obj, as illustrated in Figure 2 (top). In our160

framework, an object can be the state of the apple161

as well as the kth-order belief of an agent about the162

apple position. Our framework naturally extends163

to multiple objects by considering their union.164

Suppose that in p, the state of obj is modified165

T > 0 times, thus identifying T unique configu-166

rations, namely Eobj = {e1, .., eT }. To correctly167

solve a ToM task where p is complemented by a168

query about obj, a model should distinguish be-169

tween the interactions that modify the configura-170

tion of obj, i.e., the stateful states, from those that171

modify any other stateless object Obj \ obj, i.e.,172

those one does not need to track.173

We first show how to define the cost of tracking174

a task’s stateful states, which we complement with175

that of the stateless. Both definitions concur in176

defining the complexity of a ToM task.177

3.1.1 Stateful and Stateless Complexity178

For a ToM task, expressed as p, that describes the179

evolution of an environment where an unknown180

number of atomic iterations T modifies obj or its181

perception, each environment state et ∈ Eobj can182

be coupled with the prompt prefix p≤t s.t. p≤t ⊕183

p>t = p, that describes such configuration. We 184

denote (et, p≤t) as a generic state description, as 185

illustrated in Figure 2 (top). 186

Definition 3.1 (State event). A state event for an 187

object obj is an event that links adjacent state de- 188

scriptions that involve, for both the environment 189

state et and the sub-prompt p≤t, a state change 190

of obj. Formally, we define a relation, Fobj, to 191

specify which pairs of state descriptions form a 192

state event: Fobj((et, p≤t), (et+1, p≤t+1)) ≡ et ̸= 193

et+1 ∧ p≤t+1 = p≤t ⊕ pt+1 where 1 ≤ t ≤ |p|. 194

(|p| denotes the number of atomic prompts.) 195

Thus a state event Fobj identifies those state 196

descriptions (et, p≤t) which have a successor 197

(et+1, p≤t+1) where obj has changed its config- 198

uration. 199

In the context of ToM tasks, a state event could 200

be a person who moves an object, exits (thus intro- 201

ducing partial observability) or witnesses a change 202

in the environment (as now the description of the 203

environment will take that change into account), 204

as illustrated Figure 2 (middle). Our prompting 205

technique, namely DWM (Section 3.2.1), aims at 206

making implicit observations about objects explicit. 207

We finally introduce the notion of partition func- 208

tion to connect the maximum number of non- 209

empty state events relative to a prompt. Such a 210

notion will serve as the building block to compute 211

the complexity of a ToM problem. 212
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Definition 3.2 (Partitions). A partition partobj213

w.r.t. obj identifies those state events which par-214

tition a ToM prompt p into sequential segments215

where obj changes its value. Formally:216

Let partobj = {(et, p≤t) :

Fobj((et, p≤t), (et+1, p≤t+1))

∧ et ∈ Eobj}
(1)217

Def. 3.2 describes an optimal partition, partobj218

of state descriptions that covers all the relevant219

changes to obj. The partition is represented by220

the set of event descriptions where obj changes its221

description immediately after. Note that this set of222

event descriptions is unique for any obj.223

3.1.2 The Complexity of a ToM Task224

We can now define the notion of statefulness of225

a ToM task specified as a prompt p as the size of226

Eq. 3.2, namely Tobj = |Eobj|. The process of227

computing the statefulness of an object or its belief228

is illustrated in Fig. 2.229

For a ToM task where the question to solve re-230

lates to an object obj, one must ensure that changes231

to any other object, namely Obj \ obj, do not af-232

fect obj. While tracking the evolution of what is233

irrelevant to answer the question is unnecessary, a234

computation model must assess whether a partic-235

ular environmental change affected obj. We thus236

introduce the notion of statelessness, i.e., the cost237

of discerning whether a change in the environment238

affects obj. The computation is similar to that of239

Def. 3.2, with obj that is replaced by any object in240

Obj \obj; yet, for stateless objects, we introduce a241

discount factor τ to penalise the complexity of state242

events that do not affect obj. Mathematically, we243

formalise the statelessness of a ToM task involving244

an object obj as τ
∑

obj∈Obj\obj Tobj .245

Finally, we formalise the complexity of a ToM246

task w.r.t. an object obj as the complexity of the247

stateful states plus the (discounted) sum of the oth-248

ers (i.e., stateless). Namely:249

Tobj + τ
∑

obj∈Obj\obj

Tobj (2)250

The process of computing the complexity of a251

ToM task is illustrated in Figure 2.252

3.2 Discrete World Models253

We first introduce the background notation for254

prompting LLMs and assessing their accuracy on255

a standard classification task. We then propose256

our technique, namely DWM, which we eventually 257

connect with the notion of statefulness of a ToM 258

task. 259

Background notation. A (Large) Language 260

Model is a function that predicts the next token 261

(out of a finite vocabulary) conditioned on the se- 262

quence of previously fed/generated tokens, namely 263

ψ : v ∈ V ∗ −→ v ∈ V . Such a mechanism can 264

be used to sample multiple token outputs until an 265

‘end-of-text’ token is predicted by invoking ψ 266

in an auto-regressive fashion, i.e., ψ(v|v). In our 267

setting, a problem is specified as a tuple (p,Q), 268

where p is a ToM problem andQ is a query function 269

that modifies p according to a prompting technique, 270

namely Q : p −→ p′. The LLMs output y for an in- 271

put Q(p) is then compared for correctness against 272

an oracle Ω, i.e., Ω : ψ(Q(p)) −→ {0, 1}, where 1 273

means correct classification (0, otherwise). On a 274

sample of N > 0 ToM problems, the accuracy of a 275

model ψ is then measured as 1
N

∑N
i=1Ω(ψ(Q(pi)), 276

i.e., the average number of times a model is correct 277

in its prediction. 278

3.2.1 Discrete World Models via Prompting 279

Given a ToM problem p and a constant T ≤ |p|, 280

we can rewrite p as p1 ⊕ p2 ⊕ · · · ⊕ pT . Our query 281

function adds a standard preamble x similar to 282

that of CoT. DWM inserts, after each "split" pt, 283

an additional prompt w like ‘Now, provide a 284

succinct description of the state of the 285

environment and each agent’s belief.’ and 286

query an LLM to provide a representation of the 287

current state description of the environment. An 288

LLM is initially queried with x⊕ p1 ⊕ w, and the 289

answer a1 is concatenated to the next query, i.e., 290

ψ(x⊕ p1 ⊕w⊕ a1 ⊕ p2 ⊕w) to retrieve a2 . The 291

process is carried on for each of the T chunks, and, 292

at the end, y is concatenated to eventually prompt 293

the model for the correct answer to p. 294

Let z1 = ψ(x⊕p1), zt = ψ(x⊕p1⊕ z1⊕p2⊕ 295

· · · ⊕ zt−1 ⊕ pt) = ψ(x⊕
(⊕t−1

i=1 pi ⊕ zi

)
⊕ pt), 296

then, the final query is 297

ψ(x⊕

(
T⊕
t=1

pt ⊕ zt

)
⊕ y) (3) 298

In this sense, our partition function (Def. 3.2) 299

consists of splitting a prompt into sequential chunks 300

of the prompt, while the LLM is prompted to 301

provide each state event at time 1 ≤ t < T as 302

et = ψ(x ⊕
(⊕t

t′=1 pt′ ⊕ zt′
)
⊕ ω). The process 303
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Figure 3: Left: illustration of DWM prompting as per the example in Figure 1. We interactively prompt an LLM with
a ToM problem, asking to provide a succinct representation of each agent’s beliefs. Right: schematic presentation
of the DWM method. We first break the input string into T state descriptions. Then, for each part, we ask the
LLM to provide the state event of the environment and how it changes. In the last step, every part of the input and
description is fed to the LLM with another prompt to get the answer for the task.

of prompting a model with DWM is illustrated in304

Figure 3.305

3.2.2 On the Complexity of DWM306

DWM progressively calls an LLM T > 0 times to307

generate informative states. For a ToM problem of308

length n (i.e., the number of input tokens), which309

we assume, w.l.o.g., that can be split into k chunks310

of approximately the same length |x⊕pi⊕w| = n
T ,311

the number of tokens generated by an LLM is in the312

order of O(
∑T

t=1 |x⊕pt⊕w⊕at|2), where pt (at)313

is the portion of the problem (answer) prompted314

(retrieved) at iteration t. With the further assump-315

tion that each answer retrieved at split t ≤ T has316

the same length o, the complexity is further simpli-317

fied to be asymptotic to O(( nT +o)2). Compared to318

CoT, whose complexity is O(n+o), DWM requires319

an additional linear number of calls to the model.320

On the other hand, ToT with the same number of321

splits n
T and m > 1 experts results in even higher322

complexity, i.e., asymptotic to O(m( nT + o)2).323

4 Experimental Evaluation324

The experiments are organised as follows. We first325

test the performance of DWM on ToMi (Le et al.,326

2019), MindGames (Sileo and Lernould, 2023),327

Adv-CSFB (Shapira et al., 2023), SocialIQA (Sap328

et al., 2019), and FANToM (Kim et al., 2023), com-329

paring it with CoT (Wei et al., 2022), ToT (Yao330

et al., 2023) and prompting with structured data331

(struct), i.e., the model is queried to first represent332

the problem in a structured format such as JSON333

or Yaml. We further show that ToMi has been334

memorised word for word by GPT models, with335

CoT (and any technique that leaves the input un-336

changed) being the best-performing method. We337

then quantify the complexity of the benchmarks 338

introduced above and highlight the correlation with 339

the models’ performances. Our framework shows 340

complexity ranges between easy and hard prob- 341

lems, even within a benchmark. We conduct our 342

experiments on GPT-3.5-Turbo, GPT-4 (OpenAI, 343

2023), LLaMA3-70B (AI@Meta, 2024) and Mix- 344

tral 8x7B (Jiang et al., 2024). 345

4.1 DWM on ToM Benchmarks 346

We report results for GPT-3.5-Turbo and Mix- 347

tral 8x7B on the five ToM benchmarks: for rea- 348

sons of space, results for LLaMA3-8B, LLaMA3- 349

70B and GPT-4 are reported in the Appendix, Sec- 350

tion B.1. As illustrated in Figure 4 (top), DWM 351

improves the performance of GPT-3.5-Turbo on 352

Mindgames, FANToM and Adv-CSFB by a solid 353

margin. On SocialIQa, which has very short in- 354

puts, DWM performs slightly worse than CoT but 355

better than ToT. On the other hand, on ToMi, the 356

best prompting techniques are CoT and ToT. As 357

analysed in the next section, we believe this not 358

be caused by memorisation, which we prove hap- 359

pening, but by the inherent complexity of the task. 360

With Mixtral 8x7B (Fig. 4 (bottom)), DWM im- 361

proves the performance on ADVcsfb, FANToM, 362

ToMi and Mindgames, and pairs that of CoT on 363

SocialIQa. 364

DWM elicits more informed state spaces. We 365

qualitatively analysed the information elicited by 366

an LLM when prompted with DWM and discov- 367

ered that it forces a model to output information 368

not explicitly available in the prompt. Consider 369

the ToMi example in Figure 5 where GPT-4 is 370

prompted with a situation where agents interact 371
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Figure 4: Benchmarks of GPT-3.5-Turbo (top) and Mixtral 8x7B (bottom) models on different ToM tasks for DWM
(one to five splits), CoT, ToT and structured prompts (JSON and Yaml).

ToMi FANToM Mindgames Adv-CSFB SocialIQa
Memorisation - perfect match 52% 35% 2% 0% 0%

Memorisation - fuzzy 89± 15% 74± 24% 64± 18% 51± 11% 40± 12%
DWM 0.625 0.579 0.618 0.8364 0.691
CoT 0.629 0.403 0.552 0.7091 0.736

Table 1: Summary of the memorisation test on five ToM benchmarks. We prompted GPT-3.5-Instruct to predict the
continuation of 100 randomly sampled test points. We computed the exact and fuzzy memorisation rate (second
row, similarity score computed via the Levenshtein distance, see the thefuzz package), which we complement with
the best performance across models of CoT and DWM.

ToMi FANToM Mindgames Adv-CSFB SocialIQa
Statefulness 2.62± 1.68 2.44± 0.96 1.22± 0.90 3.24± 1.35 1.± 0.

Statelessness 4.27± 2.1 59.42± 18.91 5.24± 2.71 2.86± 1.34 1.14± 0.447

DWM - Best Split 3 3 1 4 1

Table 2: Summary of the statefulness and statelessness of different ToM benchmarks. At the bottom, the value of
the split that guarantees max performance of GPT-3.5-Turbo with DWM, which we notice is strongly correlated
with the statefulness of each benchmark.

6
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Figure 5: Example of a real ToMi example where GPT-4 fails when prompted with CoT, yet succeeds with DWM.
CoT elicits an untruthful reasoning process (in red), while DWM correctly informs the model with the implicit
information about Benjamin’s first-order belief (in green). More examples are reported in the Appendix, Section B.2.

Figure 6: Each boxplot summarizes the complexity anal-
ysis of the five ToM benchmarks in ascending order. We
report the average error rate (i.e., 1-accuracy) of GPT-
3.5-Turbo, GPT-4, Mixtral 8x7B and LLaMA3-70B on
the task when prompted with CoT.

and are then queried with the first-order belief of372

Benjamin. With CoT, the model makes an erro-373

neous assumption about the presence of Benjamin374

and Isabella in the room. On the other hand, when375

prompted with DWM, GPT-4 provides an informa-376

tive description of each state space, particularly377

the knowledge and the uncertainty of each agent’s378

beliefs, and eventually answers correctly. One ex-379

ample per benchmark is available in the Appendix,380

Section B.2, while many more are available for in-381

spection in the Code Supplementary Material. Such382

phenomenon is ubiquitous to all the ToM tasks we383

tested, a hint that DWM elicits the ToM capabilities384

of LLMs without requiring external information or385

solvers.386

Memorisation in Theory of Mind. Recent387

works expressed concern about ToM benchmarks’388

efficacy in memorisation (Jacovi et al., 2023; 389

La Malfa et al., 2024). This motivated us to quan- 390

tify and then analyse the impact of memorisation 391

of ToM benchmarks on performance. We com- 392

puted the percentage of memorised prompts to un- 393

derstand whether that affects the performance of 394

techniques, such as DWM, that split the prompt 395

into chunks and introduce additional information 396

instead of CoT, which leaves the input prompt un- 397

changed. As illustrated in Table 1, ToMi and FAN- 398

ToM have been heavily memorised, with entire 399

portions of the benchmarks that can be retrieved 400

word for word from GPT-3.5-Instruct (the auto- 401

complete model by OpenAI). Despite that, no clear 402

evidence of a performance drop in DWM induced 403

by memorisation exists. For GPT-3.5, despite CoT 404

having higher performance on ToMi, DWM is bet- 405

ter on FANToM (Figure 4). We hypothesise that as 406

long as a memorised problem is prompted, either 407

in its exact form (as for CoT) or split as in DWM, 408

the most potent models can recover it alongside 409

the ground truth label, thus invalidating the test for 410

both. We conclude with a note of caution. While 411

we discovered that ToMi and FANToM are memo- 412

rised by GPT-3.5-Instruct, that doesn’t imply any 413

LLM, including GPT-3.5-Turbo and GPT-4, whose 414

training details are not released publicly, has been 415

trained on that data. 416

4.2 Statefulness of ToM Benchmarks 417

We used the complexity framework introduced in 418

Section 3.1 to characterise the statefulness and 419

statelessness of the five ToM benchmarks used for 420

the experimental evaluation. We randomly sampled 421

50 problems from each dataset, identified the ob- 422

jects, and manually labelled stateful and stateless 423
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Figure 7: Each boxplot summarizes the statefulness (left), statelessness (middle, y-axis in log-scale) and complexity
analysis (right) of the five ToM benchmarks. We report mean, standard deviation and outliers alongside the best
DWM method (by the number of prompt splits) and observe a strong correlation between the number of splits and
the statefulness.

state events. We release the split samples alongside424

a web application that facilitates manual labelling.425

As illustrated in Figure 7 (left), the statefulness426

of each problem, i.e., that of the object a model427

must track to answer correctly, strongly correlates428

with the best-performing DWM split. The stateless-429

ness complexity, reported in Figure 7 (middle), i.e.,430

that of objects that a model does not need to track,431

grows larger for problems such as FANToM, only432

partially influencing the models’ performance. We433

hypothesise that the most potent models developed434

some competency in discerning the relevant part of435

a prompt (the stateful events) from the confound-436

ing ones. We finally report, in Figure 7 (right), the437

complexity of each problem computed as per Eq. 2,438

with τ set in a range between 0.05 and 0.2 (i.e.,439

the relative weight of stateless compared to stateful440

events). Results suggest that FANToM is the most441

difficult ToM task for humans and LLMs (see Fig-442

ure 4), followed by ToMi (the second most difficult443

for LLMs as well) and Adv-CSFB (which seems444

easier than the others); in contrast, Mindgames and445

SocialIQa tend to be easier. Finally, in Figure 6, we446

compare the accuracy of GPT-3.5-Turbo, GPT-4,447

Mixtral 8x7B and LLaMA3-70B when prompted448

with CoT (i.e., without split) on the five ToM bench-449

marks with the complexity of the task as per Def. 2.450

We observe a strong correlation between the error-451

rate and the complexity of a task, i.e., our frame-452

work correctly identifies the tasks that are harder453

both for humans and current state-of-the-art LLMs.454

5 Conclusions455

This paper introduces a complexity framework to456

measure the difficulty of Theory of Mind (ToM)457

problems. It quantifies the difficulty by tracking458

necessary states (stateful) and unnecessary states 459

(stateless), with the latter discounted in the com- 460

plexity computation. The framework evidences a 461

strong correlation between complexity and model 462

performance. Inspired by this framework, we pro- 463

pose DWM, a prompting technique that splits a 464

prompt into parts to query a model for a consis- 465

tent representation of the environment and agents’ 466

beliefs. DWM outperforms CoT and ToT by ex- 467

tracting implicit but relevant information. 468

Limitations 469

Higher order belief tracking. Our theoretical 470

framework reduces the problem of solving a belief 471

ToM problem to finding the correct descriptions 472

that need to be tracked. It extends seamlessly to 473

tasks with much higher complexity, however, we 474

have not had the opportunity to test this theory in 475

those settings. We noticed that most theory of mind 476

tasks available in the community only require one 477

to five states to be correctly answered. A possible 478

extension would be testing the theory upon tasks 479

with higher state complexity, e.g. kth-order belief 480

tracking tasks. However, it is unclear whether this 481

could be useful in real applications as most human 482

belief tracking is limited to 5 or 6 orders (Cargile, 483

1970; Dennett, 1988). 484

On task splitting methods. It is not straightfor- 485

ward to automatically find the correct task splits 486

in a manner that correctly describes the state. An 487

LLM could find a way to split it by itself correctly 488

and use those splits to answer the question. We at- 489

tempted this approach, yet with a simple prompting 490

method, the model splits every sentence, making 491

the descriptions much noisier and less accurate. 492

Future work could try to find the best splits auto- 493
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matically.494

Memorization analysis. Training and evaluating495

on the same dataset produce positively biased data496

on the model’s performance. While running our497

benchmarks on ToMi, we discovered that the GPT-498

3.5 model had completely memorized parts of the499

dataset. This motivated us to extend the memoriza-500

tion test to the other tasks. We urge the research501

community to include a memorization section on502

every benchmark study with public datasets used503

in their works. This data is crucial to conduct fair504

and unbiased research on evaluating LLMs’ abili-505

ties (Jacovi et al., 2023). Future works will include506

an analysis of the memorisation rate of other ToM507

tasks alongside tests to quantify their impact on508

different models.509

Ethical Statement510

The datasets and pre-trained LLMs that we use511

are all publicly available. This paper focuses on512

ToM problems’ hardness and prompting methods.513

We highlight that LLMs do not guarantee the pro-514

duction of factual data or correct reasoning steps,515

and the prompting methods developed here should516

not be regarded as the source of truth in making517

decisions.518
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A Experimental Setup723

A.1 Experimental Details724

Most of the language models used in this work fol-725

low the Language Models as a Service (LMaaS)726

paradigm (La Malfa et al., 2023). This model of ser-727

vice does not allow transparency and hinders repro-728

ducibility. Reproducibility is difficult to achieve as729

common software development frameworks, such730

as CI/CD pipeline, ease the update of the public731

service, but change the underlying entity. From732

this follows that the model tested by the researcher733

could change at any time. This is not solvable from734

the outside. Researchers have no control over the735

software engineering practices inside a LMaaS, but736

could set some parameters to offer the highest pos-737

sible grade of reproducibility. We set the tempera-738

ture to zero or enable greedy decoding by default739

(this does not imply determinism even if model740

weights are not changed). 2 In prompting methods741

where the creativity of the response is exploited742

for better performance, e.g., Tree of Thoughts (Yao743

et al., 2023), we set the temperature to 0.7, the744

value proposed in the reference papers.745

LMaaS providers. We use Huggingface for746

Mixtral 8x7B. Groq Cloud for LLama-3-7B and747

LLama-3-70B. Microsoft sponsorship for GPT-3.5748

and GPT-4 access.749

A.2 Prompting Templates750

We present the different prompting techniques, tak-751

ing as an example the following prompt from ToMi752

and GPT-3.5-Turbo as the reference model:753

754
1. Benjamin entered the workshop.755
2. Isabella entered the workshop.756
3. Hannah entered the workshop.757
4. Isabella hates the onion758
5. Hannah hates the t-shirt759
6. The pajamas is in the bottle.760
7. Isabella moved the pajamas to the drawer.761
8. Benjamin exited the workshop.762
9. Isabella exited the workshop.763
10. Benjamin entered the workshop.764765

And the following question:766

767
Where does Benjamin think that Isabella768

searches for the pajamas?769770

Chain of Thought771

2The main explanation are the https://github.com/
pytorch/pytorch/issues/75240"non deterministic cuda
cores" another could "be batched inference in sparse
MoE models", see https://152334h.github.io/blog/
non-determinism-in-gpt-4/here

772
Consider the following dialogue where multiple 773

agents interact. At the end, I will ask you 774
a question to answer. 775

Here's the dialogue: 776
777

1. Benjamin entered the workshop. 778
2. Isabella entered the workshop. 779
3. Hannah entered the workshop. 780
4. Isabella hates the onion 781
5. Hannah hates the t-shirt 782
6. The pajamas is in the bottle. 783
7. Isabella moved the pajamas to the drawer. 784
8. Benjamin exited the workshop. 785
9. Isabella exited the workshop. 786
10. Benjamin entered the workshop. 787

788
This is the end of the dialogue. Now, this is a 789

question for you to answer. 790
791

Question: Where does Benjamin think that 792
Isabella searches for the pajamas? 793

794
Think step by step, answer the question with 795

one word and provide the answer between 796
<answer></answer> tags. 797

For example, reply with <answer>vase</answer>. 798799

Tree of Thought 800

We first prompt an LLM to propose different solu- 801

tion paths to solve a task. 802

803
Consider the following dialogue where multiple 804

agents interact. At the end, I will ask you 805
a question to answer. 806

Here's the dialogue: 807
808

1. Benjamin entered the workshop. 809
2. Isabella entered the workshop. 810
3. Hannah entered the workshop. 811
4. Isabella hates the onion 812
5. Hannah hates the t-shirt 813
6. The pajamas is in the bottle. 814
7. Isabella moved the pajamas to the drawer. 815
8. Benjamin exited the workshop. 816
9. Isabella exited the workshop. 817
10. Benjamin entered the workshop. 818

819
Question: Where does Benjamin think that 820

Isabella searches for the pajamas? 821
822

Think step by step and list all possible 823
answers providing a single answer on each 824
line. 825826

We then pick the best idea via a majority vote over 827

three agents simulated by the LLM itself: 828

829
Given a dialogue and several observation 830

choices, decide which choice is most 831
promising. Analyze each choice in detail, 832
then conclude in the last line "The best 833
choice is {{s}}", where s the integer id of 834
the choice. 835

1. Benjamin entered the workshop. 836
2. Isabella entered the workshop. 837
3. Hannah entered the workshop. 838
4. Isabella hates the onion 839
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5. Hannah hates the t-shirt840
6. The pajamas is in the bottle.841
7. Isabella moved the pajamas to the drawer.842
8. Benjamin exited the workshop.843
9. Isabella exited the workshop.844
10. Benjamin entered the workshop.845

846
Here are some possible observations:847
## Here we insert the output of the previous848

prompt.849850

We eventually ask the model for a final answer.851

852
Given this dialogue and possible observations,853

answer the question with one word and854
provide the answer between855
<answer></answer> tags.856

1. Benjamin entered the workshop.857
2. Isabella entered the workshop.858
3. Hannah entered the workshop.859
4. Isabella hates the onion860
5. Hannah hates the t-shirt861
6. The pajamas is in the bottle.862
7. Isabella moved the pajamas to the drawer.863
8. Benjamin exited the workshop.864
9. Isabella exited the workshop.865
10. Benjamin entered the workshop.866

867
Question: Where does Benjamin think that868

Isabella searches for the pajamas?869
870

## Here we insert the observations generated by871
the LLM with the previous prompts.872

873
For example, reply with <answer>vase</answer>.874875

Discrete World Models - 1 Split876

877
I give you a phrase of a dialogue between878

agents. I will reveal more parts of it879
later. At the end, I will give you a880
question you must answer.881

For each phrase, you must:882
# 1. Write down a succinct description of what883

each agent knows about the environment and884
about the other agents. Keep the885
description short and do not produce886
redundant information.887

# 2. Each considerations you make must be888
preceded by the symbol #GPT#.889

Here's the dialogue:890
891

1. Benjamin entered the workshop.892
2. Isabella entered the workshop.893
3. Hannah entered the workshop.894
4. Isabella hates the onion895
5. Hannah hates the t-shirt896
6. The pajamas is in the bottle.897
7. Isabella moved the pajamas to the drawer.898
8. Benjamin exited the workshop.899
9. Isabella exited the workshop.900
10. Benjamin entered the workshop.901

902
This is the end of the dialogue. Now, this is a903

question for you to answer.904
905

Question: Where does Benjamin think that906
Isabella searches for the pajamas?907

908

Think step by step, answer the question with 909
one word and provide the answer between 910
<answer></answer> tags. 911

For example, reply with <answer>vase</answer>. 912913

Discrete World Model - 3 Split 914

915
I give you a phrase of a dialogue between 916

agents. I will reveal more parts of it 917
later. At the end, I will give you a 918
question you must answer. 919

For each phrase, you must: 920
# 1. Write down a succinct description of what 921

each agent knows about the environment and 922
about the other agents. Keep the 923
description short and do not produce 924
redundant information. 925

# 2. Each considerations you make must be 926
preceded by the symbol #GPT#. 927

Here's the dialogue: 928
929

1. Benjamin entered the workshop. 930
2. Isabella entered the workshop. 931
3. Hannah entered the workshop. 932
## Here the LLM provides a description of the 933

environment so far described by the 934
dialogue. 935

936
4. Isabella hates the onion 937
5. Hannah hates the t-shirt 938
6. The pajamas is in the bottle. 939
## Here the LLM provides a description of the 940

environment so far described by the 941
dialogue. 942

943
7. Isabella moved the pajamas to the drawer. 944
8. Benjamin exited the workshop. 945
9. Isabella exited the workshop. 946
10. Benjamin entered the workshop. 947

948
This is the end of the dialogue. Now, this is a 949

question for you to answer. 950
951

Question: Where does Benjamin think that 952
Isabella searches for the pajamas? 953

954
Think step by step, answer the question with 955

one word and provide the answer between 956
<answer></answer> tags. 957

For example, reply with <answer>vase</answer>. 958959

Yaml/JSON 960

961
Consider the following dialogue where multiple 962

agents interact. 963
964

1. Benjamin entered the workshop. 965
2. Isabella entered the workshop. 966
3. Hannah entered the workshop. 967
4. Isabella hates the onion 968
5. Hannah hates the t-shirt 969
6. The pajamas is in the bottle. 970
7. Isabella moved the pajamas to the drawer. 971
8. Benjamin exited the workshop. 972
9. Isabella exited the workshop. 973
10. Benjamin entered the workshop. 974

975
Here is the YAML representation of the text. 976
## Here we substitute the JSON/Yaml 977

representation of the dialogue (see next 978
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prompt).979
980

Question: Question: Where does Benjamin think981
that Isabella searches for the pajamas?982

983
Answer between the tags with a single word that984

is the answer of the above question985
For example <answer>vase</answer>.986987

The JSON/YAML representation is required988

with the following prompt:989

990
Consider the following dialogue where multiple991

agents interact.992
1. Benjamin entered the workshop.993
2. Isabella entered the workshop.994
3. Hannah entered the workshop.995
4. Isabella hates the onion996
5. Hannah hates the t-shirt997
6. The pajamas is in the bottle.998
7. Isabella moved the pajamas to the drawer.999
8. Benjamin exited the workshop.1000
9. Isabella exited the workshop.1001
10. Benjamin entered the workshop.1002

1003
Now give a structured representation of the1004

dialogue in YAML format. Keep track of the1005
information that each agent has access to1006
at each point in the dialogue.1007

It is important to have a relative1008
representation of the information that each1009
agent has access to at each point in the1010
dialogue.10111012

B Additional Results1013

B.1 DWM Prompting1014

In this section, and, in particular in Figure 8, we1015

report results for LLaMA3-7B, LLaMA3-70B and1016

GPT-4 on the five ToM benchmarks and for differ-1017

ent prompting techniques, namely DWM (one to1018

five splits), JSON, Yaml, CoT and ToT.1019

B.2 DWM Elicits More Informed Mental1020

States in LLMs1021

In this section, we report and discuss an example of1022

a real prompt and the answers provided by GPT-41023

for each ToM task we evaluated in this paper. For1024

FANToM (Figure 10), we just reported the portion1025

of the prompt that induces an unfaithful reasoning1026

process in GPT-4, due to the prohibitive length of1027

the input prompts. Results for ToMi, FANToM,1028

ADV-csfb, Mindgames and SocialIQa are reported1029

respectively in Figures 9, 10, 11, 12 and 13.1030
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Figure 8: Benchmarks of LLaMA3-7B (top), LLaMA3-70B (middle) and GPT-4 (bottom) models on different ToM
tasks for DWM (one to five splits), CoT, ToT and structured prompts (JSON and Yaml). For GPT-4 and ToT, we
tested 50 samples (instead of 1000).
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Figure 9: Example of a real ToMi example where GPT-4 fails when prompted with CoT, yet succeeds with DWM.
CoT elicits an untruthful reasoning process (in red), while DWM correctly informs the model with the correct
information about Benjamin’s first-order belief (in green).

Figure 10: Example of a real FANToM example where GPT-4 fails when prompted with CoT, yet succeeds with
DWM. CoT elicits an untruthful reasoning process (in red), while DWM correctly informs the model with the
correct information about the partial observability Brittney has about Conor (in green).
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Figure 11: Example of a real ADV-csfb example where GPT-4 fails when prompted with CoT, yet succeeds with
DWM. CoT elicits an untruthful reasoning process (in red), while DWM correctly informs the model with the
correct information about the content of the glass box (in green).
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Figure 12: Example of a real Mindgames example where GPT-4 fails when prompted with CoT, yet succeeds with
DWM. CoT elicits an untruthful reasoning process (in red), while DWM correctly informs the model with the
correct information about the knowledge Leah has about Raymond (in green).
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Figure 13: Example of a real SocialIQa example where GPT-4 fails when prompted with CoT, yet succeeds with
DWM. CoT elicits an untruthful reasoning process (in red), while DWM correctly informs the model with the
correct next actionSkylar will take (in green).
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