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ABSTRACT

Multi-modality image fusion (MMIF) integrates heterogeneous images from di-
verse sensors. However, existing MMIF methods often overlook significant style
discrepancies, such as saturation and resolution differences between modalities,
resulting in overly smooth features in certain modalities. This tendency causes
models to misjudge and disregard potentially crucial content. To address this is-
sue, this paper proposes a novel style-coherent multi-modality fusion model that
adeptly merges heterogeneous styled features from various modalities. Specif-
ically, the proposed style-normalized fusion module progressively supplements
the complete content structure by merging style-normalized features during cross-
modal feature extraction. Meanwhile, a style-alignment fusion module is devel-
oped to align different feature representations across modalities, ensuring con-
sistency. Additionally, to better preserve information and emphasize critical pat-
terns during fusion, an adaptive reconstruction loss is applied to multi-modal im-
ages transformed into a unified image domain, enforcing mapping to a consistent
modality representation. Extensive experiments validate that our method outper-
forms existing approaches on multiple MMIF tasks and exhibits greater potential
to facilitate downstream applications.

1 INTRODUCTION

Multi-modality image fusion (MMIF) aims to generate visually enhanced images by integrat-
ing complementary details from multi-modal images of the same scene captured by different de-
vices (Liu et al., 2020; He et al., 2023a; Yan et al., 2022; Zhou et al., 2023b). The versatility of
MMIF, arises from the diversity of imaging sensors, making it applicable to a wide range of tasks
such as infrared and visible image fusion (IVF), medical image fusion (MIF), and biological im-
age fusion (BIF). These fused images offer more discernible representations of objects and scenes,
benefiting applications like visual enhancement (Liu et al., 2020; He et al., 2023a; Yan et al., 2022;
Zhou et al., 2023b), image registration (Jiang et al., 2022; Wang et al., 2022; Xu et al., 2022), and
object semantic segmentation (Zhou et al., 2022; Liu et al., 2023b; 2024b; Zhang et al., 2024).

Multi-modal images have distinct visual characteristics like differences in saturation, resolution, and
spectral properties due to variations in external styles. For instance, in IVF, visible images are sen-
sitive to illumination changes, while infrared images are generally characterized by noise and lower
resolution. To address the limitations of individual source images and produce a comprehensive
composite, MMIF should effectively balance these external styles while preserving the unified in-
ternal content from all contributing sources. Recently, the rapid development of deep learning has
led to various learning-based MMIF methods (Jung et al., 2020; Xu et al., 2020b;a; Zhang et al.,
2020a;b) have been proposed and demonstrated promising results (Li & Wu, 2018; Li et al., 2021;
Zhao et al., 2020; Liang et al., 2022; Zhao et al., 2023b; Liu et al., 2023a). However, existing MMIF
methods tend to overlook the significant style discrepancies like saturation and resolution between
modalities and produce oversmooth features for a certain modality. Such a tendency causes models
to misjudge and mistakenly disregard potential salient contents, which affects fusion quality and
could compromise safety for night driving or medical uses. As shown in Fig. 1 (a), it leads to coarse
intra-modal feature representations and significant disparities between cross-modal features, result-
ing in existing models producing fused features and results with diminished details and textures,
specifically in elements like the stone pillars along the street and the cyclist with a taillight.

To mitigate the above issues, we propose a Style-coherent Content Fusion model (SCFNet). This
approach transforms heterogeneous features from multiple modalities into a shared style-coherent
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Figure 1: (a) Existing methods overlook style variations in MMIF, resulting in coarse and distinctly
different multi-modal features that lose detail in fusion. (b) Our main idea: style-coherent content
fusion model (SCFNet) integrates heterogeneous multi-modal features in the style-coherent latent
domain by unifying variations styles. (c) Cross-modal style transfer: The transformation of visual
characteristics can be accomplished using feature amplitude transfer as Lee et al. (2023).

latent domain, facilitating comprehensive content fusion as shown in Fig. 1 (b). We present evidence
supporting this foundation (please refer to Fig. 1 (c)), motivated by observations that style and con-
tent in cross-domain features are inherently linked to frequency domain components (Lee et al.,
2023). Specifically, we first develop a Style-Normalized Fusion (SNF) module that enhances con-
tent information through an effective style-content separation during the feature extraction process.
By integrating the phases of style-normalized features, SNF progressively mitigates stylistic discrep-
ancies and complements the invariant contents across modalities. Furthermore, to better align fused
features and selectively focus on critical information, which is especially vital in fields like medical
diagnosis where detail and texture are crucial, we introduce a Style-Alignment Fusion (SAF) mod-
ule. This module aligns style-variant latent representations into a well-defined, modality-specific
feature space. This aligned and regularized fused feature space retains more detailed information
while preserving essential image priors.

On the other hand, the lack of ground truth (GT) makes it challenging to ensure the quality and
reliability of the fused images. Some methods guide MMIF models based on priors from down-
stream tasks (Liu et al., 2022; 2023b; Sun et al., 2022; Tang et al., 2022a; Zhao et al., 2023a; Wang
et al., 2022; Xu et al., 2020a; 2023b; Huang et al., 2022; Liu et al., 2024b; Zhang et al., 2024) or
image priors from the pre-trained models (Zhao et al., 2023c; Yi et al., 2024). These approaches
rely on explicit external guidance, which limits their generalizability. Therefore, this paper focuses
on developing a self-supervised loss function for MMIF, requiring only source images collected
in a general sensing setup. Some methods utilize crafted loss functions e.g., the pixel-based loss
(Zhao et al., 2023b; 2021; Liang et al., 2022) and gradient-based loss (He et al., 2023b; Xu et al.,
2023a), applied directly to source images to maintain visible and texture fidelity. Due to inherent
differences in source images, such as intensity and contrast, directly blending them as a supervision
signal leads to smoother model outputs that lose important details. Therefore, we propose an adap-
tive reconstruction loss function that utilizes a learnable rescaling transformation for multi-modal
images, allowing for comprehensive content supervision within a specific source domain. This lin-
ear transformation minimizes potential damage to the prior image and better unifies the diverse
representations of scene information integrity. In addition, it encourages the model to learn identity
mapping within this specific image domain, further promotes the retention of critical details.

Overall, the main contributions of this paper are summarized as follows:

• We propose a style-coherent content fusion model (SCFNet) that generates fused images with
complete scene information and consistent external characteristics by unifying the external styles
of heterogeneous modalities. To the best of our knowledge, this is the first work of MMIF grounded
in a style-based foundation.
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• To enhance and consolidate invariant content representations in a style-coherent latent space, we
design the style-normalized fusion (SNF) module and the style-alignment fusion (SAF) module. To
produce domain-specific supervisory signals that preserve content integrity, we propose an adaptive
reconstruction loss.

• Our method attains state-of-the-art performance across various datasets. Furthermore, we sub-
stantiate the efficacy of SCFNet in multiple fusion tasks and support downstream applications.

2 RELATED WORK

Multi-Modality Image Fusion. Existing deep-learning based MMIF methods are roughly divided
into two categories: deep unrolling networks (DUN) and deep neural networks (DNN). DUNs ad-
dress the ill-posedness of MMIF by unfolding iterative algorithms into neural network layers (Deng
& Dragotti, 2020; Gao et al., 2022; Xu et al., 2023a; Zhao et al., 2021; Ju et al., 2022; He et al.,
2023b). However, it is challenging to model the complex non-linear degradation process of MMIF.
DNNs learn nonlinear mappings to fuse diverse modalities (Jung et al., 2020; Xu et al., 2020b;a;
Zhang et al., 2020a;b; Liu et al., 2024a). Generative adversarial network-based methods (Goodfel-
low et al., 2014; Liu et al., 2022; Ma et al., 2020; 2019; Zhang et al., 2021) constrain the distribution
of the fused image to be similar to the input images for perceptually satisfactory. Encoder-decoder-
based methods (Li & Wu, 2018; Li et al., 2021; Zhao et al., 2020; Liang et al., 2022; Zhao et al.,
2023b; Liu et al., 2023a), employing CNN/Transformer blocks, learn feature fusion by translating
between image and latent spaces. These methods overlook cross-domain stylistic discrepancies,
directly proceeding with fusion and thereby compromising the integrity of the content.

To address the absence of GT, some methods guide the fusion process through image registration
(Jiang et al., 2022; Wang et al., 2022; Xu et al., 2020b; 2023a; Huang et al., 2022) or downstream
tasks such as object detection and semantic segmentation (Liu et al., 2022; 2023b; Sun et al., 2022;
Tang et al., 2022a; Zhao et al., 2023a; Xu et al., 2020a; 2023b; Liu et al., 2024b). Some methods
utilize perceptual priors (Goodfellow et al., 2014; Liu et al., 2022; Ma et al., 2020; 2019; Zhang et al.,
2021) or natural image statistics (Zhao et al., 2023c; Yi et al., 2024) which are introduced by pre-
trained models to obtain perceptually and visually satisfying images. Recently, DeRUN (He et al.,
2023b) introduces a gradient direction-based entropy loss that effectively captures and represents
textural details within images by focusing on the directional patterns of gradients. EMMA (Zhao
et al., 2024) introduce an equivariant image loss that utilizes an image equivariance prior to constrain
the structural properties of fused images. These aforementioned self-supervised methods do not
explicitly address inconsistent supervised signal distributions caused by inherent differences.

Disentanglement for Multi-Modal Tasks. For modalities with distinct physical carriers like audio,
text and images, existing methods Yao et al. (2024); Fei et al. (2021); Lee & Pavlovic (2021); Chen
et al. (2023); Ouyang et al. (2021) disentangle the representations of features both within and across
the different modalities. The goal is to obtain robust and independent feature representations that
enhance the relevance of the outcomes for objectives. For MMIF, Some methods Zhao et al. (2023b;
2020); Liang et al. (2022); Xu et al. (2021) decouple sources into common and unique features to
enhance feature integration. CDD Zhao et al. (2023b) employs shared and specific multi-modal
feature decomposition, followed by separate fusions of specific and shared features. DIDFuse Zhao
et al. (2020) uses four distinct encoders to extract scenario features and attribute latent representa-
tions, and then fuse each set. However, these MMIF methods overlook the unification of appearance
styles across modalities and do not explicitly ensure the integrity of the content during fusion.

Style-Based Learning. Style-based learning methods consider domain differences as divergent
stylistic attributes across domains (Huang & Belongie, 2017; Nam & Kim, 2018; Pan et al., 2018).
These methods aim to extract features that exhibit invariance to stylistic variations, thereby enabling
effective style transfer across different scenes. Based on frequency analyses, the style and content
of an image are represented by the amplitude and phase in the frequency domain (Hansen & Hess,
2007; Oppenheim & Lim, 1981; Piotrowski & Campbell, 1982; Zhou et al., 2023a; Li et al., 2024).
Recently, it has been demonstrated that the properties of amplitude and phase extend to feature
representations (Lee et al., 2023). The style and content components (Lee et al., 2023) enable the
adjustment of style and content magnitudes by modulating the amplitude and phase of the pre-
normalized features, facilitating the learning of generalized features. In contrast, this paper devotes
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Figure 2: The overall architecture of our style-coherent content fusion model. (a) The framework
mainly consists of three modules:Fourier Prior Embedding (FPE) model, style-normalized fusion
(SNF) module and style-alignment fusion (SAF) module. (b) FPE captures the frequency informa-
tion of features, SNF enhances and completes content information across multiple levels between
encoders by normalizing styles, and SAF fuses the features extracted by the dual-branch encoder
within a style-specific space. (c) The proposed adaptive reconstruction loss (ARL) function avoids
ambiguity caused by supervising with inherently different source multi-modality images.

to exploring the potential effect of style learning theory in the field of MMIF by regarding the
heterogeneity challenge of cross-modal fusion as the problem of style-consistent content integration.

3 METHODOLOGY

3.1 OVERVIEW

As illustrated in Fig. 2(a), our proposed SCFNet adopts a framework with a dual-branch encoder
and a decoder. Considering the challenges that existing CNN and transformer blocks (Zhao et al.,
2023b; 2020; Liang et al., 2022) encounter in extracting essential frequency features due to dis-
ruptions in local feature and global dependency coherence across modalities, we utilize the Fourier
Prior Embedding (FPE) block (Zhou et al., 2023a). This block can efficiently capture the frequency
information of features, thereby facilitating frequency-based style-content decomposition within our
core module. See Suppmentary for details of FPE. Overall, the encoder has three main components:
Fourier prior embedding block, style-normalized fusion (SNF) module, and style-alignment fusion
(SAF) module. To reduce the complexity and potential discrepancies that arise from separate config-
urations for each modality, the twin encoder branches share the same structure and parameters. The
decoder utilizes the standard architecture as Zhao et al. (2023b); Zamir et al. (2022). We take the
IVF task as an example. Given a paired visible image V and an infrared image I , the fusion process
to obtain the fused image F is described by F = f(V , I), where f(·) represents the proposed SCF.

3.2 STYLE-NORMALIZED FUSION MODULE

SNF fuses the complete intrinsic structures of heterogeneous features through style normalization,
enhancing the content information of modal features from the dual branches, as shown in Fig. 2.
Based on the theoretical foundation of frequency domain style-learning (Lee et al., 2023), style-
normalized representations are first achieved by substituting the amplitude, which represents the
style, of features with that derived from normalized features.

To elaborate, consider a feature X ∈ RC×H×W , the fast Fourier transform (FFT) of the feature X
denoted as F(X) and the inverse FFT denoted as F−1(X), applied to each channel independently.
We denote the process of obtaining the amplitude A and phase P from the feature frequency as

4
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Figure 3: (a) From left to right: multi-modal images, original features, style-normalized features
and fusion results. The low-contrast and low-intensity visible light features result in the smoothing
of the fused image. (b) The t-SNE result of features. The style-normalized multi-modal features
become closer than the original pair in terms of visualization and distribution.

decomposition operator Dec(·) with its inverse as composition operator Com(·):
[AX ,PX ] = Dec(X), X = Com(AX ,PX). (1)

The normalized feature N(X) ∈ RC×H×W is obtained via instance normalization as:

N(X) =
(
X − Mean(X)

)
/Std(X), (2)

where Mean(·) and Std(·) are the mean and standard deviation functions along the channel dimen-
sion. This normalization impacts the phase component through the mean shift, which results in the
deficiency of content information (Lee et al., 2023). To obtain a content-invariant representation,
the style-normalized feature is obtained by composing the amplitude of N(X) and the invariant
phase of X , as follows:

SN(X) = Com(AN(X),PX). (3)
Such style normalization maps different style features into a shared space, reducing discrepancies
between modalities as illustrated in Fig 3. This facilitates the easier consolidation of complementary
details from the content representations.

Then, SNF facilitates feature communication and enhancement between the twin encoders by fusing
the content information of their style-normalized features. Concretely, the dual-branch encoder
extracts hierarchical features at different levels from inputs V and I . For simplicity, we denote
the features from the visible and infrared streams as XV ∈ RC×H×W and XI ∈ RC×H×W . We
obtain their style-normalized representations SN(XV ) and SN(XI) through Eq. 3. Within a shared
style-normalized space, these style-normalized features are aggregated to obtain an enriched content
embedding X̂V I ∈ RC×H×W through:

X̂V I = Conv3

(
Cat

(
SN(XV ),SN(XI)

))
, (4)

where Cat(·) denotes the channel concatenation and Conv3 is a 3× 3 convolution layer.

To enrich the content integrity of representations from both encoders, we replace content by substi-
tuting the phase components of the original features with the phase of the content-complete fused
style-normalized feature X̂V I . The degree of style modification is gradually adjusted by introducing
learnable parameters (λ1

V, λ2
V) and (λ1

I , λ2
I ). The enhanced features are obtained through:

X̂V = Com
(
λ1
V AXV

+ λ2
V AX̂V I

,PX̂V I

)
, (5)

X̂I = Com
(
λ1
IAXI

+ λ2
IAX̂V I

,PX̂V I

)
, (6)

where learnable parameters λ1
V , λ2

V , λ1
I , λ

2
I ∈ RC×1×1 modulate between the normalized and orig-

inal styles for both branches. By dynamically adjusting the feature style, SNF balances preserving
the characteristics of source modal features with unifying cross-modal feature properties. This not
only avoids deficiencies in feature content information caused by specific characteristics during the
feature extraction process but also narrows feature discrepancies. Overall, SNF, with incremen-
tal feature enhancement, facilitates the gradual enrichment of content information throughout the
hierarchical extraction process.
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3.3 STYLE-ALIGNMENT FUSION MODULE

SAF prioritizes the alignment of the source modality image domain that contains more detailed and
crucial information for recognition and understanding. In IVF, we aim to fuse multi-modal features
aligning with the visible domain. This alignment is achieved by projecting the features X̂L

V and
X̂L

I from the encoders at the last level L into a shared embedding space with a normalized style as
defined in Eq. 3. Within this space, the features are fused in a channel-weighted manner using W
to maintain spatial consistency. The alignment of the fused feature with the visible domain is then
performed by adjusting based on the fundamental properties of the distribution, ensuring that the
mean matches Mean(X̂L

V ). Std(X̂L
V ) aids W in adjusting the standard deviation.

Specifically, the infrared feature X̂L
I is spatially squeezed through two types of pooling techniques

i.e., max pooling and average pooling. The squeezed features are then passed through a convolu-
tional layer to generate channel-wise weights W ∈ RC×1×1, which can be expressed as:

W = Conv1

(
Cat

(
MaxPool(X̂L

I ),AvgPool(X̂L
I )

))
, (7)

where MaxPool, AvgPool are max pooling, average pooling, respectively. Conv1 is a 1 × 1 convo-
lution layer. Alignment of the cross-domain fused representation X̂L

F is achieved by adjusting its
distributional statistics to match those of the target domain. The process is formulated as:

X̂L
F = W ⊙

(
SN(X̂L

I )− SN(X̂L
V )

)
+ Std(X̂L

V )⊙ SN(X̂L
V ) + Mean(X̂L

V ), (8)

where ⊙ denotes the dot product, Mean(X̂L
V ) ∈ RC×1×1 is the channel-wise mean, and Std(X̂L

V ) ∈
RC×1×1 is the channel-wise standard deviation. This facilitates effective integration and spatial
correspondence, allowing comprehensive content transfer from the infrared to the visible domain.

3.4 ADAPTIVE RECONSTRUCTION LOSS FUNCTION

Directly self-supervising with source images, which have significant differences, leads to ambiguous
solutions. Therefore, the proposed adaptive reconstruction loss function (ARL) employs the linearly
rescaled source images as the supervision signal to guide the model in maintaining both stylistic
coherence and content fidelity in the fused outputs. The learnable rescale function R(·) is designed
to adjust the distribution statistics of the source images, as follows:

R(X) = α(X)N(X) + β, (9)

where α(I) ∈ R+ is the learnable parameter to scale and β ∈ R+ is the parameter to shift.

In conjunction with SAF, input source images are regularized as supervision signals in the visible
image domain. The parameter β is set to Mean(V ), anchoring the fused output to the distribution of
the visible image domain. Meanwhile, the learnability of α provides significant flexibility, enabling
dynamic adaptation to the distributional differences between the multi-modal inputs. It is obtained
in a data-driven manner based on pooling and convolutional operations, as follows:

α(X) = Conv1
(

Cat
(
MaxPool(X),AvgPool(X)

))
. (10)

To ensure appropriate information entropy and maintain balance, we make α(X) fall into
[Max

(
Std(V ),Std(I)),Std(X)] using the clip operator. The lower bound prevents the loss of essen-

tial details by avoiding overly narrow distribution, while the upper bound prevents the introduction
of unrealistic artifacts due to excessively broad variability. Overall, this entropy-aware clipping pro-
vides controlled supervision while preserving informational integrity. This entropy-aware clipping
thus provides controlled supervision while preserving the informational integrity of the fused output.

To further align with the characteristics of the visible image, the model is supervised within the
visible image domain through identity mapping. By minimizing LAR, the model actively promotes
the alignment of the prediction image with the source images, both characteristically and structurally,
thus ensuring a high-fidelity reproduction of the characteristics of the visible domain in the fused
output. The total loss contains a balancing factor γ to weigh fusion and mapping losses, and ρ to
balance intensity and gradient terms as (Zhao et al., 2023b), defined as:

LAR = ∥f(V , I)−Max(R(V ),R(I))∥1+ρ
∥∥|∇f(V , I)|−Max

(
|∇R(V )|, |∇R(I)|

)∥∥
1

+ γ
(
∥f(V ,V )− V ∥1 + ρ ∥|∇f(V ,V )| − |∇R(V )|∥1

)
.

(11)
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Figure 4: Quantity Comparison of IVF, MIF and BIF.

Table 1: Quantitative results of IVF on MSRS and RoadScence datasets.

IVF on MSRS Dataset IVF on RoadScene Dataset

Methods EN↑ SD↑ SF↑ AG↑ Qbaf↑ VIF↑ SSIM↑ EN↑ SD↑ SF↑ AG↑ Qbaf↑ VIF↑ SSIM↑

TarD 5.28 25.22 5.98 1.83 0.41 0.42 0.45 7.26 47.44 11.11 4.14 0.40 0.56 0.88
DeF 6.46 37.63 8.60 2.80 0.56 0.77 0.92 7.36 47.03 10.99 4.38 0.48 0.63 0.89
MURF 6.07 26.82 8.91 2.67 0.46 0.46 0.81 6.91 33.34 13.88 5.37 0.43 0.52 0.79
MetaF 5.65 24.97 9.99 3.40 0.48 0.47 0.78 6.88 31.97 13.38 5.57 0.35 0.58 0.80
CDD 6.70 43.38 11.56 3.73 0.69 1.05 1.00 7.52 54.42 14.17 5.81 0.52 0.66 0.98
DDFM 6.19 29.26 7.44 2.51 0.58 0.73 0.94 7.24 42.43 10.68 4.15 0.55 0.62 0.97
SegM 5.95 37.28 11.10 3.47 0.64 0.88 0.95 7.29 46.14 14.47 5.57 0.52 0.65 0.97
EMMA 6.71 44.13 11.56 3.76 0.58 0.97 1.04 7.52 54.81 15.21 5.83 0.47 0.66 1.21
SCFNet 6.82 52.34 13.01 4.34 0.70 1.06 1.25 7.55 55.29 17.32 6.52 0.56 0.72 1.21

4 EXPERIMENTS

We first describe the implementation detail of SCFNet. Then we compare our proposed SCFNet
with the state-of-the-art (SOTA) methods across different datasets of tasks. Fig 4 illustrates the
superior performance of our SCFNet method across almost all metrics compared to other MMIF
methods on IVF, MIF and BIF. Additionally, we validate our contributions in downstream tasks. To
identify the contribution of each component, we further perform more analysis and ablation study.

4.1 EXPERIMENTAL SETTINGS

Implementation Details. The SCFNet is implemented with a batch size of 8. Adam optimization
is called for 200 epochs with an initial learning rate of 10−4, decayed by 0.9 every 20 epochs. As
for loss functions Eq. 11, the loss weight γ is set to 0.1 and ρ is set to 2.

Compared Methods and Metrics. We compare SCFNet with eight SOTA methods, including
TarD (Liu et al., 2022), DeF (Liang et al., 2022), MURF (Xu et al., 2023b), MetaF (Zhao et al.,
2023a), CDD (Zhao et al., 2023b), DDFM (Zhao et al., 2023c), SegM (Liu et al., 2023b) and
EMMA (Zhao et al., 2024). Fusion results are quantitatively evaluated using seven metrics, in-
cluding entropy (EN), standard deviation (SD), spatial frequency (SF), visual information fidelity
(VIF), edge-based similarity measurement (Qbaf), average gradient (AG), and structural similarity
index (SSIM). The best in tables is in boldfaced, and the second-best is underlined.

4.2 INFRARED AND VISIBLE IMAGE FUSION

Following (Zhao et al., 2023b; 2024; Tang et al., 2022b), we utilize 1083 image pairs from
MSRS (Tang et al., 2022b) dataset for training, and 50 image pairs from RoadScene (Xu et al.,
2020b) dataset for validation. The model is trained with patches of size 128× 128. To assess model
generalization, we evaluate performance across three diverse datasets, consisting of 361 image pairs
from the MSRS (Tang et al., 2022b) dataset, 50 image pairs from the RoadScene (Xu et al., 2020b)
dataset, and 25 image pairs from the TNO (Toet & Hogervorst, 2012) dataset.

The quantitative results are listed in Tab. 1 and Tab 2, which are quoted from (Zhao et al., 2024)
or obtained with released codes. Our SCFNet demonstrates consistently superior performance over
existing MMIF methods across most evaluated metrics on three distinct datasets. This consistent out-
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Figure 5: Performance Comparison of MMIF Methods.
Table 2: Quantitative results on TNO dataset of IVF and Harvard dataset of MIF.

IVF on TNO dataset MIF on Harvard Medical dataset

Methods EN↑ SD↑ SF↑ AG↑ Qbaf↑ VIF↑ SSIM↑ EN↑ SD↑ SF↑ AG↑ Qbaf↑ VIF↑ SSIM↑

TarD 7.02 49.89 8.68 3.81 0.28 0.54 0.83 3.91 55.94 21.62 4.04 0.42 0.57 0.82
DeF 7.06 40.70 8.21 3.76 0.43 0.64 0.92 4.26 52.49 24.08 4.32 0.60 0.62 1.21
MURF 6.93 34.95 8.37 3.45 0.37 0.55 0.87 4.42 36.35 24.18 5.98 0.56 0.37 0.94
MetaF 6.84 33.37 12.05 4.80 0.49 0.44 1.00 - - - - - - -
CDD 7.12 46.00 13.15 4.90 0.54 0.77 1.03 4.06 77.26 24.97 6.37 0.66 0.63 1.43
DDFM 7.06 49.71 10.45 4.19 0.47 0.71 0.98 4.21 62.81 22.43 6.11 0.59 0.63 1.16
EMMA 7.16 46.78 11.67 4.74 0.42 0.61 1.27 4.66 69.30 23.10 6.44 0.55 0.61 1.50
SCFNet 7.37 52.42 14.95 6.01 0.57 0.77 1.18 4.71 71.30 25.78 6.62 0.72 0.72 1.51

performance underscores the robust generalization capabilities of our method across diverse fusion
scenarios. The results on MSRS (Tang et al., 2022b) dataset validate the stability and applicability
of SCFNet for practical scenarios with diverse degradations and source variations. Additionally,
improvements in SD metrics indicate that SCFNet significantly enhances contrast, particularly in
challenging low-light conditions. By effectively consolidating multi-modality details across chang-
ing conditions, SCFNet demonstrates reliable fusion capabilities amid real-world challenges.

As illustrated in the top two rows of Fig. 5, SCFNet demonstrates superior integration of complete
content information from both infrared and visible images, particularly in the highlighted areas,
where people and wire mesh structures in the dark are effectively represented, and scene details are
preserved. In low-light conditions, where existing methods struggle to maintain the intricate texture
structure, SCFNet generates fused images with clearer details and more distinguishable foreground
objects and backgrounds with abundant contour information. This further demonstrates that SCFNet
demonstrates particular strengths in enhanced vision across challenging imaging degradation.

4.3 MEDICAL IMAGE FUSION AND BIOLOGICAL IMAGE FUSION

Medical Image Fusion. Following Zhao et al. (2023b), the trained IVF model, without fine-tuning,
is directly evaluated on the Harvard Medical (website) dataset. This dataset comprises 21 pairs
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Figure 6: Visualizations of object detection on M3FD dataset.

Table 3: Mean average precision (mAP% ↑) values for semantic segmentation on the MSRS dataset
and mean Intersection-over-Union (mIOU% ↑) values for object detection on the M3FD dataset.

Detection on M3FD dataset Segmentation on MSRS dataset

Bus Car Lam. Mot. Peo. Tru. mAP@0.5 Unl. Car Per. Bik. Cur. CS. GD. CC. Bu. mIOU

Infrared 78.8 88.7 70.2 63.4 80.9 65.8 74.6 90.5 75.6 45.4 59.4 37.2 51.0 46.4 43.5 50.2 55.4
Visible 78.3 90.7 86.4 69.3 70.5 70.9 77.7 84.7 67.8 56.4 51.8 34.6 39.3 42.2 40.2 48.4 51.7
TarD 81.3 94.8 87.1 69.3 81.5 68.7 80.5 97.1 79.1 55.4 59.0 33.6 49.4 54.9 42.6 53.5 58.3
DeF 82.9 92.5 87.8 69.5 80.8 71.4 80.8 97.5 82.6 61.1 62.6 40.4 51.5 48.1 47.9 54.8 60.7
MURF 81.3 92.6 86.5 70.8 80.2 69.9 80.2 97.2 81.4 62.0 60.9 39.7 52.3 55.5 46.8 56.1 61.3
MetaF 83.0 93.4 87.3 74.8 81.6 68.8 81.5 97.3 81.6 61.2 62.1 37.2 52.9 59.8 46.2 56.2 61.6
CDD 81.8 92.9 87.6 72.8 81.8 72.9 81.6 97.8 82.5 63.2 62.2 40.8 52.7 56.2 45.3 58.7 62.2
DDFM 82.2 93.2 87.6 68.4 81.0 71.3 80.6 97.4 82.5 60.4 62.0 41.7 52.9 56.2 46.3 53.7 61.2
SegM 81.8 93.1 86.8 72.3 79.9 70.9 80.8 97.6 84.6 64.8 63.6 40.2 52.9 59.9 49.4 56.2 63.2
EMMA 83.2 93.5 87.7 77.7 82.0 73.5 82.9 97.6 84.0 65.2 63.1 42.4 53.6 60.2 50.5 56.3 63.7
SCFNet 85.1 94.2 89.9 80.1 83.6 74.5 84.6 97.9 85.9 70.3 66.5 41.3 55.0 60.1 55.7 58.5 65.7

of MRI-CT, 42 pairs of MRI-PET, and 73 pairs of MRI-SPECT images. The quantitative results
are presented in Tab. 2. Compared to CDD (Zhao et al., 2023b), which achieves a higher SD but
sacrifices performance on other metrics, SCFNet outperforms other MMIF methods across most
metrics, further validating its strong generalization capability. The fusion results illustrated in the
third line of Fig. 5 demonstrate that our method preserves the detailed structural features of MRI as
a foundation while incorporating color information from PET, whereas other methods obscure some
tissue information. Combining the strengths of different modalities, this comprehensive fusion result
provides enhanced visualization that better facilitates medical diagnosis.

Biological Image Fusion. We extensively evaluate our method for the BIF task on the ATC (Ko-
roleva et al., 2005) dataset, which contains 128 image pairs of green fluorescent protein (GFP) and
phase contrast (PC) images. The fusion network is retrained using 85 pairs for training, 18 pairs
for validation, and 25 pairs for testing. Quantitative results are shown in Supplementary. These
results clearly demonstrate SCFNet achieves superior performance across all metrics, validating our
efficacy. The bottom line of Fig. 5 demonstrates that SCFNet preserves the structural integrity of
the cytoplasm, especially in areas where other methods obscure the cell wall, while effectively sup-
pressing noise. This balance is crucial for biological imaging applications where clarity and detail
retention are paramount for accurate analysis and interpretation.

4.4 DOWNSTREAM APPLICATIONS

Object Detection. The evaluation of our SCFNet for object detection is conducted using the
M3FD (Liu et al., 2022) dataset. This dataset is composed of 4,200 infrared and visible image
pairs. The detection network YOLOv5 (Jocher, 2020) is retrained using 3,360 pairs for training, 420
pairs for validation, and 420 pairs for testing. This network is employed to detect six categories:
buses, cars, lamps, motorcycles, people and trucks. As shown in Tab 3, our method achieves the top
five results across all evaluation metrics. Fig 6 shows our SCFNet effectively helps detect distant
people who are easily overlooked due to fog. This demonstrates that SCFNet can produce images
more suitable for detection by enhancing contrast and highlighting foregrounds, maintaining strong
performance even with degraded source images.

Semantic Segmentation. On the MSRS (Tang et al., 2022b) dataset, we retrain the segmenta-
tion network, DeeplabV3+ (Chen et al., 2018), for multi-modality scene segmentation task as (Zhao

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Ablation results of VIF on TNO and RoadScene datasets.

IVF on TNO dataset IVF on RoadScene dataset

Configurations EN↑ SD↑ SF↑ Qbaf↑ VIF↑ EN↑ SD↑ SF↑ Qbaf↑ VIF↑

FPE → Restor. 7.29 51.90 14.16 0.56 0.75 7.42 53.31 17.14 0.54 0.70
w/o SNF 7.06 46.53 12.38 0.49 0.71 7.15 50.02 14.43 0.50 0.63
w/o SAF 7.15 49.57 13.70 0.52 0.73 7.30 52.13 15.89 0.51 0.65
w/o LAR 7.20 47.81 12.65 0.54 0.75 7.22 51.61 14.50 0.53 0.68
w/ L−

AR 7.26 51.62 14.08 0.51 0.73 7.28 52.00 17.34 0.52 0.65
Full (SCFNet ) 7.37 52.42 14.95 0.57 0.77 7.55 55.29 18.32 0.56 0.72

et al., 2024; Liu et al., 2023b). This network is employed to manage nine categories of pixel-level la-
bels, including Unlabeled (background), Car, Person, Bike, Curb, Car stop, Guardrail, Color cone,
Bump. From Tab. 3, performances as measured by the Intersection over Union (IoU) indicate that
our method enhances the overall clarity of segmentation because fusion results produced by SCFNet
possess more complete edges and details. More qualitative results are shown in Supplementary.

4.5 ABLATION STUDY

We construct experiments from the proposed SCFNet to perform analyses quantifying the impact of
components. The ablation results are summarized in Tab. 4. To analyze the effectiveness of each
component in our network, we design the following baseline model. (a) “FPE → Restor.” : replace
FPE blocks in the encoders with the recent CNN/Transformer-based Restormer blocks (Zhao et al.,
2023b). Incorporating FPE blocks for feature frequency extraction results in significant performance
gains. (b) “w/o SNF”: replace SNF modules with concatenation and convolutions containing similar
parameters. The result demonstrates the SNF effectively facilitates the fusion of style discrepancies
between different modalities. (c) “w/o SAF”: replace SAF with layers concatenation and convolu-
tions with similar parameters. Better results with SAF are credited to the feature domain alignment
and regularization that avoids fusion ambiguity.

V I Aligned V Aligned I

Visible Infrared SCFNetV SCFNetI

Figure 7: The fusion results of SAF align different
source modalities effectively.

Additionally, SAF supports flexible alignment
of fused features to different source modali-
ties without the need for retraining, making
SAF more robust across varying modalities. As
demonstrated in Fig. 7, aligning to different
modalities produces high-quality fusion results
with distinct visual characteristics, effectively
meeting diverse application needs.

Next, we design the following training strategies to analyze the proposed loss function. (d) “w/o
LAR”: remove the rescaled adjustment R in LAR, and directly use the original input images as
supervision. The result indicates that LAR is crucial for optimal performance. Even without LAR,
SCFNet still demonstrates robust fusion capabilities, which can be attributed to our effective network
design. (e) “w/ L−

AR”: eliminate the domain identity learning loss term by setting the γ in Eq. 11
to 0. The performance degradation proves that guiding the network to learn specific image domain
information is beneficial for constraining the network to avoid distortion and obtain high-quality
fused images. More analyses provided in Supplementary demonstrate that our proposed LAR offers
more comprehensive scene information supervision while preserving image priors.

5 CONCLUSION

In this work, we propose SCFNet, a novel style-coherent multi-modality fusion model, to address
the challenge of integrating heterogeneous modalities in MMIF. To complement missing scene in-
formation from uncollected modalities, SNF enhances features by merging style-normalized rep-
resentations. SAF aligns cross-modal fused features to a designated modality, ensuring stylistic
consistency. Additionally, to improve the integrity and completeness of self-supervision, we employ
an adaptive reconstruction loss function that linearly transforms source inputs to enforce mapping
to a specific domain with image priors. Experiments demonstrate that our approach outperforms
existing MMIF methods and shows strong potential for downstream applications.
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