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ABSTRACT

Building on prior work focused on the clique and hyperclique sub-cases, we inves-
tigate the capacity of classical Hopfield networks for storing the orbit of a graph
under graph isomorphism. Our key observation is that the orbits of many natural
classes of graphs can be efficiently stored in a Hopfield network by minimizing
a convex objective, called the Energy Flow. Moreover, only a vanishingly small
fraction of examples from the orbit are required for the Hopfield network to strictly
memorize the entire orbit. We remark that this phenomenon does not appear to
hold for modern Hopfield networks.

1 INTRODUCTION

Classical discrete recurrent neural networks McCulloch & Pitts (1943); Amari (1972); Hopfield
(1982) are network architectures that are primarily used for auto-associative memory. They con-
sist of symmetrically connected binary threshold units and map an input bit string to an output bit
string by locally minimizing an energy function that encodes certain binary patterns as attractors
Hopfield (1982). Albeit widely celebrated as a canonical model for biological computation and
auto-associative memory, a practical drawback of networks such as Hopfield’s are their limited stor-
age capacity for general datasets. For example, given mutually i.i.d. bits, each with probability of
being one set as 1/2 and organized into N bit strings of length n, then to store all N bit strings with
high probability we require N linear in n McEliece et al. (1987). However, for more structured data
sets the outlook is far more positive. In particular, Hillar & Tran (2018); Hillar et al. (2021) proved
that these recurrent neural networks can achieve robust, exponential storage with respect to storing
all (hyper)cliques of a certain size and edge count. Moreover, these works also empirically highlight
that minimizing the energy flow (MEF) Hillar et al. (2012) defined on a vanishingly small number
of examples suffices to memorize all cliques. Other relevant works include Burns & Fukai (2023)
on generalizing Hopfield networks to simplicial complexes.

Extending this line of investigation, a natural direction of research is to explore the ability of net-
works to memorize the graph isomorphism orbit of a graph given only a few examples. Key ques-
tions in this regard include for which types of graph is this possible, what is the critical sampling
ratio, and how does invariance emerge over training? Given the brevity of this workshop format
and the preliminary nature of our investigations thus far, our focus here is on presenting interesting
observations and connections relating to these questions, rather than detailed answers. We observe
empirically that the orbit of many types of graphs, both random and highly symmetric, can be mem-
orized by training on just a few examples. Second, we observe that the parameters at the end of
training are approximately graph isomorphism invariant: we conclude that an implicit bias towards
invariance to the structure in the data must emerge during training. Third and finally, we propose
a new yet simple algorithm, based on our networks, for checking if two graphs are not isomorphic.
We speculate that this approach may open up new approaches and ideas for algorithms for solving
the graph isomorphism problem.

2 SETUP

We consider simple undirected binary graphs with v vertices. Each graph is encoded as binary vector
x ∈ {0, 1}n where xj = 1 iff the jth vertex pair is present as an edge and is 0 otherwise. A graph
isomorphism is a permutation of the vertices which preserves edge adjacency, and the set of graphs
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isomorphic to a graph x we denote as Orb(x). Let Sym0(n) ⊂ Rn×n denote the set of symmetric,
real n × n matrices with zeros on the diagonal and Θ = Sym0(n) × Rn. We consider classical
Hopfield networks equipped with the energy function E : {0, 1}n ×Θ → R defined as

E(x;θ) = −1

2
xTWx+ hTx, (1)

where θ = (W ,h) ∈ Θ. Strictly speaking, our networks are different from Hopfield networks since
they have learnable weights rather than fixed (“one-shot”) ones Hopfield (1982), but for expositional
simplicity we shall call them Hopfield networks in what follows.

The input-output map of a Hopfield network with parameters θ we denote as H(x;θ) : {0, 1}n ×
Θ → {0, 1}n, where n =

(
v
2

)
and v is the number of vertices. If H(x;θ) = x then x is a fixed

point of the recurrent dynamics that define the input-output map; furthermore, we say under this
condition that H has memorized x. A sufficient but not necessary condition for H to memorize x
is that E(x;θ) < E(x′;θ) for all x′ ∈ N (x), where N (x) denotes the set of all binary vectors
a hamming distance exactly one away from x. If θ satisfies this property we say that it strictly
memorizes x. Given a vector x ∈ {0, 1}n we consider a dataset T ⊂ Orb(x). To learn a Hopfield
network which memorizes T , we minimize an energy flow objective (MEF) Hillar et al. (2012);
Hillar & Tran (2018); Hillar et al. (2021),

L(θ;T ) :=
1

n|T |
∑
x∈T

∑
x′∈N (x)

exp(E(x;θ)− E(x′;θ)). (2)

In our experiments we use L-BFGS Nocedal (1980); Liu & Nocedal (1989) to minimize equation 2.
This differentiable objective has several desirable properties, such as convexity and small size; we
refer to Hillar et al. (2021) for more details, including comparisons to other learning approaches.

Finally, we also consider Hopfield networks which are invariant to graph isomorphism. Let Qn

denote the set of n × n permutation matrices acting on the vertex pairs which correspond to graph
isomorphisms. Defining the action on the parameters as Qθ = (QTWQ,QTh), then θ ∈ Θ is
graph isomorphism invariant if for all Q ∈ Qn we have Qθ = θ. This in turn implies

E(Qx;θ) = E(x;Qθ) = E(x;θ).

As per (Hillar & Tran, 2018, Section 5.1), the subset of graph isomorphism invariant parameters
forms a three dimensional subspace of Θ. In particular, θ ∈ Θ is invariant if and only if there exist
scalars x, y, z such that hj = z for all j ∈ [n], wij = x if edge i is adjacent to edge j (i.e. shares
exactly one vertex) and wij = y if i is not adjacent to j (for all i, j ∈ [n]). To indicate that θ is
graph isomorphism invariant, we write it as a function of these three parameters, θ̃(x, y, z).

3 EMPIRICAL RESULTS

Fix a specific graph, which has an associated collection of isomorphic graphs. A single training set
in our experiments consists of a subset of graphs in this collection, drawn uniformly at random. In
that case, the score is the total number of bits that are different between the graphs in this train set
and their attractors under the network dynamics. A score of zero means that each training sample is
a fixed point of the dynamics, i.e. a memory of the network. In the case of the test set, the score is
the same as setting the train set to be precisely all graphs that are isomorphic to the fixed graph.

Our key observations are as follows.

• Observation 1: as per Figures 1 and 2, Hopfield networks appear to be able to memorize
the orbits of a wide variety of graphs, including both irregular, random graphs, e.g., Erdos-
Renyi, as well as regular graphs, for example Paley, Johnson and Circulant. The capacity of
Hopfield networks for storing group structured data sets (at least in many cases) therefore
greatly exceeds the linear constraint for random data.

• Observation 2: again considering Figures 1 and 2, across this range of graph types, only a
fraction of the orbit needs to be fitted for the the full orbit to be memorized. We speculate
that the critical ratio is of the order n and leave a thorough analysis of this to future work.
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• Observation 3: turning our attention to Figure 3, we observe that the weight matrices of
the Hopfield networks trained across all graph types exhibit the same pattern. In fact, these
learned parameters lie very close to the three dimensional subspace corresponding to the
set of graph isomorphism invariant parameters (see Hillar & Tran (2018) for further details
on the characterization of this set).

• Observation 4: as per Figure 4 dense associative memory techniques (DAM), for example
“Modern Hopfield networks” Krotov & Hopfield (2016); Demircigil et al. (2017), do not
appear to demonstrate the same ability as MEF-trained classical Hopfield networks for gen-
eralizing or memorizing to the full orbit given only a few examples. Further investigation
is naturally warranted.
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Figure 1: MEF Accuracy versus number of training samples. a) Paley graphs on 10 vertices
(20160 isomorphic graphs), b) Johnson graphs on 10 vertices (30240 isomorphic graphs), c) Circu-
lant graphs on 10 vertices (181440 isomorphic graphs). For this and Figures 2 and 4, the score on the
y-axis is the number of bits different from the input set to its attractors under the network dynamics.
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Figure 2: MEF Accuracy versus number of training samples. a-c) Three different random Erdos-
Renyi graph on 7, 8, 9 vertices having isomorphism class sizes 5040, 40320, 362880, respectively.
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Figure 3: Weight matrices. We show Hopfield network parameters for examples of 10-node graphs
trained with MEF on 1000 samples of the corresponding isomorphism class. a) Bipartite, b) Circu-
lant, and c) Johnson graphs.
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Figure 4: Comparison with DAM Krotov & Hopfield (2016). a) MEF trained Erdos-Renyi random
graph on 6 vertices (180 isomorphic graphs), b) DAM trained on same Erdos-Renyi random graph
on 6 vertices using degree 3 activation function, c) Same as in b, but with degree 5 activation.

4 THE HOPFIELD NETWORK NOT GRAPH ISOMORPHIC CHECK (HNNGIC)

These observations prompt investigation into the potential for using Hopfield networks to check
for graph isomorphisms, a fundamental and important problem in computer science. To this end
we propose Algorithm 1, which we refer to as the Hopfield Network Not Graph Isomorphic Check
(HNNGIC). As the name suggests, this algorithm provides a check if two graphs are not graph iso-
morphic, returning true in certain cases when they are not graph isomorphic and unknown otherwise.

Algorithm 1: Hopfield Network Not Graph Isomorphic Check (HNNGIC)
Input: two graphs x1,x2 ∈ {0, 1}n and computational budget B
Output: True or Unknown

Step 1: minimize L(θ̂(x, y, z);x1) within computational budget B, return (x∗, y∗, z∗).;
Step 2: if L(θ̃(x∗, y∗, z∗);x1) < 1/n then

if H(x2; θ̃(x
∗, y∗, z∗)) ̸= x2 then

return True
end

else
return Unknown

end

The idea behind this algorithm is simple: first given two graphs we pick one, i.e., x1, arbitrarily
at random. We then attempt to train the Hopfield network by minimizing the energy flow defined
on this single graph, but restrict the parameters to lie on the graph isomorphism invariant subspace.
If the resulting parameters (x∗, y∗, z∗) achieve a loss less than 1/n then by definition this implies
for every x′ ∈ N (x1) that E(x1; θ̃(x

∗, y∗, z∗)) < E(x′; θ̃(x∗, y∗, z∗)), therefore x1 is strictly
memorized. Combining this with the fact that θ̃(x∗, y∗, z∗) is graph isomorphism invariant, then
this implies every point in the orbit of x under graph isomorphism is also strictly memorized, i.e.,
every graph isomorphism of x is stored as a memory in the Hopfield network. If the other graph
x2 is graph isomorphic to x1, then it must be a fixed point of the associated input-output map.
Therefore x2 and x1 cannot be graph isomorphic if x2 is not a fixed point of the invariant Hopfield
network which stores x1. Note, just because x2 is a fixed point does not mean we can conclude that
x1 and x2 are isomorphic. Indeed, there may be other fixed points not related to the orbit of x1;
these are sometimes called “spurious states” in the landscape of attractors.

5 DISCUSSION AND FUTURE WORK

In this note, we highlight a number of intriguing capabilities of Hopfield networks with respect to
their capacity for storing group structured data, an ability not observed in modern Hopfield networks.
Our observations prompt a number of interesting and currently open questions: in particular, i) what
graphs can be strictly memorized by graph isomorphism invariant networks, ii) can we characterize
the fixed points of such networks, and iii) what is the critical ratio for generalization and how does it
depend on graph structure in question? We believe answering such questions will prove valuable in
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a wider machine learning context by shedding light, albeit in a simple setting, how group structure
in data facilitates an escape from the curse of dimensionality, the emergence of invariance more
generally, and its interaction with both implicit and explicit forms of regularization. In addition,
we hope our findings stimulate thought and discussion towards new energy-based models, which
combine the best parts of both classical and modern Hopfield networks.
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