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A An Introduction to Lyapunov Stability

We first define an n-dimensional dynamical system Φ by:

ẋ(t) = f(x(t), u(t)), u(t) = g(x(t))

where x(t) ∈ D is a state vector at time t ∈ R in the state space D ⊆ Rn, g : D → Rm is a control
function, and f : D → Rn is a Lipschitz-continuous vector field.

Suppose system Φ has an equilibrium point at xe. The system is stable at xe if for all ϵ ∈ R+,
there exists some δ(ϵ) ∈ R+ such that ||x(t)− xe|| < ϵ for all t ≥ 0 if ||x(0)− xe|| < δ. In other
words, if an initial point x(0) starts at some distance δ from equilibrium point xe, any point along all
possible solution trajectories from x(0) to xe should be smaller than some distance ϵ from xe. To
take this stability notion one step further, we say system Φ is locally asymptotically stable around xe

if limt→∞ x(t) = 0 for all ||x(0)− xe|| < δ.

Next, we explore the definition of the Lyapunov function and Lie derivative. Using the existing
system setup, let V : D → R be a continuously differentiable function. V is a Lyapunov function if
V (0) = 0 and LfV (x(t)) < 0 and ∀x ∈ D \ {0}, V (x(t)) > 0. The Lie derivative of V over f is
defined:
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At a high level, the Lyapunov function V defines a field of attraction around some equilibrium point,
and the Lie derivative LfV (x(t)) measures the rate of convergence of V over time along the system
dynamics of x(t) to its equilibrium point xe. If this Lyapunov function can be defined, system f is
asymptotically stable at xe.

One issue with formulating the Lie derivative in the context of Reinforcement Learning (RL) training
is that computing it requires full access to system dynamics f , which the RL policy in training does
not have access to. Thus, we must approximate the Lie derivative along sampled trajectories of the
dynamical system during training:

Lf,∆tV (x(t)) =
1

∆t
(V (x(t+ 1))− V (x(t)))

where
lim

∆t→∞
Lf,∆tV (x(t)) = LfV (x(t))
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B Hyperparameters for Case Studies

We used the following hyperparameters in the training procedures. Table 1, Table 2 and Table 3
show the hyperparameters used for PPO variations on attention allocation, lending, and infectious
disease control environments, respectively. Note that for the lending and precision disease control
environments, our hyperparameters are chosen with respect to a min-max normalization applied to
each advantage term.

PPO Agent ζ0 ζ1 ζ2 β0 β1 β2

Greedy (G-PPO) 1 0.25 0 0 0 0
Reward-Only Fairness Constrained (R-PPO) 1 0.25 10 0 0 0

Advantage Regularized (A-PPO) 1 0.25 0 0.05 0.32 0.63

Table 1: The hyperparameters used for each PPO variation during training on the base and harder attention
allocation environments.

PPO Agent ζ0 ζ1 β0 β1 β2

Greedy (G-PPO) 1 0 0 0 0
Reward-Only Fairness Constrained (R-PPO) 1 2 0 0 0

Advantage Regularized (A-PPO) 1 0 1 0.5 0.5

Table 2: The hyperparameters used for each PPO variation during training on the lending environment.

PPO Agent ζ0 ζ1 β0 β1 β2

No Fairness Constraints (N PPO) 1 0 0 0 0
Only Reward Fairness Constraint (R PPO) 1 0.1 0 0 0

Only Advantage Fairness Constraint (A PPO) 1 0 0.6 0.15 0.25

Table 3: The hyperparameters used for each PPO variation during training on the precision disease control
environment.

C Social network for Infectious Disease Case Study

Figure 1: [Left] Node betweenness centrality visualized for the Karate Club graph in the precision disease
control environment, where the intensity of the node positively correlates with its betweenness centrality value.
[Right] Communities for the Karate Club graph in the precision disease control environment. These communities
are obtained by applying the Girvan-Newman community detection algorithm once on the graph.

We obtain our notion of a community in the Karate Club graph using the Girvan-Newman community
detection algorithm. We define edge betweenness as the number of shortest paths between two
nodes that travel through an edge. In this algorithm, each edge is computed for its edge betweenness.
Then, the edge with the highest betweenness is removed to reveal two communities seen on the right
in Figure 1. Node betweenness centrality is defined as the combined fraction of all shortest paths
between pairs that pass through a node, and can be visualized on the left in Figure 1. Although
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betweenness centrality is distinct from edge betweenness and is not a part of the Girvan-Newman
algorithm, we include it to provide more insight into the underlying structure of the Karate Club
Graph.
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