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Abstract001

Recently, knowledge editing (KE) has emerged002
as a promising approach to update specific003
facts in Large Language Models (LLMs) with-004
out the need for full retraining. Despite the005
effectiveness in general-domain benchmarks,006
their applicability in complex medical domain,007
remains largely unexplored. Medical knowl-008
edge editing is particularly challenging, as it009
requires LLMs to internalize the knowledge010
and generalize to unseen scenarios for effec-011
tive and interpretable decision-making. In this012
work, we propose a novel framework called013
MedEditBench to rigorously evaluate the effec-014
tiveness of existing KE methods in the medical015
domain. In MedEditBench, we introduce a new016
medical knowledge editing benchmark as well017
as three different knowledge editing paradigms,018
which are designed to assess the impact of dif-019
ferent knowledge sources for editing. Our find-020
ings indicate that current knowledge extraction021
(KE) methods result in only superficial mem-022
orization of the injected information, failing023
to generalize to new scenarios. To overcome024
this limitation, we present self-generated ratio-025
nale editing (SGR-Edit), which utilizes model-026
derived rationales as target knowledge for edit-027
ing, thereby uncovering the underlying reason-028
ing process and demonstrating significant im-029
provements over existing approaches. Addi-030
tionally, we offer deeper insights into medical031
knowledge editing, including the localization032
of medical knowledge in LLMs and the impact033
of sequential editing on evolving knowledge.034
This could provide practical guidance for im-035
plementing KE methods in real-world medical036
applications1.037

1 Introduction038

Large language models (LLMs) encapsulate ex-039

tensive knowledge during training on large-scale040

corpora (Petroni et al., 2019; Allen-Zhu and Li,041

1Codes and the MedEditBench datasets are released at
https://anonymous.4open.science/r/F0F5/
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Figure 1: Illustration of medical knowledge editing.

2023; Dai et al., 2021). Nonetheless, their knowl- 042

edge remains static after training, resulting in fac- 043

tual inconsistencies and hallucinations in tasks that 044

require up-to-date information or domain-specific 045

expertise beyond their pre-trained knowledge (Hu 046

et al., 2023; Huang et al., 2025). Knowledge edit- 047

ing (KE) has emerged as a promising approach to 048

update specific knowledge in LLMs without full 049

retraining (Zhang et al., 2024; Wang et al., 2024c), 050

which provides an efficient and effective solution to 051

constantly adapt LLMs to the ever-evolving world 052

of knowledge (Meng et al., 2022; Meng et al.; Fang 053

et al., 2024). 054

Despite rapid advancements, the effectiveness 055

of current KE methods has not been thoroughly as- 056

sessed in realistic domain-specific scenarios. Most 057

existing benchmarks only evaluate on general do- 058

mains, such as WikiData (Meng et al., 2022) and 059

counterfactual datasets (Levy et al., 2017), which 060

do not reflect the complexity and diversity of real- 061

world applications, particularly in specialized do- 062

mains like medicine. 063

Medical knowledge editing is particularly chal- 064

lenging due to its intricacy and specificity, which 065

requires LLMs to not only memorize updated med- 066

ical knowledge (Singhal et al., 2023) but also com- 067

prehend underlying medical concepts and general- 068

ize to new, unseen scenarios for effective reasoning 069

(Li et al., 2023a), as shown in Figure 1. Moreover, 070
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the high stakes of medical applications necessitate071

that LLMs explain their reasoning to improve the072

trustfulness and interoperability (Holzinger et al.,073

2017; Tonekaboni et al., 2019). Therefore, it is cru-074

cial to establish a more rigorous evaluation frame-075

work that accurately analyzes the performance of076

existing KE methods on medical knowledge to en-077

sure their reliability and applicability in real-world078

applications (Zhou et al., 2024; Zhang et al., 2025).079

In this work, we establish MedEditBench for rig-080

orous medical knowledge editing evaluation. First,081

we create a high-quality medical knowledge editing082

benchmark from two real-world medical question-083

answering datasets (Kim et al., 2024; Pal et al.,084

2022). To evaluate the generalizability of KE meth-085

ods, we extend the benchmark with scenario-based086

questions that require LLMs to apply the injected087

knowledge to address new clinical scenarios, as088

well as questions that require LLMs to preserve089

their previously factual knowledge. We also intro-090

duce three novel metrics: efficacy, generalization,091

and retention to measure the performance of KE092

methods in updating, generalizing, and preserving093

medical knowledge, respectively.094

Our initial findings reveal a substantial gap be-095

tween current KE methods and the demands of096

real-world medical applications. We observe that097

all existing knowledge editing methods consistently098

underperform in complex medical settings; even099

the strongest method, AlphaEdit (Fang et al., 2024),100

achieves an average performance of only 53.9%,101

comprising 43.9% efficacy, 31.2% generalization,102

and 86.7% retention. We attribute this pitfall to103

the existing editing paradigm that relies on a short104

ground-truth answer (GTA) as the knowledge tar-105

get, which causes LLMs to memorize surface-level106

facts rather than understand the underlying medical107

rationale, thereby impairing generalization. Al-108

though using the human-curated reference (RE) as109

the target knowledge can enhance the knowledge110

understanding by providing more context, the im-111

provements are still limited.112

To address this limitation, we introduce a novel113

editing paradigm called self-generated rationale114

editing (SGR-Edit), which simulates the chain-of-115

thought reasoning (Wei et al., 2022), by prompting116

LLMs to generate explanatory rationales to support117

the new target answer based on provided reference118

texts. These self-generated rationales then serve as119

the target knowledge and can be seamlessly inte-120

grated with arbitrary knowledge editing methods.121

SGR-Edit reveals the internal reasoning process122

of LLMs, allowing them to better internalize new 123

medical knowledge and generalize to unfamiliar 124

scenarios. Experimental results demonstrate that 125

Self-Generated Rationale Editing (SGR-Edit) sig- 126

nificantly enhances the performance of existing 127

editing methods relative to conventional knowledge 128

targets: SGR-Edit yields improvements of +4.1 per- 129

centage points for AlphaEdit and +9.5 percentage 130

points for LoRA, demonstrating its effectiveness in 131

enhancing medical knowledge editing. The contri- 132

bution of this work is as follows. 133

• We propose a framework (MedEditBench) to 134

rigorously assess existing knowledge editing 135

methods in real-world medical scenarios and 136

evaluate the applicability of various editing 137

paradigms with different knowledge sources. 138

• We conduct a comprehensive evaluation and 139

find that existing editing methods are insuffi- 140

cient for medical knowledge editing because 141

the existing paradigm relies on short answers, 142

promoting surface-level memorization. 143

• We propose a novel editing paradigm, SGR- 144

Edit, which uses self-generated rationales as 145

the target knowledge for editing, noticeably 146

improving the performance of all existing edit- 147

ing methods. 148

• We introduce deeper insights into medical 149

knowledge editing, including the localization 150

of medical knowledge in LLMs and the im- 151

pact of sequential editing on evolving knowl- 152

edge. 153

2 Related Work 154

2.1 Knowledge Editing Methods 155

Knowledge editing methods can be roughly 156

grouped into three categories: 157

Fine-Tuning–Based Editing These approaches 158

update a large number of model parameters to in- 159

ject new knowledge, typically via constrained or 160

parameter-efficient training. Such approaches in- 161

clude FT+L (Zhu et al., 2020), FT-M (Zhang et al., 162

2024), and LoRA (Hu et al., 2022). 163

Parameter-Modifying Editing Compared to full 164

model fine-tuning, these methods focus on specific 165

parameters to minimize interference with unrelated 166

knowledge. The Meta-Learning strategy trains a 167

hypernetwork to predict gradient updates for knowl- 168

edge insertion, as seen in methods (De Cao et al., 169
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2021; Mitchell et al.; Tan et al.). The Locate-170

then-Edit approach identifies and rewrites factual171

weights in specific layers. Representative models172

of this approach include ROME (Meng et al., 2022)173

and MEMIT (Meng et al.), along with sequential174

editing variants like PRUNE (Ma et al., 2024a),175

AlphaEdit (Fang et al., 2024), and AnyEdit (Jiang176

et al., 2025), which support continuous knowledge177

updates.178

Parameter-Preserving Editing These tech-179

niques maintain the base model’s parameters by180

either augmenting it with external modules or181

retrieving relevant information during inference.182

Extension-Based methods, such as GRACE183

(Hartvigsen et al., 2023), add adapters or incor-184

porate side modules (Mitchell et al., 2022; Wang185

et al., 2024b) to store new facts. Retrieval-Based186

methods (Zheng et al., 2023; Song et al., 2024; Shi187

et al., 2024; Chen et al., 2024b) retrieve relevant188

facts to include in the prompt as context and189

generate updated outputs.190

2.2 Knowledge Editing Benchmarks191

Early evaluations of knowledge editing methods192

primarily focused on general-domain benchmarks,193

such as WikiData (Meng et al., 2022) and coun-194

terfactual datasets (Levy et al., 2017). They try to195

update LLMs with new knowledge that contradicts196

the common knowledge. Recently, studies (Ju et al.,197

2023; Li et al., 2023b; Pinter and Elhadad, 2023;198

Chen et al., 2024a) question the real-world applica-199

bility of existing knowledge editing methods and200

propose new benchmarks for a fair evaluations.201

Cohen et al. (2024) measures “ripple effects” on202

related facts and reveals that KEs often fail to prop-203

agate consistent changes beyond the target triple.204

Huang et al. (2024) reports that prior benchmarks205

do not strictly confirm LLMs having hallucinated206

answers to the questions before conducting editing,207

which masks their true editing performance. Ma208

et al. (2024b) investigates editing consistency un-209

der prompt rephrasing and realistic communicative210

contexts, finding that current KEs exhibit lower211

generalization and that popular facts are hardest to212

edit. Lin et al. (2024) examines sequential editing213

and shows that the KEs experience editing per-214

formance drops after continual edits. Yang et al.215

(2025) critiques common evaluation practices and216

reveals that KEs catastrophically fail on realistic217

QA tasks Differ from prior evaluations focused218

on artificial and simplified general-domain settings219

(Ma et al., 2024b; Lin et al., 2024), we introduce 220

the first framework for medical knowledge editing 221

evaluation, to rigorously measure whether updated 222

medical knowledge could be effectively adopted in 223

new clinical scenarios without degrading previous 224

factual knowledge. 225

3 Task Formulation 226

The goal of knowledge editing is to modify spe- 227

cific knowledge k in LLMs without retraining the 228

entire model (Zhang et al., 2024), thereby improv- 229

ing performance on tasks related to that knowl- 230

edge, represented by a set of queries and answers: 231

Qk = {(qi, ai)}. Let θ denote the original model. 232

Given a query q and the target knowledge k, the 233

knowledge editing method F can be expressed as: 234

θ′ = F (θ, q, k), (1) 235

where θ′ represents the edited model expected 236

to provide the desired answer a = θ′(q) for the 237

knowledge-related query q ∈ Qk. 238

4 Evaluation Framework 239

In this section, we describe the proposed med- 240

ical knowledge editing evaluation framework 241

(MedEditBench), as illustrated in Figure 2. 242

4.1 Medical Editing Benchmark Construction 243

Due to the lack of existing benchmarks for medi- 244

cal knowledge editing, we construct two datasets: 245

MedExQAedit and MedMCQAedit by extending two 246

real-world medical QA datasets (Kim et al., 2024; 247

Pal et al., 2022). Each QA dataset is originally pro- 248

vided with a set of questions q, answers a, and rel- 249

evant references c in the format of human-written 250

explanations or textbook references. 251

To ensure reliable evaluations of a target LLM, 252

we filter out medical questions that the LLM can 253

answer correctly before editing. In this way, our 254

assessments could reflect genuine improvements 255

from knowledge editing methods. We prompt the 256

LLM in a zero-shot manner to predict answers for 257

each candidate question and retain only those ques- 258

tions it fails to answer correctly as Qori. Thus, the 259

accuracy on Qori indicates the efficacy of editing 260

methods in injecting new knowledge. 261

To assess the generalization of edited knowl- 262

edge, we create a novel scenario-based question 263

set Qgen that evaluates whether the edited LLM 264

can apply the injected knowledge to address clini- 265

cal questions in unseen scenarios. Unlike existing 266
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[STEP] The sternum is …,  not typically used to determine growth in an individual. 

[STEP] The mandible is …  not used to determine overall skeletal growth. 

[STEP] Therefore, the correct answer is the cervical vertebrae.

Dataset 
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referenceQori

Q

A
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[STEP] The question is asking 

about …

[STEP] …

[ANSWER] …Edited LLM
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Evaluation
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MedEditBench
Figure 2: Overview of proposed medical knowledge editing evaluation framework (MedEditBench). Datasets are
first constructed for medical knowledge editing (gray rectangle). Then, we propose three editing paradigms (GTA-
Edit, RE-Edit, and SGR-Edit) to evaluate the effectiveness of different target knowledge for medical knowledge
editing (purple rectangle). The rationale in SGR-Edit is generated by the LLM itself, given a QA and a reference
(green rectangle). These evaluations are based on the existing knowledge editing methods (blue rectangle). Finally,
we evaluate the edited model’s post-edit accuracy (i.e., efficacy, generalization, and retention) and assess the
interpretability of the generated rationales for the final answers (orange rectangle).

benchmarks that rely on simple question paraphras-267

ing (Huang et al., 2024), we (see Figure 7 for the268

complete prompts).269

Last, we construct Qret, which comprises those270

questions the LLM answered correctly before edit-271

ing, to evaluate the retention of knowledge. This272

set is designed to ensure that the model retains its273

original knowledge after editing. The examples of274

Qori, Qgen, and Qret are shown in Figure 9. Unlike275

existing benchmarks that rely on simple question276

paraphrasing (Huang et al., 2024), we generate277

Qgen by extending the core facts of each original278

question into novel clinical scenarios (see Figure 7279

for the complete prompt).280

Data Principles As shown in the top gray rectan-281

gle of Figure 2, our benchmarks are built following282

two key data principles:283

• Quality. We filter each QA pair by verify-284

ing whether the provided knowledge logically285

entails the ground-truth answer to ensure the286

question is knowledge relevant. We simply287

prompt the LLM with (c, q) and retain the288

sample only if the output answer equals a.289

• Difficulty. To strictly evaluate the efficacy290

and generalization of knowledge editing, we291

ensure the pre-edit performance of the LLM292

is 0% on Qori and Qgen, while 100% on Qret 293

to ensure the retention of original knowledge. 294

The detailed data construction process is de- 295

scribed in Appendix A. 296

4.2 Knowledge-driven Editing Paradigms 297

In MedEditBench, we propose three editing 298

paradigms to evaluate the effectiveness of different 299

target knowledge for medical knowledge editing. 300

Ground-Truth Answer Editing (GTA-Edit) is 301

the prevailing paradigm that typically uses the fi- 302

nal answer a as the target knowledge k for editing 303

(Meng et al., 2022; Meng et al.). As shown in Fig- 304

ure 2, GTA-Edit directly injects the answer (e.g., 305

“Cervical vertebrae”) into LLMs. Although this 306

approach is straightforward, it may lead to super- 307

ficial memorization of the answer without a deep 308

understanding of the underlying medical rationale. 309

Reference Editing (RE-Edit) takes supporting ref- 310

erence c extracted from textbooks or academic liter- 311

ature as the target knowledge k for editing. While 312

the reference text is not directly used as the an- 313

swer, it provides a more comprehensive context for 314

the model to understand the underlying medical 315

knowledge. 316

Self-generated Rationale Editing (SGR-Edit) is 317

proposed to further enhance the knowledge inter- 318

nalization by leveraging the model’s own reasoning. 319
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As shown in the yellow part of Figure 2, we first320

prompt the LLM to generate a chain-of-thought ra-321

tionale for the question-answer pair (q, a) using the322

reference text c as context. This generated rationale323

clearly outlines the reasoning process that leads324

to the answer, serving as the target knowledge k325

for editing. Thus, SGR-Edit not only incorporates326

the answer but also provides a detailed explana-327

tion of how the model arrives at it, enabling LLMs328

to deliver interpretable and explainable reasoning329

that supports high-stakes medical decisions. The330

detailed prompts for generating rationales are pro-331

vided in Appendix C.3. Examples of the GTA, RE,332

and SGR are presented in Table 3.333

4.3 Evaluation Metrics334

As shown in Figure 2, the knowledge editing is335

conducted with questions q ∈ Qori and their cor-336

responding knowledge {k} defined in each editing337

paradigm via Equation (1) to inject knowledge into338

LLMs. The edited model θ′ is then evaluated on339

three test sets, i.e., q ∈ Qori ∪ Qgen ∪ Qret to340

measure the efficacy, generalization, and retention341

of each editing method with the accuracy of the342

model’s predicted answer.343

To further evaluate the interpretability of the344

edited model, we also instruct the model to provide345

a rationale for its final answer, which is compared346

with the ground-truth interpretation using ROUGE-347

L (Lin, 2004) and BLEU scores (Papineni et al.,348

2002). Detailed calculations are provided in Ap-349

pendix C.4.350

4.4 Editing Method Selection351

We choose six representative editing methods from352

three categories: Fine-Tuning methods: LoRA353

(Hu et al., 2022), Parameter-Modifying methods:354

ROME (Meng et al., 2022), MEMIT (Meng et al.),355

and Parameter-Preserving methods: GRACE356

(Hartvigsen et al., 2023), AnyEdit (Jiang et al.,357

2025), AlphaEdit (Fang et al., 2024). The AnyEdit358

and AlphaEdit methods are state-of-the-art edit-359

ing methods that effectively support long-form and360

continual knowledge editing. We exclude retrieval-361

based editing methods (Song et al., 2024; Shi et al.,362

2024; Chen et al., 2024b; Zheng et al., 2023) since363

they do not directly update knowledge within the364

model parameters. Details of the editing methods365

are provided in Appendix B.366

4.5 Experimental Setup 367

We evaluate all editing methods on two LLMs: 368

LLaMA-3.1-8B-Instruct and LLaMA-3.2-3B- 369

Instruct2. Editing pipelines are implemented based 370

on the EasyEdit framework (Wang et al., 2023). 371

Detailed experimental settings are provided in 372

Appendix C. To ensure interpretable reasoning, 373

all post-edit predictions follow a two-step format: 374

a rationale followed by the final answer. This 375

approach encourages the model to conduct deep 376

reasoning, resulting in both improved prediction 377

accuracy and enhanced interpretability. The output 378

format is illustrated in Appendix D.4. 379

5 Main Experiments 380

In this section, we evaluate the effectiveness of edit- 381

ing methods on medical knowledge by answering 382

the following research questions: 383

RQ1: How do current model editing methods per- 384

form in the medical domain? 385

RQ2: How do different editing paradigms impact 386

the effectiveness of medical knowledge editing? 387

RQ3: How does the medical knowledge stored in 388

LLMs? 389

RQ4: How does the knowledge in LLMs evolve 390

with sequential editing? 391

5.1 Evaluating Editing Methods in Medical 392

Domain (RQ1) 393

Existing editing methods follow the ground-truth 394

answer editing (GTA-Edit) paradigm, where the 395

model is updated by injecting the answer a as the 396

target knowledge (Meng et al., 2022; Meng et al.). 397

We follow this paradigm to update LLMs with the 398

ground-truth answer a for each question q ∈ Qori. 399

Then, the model’s performance is evaluated on the 400

three test sets Qori ∪Qgen ∪Qret, and the question 401

answering accuracy is reported in Table 1. From 402

the results, we observe that: 403

RQ1-F1: No existing editing method is effec- 404

tive enough for medical settings. The efficacy 405

of nearly all methods is below 50%, except for Al- 406

phaEdit and LoRA on LLaMA-8B, which achieve 407

only 53.9% and 53% on MedMCQAedit, respec- 408

tively. This sharply contrasts with previous reports 409

of over 90% accuracy in general domain bench- 410

marks (Meng et al., 2022; Fang et al., 2024), high- 411

lighting a significant gap when applying knowledge 412

editing methods to the intricate medical domain. 413

2https://llama.meta.com/lama3/
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Method Metric Pre-Edit LLaMA-8B LLaMA-3B

MedExQAedit MedMCQAedit MedExQAedit MedMCQAedit

LoRA

Eff. 0 43.5 46.6 36.7 14.4
Gen. 0 41.3 41.6 43.3 33.7
Ret. 100 63.0 70.8 63.3 52.9
avg. \ 49.3 53.0 47.8 33.7

ROME

Eff. 0 37.0 32.7 23.3 25.7
Gen. 0 43.5 29.6 26.7 25.1
Ret. 100 63.0 61.6 56.7 56.1
avg. \ 47.8 41.3 35.6 35.7

MEMIT

Eff. 0 39.1 28.3 28.3 16.0
Gen. 0 50.0 25.2 31.7 25.1
Ret. 100 50.0 64.8 63.3 54.5
avg. \ 46.4 39.4 41.1 31.9

GRACE

Eff. 0 34.8 36.0 33.3 26.7
Gen. 0 21.7 29.2 10.0 7.0
Ret. 100 76.1 80.7 88.3 93.0
avg. \ 44.2 48.7 43.9 42.2

AnyEdit

Eff. 0 34.8 36.6 35.0 23.0
Gen. 0 28.3 25.5 28.3 23.0
Ret. 100 78.3 78.9 71.7 78.1
avg. \ 47.1 47.0 45.0 41.4

AlphaEdit

Eff. 0 47.8 43.9 35.0 32.6
Gen. 0 32.6 31.2 31.7 27.8
Ret. 100 76.1 86.7 73.3 77.5
avg. \ 52.2 53.9 46.7 46.0

Table 1: Main results on medical knowledge editing with single editing (Accuracy %). For avg. scores per column:
bold is the best, underline is the second best.
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Figure 3: Medical knowledge editing with various editing paradigms.
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RQ1-F2: Existing editing methods struggle to414

generalize updated medical knowledge and of-415

ten compromise existing knowledge. This find-416

ing is reflected in the low generalization scores417

and noticeable drops in retention. For example, on418

MedMCQAedit, LoRA achieves only 41.6% (8B)419

and 33.7% (3B) generalization, while retaining420

70.8% and 52.9% of previously correct answers. 421

Despite its strong retention, GRACE shows limited 422

generalization ability, making it less suitable for 423

adapting to new clinical contexts. These results 424

suggest that existing editing paradigm (i.e., GTA- 425

Edit) often leads to surface-level memorization 426

rather than meaningful internalization of medi- 427
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cal knowledge. Detailed case analyses are can be428

found in Appendix E.429

5.2 Evaluation of Editing Paradigms (RQ2)430

This section investigates how different editing431

paradigms (i.e., GTA, RE, and SGR), affect432

the performance of existing editing methods on433

MedMCQAedit. Our key findings are as follows:434

RQ2-F1: SGR-Edit yields the highest editing435

performance. As shown in Figure 3, SGR-Edit436

achieves the best performance for the five selected437

editing methods in both LLaMA-8B and LLaMA-438

3B, demonstrating that the reasoning knowledge439

drives is more effective for medical knowledge440

editing. On LLaMA-8B, AlphaEdit’s average441

score increases from 53.9% (GTA-Edit) to 55.9%442

(RE-Edit, +2.0%) and 58.0% (SGR-Edit, +4.1%).443

LoRA exhibits a similar enhancement, rising from444

53.0% (GTA-Edit) to 57.8% (RE-Edit, +4.8%) and445

62.5% (SGR-Edit, +9.5%). Importantly, SGR-446

Edit achieves these gains with only one additional447

reasoning-generation step, making it both highly448

effective and readily deployable in practice. Full re-449

sults and further analysis are provided in Appendix450

D.1.451

RQ2-F2: SGR-Edit enables better reasoning in-452

terpretation. We report the rational interpretabil-453

ity of SGR-Edit and RE-Edit in Figure 4. The re-454

sults indicate that SGR-Edit provides a more com-455

prehensive understanding of the underlying medi-456

cal knowledge enabling better reasoning interpre-457

tation than RE-Edit. Detailed results and analyses458

are provided in Appendix D.2.459

5.3 Localization of Medical Knowledge in460

LLMs (RQ3)461

In this section, we investigate the layer-wise stor-462

age of medical knowledge in LLMs. Following463

Meng et al. (2022), we edit knowledge across464

four disjoint layer ranges and check the storage465

of certain knowledge. For LLaMA-8B, we se-466

lect layers 4–8, 11–15, 18–22, and 25–29; for the467

smaller LLaMA-3B, we use layers 4–8, 10–14,468

16–20, and 22–26. We sample 100 QA pairs from469

MedMCQAedit and group target knowledge by to-470

ken length to assess the impact of knowledge gran-471

ularity. GTA targets are the shortest answers (<10472

tokens), RE explanations span 50–100 or 100–150473

tokens, and SGR rationales range from 150–200 to474

200–250 tokens. Based on Figure 5, we draw the475

following findings:476

L4-8 L11-15 L18-22 L25-29
Editing Layers

GTA-Edit
(<10)

RE-Edit
(50-100)

RE-Edit
(100-150)

SGR-Edit
(150-200)

SGR-Edit
(200-250)

0.433 0.367 0.267 0.200

0.550 0.433 0.417 0.367

0.483 0.517 0.417 0.450

0.467 0.433 0.383 0.233

0.583 0.533 0.200 0.267

LLaMA-8B

L4-8 L10-14 L16-20 L22-26
Editing Layers

GTA-Edit
(<10)

RE-Edit
(50-100)

RE-Edit
(100-150)

SGR-Edit
(150-200)

SGR-Edit
(200-250)

0.333 0.317 0.233 0.250

0.533 0.467 0.300 0.333

0.417 0.350 0.233 0.350

0.533 0.517 0.267 0.400

0.433 0.350 0.183 0.283

LLaMA-3B

0.20
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0.35

0.40
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0.55

av
g.

 sc
or

es

0.20

0.25

0.30

0.35

0.40

0.45

0.50

av
g.

 sc
or

es

Figure 5: Layer-Wise editing performance

RQ3-F1: Medical knowledge is primarily stored 477

in middle layers. Unlike previous findings in 478

general-domain settings, which suggest that factual 479

associations are primarily stored in middle layers 480

(Meng et al., 2022) and that deeper layers offer 481

greater editing stability (Lin et al., 2024), we find 482

that medical knowledge in LLaMA models is most 483

effectively edited in the shallower layers. 484

For both LLaMA-8B and 3B, editing operations 485

targeting shallower layers 4-8 consistently yield the 486

highest effectiveness. When editing on LLaMA- 487

8B, average scores in layers 4-8 range from 0.433 488

to 0.583, and for LLaMA-3B, they span from 0.333 489

to 0.533, consistently outperforming edits in deeper 490

layers. 491

RQ3-F2: Across all editing paradigms, the most 492

effective edits are consistently achieved in the 493

shallower layers. For all target knowledge (i.e., 494

GTA, RE, SGR), optimal editing performance is ob- 495

served almost exclusively in layers 4-8. The results 496

also indicate that while different target knowledge 497

does not affect the optimal editing location, it does 498

influence the magnitude of effectiveness. For exam- 499

ple, SGR-Edit (200-250) in layers 4-8 achieves the 500

highest score of 0.583 for LLaMA-8B, with RE- 501

Edit (50-100) demonstrating strong performance at 502

0.550 within these same layers. 503

5.4 Reliability of Sequential Medical Edits 504

(RQ4) 505

In this section, we study the reliability of sequen- 506

tial edits to medical knowledge in LLMs, where 507
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Model #Edits Overall ∆Overall Health ∆Health Non-Health ∆Non-Health

LLaMA-8B
0 (Raw) 67.9 – 70.7 – 68.0 –
50 66.4 –1.5 68.5 –2.2 66.6 –1.5
100 63.2 –4.6 61.1 –9.6 64.7 –3.3

LLaMA-3B
0 (Raw) 60.7 – 63.7 – 60.5 –
50 59.1 –1.6 60.7 –3.0 59.1 –1.3
100 56.8 –3.9 54.4 –9.3 57.4 –3.1

Table 2: Sequential editing performance and absolute drops ∆ on MMLU (Accuracy %).
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Figure 6: Performance over sequential medical editing.

the knowledge is sequentially updated through508

multiple edits. We assess three representative se-509

quential editing methods: AlphaEdit, LoRA, and510

MEMIT, through up to 100 sequential edits using511

samples from MedMCQAedit. We track average512

editing success rates at edit steps {1, 5, 10, 20, 30,513

50, 100}. To better quantify the side effects of514

medical knowledge editing on the model’s reten-515

tion of other information, we analyze performance516

drops in both health and non-health domains of the517

MMLU benchmark (Hendrycks et al., 2020) after518

50 and 100 sequential edits using AlphaEdit.519

RQ4-F1: AlphaEdit supports stable and effec-520

tive sequential editing far better than other521

methods. Figure 6 shows that on LLaMA-8B, Al-522

phaEdit maintains an average editing score above523

60% through 30 sequential edits, declining mod-524

erately to 58% at 50 edits and 41% at 100 edits.525

In contrast, LoRA drops sharply from 63% after526

the first edit to just 9% at 50 edits and collapses527

to 2% at 100 edits. MEMIT falls to near zero by528

the 50th edit. A comparable pattern is observed529

on LLaMA-3B: AlphaEdit sustains 46% average530

performance after 50 edits, while LoRA—despite531

strong single-edit results, it fails to withstand con- 532

tinual editing, and MEMIT degrades rapidly under 533

sequential editing. 534

RQ4-F2: Sequential medical edits deteriorate 535

the knowledge in other domains. As shown 536

in Table 2, after 100 sequential edits on LLaMA- 537

8B, health-domain accuracy on MMLU declines 538

more sharply (e.g., ∆ = −9.6% on LLaMA-8B, 539

∆ = −9.3% on LLaMA-3B), which is expected 540

given the exclusively medical nature of the edit data. 541

However, non-health accuracy falls from 68.0% to 542

64.7% (∆ = −3.3%), and on LLaMA-3B from 543

60.5% to 57.4% (∆ = −3.1%), suggesting that 544

continual updates to medical knowledge can lead 545

to the erosion of out-of-domain knowledge. 546

6 Conclusion 547

In this paper, we introduce MedEditBench, a novel 548

evaluation framework to rigorously evaluate ex- 549

isting knowledge editing methods in the medical 550

domain. We present a comprehensive benchmark 551

that includes a diverse metrics, along with vari- 552

ous knowledge editing paradigms to examine the 553

impact of different knowledge sources on editing. 554

Our experimental results reveal that existing edit- 555

ing paradigms tend to induce superficial memoriza- 556

tion rather than foster genuine understanding of 557

the underlying rationale by updating with a sim- 558

ple final answer. To overcome this limitation, we 559

propose the self-generated rationale editing (SGR- 560

Edit), a novel editing paradigm where the model 561

first generates an evidence-grounded rationale as 562

the editing knowledge target. This approach re- 563

veals the underlying reasoning process, enabling 564

deeper internalization of new medical knowledge. 565

Additionally, our analysis uncovers that medical 566

knowledge is usually stored in shallower LLM lay- 567

ers, and when sequential editing on medical knowl- 568

edge, the LLM typically suffers from degradation 569

of broader knowledge. This finding provides prac- 570

tical guidance for medical applications and further 571

research in this area. 572
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Limitations and Future Work573

We acknowledge the limitations of this study:574

• Evaluation Coverage: Due to limited GPU575

resources, our main experiments focus on six576

representative editing methods applied to two577

widely used LLaMA models. To broaden cov-578

erage, we additionally report single-edit re-579

sults on Qwen2.5-7B in Appendix D.3.580

• SGR-Edit Overhead: SGR-Edit requires581

only a single LLM and no external modules,582

leveraging evidence-based rationale genera-583

tion without additional infrastructure. How-584

ever, as the length of generated rationales585

grows, so does GPU memory consumption,586

which impedes large-batch editing experi-587

ments. Future work should investigate com-588

pact rationale representations to enable scal-589

able batch updates.590

• Multi-Hop Reasoning: Real-world medical591

updates often involve interconnected facts and592

multi-step inferences. We leave the evaluation593

of multi-hop knowledge propagation and its594

downstream impact to future efforts.595

• Cross-Domain Generalization: While our596

primary focus is medical QA, the benchmark597

framework and SGR-Edit paradigm may gen-598

eralize to other specialized domains (e.g., le-599

gal, scientific). We plan to assess and adapt600

our protocol for broader domain transferabil-601

ity.602

Ethics Statement603

Our benchmarks are constructed from publicly604

available datasets and synthetic scenarios, which605

may introduce spurious or hallucinated content.606

Consequently, they are not for real clinical decision607

support. Furthermore, our findings highlight that608

editing operations can inadvertently degrade unre-609

lated knowledge, underscoring the need for careful610

risk assessment before real-world deployment in611

safety-critical settings.612
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A Medical Knowledge Editing 850

Benchmarks 851

A.1 Medical QA datasets 852

MedMCQA is drawn from postgraduate-level 853

Indian medical entrance exams (AIIMS and NEET 854

PG), spanning 2,400 healthcare topics across 21 855

specialties. Each question offers four answer op- 856

tions. We choose the validation set that comprises 857

4183 QA pairs for MedMCQAedit construction. 858

MedExQA is designed to provide a richer med- 859

ical context for evaluating LLMs by pairing each 860

question with two human-curated explanation sets. 861

As these two explanations exhibit high semantic 862

similarity (> 73%) (Kim et al., 2024), we simply 863

uses the first explanation set in our benchmark. It 864

includes five underrepresented specialties in cur- 865

rent datasets: biomedical engineering, clinical lab- 866

oratory science, clinical psychology, occupational 867

therapy, and speech language pathology. 868

We exclude the Speech Language Pathology sub- 869

set on MedExQA due to frequent inconsistencies 870

between questions and their provided explanations. 871

For example, one multiple-choice question lists B 872

as the correct answer, while its accompanying ex- 873

planation supports option D, rendering this subset 874

unreliable for editing evaluations. After removing 875

Speech Language Pathology, the remaining four 876

specialties comprise 773 QA pairs used to construct 877

MedExQAedit. 878

A.2 Data Construction 879

Our benchmark construction proceeds in the follow 880

four main steps to ensure that all evaluation ques- 881

tions truly measure editing gains in the medical 882

domain: 883

Step 1. Quality Verification We begin with 884

two public medical QA datasets, MedExQA and 885

11



MedMCQA, each of which pairs a question q with886

a ground-truth answer k and one or two human-887

written explanations exp. Due to known inconsis-888

tencies (e.g., mismatches between k and exp), we889

filter out any QA pair whose explanation fails to890

support the correct answer. Concretely, we prompt891

an LLM (e.g., LLaMA-8B) with the (exp, q) under892

in-context learning (more like in an open-book set-893

ting). If the model’s prediction does not match k,894

we discard that sample. The remaining high-quality895

pairs form our Verified Explanation Set Dverified.896

Step 2. Zero-Shot Filtering Next, we assess897

this LLM’s zero-shot performance on each ques-898

tion in Dverified by feeding only q (without exp)899

in a context-free condition. Samples for which900

the model answers incorrectly indicate out-of-date901

or missing internal knowledge; these become our902

Original Set Qori.903

Step 3. Scenario Generation To generate novel904

datasets for rigorous Generalization and Retention905

assessment, we use a more powerful agent (we906

use DeepSeek-V3 in this study; others like GPT-4907

and Gemini could also serve this role) to construct908

new medical questions. For each verified pair in909

Dverified, we treat its human-curated explanation910

that cites authoritative medical textbooks, as the911

medical fact. Then, the agent uses the medical fact912

to craft clinical-scenario QA pairs through prompt-913

ing (see Figure 7), yielding candidates for Qgen914

and Qret.915

Step 4. Data Filtering We then subject each916

generated variant to the same zero-shot test as in917

Step 2. Concretely, for generalization question918

candidates, we prompt the LLM without any expla-919

nation and record its predicted answer k̂. If k̂ ̸= k′,920

where k′ is the intended (ground-truth) answer, we921

include it in the generalization set Qgen; As for922

retention question candidates, if k̂ = k′, we add923

this pair to the retention set Qret. This ensures that924

Qgen contains only those scenarios that the LLM925

cannot solve without editing, while Qret captures926

instances where its original knowledge remains in-927

tact.928

These processes yield three disjoint sets—Qori,929

Qgen, and Qret, which together form our final edit-930

ing benchmarks MedExQAedit and MedMCQAedit.931

A.3 Benchmark Complexity932

Our medical editing benchmarks introduce sub-933

stantially more complex questions than common934

general-domain datasets. Whereas ZsRE questions 935

average only 11.9 tokens, our MedMCQAedit and 936

MedExQAedit samples exhibit mean lengths of 52.7 937

and 47.6 tokens for original questions, 105.8 and 938

100.5 for generalization questions, and 92.6 and 939

88.6 for retention questions, respectively (see Fig- 940

ure 8). This increase in question length reflects 941

the inclusion of rich clinical context and novel sce- 942

nario descriptions. In particular, Qgen and Qret 943

include extra patient-centered details (see Figure 944

9) to mimic real-world clinical scenarios, further 945

increasing the inference challenge. By expanding 946

both the lexical and conceptual scope of each query, 947

our benchmarks better simulate real-world medi- 948

cal reasoning tasks and rigorously test an LLM’s 949

capacity for knowledge editing under realistic com- 950

plexity. 951

B Existing Editing Methods 952

Fine-Tuning–Based Editing. These traditional 953

approaches update model parameters to incorpo- 954

rate new knowledge: FT+L (Zhu et al., 2020) en- 955

forces norm constraints in gradient updates to min- 956

imize interference on the unmodified facts. FT-M 957

(Zhang et al., 2024) applies a masking strategy 958

during training to focus updates on relevant target 959

content. LoRA (Hu et al., 2022) introduces train- 960

able low-rank decomposition matrices to achieve 961

efficient adaptation with minimal additional param- 962

eters. 963

Parameter-Modifying Editing. Unlike fine- 964

tuning, these methods seek to modify only a subset 965

of parameters to inject new facts while preserv- 966

ing unrelated knowledge. Broadly, they fall into 967

two categories: i) Meta-Learning editing typically 968

trains a hypernetwork to estimate gradient updates 969

for knowledge insertion (De Cao et al., 2021; Tan 970

et al.), e.g.,MEND (Mitchell et al.) introduces a 971

hypernetwork to transform the gradient obtained by 972

using a low-rank decomposition to make the param- 973

eterization tractable. ii) Locate-then-Edit methods 974

identify and then modify the weights responsible 975

for specific factual associations: ROME (Meng 976

et al., 2022) localizes and modifies factual asso- 977

ciations in a transformer layer. MEMIT (Meng 978

et al.) extends ROME by performing batch edits 979

across multiple critical layers for mass knowledge 980

updates. 981

Recently, sequential editing methods have been 982

introduced to support continuous updates rather 983

than a one-off modification. PRUNE (Ma et al., 984
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Strictly use the provided medical fact to create a standalone exam question that:

* Extends and applies the core knowledge from the original question (ori_q) to a new clinical scenario.

* Tests further application of the underlying medical principle by exploring nuanced aspects (e.g., treatment 

variations, diagnostic approaches) of the same fact.

* Ensures that the new clinical scenario is distinct from the original, yet its reasoning and answer are strictly 

derived from—and can be found within—the provided fact without external information.

Mandatory Requirements:

1. Identify 1-2 key elements from the provided fact that relate directly to the original question’s core focus.

2. Build the question around these elements in a novel clinical context (e.g., different patient demographics 

or clinical settings) that extends the original knowledge.

3. Ensure the answer is directly supported by the content in the provided fact.

Strict Prohibitions:

1. No recycled answer options or distractors from the original question.

2. No introduction of external knowledge not included in the provided fact.

3. No repetition of the original question's clinical presentation or distractor structure.

Output Format:

[new_q]

1. Clinical stem presenting a new context that builds on the original core knowledge.

2. 4 plausible answer options that incorporate novel distractors.

3. A clear differentiator from the original question’s focus.

[new_a]

Provide answer reasoning that validates the new fact-derived clinical application and ensure the correct answer can be 

found within the provided fact.

[new_exp]

1. Explicitly cite the key fact elements used.

2. Explain how the scenario extends the original question's core knowledge.

Strictly use the provided medical fact to create a standalone exam question that:

* Tests a distinct area of medical knowledge that is different from the core focus of the original question 

(ori_q).

* Evaluates an alternative clinical application scenario, ensuring the underlying knowledge is strictly derived 

from the provided fact.

* Presents a fresh angle that does not overlap with the original question’s content.

Mandatory Requirements:

1. Extract 1-2 key elements from the provided fact that represent different or additional aspects not covered in 

ori_q.

2. Construct a question that leverages these elements to form an entirely separate clinical scenario (e.g., 

alternative diagnostic methods or treatment considerations) from the original question.

3. Ensure all reasoning and content are exclusively based on the provided fact.

Strict Prohibitions:

1. No reuse of answer logic or distractors from the original question.

2. No incorporation of external information beyond the provided fact.

3. No similarity in clinical presentation to the original question’s scenario.

Output Format:

[locality_q]

1. Clinical stem with a new context that is clearly distinct from the original question’s focus.

2. 4 plausible answer options with novel distractors.

3. A clear differentiation from the original question’s tested knowledge.

[locality_a]

Provide answer reasoning strictly based on the fact-derived knowledge.

[locality_exp]

1. Explicitly reference the key fact elements.

2. Contrast this scenario with the original question’s focus.

Figure 7: Prompts for Qgen (left) and Qret (right) constructions
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Figure 8: Token length distributions for MedMCQAedit (top row) and MedExQAedit (bottom row) across Original,
Generalization, and Retention question sets. Dashed lines indicate dataset means. Our medical QA benchmarks
present substantially longer inputs, increasing task difficulty.

2024a) applies condition number constraints to985

limit perturbation to keep the general capacity of986

the model. AlphaEdit (Fang et al., 2024) mini-987

mizes disruption to the preserved knowledge by988

projecting perturbations onto the null space of its989

key matrices. AnyEdit (Jiang et al., 2025) decom-990

poses long-form knowledge into sequential chunks991

and edits each key token autoregressive. These992

three newer sequential editing methods are opti-993

mized on top of the MEMIT.994

Parameter-Preserving Editing These methods995

avoid altering the parameters of the base model.996

Extension-based methods augment the model with 997

external components, leaving the base parame- 998

ters unchanged: GRACE (Hartvigsen et al., 2023) 999

writes new mappings as entries in a discrete code- 1000

book in an Adaptor. SERAC (Mitchell et al., 2022) 1001

integrates a classifier and a side model to iden- 1002

tify and learn new knowledge. Similarly, WISE 1003

(Wang et al., 2024b) deploys side FFN layers to 1004

incorporate new knowledge dynamically, and Ed- 1005

itCoT (Wang et al., 2024a) trains a separate CoT 1006

editor that cooperates with the base LLM to per- 1007

form knowledge updates at inference, . Addition- 1008
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QAori :
Which of the following bone(s) are used for the determination of growth in an individual? 
A: Clavicle B: Sternum C: Cervical vertebrae D: Mandible 

QAgen :
A 12-year-old patient is being evaluated for orthodontic treatment planning. The orthodontist orders a lateral
cephalogram to assess skeletal maturity. Which of the following anatomical structures on the cephalogram would
provide the most accurate information about the patient's growth status?
A: Shape and size of the mandibular condyle  
B: Degree of fusion in the spheno-occipital synchondrosis  
C: Morphological changes in the bodies of the second through sixth cervical vertebrae  
D: Thickness of the cortical bone in the maxilla

QAret :
A 12-year-old patient is undergoing orthodontic treatment, and the orthodontist needs to assess the patient's
skeletal maturity to plan the timing of intervention. Which of the following imaging techniques is most appropriate
for evaluating the changes in cervical vertebrae to determine skeletal maturity?
A: Panoramic radiograph  B: Lateral cephalogram  
C: Periapical radiograph  D: Cone-beam computed tomography (CBCT)

Figure 9: Examples of the three QA types. Purple text denotes the question’s domain/topic; blue text highlights the
injected new correct answer; red text shows the model’s original (pre-edit) answer.

Repr. Content

GTA “Co-arctation of Aorta.”

RE “Masson trichrome (Ref: Kanski 7/e p212–224; Parsons 22/e p212–214; Yanoff and Duker 4/e p261). Masson
trichrome stain – Used for granular corneal dystrophy diagnosis. Granular dystrophy: AD inheritance with gene
locus on 5q31; Onset: first decade with recurrent erosions; Signs: small, white, sharply demarcated deposits
resembling crumbs or snowflakes in central anterior stroma; Histology: shows amorphous hyaline deposits staining
bright red with Masson trichrome.”

SGR “STEP 1: According to the reference, Masson trichrome stain is specifically used for the diagnosis of Granular
dystrophy of the cornea. STEP 2: The reference mentions that the histology of Granular dystrophy shows amorphous
hyaline deposits staining bright red with Masson trichrome, indicating the effectiveness of this stain in diagnosing
the condition. STEP 3: Colloidal iron stain is used for diagnosing various conditions, but. . . STEP 4: Congo red
stain is used for. . . STEP 5: PAS (Periodic Acid–Schiff) stain is. . . ”

Table 3: Knowledge representations for editing. (GTA: Bare correct answer; RE: Concise factual excerpt from
expert source; SGR: Self-generated chain-of-thought rationale)

ally, retrieval-based methods (Song et al., 2024;1009

Shi et al., 2024; Chen et al., 2024b) have been1010

proposed to retrieve relevant factual information1011

at inference time, effectively “editing” via context1012

rather than weight changes. For example, IKE1013

(Zheng et al., 2023) retrieves relevant factual edits1014

and uses them to build the prompt context as input,1015

and then prompts the model to generate updated1016

outputs.1017

C Detailed Experimental Settings1018

C.1 Base Models1019

In this study, we evaluate editing methods on two1020

instruction-tuned LLaMA variants: Llama-3.1-8B-1021

Instruct and Llama-3.2-3B-Instruct 3. We utilize1022

layers [4, 5, 6, 7, 8] of the two LLMs for editing,1023

except for experiments 5.3, where we investigate1024

which layers used to edit deliver the best perfor-1025

mance.1026

3https://llama.meta.com/lama3/

C.2 Implementation 1027

We implement and evaluate six representa- 1028

tive knowledge editing methods—LoRA, ROME, 1029

MEMIT, GRACE, AnyEdit, and AlphaEdit for fair 1030

comparison. All editing workflows are built on the 1031

EasyEdit framework4. For AnyEdit, which is not 1032

yet supported by EasyEdit, we integrate the original 1033

codebase5 and adopt the original hyperparameters. 1034

In terms of evaluation, we implement independent 1035

pipelines and consistently compute metrics tailored 1036

to our medical knowledge editing. During the post- 1037

edit inference phase, we employ greedy decoding 1038

to ensure deterministic outputs. Specifically, we set 1039

do_sample=False and temperature=0.0 for all 1040

evaluations, so that the edited model’s predictions 1041

reflect its learned knowledge without sampling vari- 1042

ability. 1043

4https://github.com/zjunlp/EasyEdit
5https://github.com/jianghoucheng/AnyEdit
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System Prompt for Rationale Generation:
You have access to a reference that may assist in answering the question and in ultimately deriving the correct answer. Then focus on 

answering the following question using a chain of thought. Use the token [STEP] to start each thought step, and the token [ANSWER] to 

indicate the final answer option (A, B, C, or D). 

Template:

[STEP] ...

[STEP] ...

...

[ANSWER] ...

One-Shot:
Question: Which component of a PET scanner is used to collect the position information of annihilation radiation?

A: Coincidence circuit B: Scintillator C: Collimator D: Photomultiplier tube“

Answer: A: Coincidence circuit“

Reference: In PET imaging, the detection of annihilation radiation, which occurs due to the interaction between positrons and electrons, is essential for image

creation. A device that collects the position information of the annihilation radiation is required for this purpose. This device is the coincidence circuit. The

coincidence circuit measures the time at which the annihilation radiation is detected by a photomultiplier tube, and simultaneously by another photomultiplier

tube, to accurately determine the position of the annihilation radiation. Therefore, the coincidence circuit plays a crucial role in PET imaging."

Rationale:

[STEP] According to the reference, the coincidence circuit is responsible for measuring the time at which the annihilation radiation is detected by two

photomultiplier tubes, allowing for the accurate determination of the position of the annihilation radiation.

[STEP] The coincidence circuit is specifically designed to collect the position information of annihilation radiation, making it the correct answer.

[STEP] The scintillator is a component that converts the annihilation radiation into visible light, but it does not collect position information.

[STEP] The collimator is a component that helps to focus the annihilation radiation onto the scintillator, but it does not collect position information.

[STEP] The photomultiplier tube is a component that detects the visible light produced by the scintillator, but it does not collect position information.

[ANSWER] A

Figure 10: Complete prompt for generating rationales.

C.3 Editing Paradigm1044

For each qori ∈ Qori, we construct three knowledge1045

targets k′ according to the paradigm:1046

• GTA-Edit: the ground-truth answer, with op-1047

tion letters stripped (e.g., remove “D:” in “D:1048

Masson trichrome”).1049

• RE-Edit: the human-written explanation ex-1050

cerpted from textbooks.1051

• SGR-Edit: the proposed paradigm where the1052

LLM is first prompted to generate its own1053

chain of thought over the RE, then uses that1054

self-generated rationale as k′ for editing.1055

Examples of GTA, RE, and SGR are shown in1056

Table 3.1057

C.4 Evaluation Protocol1058

During post-edit evaluation, we randomly permute1059

the answer choices in each multiple-choice Qori to1060

prevent label memorization. All outputs follow a1061

two-step format: rationale generation followed by1062

the final answer. We report:1063

• Efficacy: accuracy on Qori.1064

• Generalization: accuracy on Qgen.1065

• Retention: accuracy on Qret.1066

• Interpretability: ROUGE-L and BLEU 1067

scores between the injected knowledge (refer- 1068

ence explanation or self-generated rationale) 1069

and the model’s post-edit rationale output, 1070

computed on a human-validated subset to 1071

quantify how closely the model reproduces 1072

the intended content. 1073

Detailed prompt templates, and additional exam- 1074

ples are provided in Appendix E. 1075

C.5 Task Formulation for Sequential Editing 1076

For t sequential edits on distinct knowledge targets 1077

{(qi, ki)}ti=1, we define: 1078

θ(i) = F
(
θ(i−1), qi, ki

)
, i = 1, 2, . . . , t (2) 1079

to satisfy θ(i)(qi) = ki, ∀ i ∈ {1, . . . , t}, where 1080

θ(i) is the model after the i-th edit. After t edits, 1081

the final model θ(t) must satisfy θ(t)(qj) = kj for 1082

all j ≤ t ensuring that each injected knowledge 1083

item remains correctly reflected in the model. 1084

D Supplementary Results and Analyses 1085

D.1 Performance Comparison of Various 1086

Editing Paradigms 1087

As shown in Table 4, relative to GTA-Edit, RE- 1088

Edit consistently raises average editing scores on 1089

LLaMA-8B by 0.2–8.4 percentage points across 1090

methods: ROME sees the largest gain (+8.4 pp), 1091

followed by MEMIT (+5.3 pp), LoRA (+4.8 pp), 1092
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Method Metric Pre-Edit LLaMA-8B LLaMA-3B

GTA-Edit RE-Edit SGR-Edit GTA-Edit RE-Edit SGR-Edit

LoRA

Eff. 0 0.466 0.547 0.665 0.144 0.412 0.615
Gen. 0 0.416 0.460 0.503 0.337 0.439 0.492
Ret. 1 0.708 0.727 0.708 0.529 0.658 0.636
avg. – 0.530 0.578 0.625 0.337 0.503 0.581

ROME

Eff. 0 0.327 0.453 0.528 0.257 0.299 0.439
Gen. 0 0.296 0.403 0.447 0.251 0.406 0.385
Ret. 1 0.616 0.635 0.667 0.561 0.647 0.610
avg. – 0.413 0.497 0.547 0.357 0.451 0.478

MEMIT

Eff. 0 0.283 0.384 0.520 0.160 0.310 0.455
Gen. 0 0.252 0.352 0.364 0.251 0.364 0.401
Ret. 1 0.648 0.604 0.671 0.545 0.679 0.663
avg. – 0.394 0.447 0.518 0.319 0.451 0.506

AnyEdit

Eff. 0 0.366 0.410 0.435 0.230 0.246 0.316
Gen. 0 0.255 0.248 0.317 0.230 0.267 0.316
Ret. 1 0.789 0.758 0.764 0.781 0.747 0.754
avg. – 0.470 0.472 0.505 0.414 0.420 0.462

AlphaEdit

Eff. 0 0.439 0.547 0.584 0.326 0.348 0.374
Gen. 0 0.312 0.335 0.366 0.278 0.332 0.348
Ret. 1 0.867 0.795 0.789 0.775 0.743 0.754
avg. – 0.539 0.559 0.580 0.460 0.474 0.492

Table 4: Complete results of GTA-Edit, RE-Edit, and SGR-Edit. Supported for RQ2-F1

AlphaEdit (+2.0 pp), and AnyEdit (+0.2 pp). These1093

improvements are driven primarily by jumps in Ef-1094

ficacy (up to +12.6 pp for ROME) and Generaliza-1095

tion (up to +10.7 pp for ROME), while Retention1096

remains stable above 61% for all methods.1097

Incorporating SGR-Edit yields further average1098

gains of 2.1–7.1 pp over RE-Edit, with MEMIT1099

(+7.1 pp) and LoRA (+4.7 pp) benefitting most.1100

Specifically, LoRA’s combined score climbs from1101

57.8% to 62.5%, and MEMIT from 44.7% to1102

51.8%. Even AlphaEdit, which already excels un-1103

der RE-Edit, improves from 55.9% to 58.0% (+2.11104

pp).1105

Critically, these gains in Efficacy and General-1106

ization come with only minor retention trade-offs1107

(e.g., AnyEdit drops from 78.9% to 76.4%), con-1108

firming that richer and context-driven rationales1109

enable deeper medical knowledge integration with-1110

out undue forgetting.1111

Event-Driven Rationale Generation for Practi-1112

cal SGR-Edit In real-world scenarios, knowl-1113

edge updates are always triggered by concrete1114

events: in medicine, for instance, the U.S. Food1115

and Drug Administration’s approval of a novel on-1116

cology drug follows positive clinical trial results;1117

in politics, a change in the presidency (e.g., from1118

Biden to Trump) is driven by certified election out-1119

comes; in law, the enactment of a new data-privacy1120

statute typically relies on high-profile regulatory1121

incidents. Under SGR-Edit, these domain-specific1122

event narratives may be supplied by subject-matter1123

experts or, alternatively, sourced automatically us-1124

ing Retrieval-Augmented Generation frameworks1125

(Lewis et al., 2020). By inputting these event nar- 1126

ratives, the LLM can produce evidence-grounded 1127

rationales that facilitate reliable and transparent 1128

knowledge edits in practice. 1129

D.2 Lexical Overlap Analysis of SGR-Edit 1130

and RE-Edit 1131

The results in Table 5 are computed over a human- 1132

validated MedMCQAedit subset of high-quality ref- 1133

erence explanations (RE) and self-generated ratio- 1134

nales (SGR). Since SGR generation can include 1135

spurious content, we manually verify each rationale 1136

to ensure it faithfully supports the target answer be- 1137

fore using it for ROUGE-L and BLEU calculations. 1138

This subset covers 64 QA pairs for LLaMA-8B 1139

and 77 for LLaMA-3B. These long-form explana- 1140

tions provide rich contextual support for question 1141

answering, enabling a precise evaluation of lexical 1142

overlap between the injected knowledge and the 1143

model’s post-edit outputs. The datasets are avail- 1144

able at. 1145

Across all three editing methods: AlphaEdit, 1146

LoRA, and MEMIT, SGR-Edit outperforms RE- 1147

Edit by a substantial margin in both ROUGE-L 1148

and BLEU. For LLaMA-8B, the average lexical 1149

overlap (see Lexical avg.) for SGR-Edit is 0.241 1150

(AlphaEdit), 0.443 (LoRA), and 0.271 (MEMIT), 1151

compared to just 0.098, 0.137, and 0.095 under 1152

RE-Edit. BLEU improvements are equally dra- 1153

matic: AlphaEdit rises from 0.031 to 0.149, LoRA 1154

from 0.064 to 0.370, and MEMIT from 0.031 to 1155

0.180. These gains confirm that SGR—Edit allows 1156

evidence-grounded and logical knowledge repre- 1157

sentation to align more closely with the correct ra- 1158
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Method (Editing Paradigm) LLaMA-8B LLaMA-3B

ROUGE-L BLEU Lexical
avg.

ROUGE-L BLEU Lexical
avg.

AlphaEdit (SGR-Edit) 0.334 0.149 0.241 0.348 0.166 0.257
AlphaEdit (RE-Edit) 0.165 0.031 0.098 0.170 0.034 0.102

LoRA (SGR-Edit) 0.516 0.370 0.443 0.592 0.459 0.526
LoRA (RE-Edit) 0.211 0.064 0.137 0.242 0.093 0.167

MEMIT (SGR-Edit) 0.363 0.180 0.271 0.356 0.188 0.272
MEMIT (RE-Edit) 0.159 0.031 0.095 0.169 0.036 0.102

Table 5: Comparison of ROUGE-L and BLEU for SGR-Edit and RE-Edit on LLaMA-8B and LLaMA-3B.

tionale for medical decision making and thus serve1159

as a superior knowledge target.1160

When comparing across editing methods, LoRA1161

consistently achieves the highest lexical overlap1162

among all paradigms and model sizes. On LLaMA-1163

8B, LoRA SGR-Edit reaches ROUGE-L=0.5161164

and BLEU=0.370, yielding a text-average of 0.443.1165

This outperforms both AlphaEdit (0.241 lexical1166

avg.) and MEMIT (0.271 lexical avg.), indicat-1167

ing that LoRA’s low-rank adaptation effectively1168

internalizes the rich and context-driven rationales1169

generated by the model. The pattern also holds1170

on LLaMA-3B, where LoRA SGR-Edit achieves1171

a lexical average score of 0.526 versus 0.257 (Al-1172

phaEdit) and 0.272 (MEMIT).1173

In summary, these lexical metrics corroborate1174

our finding that SGR-Edit consistently yields the1175

highest lexical scores, validating its ability to1176

convey deeper understanding rather than super-1177

ficial information memorization. Furthermore,1178

LoRA emerges as the most effective editing mech-1179

anism, capitalizing on the enriched content of self-1180

generated rationales to maximize knowledge inte-1181

gration.1182

D.3 Qwen2.5–7B Single-Edit Performance1183

In addition to LLaMA variants, we evaluate1184

Qwen2.5–7B 6 under the same medical editing pro-1185

tocol. Table 6 reports efficacy, generalization, and1186

retention on MedExQAedit and MedMCQAedit und-1187

ing single editing.1188

Consistent with our findings on LLaMA, LoRA1189

and AlphaEdit remain the most effective editing1190

methods for Qwen2.5–7B. LoRA achieves the1191

highest average score on MedMCQAedit (64.2%),1192

driven by strong efficacy (57.4%) and general-1193

ization (50.5%), while AlphaEdit closely follows1194

with an average of 60.0%, showing robust ef-1195

6https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

ficacy (62.6%) despite slightly lower retention 1196

(74.7%). By contrast, GRACE exhibits very 1197

low generalization (1.9% on MedExQAedit, 3.2% 1198

onMedMCQAedit) despite near-perfect retention 1199

(>96%), indicating that this codebook-based and 1200

parameter-conserving updates tend to memorize 1201

new facts without enabling flexible application to 1202

unseen scenarios. 1203

Other parameter-modifying methods, such as 1204

ROME and MEMIT, display moderate efficacy 1205

(23.2–55.2%) but generalization remains in the 1206

30–43% range, well below the 90%+ figures of- 1207

ten reported on simplified, general-domain bench- 1208

marks. Similarly, AnyEdit yields balanced reten- 1209

tion (>78%) but low generalization (15.8–30.0%) 1210

and efficacy (22.6–40.0%). These results con- 1211

firm the large performance gap noted in RQ1-F1 1212

and RQ1-F2: even state-of-the-art editing methods 1213

struggle to exceed 65% combined performance in 1214

realistic medical QA settings, exposing critical lim- 1215

itations of existing methods when confronted with 1216

domain-specific complexity. 1217

D.4 Post-Edit Inference: Two-Step Rationale 1218

& Answer vs. One-Step Final Answer 1219

We compare two prompting strategies on LLaMA- 1220

8B over MedMCQAedit: (i) “Rationale + Answer” 1221

and (ii) “Final-Answer Only” (see Figure 11). 1222

Table 7 presents post-edit accuracy under GTA- 1223

Edit, RE-Edit, and SGR-Edit for LoRA, ROME, 1224

MEMIT, and AlphaEdit. Overall, providing a chain 1225

of thought during post-edit inference yields sub- 1226

stantial gains in editing efficacy and generalization, 1227

at minimal retention cost. 1228

For LoRA, the average post-edit score climbs 1229

from 0.442 to 0.530 (+0.203) when moving to 1230

two-step output. Efficacy improves dramatically 1231

(GTA-Edit: +0.170, RE-Edit: +0.106, SGR-Edit: 1232

+0.049), and Generalization more than twice in the 1233

GTA-Edit case (0.220 → 0.416). Retention also 1234
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Method Metric MedExQA_edit MedMCQA_edit

LoRA

Eff. 61.5 57.4
Gen. 46.2 50.5
Ret. 76.9 84.7
avg. 61.5 64.2

ROME

Eff. 36.0 55.2
Gen. 38.0 43.1
Ret. 46.0 82.3
avg. 40.0 60.2

MEMIT

Eff. 30.0 54.1
Gen. 34.0 39.2
Ret. 80.0 75.1
avg. 48.0 56.2

GRACE

Eff. 36.5 23.2
Gen. 1.90 3.20
Ret. 96.2 97.4
avg. 44.9 41.2

AnyEdit

Eff. 40.0 22.6
Gen. 30.0 15.8
Ret. 78.0 85.3
avg. 49.3 41.2

AlphaEdit

Eff. 58.0 62.6
Gen. 40.0 42.6
Ret. 78.0 74.7
avg. 58.7 60.0

Table 6: Results on Qwen2.5-7B (Accuracy %). For
avg. scores per column: bold is the best, underline is
the second best.

System Prompt for Two-Step Output:
Please answer the following question using

a chain of thought. Use the token [STEP] to

start each thought step, and the token

[ANSWER] to indicate the final answer

option (A, B, C, or D).

Template:

[STEP] ...

[STEP] ...

...

[ANSWER] ...

System Prompt for One-Step Output:
Please answer the following question and

only output the final answer option (A, B,

C, or D) without any additional explanation.

Figure 11: Two-Step and One-Step System Prompts for
Post-Edit Inference

rises under RE (0.591 → 0.727), demonstrating1235

that transparent reasoning reinforces new facts.1236

ROME shows a mixed pattern: while GTA-1237

Edit average performance drops slightly (0.421 →1238

0.413), RE-Edit and SGR-Edit see gains (+0.0531239

and +0.084 avg.), reflecting that rationale prompts1240

help when richer contexts are available. MEMIT1241

benefits modestly (+0.006 to +0.067 avg.), with1242

Generalization under SGR especially boosted1243

(0.302 → 0.364). AlphaEdit gains across all1244

paradigms (+0.032 to +0.075 avg.), with Reten-1245

tion remaining above 0.789 even after two-step1246

reasoning. 1247

These results confirm that explicit chain-of- 1248

thought prompting significantly enhances the 1249

model’s ability to apply the injected knowledge, 1250

supporting more reliable and interpretable medical 1251

knowledge editing. 1252

D.5 Sequential Editing Impact on 1253

Common-Domain Capabilities 1254

We split the MMLU benchmark into health-domain 1255

and non-health categories: health-domain accu- 1256

racy (Health_acc) is computed over the subjects 1257

{anatomy, clinical_knowledge, college_medicine, 1258

human_aging, medical_genetics, nutrition, profes- 1259

sional_medicine, virology}, while all other sub- 1260

jects are aggregated to compute non-health accu- 1261

racy (NonHealth_acc). 1262

In addition to the Health vs. Non-Health break- 1263

down (see section 5.4), we further split MMLU into 1264

four broad categories—STEM, Humanities, Social 1265

Sciences, and Other (Business, Misc.)—to assess 1266

general-domain degradation. Table 8 reports cate- 1267

gory accuracies for LLaMA-8B and LLaMA-3B at 1268

0, 50, and 100 sequential edits. 1269

After 100 sequential medical edits, all common- 1270

domain categories exhibit performance declines, 1271

with “Other” (which includes business, health and 1272

miscellaneous topics) suffering the largest drop 1273

(–6.45 pp for LLaMA-8B; –5.86 pp for LLaMA- 1274

3B). STEM accuracy decreases by 3.96 pp on 1275

8B and 2.56 pp on 3B, while Social Sciences 1276

and Humanities show smaller but nontrivial de- 1277

clines. These results reinforce our RQ4-F2 find- 1278

ing: medical-focused updates not only impair spe- 1279

cialized health knowledge but also erode broader 1280

general capabilities. The consistent degradation 1281

across diverse categories underscores the challenge 1282

of maintaining out-of-domain performance during 1283

extensive sequential editing. 1284

E Case Analysis 1285

The case in Figure 12, using the MEMIT method 1286

to edit LLAMA-8B on MedMCQAedit, illustrates 1287

how different editing paradigms shape the reason- 1288

ing behavior of post-edit LLM. This representative 1289

example highlights not only the final answer accu- 1290

racy but also the depth of knowledge integration 1291

achieved by each paradigm. It reflects a broader pat- 1292

tern consistently observed across our benchmark: 1293

surface-level edits often fail to update the under- 1294

lying reasoning logic, while rationale-driven edit- 1295
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Method Metric Pre-Edit Final-Answer Only Rationale + Answer

GTA-Edit RE-Edit SGR-Edit GTA-Edit RE-Edit SGR-Edit

LoRA

Eff. 0 0.296 0.553 0.616 0.466 0.547 0.665
Gen. 0 0.220 0.258 0.258 0.416 0.460 0.503
Ret. 1 0.465 0.591 0.453 0.708 0.727 0.708
avg. – 0.327 0.468 0.442 0.530 (+0.203) 0.578 (+0.110) 0.625 (+0.183)

ROME

Eff. 0 0.528 0.566 0.642 0.327 0.453 0.528
Gen. 0 0.252 0.277 0.277 0.296 0.403 0.447
Ret. 1 0.484 0.491 0.472 0.616 0.635 0.667
avg. – 0.421 0.444 0.463 0.413 (-0.008) 0.497 (+0.053) 0.547 (+0.084)

MEMIT

Eff. 0 0.440 0.541 0.566 0.283 0.384 0.520
Gen. 0 0.214 0.270 0.302 0.252 0.352 0.364
Ret. 1 0.509 0.484 0.484 0.648 0.604 0.671
avg. – 0.388 0.432 0.451 0.394 (+0.006) 0.447 (+0.015) 0.518 (+0.067)

AlphaEdit

Eff. 0 0.623 0.654 0.648 0.439 0.547 0.584
Gen. 0 0.252 0.270 0.233 0.312 0.335 0.366
Ret. 1 0.648 0.623 0.635 0.867 0.795 0.789
avg. – 0.507 0.516 0.505 0.539 (+0.032) 0.559 (+0.043) 0.580 (+0.075)

Table 7: Post-Edit accuracy comparison between Final-Answer Only and Rationale + Answer

Model #Edits STEM ∆STEM Humanities ∆Humanities Social Sci. ∆Social Sci. Other ∆Other

LLaMA-8B
0 (Raw) 58.53 – 72.52 – 77.13 – 69.79 –

50 56.17 –2.36 72.32 –0.20 74.96 –2.17 68.48 –1.31
100 54.57 –3.96 70.79 –1.73 72.62 –4.51 63.34 –6.45

LLaMA-3B
0 (Raw) 50.98 – 65.14 – 69.35 – 62.47 –

50 50.22 –0.76 64.19 –0.95 66.78 –2.57 60.22 –2.25
100 48.42 –2.56 61.89 –3.25 64.92 –4.43 56.61 –5.86

Table 8: General-domain category accuracies and absolute drops ∆ on MMLU across sequential medical edits

ing enables models to produce more coherent and1296

knowledge-grounded justifications.1297

Specifically, under GTA-Edit, although the cor-1298

rect answer “Gold” was injected, the model strug-1299

gles to abandon its prior belief “Amalgam”, which1300

was likely encoded during pretraining. Instead of1301

incorporating the new knowledge, the model re-1302

tains previous reasoning patterns (red segments)1303

and ends up with contradictory justifications (pur-1304

ple segments), reflecting surface-level memoriza-1305

tion rather than meaningful conceptual update.1306

RE-Edit provides more context about material1307

usage but still fails to fully overwrite the original1308

logic. The rationale demonstrates partial knowl-1309

edge integration (blue segments), yet the model1310

remains hesitant (purple segments) and eventually1311

falls back on incorrect elimination logic.1312

In contrast, SGR-Edit delivers a clear and co-1313

herent rationale. The model identifies that gold is1314

used in its pure form due to its corrosion resistance1315

and biocompatibility (blue segments), precisely the1316

kind of causal justification absent in GTA/RE ed-1317

its. This shows that editing with a reasoning-rich1318

target enables the LLM to internalize and apply1319

the knowledge reliably. Such examples highlight1320

the importance of reasoning-grounded editing for1321

domains like medicine, where interpretability and1322

trustworthiness are critical.1323

1324
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Question: The material used in its pure form in dentistry is: A: Gold. B: Silver. C: Composite. D: Amalgam.

GTA-Edit:

[STEP] First, let's consider the options given: Gold, Silver, Composite, and Amalgam. 

[STEP] We need to identify which of these materials is used in its pure form in dentistry. 

[STEP] Gold is often alloyed with other metals to increase its strength and durability, so it's unlikely to be the correct answer.

[STEP] Silver is ... so it's not used in its pure form in dentistry.

[STEP] Composite materials are …. so they are not used in their pure form either.

[STEP] Amalgam, on the other hand, is a mixture of mercury and other metals, but in some dental applications, mercury is used in its pure form, such as in mercury thermometers and in 

some dental amalgams.

[STEP] However, the most common use of mercury in dentistry is in the form of an amalgam, not in its pure form.

[STEP] But, there is one application where mercury is used in its pure form in dentistry, which is in the form of a mercury gauge or a mercury thermometer.

[STEP] However, the question asks for the material used in its pure form in dentistry, and mercury is the only option that fits this description 

[STEP] Therefore, the correct answer is the material that is used in its pure form in dentistry.

[ANSWER] D: Amalgam

RE-Edit:
[STEP] In dentistry, various materials are used for different purposes, such as fillings, crowns, and bridges. 

[STEP] Among these materials, some are used in their pure form, while others are alloyed with other metals to enhance their properties.

[STEP] Gold is often used in dentistry, particularly in crowns and bridges, due to its biocompatibility and durability.

[STEP] However, gold is not typically used in its pure form; instead, it is alloyed with other metals like silver, copper, and zinc to create a stronger and more durable material.

[STEP] Silver, on the other hand, is not commonly used in ...

[STEP] Composite materials are .., but they are not used in their pure form; ...

[STEP] Amalgam, which is a mixture of mercury and other metals, is used in its pure form in dentistry, specifically for fillings.

[ANSWER] D

SGR-Edit:

[STEP] First, let's consider the options given: Gold, Silver, Composite, and Amalgam. 

[STEP] We need to identify which of these materials is used in its pure form in dentistry. 

[STEP] Gold is often used in dentistry, particularly for making crowns, bridges, and inlays, and it is often used in its pure form due to its high durability and resistance to corrosion. 

[STEP] Silver is also used in dentistry, but it is often alloyed ... 

[STEP] Composite is a mixture of materials, typically .. and is not used in its pure form. 

[STEP] Amalgam is a mixture of mercury with other metals, such as silver, tin, and copper, and is not used in its pure form. 

[STEP] Based on this analysis, the material used in its pure form in dentistry is Gold. 

[ANSWER] A

Figure 12: Case Comparison across Editing Paradigms. The question asks which material is used in its pure
form in dentistry. Blue indicates the correct post-edit answer, Red denotes the pre-edit (incorrect) answer that
the model memorized, and Purple highlights areas of reasoning confusion. GTA-Edit fails to modify the model’s
original reasoning path, causing it to revert to the pre-edit belief. RE-Edit introduces more context but still exhibits
uncertainty. While SGR-Edit enables the LLM to internalize the knowledge and produce a clear, logically sound
rationale.
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