
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EVALUATING AND IMPROVING SUBSPACE INFERENCE
IN BAYESIAN DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian neural networks incorporate Bayesian inference over model weights to
account for uncertainty in weight estimation and predictions. Since full Bayesian
inference methods are computationally expensive and suffer from high dimen-
sionality, subspace inference has emerged as an appealing class of methods for
approximate inference, where inference is restricted to a lower-dimensional weight
subspace. Despite their benefits, existing subspace inference methods have notable
pitfalls in terms of subspace construction, subspace evaluation, and inference ef-
ficiency. In this work, we conduct a comprehensive analysis of current subspace
inference techniques and address all the aforementioned issues. First, we propose
a block-averaging construction strategy that improves subspace quality by better
resembling subspaces built from the full stochastic gradient descent trajectory.
Second, to directly evaluate subspace quality, we propose novel metrics based
on the Bayes factor and prior predictive, focusing on both goodness-of-fit and
generalization abilities. Finally, we enhance inference within the subspace by lever-
aging importance sampling and quasi-Monte Carlo methods, significantly reducing
computational overhead. Our experimental results demonstrate that the proposed
methods not only improve computational efficiency but also achieve better accuracy
and uncertainty quantification compared to existing subspace inference methods
on CIFAR and UCI datasets.

1 INTRODUCTION

Traditional neural network models often rely on optimization methods to obtain point estimation of
model weights without quantifying uncertainty. To address this, Bayesian neural networks (BNNs)
incorporate Bayesian inference, providing a probabilistic interpretation of the model weights and
predictions. Enabling uncertainty quantification not only improves model robustness (Gawlikowski
et al., 2023), but also aids decision-making that are critical in high-risk areas such as medical image
analysis (Lambert et al., 2024; Nair et al., 2020) and autonomous vehicles (Yang et al., 2023).

Despite their advantages, BNNs are challenged by the high dimensionality of the weight spaces,
which can make training and inference computationally intensive and practically infeasible. Subspace
inference (Izmailov et al., 2020; Garipov et al., 2018; Li et al., 2018) emerges as a compelling solution
by projecting the weight space of a BNN into a low-dimensional subspace. This approach attempts to
preserve the performance of the BNN while greatly reducing the computational overhead.

However, current subspace inference methods have several notable limitations. For instance, Li et al.
(2018) proposes using random subspace to project low-dimensional weights into high-dimensional
spaces, without considering how to select optimal projection directions. Izmailov et al. (2020)
constructs the projection matrix based only on the tail trajectory of stochastic gradient descent (SGD),
which can fail to capture the complete variability and structure of the entire trajectory. Moreover,
existing metrics evaluate subspace quality only indirectly, relying on downstream task performance
(e.g., log-likelihood or accuracy), without considering the interpretability of the subspace itself with
respect to the training or testing data. To the best of our knowledge, there are currently no metrics
designed to directly evaluate how well the subspace represents the data-relevant portions of the full
parameter space. We emphasize that if the subspace does not adequately capture the high-quality
points from the full space—those with lower loss or higher likelihood, any inference or uncertainty
quantification derived from it may be unreliable.
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Our contributions. In this paper, we improve subspace inference in Bayesian deep learning in terms
of subspace construction, subspace evaluation, and inference efficiency. We introduce novel subspace
construction methods, called block-averaging (BA) techniques along the SGD trajectory. Unlike
methods that focus only on the tail of the trajectory, our approach effectively captures the global
features of the entire trajectory while maintaining the same cost as tail based methods. Furthermore,
we introduce new evaluation metrics, such as the Bayes factor and prior predictive checks, to assess
the quality of these subspaces—an aspect largely overlooked in previous work.

To further improve the efficiency of uncertainty quantification, we apply quasi-Monte Carlo and
self-normalized importance sampling methods for inference the posterior predictive. We find that
these strategies significantly reduce computational overhead in low-dimensional subspaces, while
delivering prediction results that are comparable to more computationally intensive approaches.

Related Works. Scaling Bayesian inference to high-dimensional models such as deep neural
networks presents significant challenges. Some studies address this by constructing sparse subspaces
in Bayesian neural networks, using sparsity-promoting priors (Molchanov et al., 2017; Deng et al.,
2019; Ghosh et al., 2019) or applying removal-and-addition strategy (Li et al., 2024). Rather than
zeroing out certain weights, some approaches fix parameter values and limit inference to a select
subset, including methods that focus on the last layer (Kristiadi et al., 2020; Daxberger et al., 2021a)
or on a carefully selected subset of model weights (Daxberger et al., 2021b). Besides Bayesian
neural networks, research on deterministic neural networks has also demonstrated that deep networks
can be effectively optimized within a low-dimensional subspace (Li et al., 2018; Gressmann et al.,
2020; Wortsman et al., 2021; Jiang et al., 2022). Methods like SWA (Izmailov et al., 2018), TWA
(Li et al., 2022a), and DLDR (Li et al., 2022b) further leverage the SGD trajectory to identify an
optimal solution within the subspace. While these approaches demonstrate the potential for low-
dimensional optimization, many existing methods either focus on specific layers or ignore the need for
comprehensive evaluation metrics to assess subspace quality. Our work builds on this foundation by
focusing on both subspace construction and evaluation, providing new tools for efficiently estimating
uncertainty while ensuring high-quality inference within the subspace.

2 PRELIMINARIES

Denote a neural network by fw, where w denotes the weights. Given a training dataset D consisting
of input features X and output labels Y , conventional neural network methods typically find the
optimal weights w⋆ = argminL(fw(X), Y ) with respect to a loss function L using stochastic
gradient descent (SGD). In Bayesian deep learning, we transform the loss function into a likelihood

ℓ(w;X,Y ) = log pw(Y | X) := −L(fw(X), Y ) (1)

and study the posterior distribution p(w | X,Y ) ∝ p(w)p(Y | X,w), where p(w) is some prior
distribution over the weights. We will write the likelihood as p(D | w) for simplicity. Since Bayesian
computational techniques suffer from the curse of dimensionality, subspace inference methods aim to
construct a low dimensional posterior distribution that is (1) easier to estimate, and (2) still retains
meaningful properties of p(w | D).

Throughout this work we denote the high dimensional weight space byW ⊆ Rd and a low dimension
subspace with rank k by Z ⊂ W . For example, Li et al. (2018); Izmailov et al. (2020) use linear
subspaces Z = {ŵ + Pz | z ∈ Rk} where vector ŵ ∈ Rd and projection matrix P ∈ Rd×k are
randomly generated.

Using this transformation and the original BNN weight likelihood pW(D | w), there is an induced
Z-space likelihood pZ(D | z) = pW(D | ŵ + Pz). After introducing a Z-space prior distribution
pZ(z), there is an induced Z-space posterior with an un-normalized density

pZ(z | D) ∝ pZ(z) pZ(D | z). (2)

Posterior predictive distributions provide uncertainty calibrations: for testing data D′, we would have

pW(D′ | D) =

∫
W

pW(D′ | w)pW(w | D)dw, (3)
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in theW-space, and equation 3 is an integral overW ⊆ Rd. In subspace inference, one approximates
equation 3 with

pZ(D
′ | D) =

∫
Rk

pZ(D
′ | z)pZ(z | D)dz, (4)

which only requires an integration over the lower dimensional space. To approximate the integral
in equation 4, a common approach is to obtain approximate samples from the induced posterior
pZ(z | D). This can be done using methods like Variational Inference (VI) (Blei et al., 2017) or
Markov chain Monte Carlo (MCMC) methods such as Elliptical Slice Sampling (ESS) (Murray
et al., 2010), Hamiltonian Monte Carlo (HMC) (Neal, 2012) and the No-U-Turn Sampler (NUTS)
(Hoffman et al., 2014). With samples z1, z2, · · · , zN ∼ pZ(· | D), the posterior predictive can be
approximate with

pZ(D
′ | D) =

∫
Rk

pZ(D
′ | z)pZ(z | D)dz ≈ 1

N

N∑
i=1

pZ(D
′ | zi). (5)

3 DRAWBACKS OF EXISTING METHODS

In this section, we analyze the key limitations of existing subspace inference methods, particularly in
subspace construction and posterior predictive estimation.

3.1 PCA-BASED SUBSPACE CONSTRUCTION

To construct a subspace Z = {ŵ + Pz | z ∈ Rk}, one needs to learn ŵ and P from the data.
Constructing subspaces based on Principal Component Analysis (PCA) (Garipov et al., 2018; Izmailov
et al., 2020; Maddox et al., 2019) has proven to be effective in reducing dimensionality while
preserving key information from the SGD trajectory. A simple strategy involves using the mean of
the entire trajectory as ŵ, and then performing PCA on the matrix formed by the full trajectory (FT)
to obtain projection matrix P . This is equivalent to applying singular value decomposition (SVD)
on the centered matrix, where the trajectory is centered by subtracting ŵ. However, a significant
challenge with this approach is the memory overhead. Full trajectory-based PCA (or SVD) requires
storing and analyzing all training steps, which is infeasible in high-dimensional settings.

To address this, Izmailov et al. (2020) proposed a tail trajectory (TT) subspace construction method.
In this approach, ŵ is still constructed from the mean of the entire trajectory, but uses the deviations
from the last M points of the trajectory to ŵ to construct the projection matrix P via randomized
SVD (Halko et al., 2011). While focusing on the tails reduces memory cost from n to M , it introduces
two key problems. First, using only the deviations from the tail leads to a deviation matrix that is
not zero-centered, which makes the projection matrix constructed using SVD become dubious and
no longer follows the interpretations of PCA. More importantly, using M points from the tail of the
trajectory can result in a subspace that only captures a small part of the whole trajectory. As a result,
TT will underestimate variations in the trajectory and, even worse, lose the information on certain
high-quality weights reflected in the full trajectory, as demonstrated by the heat maps of the induced
likelihood in Figure 1.

Figure 1: Heat maps of induced likelihood pZ(D
′ | z) across full trajectory subspace, tail trajectory

subspace, and our proposed block-averaging subspace with M = 20 on synthetic example.

3.2 POSTERIOR PREDICTIVE VIA BAYESIAN MODEL AVERAGING

Existing methods for posterior predictive estimation, such as VI and MCMC, often incur significant
computational costs. MCMC methods are flexible and asymptotically exact, allowing them to better
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capture complex posterior distributions. However, they are computationally expensive due to the
need for burn-in periods and the potential for low acceptance rates. Some MCMC methods like HMC
and NUTS and VI require gradient evaluations, which greatly increase the computational burden.

Additionally, existing work has overlooked this correspondence between pW(w) and pZ(z). As a
result of the transformation w = ŵ + Pz, a prior on w on the full space uniquely determines an
induced prior on z after linear transformation, which should be used during subspace inference. A
fixed prior for w ensures the posterior reflects only the subspace properties, avoiding artifacts from
varying priors. For instance, if the subspace center ŵ shifts within the same subspace, the subspace
Z remains unchanged, and the posterior structure does not vary. Instead, existing works manually
choose the prior distribution for z.

Finally, the current practice of using the predictive performance in equation 5 to evaluate the quality
of subspaces is indirect. We argue that a subspace evaluation step should be performed prior to
subspace inference, as a poorly constructed subspace is likely to result in suboptimal performance,
regardless of the inference method.

4 OUR METHODS

4.1 BLOCK-AVERAGING SUBSPACE CONSTRUCTION

We propose block-averaging (BA) subspace construction. It can better capture the variations in the
full SGD trajectory than the tail trajectory. BA can be viewed as a structured downsampling of the
full trajectory, providing a similar subspace as shown in Figure 1, while reducing computational and
memory costs. Specifically, BA partitions the trajectory into M equidistant blocks and constructs
a M × d matrix W consisting of block centers. We propose an online implementation for BA
construction in Algorithm 1. Notably, it has the same algorithmic complexity and memory cost as the
TT construction. Figure 2 illustrates and contrasts the subspaces constructed using the full trajectory,
the tail of the trajectory, and our block-averaging strategy.

Output subspace Deviation Global mean Block mean Trajectory 

Full trajectory Tail trajectory Block-averaging

𝑤𝑤1 𝑤𝑤2

𝑤𝑤𝑛𝑛

�𝑤𝑤

𝑤𝑤𝑛𝑛−1

𝑤𝑤1 𝑤𝑤2

𝑤𝑤𝑛𝑛

�𝑤𝑤

𝑤𝑤𝑛𝑛−1

𝑤𝑤1 𝑤𝑤2
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Figure 2: Visualization of different subspace construction methods.

The block-averaging strategy captures the directions of the largest variations across the entire trajec-
tory, rather than focusing only on its tail. As a result, the subspace includes more representative and
diverse points from theW-space, enhancing the quality of the subspace for uncertainty evaluation.

Our block-averaging subspace construction achieves comparable uncertainty calibration to the full
trajectory while significantly reducing the computational cost. We use the synthetic data regression
example from Izmailov et al. (2020) as a running example to illustrate the advantages of our methods.
We construct subspaces using a n = 1000 point trajectory and memory cost M = 20. In Table 1, we
measure subspace distances via the angular distance between their first principal components. The
full trajectory and block-averaging subspaces are similar, while the tail trajectory subspace is nearly
orthogonal to the full trajectory. As a result, the BA subspace contains more high likelihood (low
loss) weights than TT subspace. This will be further illustrated with Figure 5 in the real-world data
experiments on UCI datasets.
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Algorithm 1 Block-Averaging Subspace Construction

Input: loss function L, pre-trained initial weights w0; learning rate η; number of SGD iterations
n; number of clocks M ;
Initialization: initialize global mean ŵ ← w0, block counter c1 = 0, · · · , cM = 0
for i ∈ [1, 2, · · · , n] do

Update wi ← wi−1 − η∇wL(wi−1) ▷ SGD step
Update ŵ ← (iŵ + wi)/(i+ 1) ▷ Update global mean
Get current block order j ← ⌊(i− 1)M/n⌋+ 1
Update the j-th row of matrix W with Wj ← (cjWj + wi)/(cj + 1) ▷ Update block mean
Update counter cj ← cj + 1

end for
Update W ←W − [ŵ⊤, · · · , ŵ⊤]⊤ ▷ Center the weight matrix
U,Σ, V ⊤ ← SVD(W )
return ŵ, P = V ⊤Σ/(

√
M − 1)

Table 1: Subspace angles (degrees) between different methods. 0 indicates identical subspaces and
90 reflects orthogonal subspaces. Values are reported as mean±sd.

Method Full trajectory Tail trajectory Block-averaging

Full trajectory 0 87.184±2.237 3.227±4.604
Tail trajectory 87.184±2.237 0 87.213±2.389

Block-averaging 3.227±4.604 87.213±2.389 0

4.2 TWO SUBSPACE QUALITY EVALUATIONS: BAYES FACTOR AND PRIOR PREDICTIVE

There have been no quantitative evaluation methods to assess the quality of subspaces. After subspace
construction, current works skip subspace evaluation and directly start making predictions using the
posterior predictive distribution. Here, we propose two principled ways for subspace evaluation.

In Bayesian statistics, each model is a parametric family of probability distributions we use to explain
the observed data D. In the context of BNN, a model is a neural network and its parameter is a set
of weights w ∈ W . In subspace inference, each subspace is a sub-model restricting the weights to
Z = {ŵ + Pz | z ∈ Rk}. In pW(w | D) = pW(w)pW(D | w)/pW(D), the normalizing constant
pW(D) is the evidence of the full model in the context of Bayesian model selection.
Definition 1 (Subspace evidence). For a subspace Z and observed dataset D, we define subspace
evidence as the marginal likelihood of D restricted to this subspace, i.e.

p(D | Z) =
∫
w∈Z

pW(D | w)pW(w)dw =

∫
z∈Rk

pZ(D | z)pZ(z)dz. (6)

In the spirit of Bayesian model comparison, we can use the ratio of marginal likelihoods to choose
between two competing hypotheses (which are subspaces in the context of BNN). This ratio is the
Bayes factor (Kass & Raftery, 1995).
Definition 2 (Bayes factor for subspaces). With two subspaces Z1 and Z2, their Bayes factor in favor
of Z1 concerning observed data D is

BF1,2 =
p(D | Z1)

p(D | Z2)
.

Jeffery’s scale of evidence (Kass & Raftery, 1995; Wasserman, 2000; Berger, 2003) gives an inter-
pretation for Bayes factors: With BF1,2 > 10, there is strong evidence favoring subspace Z1 and
BF1,2 >

√
10 ≈ 3.2 gives substantial evidence for Z1. Similarly BF1,2 < 0.1 or BF1,2 < 0.32

gives strong / substantial evidence for choosing Z2.

Continuing with the examinations in Table 1, we compare the TT and BA subspaces against the full
trajectory construction in Figure 3 (Left) using Bayes factors. Using Jeffery’s scale for interpreting
Bayes factors, there is strong evidence for choosing the subspace constructed from the full trajectory
against the tail construction with M < 5 points. On the other hand, subspaces from the full and the
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Figure 3: Evidence ratios for different subspace construction methods using M =
3, 5, 10, 20, 50, 100, 200, 500 points. Full trajectory length is n = 1000. Left: Bayes factor against
full trajectory subspace. Right: testing data evidence ratios against full trajectory subspace. Error
bars indicate the mean±sd.

BA trajectories are comparable. In addition, high deviation values of the Bayes factors show that the
quality of the tail construction is unstable across SGD trajectories.

One can also determine the quality of subspaces qualities using a hold-out data D′.
Definition 3 (subspace evidence on test data).

p(D′ | Z) =
∫
w∈Z

pW(D′ | w)pW(w)dw =

∫
z∈Rk

pZ(D
′ | z)pZ(z)dz. (7)

In Def. 3, higher test evidence p(D′ | Z) indicates that on average weights in the Z subspace can
better explain the test data. We highlight that equation 7 differs from the subspace evidence in
equation 6, because in equation 7, the subspace Z is trained using observed data D; it also differs
from the posterior predictive in equation 4. Indeed, while one might interpret equation 7 as the prior
predictive distribution on subspace Z , using the term evidence on test can reflect the fact the subspace
itself is constructed using training data. When Z is constructed using training data D, equation 7
reflects to what extent the subspace constructed using training data can fit the testing data.

The evidence ratio on testing data

ER1,2 =
p(D′ | Z1)

p(D′ | Z2)
,

can also compare subspace qualities, with a larger ratio indicating a stronger preference for choosing
Z1 over Z2. Using the evidence ratio on testing data, we confirm that the subspaces constructed from
the BA trajectory outperform those from TT in Figure 3 (Right).

4.3 USING IMPORTANCE SAMPLING AND QUASI-MONTE CARLO FOR POSTERIOR
PREDICTIVE

In contrast to MCMC and VI methods reviewed in Section 2, we propose several importance sampling
(IS) based methods to provide predictions with uncertainty quantification for BNN, which is motivated
by the following observation. Weights from the trajectory used to train Z have an empirical mean of
0 and an empirical covariance of Ik after dimension reduction. This fact suggests that the induced Z
space posterior distribution could be similar to a standard multivariate Gaussian, making importance
sampling a compelling inference technique to study pZ(z | D).

Recall from equation 4 that the subspace predictive posterior on testing data D′ is pZ(D′ | D) =

(pZ(D))
−1 ∫

z∈Rk pZ(D
′ | z)pZ(D | z)pZ(z)dz, which follows from Bayes rule. Using some

proposal density q(z) and a change of basis from pZ to q, we have

pZ(D
′ | D) =

∫
Z pZ(D

′ | z)pZ(D | z)pZ(z)
q(z) q(z)dz∫

Z pZ(D | z)pZ(z)
q(z) q(z)dz

=
EZ∼q [pZ(D

′, D | Z)pZ(Z)/q(Z)]

EZ∼q [pZ(D | Z)pZ(Z)/q(Z)]
(8)

A natural self-normalized importance sampling (SNIS) estimator for equation 8 is

p̂IS(N, q;D,D′) =

∑N
i=1 pZ(D

′, D | Zi)pZ(Zi)/q(Zi)∑N
i=1 pZ(D | Zi)pZ(Zi)/q(Zi)

, (9)
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Table 2: RMSE of posterior predictive estimations in different subspaces. The cost is measured by
the number of forward passes through the model on the training set.

Method Full trajectory Tail trajectory Block-averaging
RMSE Cost RMSE Cost RMSE Cost

ESS 0.0091 6716±119.9 0.0110 5630±104.5 0.0091 6663±103.7
VI 0.0488 2000 0.0606 2000 0.0479 2000

SNIS (N = 256) 0.0137 256 0.0102 256 0.0141 256
SNIS (N = 1024) 0.0064 1024 0.0052 1024 0.0065 1024

RQMC-IS (N = 256) 0.0103 256 0.0031 256 0.0092 256
RQMC-IS (N = 1024) 0.0026 1024 0.0006 1024 0.0028 1024

where Z1, · · · , Zn are N independent and identically distributed (iid) samples from q. Lemma 1
shows that the SNIS estimator consistently estimates the posterior predictive as the number of IS
samples increases.
Lemma 1. Under the Assumption 3, the equation 9 is a consistent estimator of the posterior predictive
function, i.e.

P
(

lim
N→∞

p̂IS(N, q;D,D′) = pZ(D
′ | D)

)
= 1. (10)

Proof. This follows from the strong law of large numbers. See (Owen, 2013, Theorem 9.2).

In practice, the intrinsic dimensionality of Z is chosen to be small (e.g., k ≤ 5). This motivates us
to use randomized quasi-Monte Carlo (RQMC) methods (Owen, 1997a; L’Ecuyer, 2018) to further
improve the SNIS estimator in equation 9. Instead of using iid samples from the distribution q,
RQMC methods generate correlated and low-discrepancy sequences within a k-dimensional unit
hypercube. These sequences are then mapped to pseudo-samples that follow the distribution q by
applying F−1

q , the inverse of the cumulative distribution function (CDF) of q. Specifically, we
first generate a low-discrepancy sequence of length N (e.g., scrambled digital nets (Owen, 1997b))
{U1, · · · , UN} from the k-dimensional unit hypercube [0, 1)k. This sequence is transformed using
the inverse CDF transformation Zi = F−1

q (Ui). Finally, replacing Zi in equation 9 with these
low-discrepancy samples results in the RQMC estimator

p̂RQMC(N, q;D,D′) =

∑N
i=1 pZ(D

′, D | F−1
q (Ui))pZ(F

−1
q (Ui))/q(F

−1
q (Ui))∑N

i=1 pZ(D | F
−1
q (Ui))pZ(F

−1
q (Ui))/q(F

−1
q (Ui))

. (11)

RQMC significantly reduces the root mean squared error (RMSE) of estimators, which is particularly
useful in low-dimensional integration tasks (L’Ecuyer, 2018). A key advantage of RQMC is its
faster convergence rate of O(N−1+ϵ), compared to the standard Monte Carlo rate of O(N−1/2).
This improvement is formalized in the following theorem, with the detailed proof and assumptions
provided in Appendix A.
Theorem 2. Under the Assumption 3 and 4, the RMSE for the RQMC-IS estimator satisfies√

E
[
(p̂RQMC(N, q;D,D′)− pZ(D′ | D))

2
]
= O(N−1+ϵ) (12)

for arbitrarily small ϵ > 0.

In Table 2 we compare the RMSE and computational cost of different computational approaches
to evaluate the posterior predictive on a test data set, where the computational cost is measured by
the number of evaluations of the induced likelihood pZ(D | z). The results show that the RMSE
achieved by the RQMC-IS method with N = 1024 is superior to the ESS and VI methods, while
also requiring significantly less computational resources. Compared to the SNIS method, which
is based on iid samples and has a convergence rate of O(N−1/2), RQMC-IS also exhibits a faster
convergence rate.

5 EXPERIMENTS

We conducted comprehensive experiments to illustrate the performance of the proposed subspace
construction, subspace evaluation, and inference methods. In Section 5.1, we present results on

7
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Figure 4: Visualizing uncertainty using posterior predictive: the full trajectory (FT) and block-
averaging (BA) subspace reflect higher uncertainty in data-sparse regions and higher confidence in
data-rich regions, while the tail trajectory (TT) tends to be overconfident.

Table 3: Bayes factors and testing data evidence ratios on UCI dataset (tail trajectory subspace
against block-averaging subspace).

(a) Small UCI Regression Datasets

boston concrete energy naval yacht

Bayes factor 0.123 ± 0.031 0.340 ± 0.244 0.214 ± 0.255 0.018 ± 0.020 0.335 ± 0.705
Evidence ratios 0.157 ± 0.052 0.545 ± 0.196 0.291 ± 0.212 0.140 ± 0.112 0.199 ± 0.091

(b) Large UCI Regression Datasets

elevators protein pol keggD keggU skillcraft

Bayes factor 0.215 ± 0.121 0.091 ± 0.096 0.178 ± 0.077 0.269 ± 0.223 0.214 ± 0.252 0.474 ± 0.263
Evidence ratios 0.544 ± 0.184 0.537 ± 0.238 0.205 ± 0.089 0.359 ± 0.257 0.218 ± 0.288 0.608 ± 0.497

synthetic example, showing that our method provides reliable posterior predictive distributions.
Section 5.2 highlights that the proposed BA subspace consistently achieves higher Bayes factors
and evidence ratios compared to the TT subspace across both small- and large-scale UCI regression
tasks. Additionally, the RQMC-IS method delivers reliable predictions while requiring approximately
half the computational budget compared to other methods. Finally, in Section 5.3, we evaluate our
method’s performance on CIFAR image classification tasks, where the BA-based subspace achieves
higher test accuracy. We also demonstrate BA subspace’s better performance on noisy data and
out-of-distribution detection. See Appendix B, C and D for detailed experimental setup.

5.1 CASE STUDY: UNCERTAINTY QUANTIFICATION DURING REGRESSION

In this study, We demonstrate how subspace inference methods incorporate uncertainty into their
predictions. BA-RQMC outperforms existing methods in the following senses: (1) unlike full
trajectory and BA subspaces, the TT subspace is overly confident about extrapolation in predicting
y for unobserved x, and (2) the RQMC-IS method reduces the computational cost to about 15%
compared to ESS and has better predictive accuracy.

Our experiments use the same synthetic data and neural network structure fw following Izmailov
et al. (2020). Figure 4 shows the posterior predictive results for the full trajectory, TT, and our
proposed BA subspace construction methods under M = 20. Compared to the TT subspace, the
BA subspace reflects higher uncertainty in data-sparse regions and higher confidence in data-rich
regions. The results are very close to those obtained using the FT, but our method offers a significant
reduction in the computational cost when constructing the subspace (See the cost columns in Table 2).
In Figure 6 (See Appendix B), we compare the likelihood heatmaps across different subspaces for
both the training and testing data, as well as the posterior for the training data. The BA subspace
contains more ‘high-likelihood’ sample points and a broader posterior high-density region, providing
a better representation of the effective parameters in the full spaceW and offering a more informed
assessment of uncertainty.
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A B

C D

Figure 5: Heat maps of induced loss on different subspaces and datasets. A. Evaluated on boston
training data. B. Evaluated on boston testing data. C. Evaluated on keggundirected training
data. D. Evaluated on keggundirected testing data. The BA subspaces capture more low-loss
points compared to TT subspaces.

Table 4: Test log-likelihood on UCI-Small datasets.

Dataset TT (ESS) BA (ESS) TT (NUTS) BA (NUTS) TT (VI) BA (VI) TT (RQMC) BA (RQMC)

boston -2.690±0.287 -2.692±0.285 -2.663±0.257 -2.657±0.210 -2.692±0.292 -2.654±0.271 -2.690±0.296 -2.700±0.289
concrete -3.079±0.140 -3.080±0.140 -3.115±0.116 -3.102±0.130 -3.081±0.132 -3.083±0.126 -3.080±0.141 -3.082±0.140
energy -1.397±0.183 -1.396±0.187 -1.473±0.193 -1.487±0.168 -1.403±0.176 -1.439±0.166 -1.396±0.184 -1.394±0.184
naval 5.492±0.286 5.559±0.272 -0.825±1.994 0.195±1.904 5.510±0.257 5.531±0.293 5.451±0.246 5.549±0.271
yacht -2.128±0.183 -2.127±0.183 -2.543±0.401 -2.779±0.546 -2.141±0.176 -2.175±0.150 -2.123±0.175 -2.103±0.175

5.2 UCI REGRESSION

Next, we compare our subspace inference methods on UCI regression tasks. For 5 small-scale
datasets (boston, concrete, energy, naval, and yacht), we use the set-up proposed by
Bui et al. (2016) and employ a small fully connected neural network. For larger-scale regres-
sion tasks, we experiment with 6 large datasets (elevators, protein, pol, keggdirected,
keggundirected, and skillcraft) using a larger fully connected neural network, following
the set-up of Wilson et al. (2016) and Izmailov et al. (2020). Tables 3a and 3b present the Bayes
factors and evidence ratios, showing substantial evidence in favor of the BA subspace over the TT
subspace. The detailed experimental setup is presented in Appendix C.

Figures 5-A and 5-B compare the loss on the training and testing data from boston, and Figures
5-C and 5-D further present the loss on the training and testing data from keggundirected.
Since the loss is equivalent to negative log-likelihood in our settings, We observe that (1) the BA
subspaces contain more ‘low-loss’ or ‘high-likelihood’ points, reflecting higher subspace quality, (2)
the subspace origin (which corresponds to the center of the SGD trajectory ŵ in the original weight
spaceW) does not necessarily maximize the likelihood in Z .

For posterior predictive checks, we apply our proposed RQMC-IS method and compare it with ESS,
NUTS, and VI. Tables 4 and 5 present the test log-likelihoods for UCI-Small and UCI-Large datasets,
respectively, where our method achieves higher log-likelihoods on most datasets. Moreover, Table
10 demonstrates that our method has a lower computational cost. Additional results, including test
RMSEs and test calibration results, are reported in Appendix C.

5.3 IMAGE CLASSIFICATION

We conduct classification experiments on the CIFAR datasets (Krizhevsky, 2009) using VGG-
16 (Simonyan & Zisserman, 2014) and PreResNet164 (He et al., 2016), using the same setups
with Maddox et al. (2019). First, we report the model evidence ratios in Table 14 (see Appendix D
for details), which show substantial evidence in favor of the BA subspace over the TT subspace. For
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Table 5: Test log-likelihood on UCI-Large datasets.

Dataset TT (ESS) BA (ESS) TT (NUTS) BA (NUTS) TT (VI) BA (VI) TT (RQMC) BA (RQMC)

elevators 1.009±0.024 1.009±0.025 0.264±0.342 0.286±0.244 1.008±0.026 1.008±0.027 1.013±0.022 1.011±0.023
protein -0.691±0.016 -0.684±0.016 -1.224±0.070 -1.182±0.114 -0.694±0.015 -0.697±0.015 -0.689±0.015 -0.683±0.015

pol -4.346±0.065 -4.356±0.072 -5.793±0.207 -5.724±0.326 -4.453±0.039 -4.464±0.041 -4.350±0.067 -4.346±0.063
keggD 0.688±0.036 0.687±0.042 0.527±0.149 0.537±0.140 0.588±0.354 0.564±0.429 0.691±0.035 0.694±0.037
keggU 0.896±0.161 0.890±0.154 0.799±0.112 0.814±0.125 0.865±0.153 0.845±0.135 0.905±0.162 0.892±0.154

skillcraft -0.029±0.037 -0.028±0.035 -0.374±0.262 -0.324±0.199 -0.021±0.041 -0.022±0.042 -0.020±0.038 -0.021±0.038

predictive performance, we present classification accuracy in Table 6 and the corresponding negative
log-likelihood in Table 15. The BA-based subspace, when combined with VI and RQMC methods,
achieves higher accuracy. Due to the high dimensionality of weights, constructing FT subspace is
computationally infeasible and thus omitted from our evaluations.

To further evaluate the generalization ability, we test robustness on the corrupted CIFAR datasets
(Hendrycks & Dietterich, 2019), which contain various types of noise. As shown in Table 7, although
classification accuracy declines as the severity level increases, the BA-based method consistently
outperforms TT in terms of accuracy.

Additionally, we use out-of-distribution (OOD) data to demonstrate and compare the OOD detection
performance of subspace inference methods. Specifically, we train the models on CIFAR and check
whether the model can distinguish between CIFAR samples and SVHN samples (Netzer et al., 2011).
The accuracy of each algorithm is evaluated using the area under the ROC curve (AUC), as shown
in Table 17. All methods achieve over 75% AUROC, demonstrating the OOD detection ability
of subspace methods in general. We find that the BA construction slightly outperforms the TT
construction.

Table 6: Classification accuracy (ACC(%)) on CIFAR datasets.

Models TT (ESS) BA (ESS) TT (VI) BA (VI) TT (RQMC) BA (RQMC)

VGG-16 on CIFAR10 91.98±0.43 91.92±0.40 91.80±0.42 92.00±0.44 91.76±0.37 91.94±0.51
PreResNet164 on CIFAR10 94.99±0.17 95.08±0.11 94.96±0.15 95.13±0.11 95.05±0.12 94.92±0.06

VGG-16 on CIFAR100 68.32±0.47 68.18±0.42 68.07±0.47 68.17±0.52 68.19±0.58 68.33±0.49
PreResNet164 on CIFAR100 76.99±0.03 77.06±0.15 76.94±0.14 77.14±0.27 76.82±0.19 77.30±0.35

Table 7: Classification accuracy (ACC(%)) on corrupted CIFAR datasets using PreResNet164.

Severity TT (ESS) BA (ESS) TT (VI) BA (VI) TT (RQMC) BA (RQMC)

1 94.47±0.17 94.56±0.15 94.15±0.24 94.58±0.07 94.24±0.10 94.51±0.04
2 93.18±0.21 93.26±0.21 92.82±0.38 93.45±0.12 92.66±0.20 93.30±0.08
3 91.36±0.27 91.28±0.31 90.70±0.49 91.57±0.20 90.52±0.27 91.29±0.12
4 87.98±0.40 87.77±0.65 87.09±0.83 88.25±0.42 86.86±0.45 87.86±0.52
5 72.42±0.87 71.36±1.95 70.70±1.71 72.62±1.29 69.65±1.94 72.02±1.73

6 CONCLUSION

In this work, we have addressed several key limitations in subspace inference for Bayesian deep
learning, proposing novel strategies to improve the construction, evaluation, and efficiency of these
methods. Our BA subspace construction results in subspaces with more high likelihood, low loss
weights and therefore better predictions and uncertainty quantification. Additionally, by introducing
new subspace metrics based on the Bayes factor and prior predictive checks, we have provided a
more comprehensive evaluation framework for subspace quality. These metrics focus on both the
goodness-of-fit and generalization capabilities of the subspace, offering a more reliable means to
assess and compare different subspace inference techniques.

Our experiments on benchmark datasets, including CIFAR and UCI, further highlight the benefits of
our approach. In particular, our proposed RQMC-IS method achieves comparable performance to
other techniques while maintaining a lower computational cost. This efficiency makes our method
particularly suitable for large-scale datasets or complex networks, where computational resources
might be a critical concern. In conclusion, the methods presented in this work offer a scalable solution
for Bayesian deep learning by improving subspace construction and inference techniques.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have provided detailed assumptions and proof of
Theorem 2 in Appendix A. The detailed experimental setup and results for each type of experiment
are provided in Appendices B, C, and D. The source code is available in the Supplementary Material.
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A DETAILS OF THEOREM 2

To establish the Theorem 2, we begin by detailing two critical assumptions.
Assumption 3. The induced likelihood pZ(D

′ | Z) is bounded by a constant M0 for all Z ∈ Z , and
the proposal distribution q satisfied q(Z) > 0 whenever pZ(D | Z)pZ(z) > 0.
Assumption 4. Define the functions G1(Z) and G2(Z) as

G1(Z) = pZ(D
′, D | Z)pZ(Z)/q(Z), (13)

G2(Z) = pZ(D | Z)pZ(Z)/q(Z), (14)

then G1(Z) and G2(Z) are subject to the boundary growth condition (He et al., 2023), i.e., for
arbitrarily small Bi > 0, there exists a constant B > 0 such that

|(DvGj)(Z)| ≤ B

k∏
i=1

[min(U i, 1− U i)]−Bi , j ∈ {1, 2} (15)

holds for any v ⊂ {1, 2, · · · , k}, where (DvGj)(Z) denote the mixed partial derivative of Gj with
respect to each i-th element of Z for all i ∈ v, and U = (U1, · · · , Uk) = Fq(Z) ∈ (0, 1)k where Fq

is the CDF of proposal distribution q.

Next, we give the proof of Theorem 2.
Theorem 2. Under the Assumption 3 and 4, the RMSE for the RQMC-IS estimator satisfies√

E
[
(p̂RQMC(N, q;D,D′)− pZ(D′ | D))

2
]
= O(N−1+ϵ) (12)

for arbitrarily small ϵ > 0.

Proof. We first denote the integrals as

I1 =

∫
Z
G1(Z)q(Z)dZ, I2 =

∫
Z
G2(Z)q(Z)dZ,

and their unbiased estimators as

Î1,N =
1

N

N∑
i=1

G1(F
−1
q (Ui)), Î2,N =

1

N

N∑
i=1

G2(F
−1
q (Ui)),

13
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According to Scheichl et al. (2017), the RMSE of p̂N (D′ | D) can be bounded using the triangle
inequality√
E
[
(p̂N (D′ | D)− pZ(D′ | D))

2
]
=

√√√√√E

( Î1,N

Î2,N
− I1

I2

)2


≤

√√√√√ 2

I2
2

E
[
(Î1,N − I1)2

]
+ E

( Î1,N

Î2,N

)2

(Î2,N − I2)2


≤
√
2

I2

√
E
[
(Î1,N − I1)2

]
+

√
2M0

I2

√
E
[
(Î2,N − I2)2

]
,

(16)

where we use the fact that G1(Z)/G2(Z) = pZ(D
′ | Z) ≤M0 under Assumption 3. Regarding the

RMSE of Î1,N and Î2,N , He et al. (2023) states that under boundary growth conditions for G1 and
G2, the error bound √

E
[
(Îj,N − Ij)2

]
= O(N−1+ϵ), j ∈ {1, 2} (17)

holds for any arbitrarily small ϵ > 0. Therefore, the RMSE of the RQMC-IS estimator is of order
O(N−1+ϵ).

B SYNTHETIC DATA EXPERIMENTAL DETAILS

A

B

Figure 6: Heat maps across different subspaces with M = 20 evaluated on training data. A.
Likelihood pZ(D | z) B. Posterior pZ(z | D). Both the full trajectory subspace and the block-
averaging subspace exhibit larger regions of high density in the likelihood and posterior distributions,
suggesting a higher quality of weights.

In synthetic examples, we generated synthetic data by computing the scalar output f(x) from a
randomly initialized model over 400 points sampled from the intervals [−7.2,−4.8], [−1.2, 1.2]
and [4.8, 7.2]. Gaussian noise was then added to these outputs to generate the final targets y. We
followed the setup introduced by Izmailov et al. (2020), using a model with 4 hidden layers of sizes
[200, 50, 50, 50] and using the inputs [x, x2]. We used a learning rate of 10−2, a batch size of 500,
and momentum of 0.95. The prior distribution for the weights is set as a Gaussian distribution with a
mean of 0 and a standard deviation of 1 for each component. The model is trained for 3000 steps, and
the SGD trajectory is collected starting from step 2000. We construct subspaces using a n = 1000
point trajectory and memory cost M = 20. We employ the tempered posterior given by

pT (z | D) ∝ p(D | z)1/T p(z) (18)
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with a temperature T = 1.5.

Figures 1 and 6 present the heat maps of the likelihood and the posterior across different subspaces
for testing and training data with M = 20. The results demonstrate that the BA subspace closely
approximates the FT, and compared to the TT, it contains more ‘higher-likelihood’ points and a
broader posterior region. This indicates that BA aligns more closely with both the training and testing
data compared to TT.

C UCI REGRESSION EXPERIMENTAL DETAILS

For the UCI small regression experiments, we follow the setup from Wilson et al. (2016), where
each dataset is split randomly into 90% training data and 10% testing data, and we employ a fully-
connected network with a single hidden layer of 50 units. We perform experiments with 20 different
seeds to ensure robustness across random initializations. In each experiment, we use a learning rate
of 10−3, a batch size of 100, momentum of 0.8, a weight decay of 10−3, and the temperature T = 10.
The prior distribution for the weights is set as a Gaussian distribution with a mean of 0 and a standard
deviation of 100 for each component.

For the UCI-Large datasets, following the set-up of Wilson et al. (2016) and Izmailov et al. (2020),
we use a feedforward network with hidden layers of sizes [10000, 1000, 500, 50, 2] and ReLU acti-
vations except skillcraft, where we employ a smaller architecture with hidden layers of sizes
[1000, 500, 50, 2]. We set the temperature T = 1000 for all datasets except skillcraft, where
a lower temperature T = 100 is used. For the RQMC-IS method, we use Gaussian with a mean of
0 and a standard deviation of 50 as proposal. All models are trained for 1000 steps, and the SGD
trajectory is collected starting from step 900. We construct subspaces using a n = 100 point trajectory
and memory cost M = 5.

Table 8 reports the normalized test RMSE (i.e., the root mean square error computed on normalized
data) for different subspace inference methods on the UCI-Small datasets. The results indicate that
both BA(ESS) and BA(RQMC) achieve lower test RMSE compared to other methods. Table 9
presents the Test Calibration results for the UCI-Small datasets, which evaluate the proportion of true
values that fall within the 95% confidence interval of the predicted mean. The subspace constructed
using BA produces values closer to 95% compared to TT, given the same posterior sampling method.
We also report the normalized test RMSE for the UCI-Large datasets in Table 11, and the Test
Calibration results in Table 12.

Table 8: Normalized test RMSE on UCI-Small datasets.

Dataset TT (ESS) BA (ESS) TT (NUTS) BA (NUTS) TT (VI) BA (VI) TT (RQMC) BA (RQMC)

boston 0.357±0.081 0.355±0.079 0.390±0.113 0.376±0.091 0.356±0.081 0.355±0.081 0.356±0.080 0.356±0.080
concrete 0.327±0.031 0.327±0.030 0.342±0.033 0.336±0.032 0.328±0.030 0.329±0.030 0.327±0.031 0.327±0.030
energy 0.162±0.030 0.162±0.030 0.167±0.031 0.168±0.030 0.164±0.030 0.167±0.030 0.162±0.030 0.162±0.030
naval 0.075±0.025 0.072±0.024 11.373±6.478 9.784±8.659 0.074±0.025 0.075±0.031 0.076±0.023 0.072±0.025
yacht 0.127±0.033 0.126±0.033 0.162±0.077 0.246±0.278 0.125±0.034 0.123±0.033 0.126±0.033 0.124±0.033

Table 9: Test calibration on UCI-Small datasets.

Dataset TT (ESS) BA (ESS) TT (NUTS) BA (NUTS) TT (VI) BA (VI) TT (RQMC) BA (RQMC)

boston 0.852±0.056 0.852±0.057 0.967±0.027 0.966±0.063 0.857±0.060 0.867±0.057 0.857±0.052 0.849±0.054
concrete 0.917±0.028 0.919±0.026 0.940±0.030 0.926±0.026 0.925±0.028 0.927±0.033 0.917±0.029 0.916±0.030
energy 0.952±0.022 0.953±0.019 0.960±0.020 0.960±0.020 0.951±0.022 0.953±0.023 0.952±0.021 0.953±0.019
naval 0.983±0.008 0.980±0.006 0.664±0.215 0.761±0.213 0.980±0.007 0.979±0.006 0.983±0.006 0.982±0.006
yacht 0.976±0.025 0.966±0.030 0.997±0.010 0.997±0.010 0.974±0.026 0.976±0.027 0.976±0.025 0.968±0.025

D IMAGE CLASSIFICATION EXPERIMENTAL DETAILS

We evaluate our methods on the CIFAR datasets. Following Izmailov et al. (2020), we conduct exper-
iments using both VGG-16 and PreResNet164 architectures, trained on CIFAR10 and CIFAR100.
For VGG-16, we use a learning rate of 5× 10−2, momentum of 0.9, and weight decay of 5× 10−4.
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Table 10: Computational cost on UCI-Small datasets. The cost is measured by the number of forward
passes through the model on the training set.

Dataset TT (ESS) BA (ESS) TT (NUTS) BA (NUTS) TT (VI) BA (VI) TT (RQMC) BA (RQMC)

boston 2427.1±146.2 1951.8±87.0 1815.7±242.3 1860.1±202.2 2000 2000 1024 1024
concrete 1931.4±154.0 1617.3±124.5 13295.0±84.6 13293.8±109.3 2000 2000 1024 1024
energy 2432.1±128.8 1912.4±95.9 1532.9±153.7 2060.4±162.7 2000 2000 1024 1024
naval 2824.9±244.8 2140.3±149.7 10831.7±2110.5 8964.0±3222.4 2000 2000 1024 1024
yacht 2574.4±110.7 2258.5±103.0 2071.9±209.8 2096.6±164.0 2000 2000 1024 1024

Table 11: Normalized test RMSE on UCI-Large datasets.

Dataset TT (ESS) BA (ESS) TT (NUTS) BA (NUTS) TT (VI) BA (VI) TT (RQMC) BA (RQMC)

elevators 0.349±0.008 0.347±0.007 0.783±0.292 0.745±0.166 0.347±0.008 0.347±0.008 0.348±0.007 0.348±0.007
protein 0.633±0.010 0.629±0.009 1.057±0.081 1.019±0.124 0.635±0.009 0.637±0.008 0.632±0.009 0.629±0.009

pol 0.399±0.021 0.399±0.021 1.507±0.407 1.460±0.916 0.436±0.024 0.441±0.026 0.400±0.021 0.399±0.021
keggD 0.095±0.033 0.095±0.031 0.102±0.033 0.100±0.028 0.095±0.030 0.095±0.030 0.095±0.032 0.095±0.031
keggU 0.124±0.004 0.124±0.004 0.126±0.004 0.126±0.005 0.122±0.003 0.122±0.003 0.125±0.004 0.123±0.003

skillcraft 0.650±0.030 0.648±0.028 0.930±0.266 0.844±0.157 0.647±0.027 0.647±0.027 0.646±0.027 0.646±0.027

Table 12: Test calibration on UCI-Large datasets.

Dataset TT (ESS) BA (ESS) TT (NUTS) BA (NUTS) TT (VI) BA (VI) TT (RQMC) BA (RQMC)

elevators 0.937±0.007 0.934±0.008 0.952±0.027 0.938±0.031 0.933±0.007 0.933±0.007 0.942±0.007 0.938±0.007
protein 0.946±0.005 0.945±0.004 0.992±0.006 0.989±0.011 0.943±0.004 0.943±0.004 0.946±0.004 0.946±0.004

pol 0.988±0.004 0.989±0.004 1.000±0.000 0.997±0.013 0.992±0.002 0.993±0.002 0.988±0.004 0.988±0.004
keggD 0.962±0.003 0.962±0.002 0.974±0.007 0.974±0.006 0.964±0.003 0.965±0.002 0.962±0.003 0.962±0.002
keggU 0.969±0.005 0.968±0.006 0.969±0.006 0.968±0.004 0.965±0.003 0.965±0.002 0.971±0.007 0.968±0.006

skillcraft 0.958±0.010 0.957±0.013 0.973±0.020 0.975±0.021 0.945±0.014 0.945±0.014 0.953±0.011 0.951±0.011

Table 13: Computational cost on UCI-Large datasets. The cost is measured by the number of forward
passes through the model on the training set.

Dataset TT (ESS) BA (ESS) TT (NUTS) BA (NUTS) TT (VI) BA (VI) TT (RQMC) BA (RQMC)

elevators 1206.9±153.1 811.2±27.8 1981.2±252.0 2173.6±256.8 2000 2000 1024 1024
protein 2005.2±235.3 1238.7±91.7 2430.2±266.7 2226.5±198.2 2000 2000 1024 1024
pol 1227.9±49.7 1059.8±41.4 2582.0±485.6 2214.5±296.3 2000 2000 1024 1024
keggD 1945.1±188.3 1354.1±85.2 1809.1±381.3 1856.7±143.5 2000 2000 1024 1024
keggU 1952.2±450.7 1503.8±446.7 1825.9±305.7 2024.9±404.2 2000 2000 1024 1024

skillcraft 1845.1±196.5 1499.3±127.3 2068.2±453.7 1815.9±313.8 2000 2000 1024 1024

Table 14: Bayes factors and testing data evidence ratios on CIFAR datasets (Tail trajectory subspace
against Block-averaging subspace).

Dataset VGG-16 on CIFAR10 PreResNet164 on CIFAR10 VGG-16 on CIFAR100 PreResNet164 on CIFAR100

Bayes factor 0.280 ± 0.031 0.270 ± 0.054 0.227 ± 0.004 0.381 ± 0.026
Evidence ratios 0.193 ± 0.031 0.285 ± 0.122 0.111 ± 0.016 0.353 ± 0.040

Table 15: Negative log likelihood (NLL) on CIFAR datasets.

Models TT (ESS) BA (ESS) TT (VI) BA (VI) BA (RQMC)

VGG-16 on CIFAR10 0.304±0.015 0.307±0.012 0.301±0.011 0.346±0.022 0.306±0.015
PreResNet164 on CIFAR10 0.188±0.009 0.193±0.009 0.189±0.002 0.214±0.011 0.192±0.008

VGG-16 on CIFAR100 1.876±0.038 1.850±0.080 1.674±0.066 2.018±0.038 1.885±0.039
PreResNet164 on CIFAR100 0.936±0.017 0.976±0.011 0.881±0.008 0.964±0.009 0.901±0.003

Table 16: Classification accuracy (ACC(%)) on corrupted CIFAR datasets using VGG-16.

Severity TT (ESS) BA (ESS) TT (VI) BA (VI) BA (RQMC)

1 91.30±0.23 91.32±0.20 91.09±0.25 91.28±0.28 91.32±0.26
2 89.42±0.29 89.34±0.25 89.19±0.41 89.33±0.31 89.39±0.29
3 86.18±0.40 86.15±0.42 85.87±0.49 86.26±0.48 86.21±0.33
4 81.04±0.77 80.96±0.82 80.54±0.86 81.04±0.88 80.94±0.70
5 64.78±1.57 64.54±1.79 64.12±1.76 64.93±1.79 64.62±1.58
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Table 17: AUC(%) for OOD detection on CIFAR-SVHN.

Models TT (ESS) BA (ESS) TT (VI) BA (VI) BA (RQMC)

VGG-16 on CIFAR10 87.91±2.35 88.86±1.17 85.93±1.77 89.86±1.25 88.06±1.53
PreResNet164 on CIFAR10 94.04±1.06 94.26±0.40 93.28±1.80 94.04±0.69 93.67±0.26

VGG-16 on CIFAR100 78.85±0.86 78.75±1.26 78.90±0.79 78.23±1.22 78.87±1.38
PreResNet164 on CIFAR100 77.43±2.30 77.07±1.71 76.59±2.72 77.03±1.74 76.90±2.05

For PreResNet164, we use a learning rate of 10−1 and weight decay of 3× 10−4. We set the batch
size to 500 and randomly split 10% of the data for testing. All models are trained for 300 steps,
with the SGD trajectory collected starting from step 160. We construct subspaces using a 140-point
trajectory with a memory cost of M = 5 and set the temperature T = 1000 for predictive inference.
All experiments are repeated five times for robustness.

Table 14 reports the Bayes factors and evidence ratios for different methods, showing substantial
evidence in favor of the BA subspace over the TT subspace. For the predictive performance, we
report the classification accuracy in Table 6 and the corresponding negative log-likelihood in Table 15.
For noisy data, we present the classification accuracy of PreResNet164 and VGG-16 across different
severity levels in Tables 7 and 16, respectively. For OOD detection, we report the AUC scores on the
SVHN dataset in Table 17.

E STATEMENT ON COMPUTING RESOURCES

Our numerical experiments were conducted on a Linux server equipped with six nvidia RTX A6000
graphics cards and a pair of 20-core Intel 5218R CPUs.
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