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Abstract

Deep learning is emerging as an effective tool in drug discovery, with potential
applications in both predictive and generative models. Generative Flow Networks
(GFlowNets/GFNs) are a recently introduced method recognized for the ability
to generate diverse candidates, in particular in small molecule generation tasks.
In this work, we introduce double GFlowNets (DGFNs). Drawing inspiration
from reinforcement learning and Double Deep Q-Learning, we introduce a target
network used to sample trajectories, while updating the main network with these
sampled trajectories. Empirical results confirm that DGFNs effectively enhance
exploration in sparse reward domains and high-dimensional state spaces, both
challenging aspects of de-novo design in drug discovery.

1 Introduction

One of the greatest challenges in modern medicine currently lies in the discovery and development
of novel therapeutics for disease treatment. This challenge is most evident in the field of infectious
diseases, where the creation of new antibiotics has been challenging due to substantial research costs,
lengthy timelines, and limited returns. In recent years, a promising alternative approach has emerged
in the form of Generative Flow Networks (GFlowNets) [2, 3]. GFlowNets tackle the sampling
problem by learning to sample trajectories approximately proportionally to their quality, as captured
by a reward function. This approach encourages the discovery of a diverse set of high-reward samples,
offering the potential to significantly accelerate the drug discovery and development process.

Despite existing research on credit assignment for GFlowNets, a central challenge continues to be
the improvement of exploration and exploitation within the GFlowNets framework [8, 7, 11, 4]. In
environments like small molecule generation, where the rewards are sparse [2], GFlowNets may
encounter difficulties in breaking away from the current best mode, thus reducing the chances for the
agent to discover new modes in the environment [10, 3]. Therefore, it is important to find new ways
to enhance exploration efficiency in sparse-reward domains.

In this work, we take inspiration from the double deep Q-learning (DDQN) algorithm from rein-
forcement learning [14], and introduce double GFlowNets (DGFNs). This approach simply involves
employing a target network, which acts as the delayed version of the online network and from which
we generate trajectories. Intuitively, this prevents the data distribution on which the online model
is trained to become too peaked, too “opinionated", too quickly. We apply DGFNs to two standard
GFN tasks: hypergrid (where the complexity and sparsity can be controlled well) and small molecule
generation (which is more illustrative of real applications) [2]. Our empirical findings demonstrate
that DGFNs finds all modes faster in hypegrid, and uncover a greater number of high-reward modes
in the fragment-based molecular design task. These observations provide strong evidence that our
proposed strategy indeed encourages diverse exploration, promoting better coverage of the state space
and the discovery of diverse candidate solutions.
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2 Preliminaries

We begin by introducing GFlowNets, following previous work [2, 8]. Consider a directed acyclic
graph G = (S,A), where each vertex s ∈ S represents a state and s → s′ ∈ A a state transition.
Notably, s0 is the initial state, with no incoming edges, while sf is the sink state, with no outgoing
edges. A state sn is considered terminal if sn → sf ∈ A. Each state is assumed to represent
some object sn = x ∈ X . We sample such objects by sampling trajectories starting from s0, and
following “actions" a drawn from A. This yields a sequence τ = (s0 → s1 → . . . sn → sf ),
referred to as a complete trajectory. Let T be the set of all possible trajectories. Assuming a
probability distribution over the edges from each node, let F (τ) denote the flow of τ , representing
its unnormalized probability. The edge flow is defined as F (s→ s′) =

∑
τ∈T :(s→s′)∈τ F (τ). The

state flow is defined as F (s) =
∑

τ∈T :s∈τ F (τ). Using these concepts, we can define forward and
backward policies, PF and PB , as follows::

PF (s→ s′) =
F (s→ s′)

F (s)
, PB(s

′ → s) =
F (s→ s′)

F (s′)
(1)

Given a non-negative reward function R : X → R≥0, let the terminal edge flows be F (sn →
sf ) = R(x = sn). The primary objective of GFlowNets is to train a generative policy such that the
likelihood of sampling x ∈ X is proportional to R(x) , where

p(x) =
∑

τ=(s0→···→sn=x)

PF (τ) =
∑
τ

n∏
t=1

PF (st | st−1) (2)

This is achieved by balancing flows such that the total quantity of flow is preserved. [2] In particular,
this can be expressed through the trajectory balance (TB) [8] condition, where for all trajectories τ :

Z

n∏
t=1

PF (st | st−1) = R(x)

n∏
t=1

PB (st−1 | st) (3)

Here, Z represents the total flow, i.e. Z =
∑

x∈X R(x). This equality can be turned into an objective
and used to learn parameterized PF , PB , and Z [8, 7]. Satisfying this constraint across all complete
trajectories ensures that PF (x) ∝ R(x). Throughout our experiments, we adopt trajectory balance as
the primary training objective.

2.1 Related Work

Double Deep Q-Learning (DDQN) In reinforcement learning, it is well-known that the Q-learning
algorithm for learning optimal policies suffers from overestimation bias [15, 5]. This overestimation
leads to collapsing the exploration too quickly, slowing down the learning process. Double Deep
Q-Networks (DDQN) were introduced to mitigate this issue, by decoupling action selection and value
estimation [15]. DDQN uses two separate Q-networks: a target network and an online network. The
target network is used to compute the Q-learning target, which is used to update the weights of the
online value network. The latter is employed for action selection. The target network is updated
periodically by copying the weights of the online network. DDQN has been shown empirically to
provide more stable Q-value estimates, thereby enhancing performance.

Improving GFlowNets A number of works have delved into enhancing the training process by
manipulating the sampling distribution. For example, Thompson Sampling GFlowNets [11], improve
exploration by maintaining uncertainty through ensembling and using it within Thompson sampling.
Replay buffers coupled with reward-prioritized replay sampling [12, 16] have been shown to enhance
GFlowNet training dynamics. However, existing work only considers using single networks to
generate trajectories.

3 Double Generative Flow Networks (DGFN)

In environments characterized by large state spaces or sparse reward signals, the standard approach
to GFlowNet training can induce training instability and/or lead to mode collapse [12]. To address
this limitation and promote exploration, we draw inspiration from the DDQN idea. We introduce a
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Figure 1: Left: Percentage of modes discovered over the trajectories sampled. Right: L1 distance
between empirical and target distribution over the trajectories sampled.

target network, whose primary role is to sample trajectories, on which the the online network’s loss is
computed. In our experiments, this approach safeguards against over-optimization of the GFlowNet,
particularly in environments characterized by sparse rewards, where the agent may be pushed to
exploit known modes if it is able to learn about them quickly, thereby exploring too little. The target
network dampens this problem. The target network is periodically copied from the online network,
but this process is a bit different from standard DDQN. Because the initial sampled trajectories tend
to be relatively random and low reward, in the initial stages of training, we update the target network
more frequently. Subsequently, we transition to periodic updates employing a Polyak averaging
technique. A full description of the approach is given in Algorithm 1.

Algorithm 1: Double GFlowNets (DGFNs)

Input: Initial phase length T I , update period TU

Initialize online flow network Fθ, target flow network Fθ′ , α < 1
for each training step t = 1 to T do

Sample a batch of M trajectories τ = {s0 → · · · → sn} from Fθ′

Compute loss of the online network using sampled trajectories
if t < T I or t mod TU ≡ 0 then

θ′ ← αθ + (1− α)θ′

end

4 Experiments

We study the performance of the proposed DGFNs in comparison to conventional GFlowNets with
different objective functions on two benchmark tasks: hypergrid and molecule generation.

4.1 Hypergrid Environment: High Dimensional, Sparse Rewards

In the synthetic hypergrid environment introduced by Bengio et al. [2], the goal is to sample trajec-
tories in a D-dimensional grid-world with side length H . The initial state is (0, ..., 0), and actions
increment a coordinate by 1 within the bounds of D and H . The agent can terminate at any state.

We use a 6-dimensional grid with side lengths H = 8, 10, 12. The reward function is defined as
in [2, 8]: R(x) = R0+R1

∏
i I (0.25 < |xi/H − 0.5|)+R2

∏
i I (0.3 < |xi/H − 0.5| < 0.4) with

0 < R0 ≪ R1 < R2, R1 = 1/2, R2 = 2. We opt for a more challenging environment by setting
R0 = 10−3, making exploration less rewarding for the agent. We measure the L1 error between the
true reward distribution and the empirical distribution over the sampled terminal states. Additionally,
we track the number of modes discovered over the sampled terminal states.

The results are shown in Fig. 1 and appendix A.1, with means and standard errors computed over
5 independent runs on DGFNTB , DGFNSubTB , and baseline models: GFNTB and GFNSubTB .
“TB" refers to the objective mentioned in equation 3, while “SubTB" is a recent objective proposed by
Madan et al. [7] to learn from partial trajectories rather than complete trajectories. As hypothesized,
the DGFNs find modes across the hypergrid faster than conventional GFlowNet methods. In particular,
the gap becomes wider in more complex environments.
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Table 1: Results on the molecule synthesis task. Mean and standard error over 3 runs.

Algorithm Diverse Top-100 Diverse Top-1000 Top-100 Reward Top-1000 Reward

DGFN-TB 1.035±0.002 1.017±0.002 1.036±0.002 1.020±0.002
GFN-TB 0.972±0.028 0.836±0.097 0.982±0.024 0.931±0.044

GFN-SubTB 1.017±0.001 0.992±0.002 1.017±0.001 0.996±0.002

Figure 2: Left: Average reward as a function of trajectories sampled. Right: Number of modes with
rewards R > 0.90 as a function of trajectories sampled.

4.2 Small molecule synthesis

To assess the capabilities of DGFNs for drug discovery, we conduct experiments involving the
generation of small molecules. Specifically, this task involves creating molecules with low binding
energy to the soluble epoxide hydrolase (sEH) protein, employing a docking prediction approach
originally introduced by Trott and Olson [13]. The agent is tasked with a sequential decision-
making process, determining attachment points for molecular building blocks, while adhering to the
constraints of chemical validity. This task is particularly challenging, primarily due to the vast state
space, estimated at around 1016 distinct states, and number of available actions at each state, which
can range from 100 to 2000. The reward function R relies on a pre-trained proxy model developed
by Bengio et al. [2]. For implementation details, please refer to Appendix A.1.

We train three models: DGFNTB and two baseline models, GFNTB and GFNSubTB . To ensure
the reliability of our findings, we report reward means and standard error over 5 independent random
seeds. We calculate the number of modes with rewards greater than a 0.9 threshold. Fig. 2 shows
that GFNTB exhibits more pronounced fluctuations during the training process, whereas DGFNTB

has lower variance. Additionally, DGFNTB surpasses GFNSubTB in the discovery of modes with
rewards exceeding 0.9.

We also compute the diverse Top-K (i.e. the set of top molecules such that their pairwise Tanimoto
similarity is at most 0.7, c.f. [2]) and Top-K Reward for the generated molecules, showed in Table 1.
Here, DGFNTB matches the baselines. This shows that DGFNTB is able to find a greater diversity
of solutions without sacrificing reward. Appendix A.2 provides examples of the top 12 molecules
generated by our model.

5 Discussion and Conclusion

In this work, we introduced the concept of Double Generative Flow Networks (DGFNs), in order
to improve the training stability and the ability of GFlowNets to explore well in large state spaces
with sparse rewards. This issue is especially important in drug discovery, where sampling molecules
demands a more robust exploration strategy. Our empirical results in hypergrid and molecule
synthesis tasks demonstrate the effectiveness of DGFN in promoting diversity in sample generation
and enhancing stability. More work remains: more extensive testing of DGFNs across different tasks,
the development of a more comprehensive theoretical framework for this approach, and ultimately,
the exploration of more techniques inspired by RL and generative modeling to improve the stability
of GFlowNets.
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A Appendix

A.1 Experiment details: Hypergrid

The model architecture for both the forward and backward policies remains consistent with the
original GFlowNets models [8, 7], using Adam as the optimizer. All models were trained using a
batch size of 64 for a total of 640,000 trajectories. Hyperparameter tuning was conducted via Optuna
[1], which automates hyperparameter optimization with Ray Tune [9]. For dimension 6, side length
10, the optimal hyperparameters for DGFNTB were found to be an initial phase length of T I = 698
and an update period of TU = 137. For DGFNSubTB , the optimal settings were an initial phase
length of T I = 794 and an update period of TU = 149.

Figure 3: Left: Average reward as a function of trajectories sampled. Right: Number of modes with
rewards R > 0.90 as a function of trajectories sampled.

A.2 Experiment details: Small Molecule Synthesis

In our experiments, we used the dataset and proxy model provided by Bengio et al. [2]. The model
architecture has the same implementation as the GFlowNet’s trajectory balance [8]. Additionally, we
incorporated the AutoDock Vina library [13] for binding energy estimation and relied on the RDKit
library [6] for chemistry routines.

For the experimental setup, we trained the models for a total of 10,000 iterations using a batch size of
64. The temperature coefficient for the reward function, denoted as β [2], was set to 96. To determine
the optimal initial phase length T I and update period TU , we conducted a grid search over the follow-
ing values: T I ∈ {500, 1000, 1500, 2000, 2500, 3000} and TU ∈ {50, 100, 150, 200, 250, 300, 350}.
Our experiments revealed that T I of 2000 and TU of 200 produced the best results.
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Figure 4: Top-12 molecules generated by DGFNTB

7


