Leveraging Side Information for Communication-Efficient Federated Learning

Berivan Isik ! Francesco Pase *> Deniz Gunduz® Sanmi Koyejo

Abstract

The high communication cost of sending model
updates from the clients to the server is a signif-
icant bottleneck for scalable federated learning
(FL). Among existing approaches, state-of-the-art
bitrate-accuracy tradeoffs have been achieved us-
ing stochastic compression methods — in which
the client n sends a sample from a client-only
probability distribution g, and the server esti-
mates the mean of the clients’ distributions using
these samples. However, such methods do not
take full advantage of the FL setup where the
server, throughout the training process, has side
information in the form of a pre-data distribution
pg that is close to the client’s distribution qp(m)
in Kullback—Leibler (KL) divergence. We exploit
this closeness between the clients’ distributions
qp(m) ’s and the side information pg at the server,
and propose a framework that requires approx-
imately Drcr,(qs ||pe) bits of communication.
We show that our method can be integrated into
many existing stochastic compression frameworks
such as FedPM, Federated SGLD, and QSGD to
attain the same (and often higher) test accuracy
with up to 50 times reduction in the bitrate. (See
(Isik et al., 2023a) for the full version.)

1. Introduction

Federated learning (FL), while enabling model training
without collecting clients’ raw data, suffers from high
communication costs due to the model updates commu-
nicated from the clients to the server every round (Kairouz
et al., 2021). To mitigate this cost, several communication-
efficient FL strategies have been developed that compress
the model updates, such as sparsification (Barnes et al.,

“Equal contribution 'Stanford University *University of
Padova ‘Imperial College London. Correspondence to:
Berivan Isik <berivan.isik@stanford.edu>, Francesco Pase <pase-
france @dei.unipd.it>.

ICML 2023 Workshop on Federated Learning and Analytics in
Practice: Algorithms, Systems, Applications, and Opportunities.
This workshop does not have official proceedings and this paper is
non-archival.

I Tsachy Weissman' Michele Zorzi >

2020; Isik et al., 2022; Lin et al., 2018), quantization (Al-
istarh et al., 2017; Mitchell et al., 2022), low-rank factor-
ization (Basat et al., 2022; Konec¢ny et al., 2016; Vargaftik
et al., 2022; 2021), and sparse network training (Isik et al.,
2023b). Many of these strategies adopt a stochastic ap-
proach that requires the client n to send a sample x(*™)
from a client-only distribution Geptom) (which we call the
post-data distribution), while the goal of the server is to es-

timate EX(t,n)~q¢(t1n) Vne[N] [% ZLIX(M)} by taking

the average of the samples across clients % Zf:/:l x(tm),
Here, we denote by N the number of clients, by [N] the
set {1,..., N}, and by agt’”) the i-th parameter of a vector
a at client n in round ¢. We show that in many stochastic
FL settings, the server also holds a distribution py(:) (Which
we call the pre-data distribution) that is close to the post-
data distribution g .») (which is unknown to the server) in
KL divergence. The proposed method, KL. Minimization
with Side Information (KLMS), exploits this closeness to re-
duce the cost of communicating samples x(“"). We refer
the reader to Appendix A.l for a summary of three such
stochastic FL frameworks with pointers to the corresponding
pre-data py(+) and post-data Qg(t.m) distributions as examples
of three setups: (i) learning probability distributions over
subnetworks (or masks), (ii) learning deterministic model
parameters using stochastic compressors, and (iii) learning
probability distributions over model parameters.

Before describing the details of our proposal in Section 2,
we briefly give the key idea KLMS relies on: Instead
of communicating the deterministic value of a sample
x (&)~ Q) client n can communicate a sample y(t’")
from another distribution y(*™) ~ §_:..), which is less
costly to communicate compared to x(*™), and the discrep-
ancy due to sampling from this distribution is not significant.
As shown in Algorithm 1, to construct ¢, we use the
pre-data distribution pg(:) (which is known by the server
and the clients) and the importance sampling algorithm
in (Chatterjee & Diaconis, 2018). We show that this KLMS
an arbitrarily small discrepancy in the estimation when
K ~ exp (Dg (g |[pe)) with improvements (specific
to the FL setting) over prior work (Havasi et al., 2019; Tri-
astcyn et al., 2021). Clearly, to get the most communication
gain out of KLMS, we need pre-data py and post-data g,
distributions that are close in KL divergence. We show the

Leveraging Side Information for Communication-Efficient Federated Learning

existence of such distributions in many stochastic FL frame-
works by providing concrete examples in Appendix A.1.

Algorithm 1 XLMS Outline. (A more detailed description is
given in Section 2.1 and Appendix B.)
(1) The server and client n generate the same K samples

from the pre-data distribution {y[(,Zj")}szl ~ Pg(ry (Which

is available to both the server and the clients) using a shared

random seed.

(2) Client n computes the importance weights o, =
qd)(t,n)(yfi]‘”))
Py(t) (Yf;zim)

bution g, .» and normalizes it to get a distribution over

[K]as 7™ (k) = <l —,

. El:l a[l]
(3) Client n takes a sample from this new distribution
EM* ~ 7(t:7) and sends it to the server in log K bits.
(4) The server receives k(™* and recovers the k(™)*-th sam-

ple Y[(}i’(’i?*] from the set of & samples {y [(liin)

(tn)

[k(n)*]
sample from the underlying distribution over {yféj") }szl

defined as G () = Y4y 7™ (k) - Wy (" =y},

for k € [K] with the local post-data distri-

X | gener-

ated from py ;) in Step (1). Notice that y is actually a

Each of the three examples of stochastic communication-
efficient FL frameworks listed in Appendix A.1, induces a
post-data distribution gy:,») that clients want to send a sam-
ple from, and a pre-data distribution py() that is available
to both the clients and the server — playing the role of side
information. In each case, these distributions are expected to
become closer in KL divergence as training progresses due
to the convergence of the model parameters (FedPM (Isik
et al., 2023b) or other probabilistic mask learning methods),
temporal correlation across rounds (QSGD (Alistarh et al.,
2017) or other deterministic model training methods), or the
stochastic formulation of the framework itself (Federated
SGLD (Vono et al., 2022) or other Bayesian FL. methods).
We show that KLMS reduces the communication cost down
to this fundamental quantity (KL divergence) in each sce-
nario, resulting in up to 50 times improvement in communi-
cation efficiency (sometimes with higher accuracies) over
FedPM, QLSD, and QSGD among other non-stochastic com-
petitive baselines such as S1ignSGD (Bernstein et al., 2018),
TernGrad (Wen et al., 2017), DRIVE (Vargaftik et al.,
2021), EDEN (Vargaftik et al., 2022), and FedMask (Li
et al., 2021). To achieve this efficiency, we use an impor-
tance sampling algorithm (Chatterjee & Diaconis, 2018;
Harsha et al., 2007) by improving and extending the previ-
ous theoretical guarantees to the distributed setting. Differ-
ent from prior work that used importance sampling in the
centralized setting to compress model parameters (Havasi
et al., 2019) or focused on differential privacy implications
(Shah et al., 2022; Triastcyn et al., 2021), KLMS selects
more natural pre-data py«) and post-data g4.» distribu-

tions that are intrinsic to the FL setting, and optimizes the
bit allocation across both the training rounds and the model
coordinates in an adaptive way to achieve the optimal bitrate.
Our contributions can be summarized as follows:

(1) We propose a road map to utilize various forms of side
information available to both the server and the clients to
reduce the communication cost in FL. We give concrete
examples of how to code model updates under different
setups, including probabilistic mask training (e.g., FedPM),
deterministic model training with stochastic compressors
(e.g., OSGD), and Bayesian FL (e.g., Federated SGLD).

(2) We extend the importance sampling results to the dis-
tributed setting with theoretical improvements.

(3) We propose an adaptive bit allocation strategy that elim-
inates a hyperparameter required by prior work, and allows
a better use of the communication budget across the model
coordinates and rounds.

(4) We demonstrate the efficacy of our strategy on MNIST,
EMNIST, CIFAR-10, and CIFAR-100, and show improve-
ments in accuracy with up to 50 times gains in bitrate (with
sometimes higher accuracies) over relevant baselines.

2. KL Divergence Minimization with Side
Information (KLMS)

We first describe our approach, KLMS, in Section 2.1; then,
in Section 2.2, we introduce our adaptive bit allocation
strategy to optimize the bitrate across training rounds and
model coordinates to reduce the compression rate. In Ap-
pendix D, we give four concrete examples where KLVMS is
integrated into FedPM (Isik et al., 2023b), QSGD (Alistarh
et al., 2017), SignSGD (Bernstein et al., 2018), and Feder-
ated SGLD (Vono et al., 2022); and improves the accuracy-
bitrate tradeoff.

2.1. KLMS for Stochastic FL Frameworks

We first point out that our proposal is not a stand-alone
FL framework to replace existing alternatives, rather, it
represents a general recipe that can be integrated into many
existing (stochastic) frameworks to improve their accuracy-
bitrate performance significantly. The main idea behind
KLMS is grounded in three important observations:

(1) In many existing FL frameworks, the updates communi-
cated from the clients to the server are samples drawn from
some optimized post-data distributions, e.g., QSGD (Alistarh
etal., 2017) and FedPM (Isik et al., 2023b).

(2) Sending a random sample from a distribution can be
done much more efficiently than first taking a sample from
the same distribution, and then sending its deterministic
value (Theis & Ahmed, 2022).

Leveraging Side Information for Communication-Efficient Federated Learning

(3) The knowledge acquired from the historical updates,
available both to the server and clients, can reduce the com-
munication cost drastically by acting as side information.

KLMS is designed to reduce the communication cost in FL.
by taking advantage of the above observations. It relies on
common randomness between the clients and the server in
the form of a random SEED (i.e., they can generate the same
random samples from the same distribution) and also on the
side information available to the server and the clients. With-
out restricting ourselves to any specific FL. framework (we
do this in Appendix D), suppose the server and the clients
share a pre-data distribution py«+), and each client has a
post-data distribution g, after the local training steps.
As stated in Section 1, the goal of the server is to compute
EX<t,,z>~q¢(m) Vn€[N] [% Z;V:l X(tv")} after each round.
While this can be done by simply communicating samples
x(&1) dg(tm), WE nOte that the communicated samples
do not need to be the exact same samples that are gener-
ated at the client’s side. Therefore, instead of communi-
cating a specific realization x(tn) g t.m)» KLMS commu-
nicates a sample y(&m) according to some other distribu-
tion ¢, (:.») such that (i) it is less costly to communicate
a sample from ¢, (:,») rather than Ggtm) s and (ii) the dis-

N n
crepancy £ =)Ey(t W (em) VEIN] [i Sy Y&)}

—Extn)g St VREIN [N Zn 1 X ”)} ‘ is sufficiently
small. Motlvated by thls, each round of KLMS runs as de-
scribed in Algorithm 1. Theorem 2.1 shows that the discrep-
ancy E is upper bounded when K ~ exp (D1 (qe||pe))-
We prove it for a general measurable function f(-), for
which the discrepancy F is a special case when f(-) is the
identity. We note that the previous results on the single-user
scenario (N = 1) (Chatterjee & Diaconis, 2018) are special
cases of our more general framework with N users.

Theorem 2.1. Ler py and qyn) for n = 1,...,N
be probability distributions over set X equipped with
some sigma-algebra. Let X™ be an X-valued ran-
dom variable with law qpmy. Letr >0 and Gy for
n =1,..., N be discrete distributions each constructed by

K™ = exp (Dkr(ggm|lpe) + 1) samples {y(n)}K(n)
qd,(n)(y[k])/Pﬂ(y[kl]))

from py defining ©™ (k)

K a0 5 ey ()Y
Furthermore, for measurable function f(), let
1£las = /Extnng, o wmeml(Gy sy F(X0))?] be

its 2-norm under Q¢ = qg), - - -, 4y~ and let

1/2
N

€= (eNT/4 + Q\J H P(log(qgm /Po) > Dicr(qpm [Ipe) + 7“/2))
n=1

)}

over {y(”) }K(ﬂ

Defining G as Grm(y) =

SR w00 (k) -1y = y), it holds that

P E
Y (g (ny,Yn

N
1
E = XMy >
MMMWJNZN >H

n=1

fy™)

=[-
1 [M)=

n=1

20fllase) _ .
1—¢ -7

See Appendix C for the proof. This result implies that when
K™ ~ exp (D L(qge.m lpowr)), the discrepancy E is
small. In practice, as we explain in Section 2.2, we work on
blocks of parameters such that D1, (qg.n [|[pgce) for each
block is the same for all clients n € [N]. Hence, we omit
the superscript (n) from K (™).

2.2. Adaptive Block Selection for Optimal Bit Allocation

Prior work has applied importance sampling for Bayesian
neural network compression (Havasi et al., 2019), or for
differentially private communication in FL (Triastcyn et al.,
2021) by splitting the model into several fixed-size blocks
of parameters, and compress each block separately and in-
dependently to avoid the high computational cost — which
exponentially increases with the number of parameters d.
After splitting the model into fixed-size blocks with S pa-
rameters each, (Havasi et al., 2019; Triastcyn et al., 2021)
choose a single fixed K (number of samples generated from
pgt)) for each block no matter what the KL divergence is
for different blocks. This yields the same bitrate l‘ygTK for
every model parameter. Furthermore, (Triastcyn et al., 2021)
uses the same K throughout training without considering
the variation in KL divergence over rounds. However, as
illustrated in Figure 2, KL divergence changes significantly
across different layers and rounds. Hence, spending the
same bitrate log for every parameter every round is highly
suboptimal smce it breaks the condition in Theorem 2.1.

To fix this, we propose an adaptive block selection
mechanism, where the block size is adjusted such that the
KL divergence for each block is the same and equal to a
target value, D55, This way, the optimal K for each block
is the same and approximately equal to D;d(rie‘, and we do
not need to set the block size S ourselves, which was a
hyperparameter to tune in (Havasi et al., 2019; Triastcyn
et al., 2021). Different from the fixed-size block selection
approach in (Havasi et al., 2019; Triastcyn et al., 2021), the
adaptive approach requires describing the locations of the
adaptive-size blocks, which adds overhead to the commu-
nication cost. However, exploiting the temporal correlation
across rounds can make this overhead negligible. More
specifically, we first let each client find their adaptive-size
blocks, each having KL divergence equal to D5, in the
first round. Then the clients communicate the locations of

these blocks to the server, which are then aggregated by the

Leveraging Side Information for Communication-Efficient Federated Learning

CIFAR-10 (CONV®6) CIFAR-100 (ResNet-18)
< <

0.995

a0 o
0.75 5B 0.4
g 0.990
g Mo
5070 v 03 ! ©
£ ° 0.985
0.65 Vo
0.2
° ° 0.980
0.00 025 050 075 1.00 0.00 025 050 075 1.00 0.00
0.80
0.45 0.995
0.78
z 0.40 0.994
I o o
2076 a 0.35
g o o - oo o 0.993
0.74 030 *“
0.992
025 v
0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 0.00

‘Bitrate (bpp) Bitrate (bpp)

¥po

MNIST (CONV4) EMNIST (CONV4)
0.89 o
o
r‘-‘f:“)
¥ 083 v FedPM-KLMS
o QSGD-KLMS
v)
0.87 o SignSGD-KLMS
o FedPM
S o QSGD
° 0.8 v SignSGD
025 050 0.75 1.00 0.00 025 050 075 1.00 o TernGrad
0.890 DRIVE
o EDEN
a 0.885 o FedMask
o "o a = o DP-REC
=]
0.880
0.875
0.05 0.10 0.00 0.05 0.10 0.15
Bitrate (bpp) Bitrate (bpp)

Figure 1: FedPM-KLMS, QSGD-KLMS, and SignSGD-KLMS against FedPM, QSGD, SignSGD, TernGrad, DRIVE,
EDEN, FedMask, and DP-REC. The bottom row replicates the upper row zoomed into lower bitrates.

(8
%@/’ 12

00150 (\d

16 50
0

Figure 2: KL divergence between local post-data distribu-
tions and the global pre-data distribution, for different layers
and rounds (FedPM is used to train CONV6 on CIFAR-10).

server to find the new global indices to be broadcast to the
clients, i.e., federated aggregation of block locations. At
later rounds, the server checks if, on average, the new KL
divergence of the previous blocks is still sufficiently close to
the target value Dt;gie[. If so, the same adaptive-size blocks
are used in that round. Otherwise, the client constructs new
blocks, each having KL divergence equal to D5, and
updates the server about the new locations. Our experiments
indicate that this update occurs only a few times during
the whole training. Therefore, it adds only a negligible
overhead on the average communication cost across rounds.

We provide the pseudocodes in Appendix B.

3. Experiments

We empirically demonstrate the accuracy and bitrate im-
provements obtained with KLMS by focusing on four
KLMS adaptations, FedPM-KLMS, QSGD-KLMS, and
SignSGD-KLMS, and SGLD-KLMS, covered in Ap-
pendix D. Due to the page limitation, we only provide the re-
sults of non-Bayesian FL setup with i.i.d. data split and full
participation here. For the non-i.i.d. data split, partial client
participation, and Bayesian FL experiments, please see Ap-
pendix F. We also provide an ablation study on the effective-
ness of the adaptive block selection strategy in Appendix F.3.
In this section though, we consider four datasets: CIFAR-10
(Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,

2009), MNIST (Deng, 2012), and EMNIST (Cohen et al.,
2017) (with 47 classes). For CIFAR-100, we use ResNet-
18 (He et al., 2016); for CIFAR-10, a 6-layer CNN CONV6;
for MNIST a 4-layer CNN CONV4; and for EMNIST, again
CONV4. Clients perform 3 local epochs in the non-Bayesian.
(Results averaged over 3 runs.) In Figure 1, we compare
FedPM-KLMS, QSGD-KLMS, and SignSGD-KLMS with
FedPM (Isik et al., 2023b), QSGD (Alistarh et al., 2017),
SignSGD (Bernstein et al., 2018), TernGrad (Wen et al.,
2017), DRIVE (Vargaftik et al., 2021), EDEN (Vargaftik
et al., 2022), FedMask (Li et al., 2021), and DP-REC (Tri-
astcyn et al., 2021). It is seen that FedPM-KLMS and
SignSGD-KLMS provide 50 times reduction in communi-
cation cost compared to FedPM and SignSGD, respectively
(together with the accuracy boost over vanilla SignSGD).
QSGD-KLMS, on the other hand, reduces the communica-
tion cost by 12 times over vanilla QSGD. Overall, among our
baselines, QSGD requires the smallest bitrate, and FedPM
achieves the highest accuracy. Surprisingly, FedPM-KLMS
requires 10 times smaller bitrate than QSGD while achieving
the same accuracy as FedPM at the same time — consis-
tently in all the experiments. The consistent and significant
improvements over DP—REC (in both bitrate and accuracy)
justify the importance of (i) carefully choosing the pre-data
and post-data distributions, and (ii) the adaptive block selec-
tion that optimizes the bit allocation.

4. Discussion & Conclusion

We introduced KLMS — a recipe for reducing the communica-
tion cost in stochastic FL frameworks by exploiting the side
information available to the server and correlated with the
local model updates. We highlighted the existence of highly
natural choices of pre-data and post-data distribution in FL
that we can take advantage of to reduce the communication
cost significantly. Moreover, we showed how to adaptively
adjust the bitrate across the model parameters and training
rounds to achieve the fundamental communication cost — the

Leveraging Side Information for Communication-Efficient Federated Learning

KL divergence between the pre-data and post-data distribu-
tions. While we showed four KLMS adaptations (that reduce
the communication cost 50 times more than our baselines),
it can be adapted to many other stochastic FL frameworks
with similar communication gains.

References

Aji, A. and Heafield, K. Sparse communication for dis-
tributed gradient descent. In EMNLP 2017: Conference
on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics (ACL), 2017.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. QSGD: Communication-efficient SGD via gradient
quantization and encoding. Advances in Neural Informa-
tion Processing Systems, 2017.

Barnes, L. P., Inan, H. A., Isik, B., and Ozgiir, A. rtop-k: A
statistical estimation approach to distributed SGD. IEEE
Journal on Selected Areas in Information Theory, 1(3):
897-907, November 2020.

Basat, R. B., Vargaftik, S., Portnoy, A., Einziger, G., Ben-
Itzhak, Y., and Mitzenmacher, M. QUICK-FL: Quick un-
biased compression for federated learning. arXiv preprint
arXiv:2205.13341, 2022.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anand-
kumar, A. signsgd: Compressed optimisation for non-
convex problems. In International Conference on Ma-
chine Learning, pp. 560-569. PMLR, 2018.

Chatterjee, S. and Diaconis, P. The sample size required in
importance sampling. The Annals of Applied Probability,
28(2):1099-1135, 2018.

Chen, H.-Y. and Chao, W.-L. Fed{be}: Making bayesian
model ensemble applicable to federated learning. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=dgtpE6gKjHn.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A. EM-
NIST: Extending MNIST to handwritten letters. In Inter-
national Joint Conference on Neural Networks (IJCNN),
pp- 2921-2926, 2017.

Deng, L. The MNIST database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141-142, 2012.

El Mekkaoui, K., Mesquita, D., Blomstedt, P., and Kaski,
S. Distributed stochastic gradient MCMC for federated
learning. arXiv preprint arXiv:2004.11231, 2020.

El Mekkaoui, K., Parente Paiva Mesquita, D., Blomstedt, P,,
and Kask, S. Federated stochastic gradient langevin dy-
namics. In Proceedings of the Thirty-Seventh Conference
on Uncertainty in Artificial Intelligence, pp. 1703-1712.
PMLR, 2021.

Elias, P. Universal codeword sets and representations of the
integers. IEEE Transactions on Information Theory, 21
(2):194-203, March 1975.

Flamich, G., Havasi, M., and Hernandez-Lobato, J. M. Com-
pressing images by encoding their latent representations
with relative entropy coding. Advances in Neural Infor-
mation Processing Systems, 33:16131-16141, 2020.

Flamich, G., Markou, S., and Hernandez-Lobato, J. M.
Fast relative entropy coding with a* coding. In Interna-
tional Conference on Machine Learning, pp. 6548-6577.
PMLR, 2022.

Harsha, P., Jain, R., McAllester, D., and Radhakrishnan,
J. The communication complexity of correlation. In
Twenty-Second Annual IEEE Conference on Computa-
tional Complexity (CCC’07), pp. 10-23. IEEE, 2007.

Havasi, M., Peharz, R., and Hernandez-Lobato, J. M. Min-
imal random code learning: Getting bits back from
compressed model parameters. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=r1f0YiCctm.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770-778, 2016.

Isik, B., Weissman, T., and No, A. An information-theoretic
justification for model pruning. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 3821—
3846. PMLR, 2022.

Isik, B., Pase, F., Gunduz, D., Koyejo, S., Weissman,
T., and Zorzi, M. Communication-efficient federated
learning through importance sampling. arXiv preprint
arXiv:2306.12625, 2023a.

Isik, B., Pase, F., Gunduz, D., Weissman, T., and Zorzi,
M. Sparse random networks for communication-efficient
federated learning. In The Eleventh International Confer-
ence on Learning Representations, 2023b. URL https:
//openreview.net/forum?id=k1FHgri5y3-.

Jhunjhunwala, D., Mallick, A., Gadhikar, A., Kadhe, S.,
and Joshi, G. Leveraging spatial and temporal correla-
tions in sparsified mean estimation. Advances in Neural
Information Processing Systems, 34:14280-14292, 2021.

https://openreview.net/forum?id=dgtpE6gKjHn
https://openreview.net/forum?id=dgtpE6gKjHn
https://openreview.net/forum?id=r1f0YiCctm
https://openreview.net/forum?id=r1f0YiCctm
https://openreview.net/forum?id=k1FHgri5y3-
https://openreview.net/forum?id=k1FHgri5y3-

Leveraging Side Information for Communication-Efficient Federated Learning

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1-2):1-210, 2021.

Konecny, J., McMahan, H. B., Yu, F. X., Richtarik, P,
Suresh, A. T., and Bacon, D. Federated learning: Strate-
gies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Li, A., Sun, J., Wang, B., Duan, L., Li, S., Chen, Y., and Li,
H. Lotteryfl: Personalized and communication-efficient
federated learning with lottery ticket hypothesis on non-
iid datasets. arXiv preprint arXiv:2008.03371, 2020.

Li, A., Sun, J., Zeng, X., Zhang, M., Li, H., and Chen,
Y. Fedmask: Joint computation and communication-
efficient personalized federated learning via heteroge-
neous masking. In Proceedings of the 19th ACM Confer-
ence on Embedded Networked Sensor Systems, pp. 42-55,
2021.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, B. Deep gra-
dient compression: Reducing the communication band-
width for distributed training. In International Conference
on Learning Representations, 2018.

Liu, Y., Zhao, Y., Zhou, G., and Xu, K. Fedprune: Per-
sonalized and communication-efficient federated learning
on non-iid data. In International Conference on Neural
Information Processing, pp. 430-437. Springer, 2021.

Mitchell, N., Ballé, J., Charles, Z., and Konecny, J. Opti-
mizing the communication-accuracy trade-off in feder-
ated learning with rate-distortion theory. arXiv preprint
arXiv:2201.02664, 2022.

Mohtashami, A., Jaggi, M., and Stich, S. Masked training of
neural networks with partial gradients. In International

Conference on Artificial Intelligence and Statistics, pp.
5876-5890. PMLR, 2022.

Mozaffari, H., Shejwalkar, V., and Houmansadr, A.
FRL: Federated rank learning. arXiv preprint
arXiv:2110.04350, 2021.

Ozfatura, E., Ozfatura, K., and Giindiiz, D. Time-
correlated sparsification for communication-efficient fed-
erated learning. In IEEE International Symposium on
Information Theory (ISIT), pp. 461-466. IEEE, 2021.

Plassier, V., Vono, M., Durmus, A., and Moulines, E. DG-
LMC: a turn-key and scalable synchronous distributed
MCMC algorithm via Langevin Monte Carlo within

Gibbs. In International Conference on Machine Learning,
pp. 8577-8587. PMLR, 2021.

Shah, A., Chen, W.-N., Balle, J., Kairouz, P., and Theis,
L. Optimal compression of locally differentially private
mechanisms. In International Conference on Artificial
Intelligence and Statistics, pp. 7680-7723. PMLR, 2022.

Suresh, A. T., Felix, X. Y., Kumar, S., and McMahan, H. B.
Distributed mean estimation with limited communication.
In International Conference on Machine Learning, pp.
3329-3337. PMLR, 2017.

Theis, L. and Ahmed, N. Y. Algorithms for the communica-
tion of samples. In International Conference on Machine
Learning, pp. 21308-21328. PMLR, 2022.

Triastcyn, A., Reisser, M., and Louizos, C. DP-REC: Pri-
vate & communication-efficient federated learning. arXiv
preprint arXiv:2111.05454, 2021.

Vallapuram, A. K., Zhou, P., Kwon, Y. D., Lee, L. H., Xu,
H., and Hui, P. Hidenseek: Federated lottery ticket via
server-side pruning and sign supermask. arXiv preprint
arXiv:2206.04385, 2022.

Vargaftik, S., Ben-Basat, R., Portnoy, A., Mendelson, G.,
Ben-Itzhak, Y., and Mitzenmacher, M. Drive: one-bit
distributed mean estimation. Advances in Neural Infor-
mation Processing Systems, 34:362-377, 2021.

Vargaftik, S., Basat, R. B., Portnoy, A., Mendelson,
G., Itzhak, Y. B., and Mitzenmacher, M. Eden:
Communication-efficient and robust distributed mean es-
timation for federated learning. In International Confer-
ence on Machine Learning, pp. 21984-22014. PMLR,
2022.

Vogels, T., Karimireddy, S. P., and Jaggi, M. Powersgd:
Practical low-rank gradient compression for distributed
optimization. Advances in Neural Information Processing
Systems, 32, 2019.

Vono, M., Plassier, V., Durmus, A., Dieuleveut, A., and
Moulines, E. QLSD: Quantised Langevin stochastic dy-
namics for Bayesian federated learning. In International
Conference on Artificial Intelligence and Statistics, pp.
6459-6500. PMLR, 2022.

Wang, H., Sievert, S., Liu, S., Charles, Z., Papailiopoulos,
D., and Wright, S. Atomo: Communication-efficient
learning via atomic sparsification. Advances in Neural
Information Processing Systems, 31, 2018.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient langevin dynamics. In Proceedings of the 28th
International Conference on Machine Learning (ICML-
11), pp. 681-688, 2011.

Leveraging Side Information for Communication-Efficient Federated Learning

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and
Li, H. Terngrad: Ternary gradients to reduce communi-
cation in distributed deep learning. Advances in Neural
Information Processing Systems, 30, 2017.

Leveraging Side Information for Communication-Efficient Federated Learning

A. Related Work

A.1. Setups: Examples of Stochastic FL. Frameworks

We now briefly summarize three examples of stochastic FL frameworks that KLMS can be integrated into by highlighting the
natural choices for pre-data py and post-data g, distributions.

A.1.1. FEpPM (ISIK ET AL., 2023B)

FedPM (Isik et al., 2023b) freezes the parameters of a randomly initialized network and finds a subnetwork inside it that
performs well with the initial random parameters. To find the subnetwork, the clients receive a global probability mask
6 e [0, 1]¢ from the server that determines, for each parameter, the probability of retaining it in the subnetwork; set this
as their local probability mask ¢(*™) < #(*); and train only this mask (not the frozen random parameters) during local
training. At inference, a sample z(*) € {0,1}¢ from the Bernoulli distribution Bern(-; ¢(*™)) is taken, and multiplied
element-wise with the frozen parameters of the network, obtaining a pruned random subnetwork, which is then used to
compute the model outputs. Communication consists of three stages: (i) clients update their local probability masks ¢(*™)
through local training; (ii) at the end of local training, they send a sample z(*") ~ Bern(:; ™) to the servers; (iii) the
server aggregates the samples % Zgzl 2t updates the global probability mask 6(“*1), and broadcasts the new mask
to the clients for the next round. FedPM achieves state-of-the-art results in accuracy-bitrate tradeoff with around 1 bit per
parameter (bpp). (We provide the pseudocode for FedPM in Algorithms 2 and 3. See (Isik et al., 2023b) for more details.)
As the model converges, the global probability mask #(*) and clients’ local probability masks ¢(®™ get closer to each
other (see Figures 2 and 5 for the trend of D, (qd,(t,n) ||pg+)) over time). However, no matter how close they are, FedPM
employs approximately the same bitrate for communicating a sample from Bern(+; qﬁ(t’”)) to the server that knows py). We
show that this strategy is suboptimal and applying KLMS with the global probability distribution Bern(-; G(t)) as the pre-data
distribution py, and the local probability distribution Bern(-; ¢(+™)) as the post-data distribution g(t.m), provides up to 50
times gain in compression.

A.1.2. QSGD (ALISTARH ET AL., 2017)

QSGD (Alistarh et al., 2017), different from the stochastic approach taken by FedPM to train a probabilistic mask, is
proposed to train a deterministic set of parameters. However, QSGD is itself a stochastic quantization operation. More
concretely, QSGD quantizes each coordinate vﬁt”” using the following probability distribution (which we call the QSGD

distribution pgscp (+)), where s is the number of quantization levels:

s\vgt’")| _ s\vgt’m\ lf{,(t,n) . Hv(t’")H-sign(vEt’")) (9|v§t’")| +1
VEDT [TvE™] i 5 V&
SGD) -
’ Z 1 s st o) I sien(vi) | vt
v T vy | B Ye = 5 Ve

(We provide the pseudocode for QSGD in Algorithm 4. See (Alistarh et al., 2017) for more details.) QSGD takes advantage
of the empirical distribution of the quantized values (large quantized values are less frequent) by using Elias coding to
encode them — which is the preferred code when the small values to encode are much more frequent than the larger values
(Elias, 1975). However, QSGD still does not fully capture the distribution of the quantized values since Elias coding is not
adaptive to the data. We fix this mismatch by applying KLMS with the QSGD distribution pgsep(+) as the post-data distribution
q4t.m) > and the empirical distribution induced by the historical updates at the server from the previous round as the pre-data
distribution py:). These two distributions are expected to be close to each other due to the temporal correlation across
rounds, as previously reported by (Jhunjhunwala et al., 2021; Ozfatura et al., 2021). We demonstrate that KLMS exploits this
closeness and outperforms vanilla QSGD with a 12 times improvement in bitrate.

A.1.3. FEDERATED SGLD (VONO ET AL., 2022)

Federated SGLD (El Mekkaoui et al., 2021) targets a Bayesian FL setup, where the goal is to learn a global posterior
distribution py over the model parameters from clients’ local posteriors g4 . A state-of-the-art method proposed in (Vono
et al., 2022) is the federated counterpart of the Stochastic Gradient Langevin Dynamics (SGLD) (Welling & Teh, 2011),
which uses a novel Markov Chain Monte Carlo (MCMC) algorithm. In this setting, the global posterior distribution is

8

Leveraging Side Information for Communication-Efficient Federated Learning

Algorithm 2 Federated Probablistic Mask Training (FedPM) (Isik et al., 2023b).
Hyperparameters: local learning rate 7y, minibatch size B, number of local iterations 7.
Inputs: local datasets D;, ¢ = 1, ..., N, number of iterations 7.

Output: random SEED and binary mask parameters m/i"

At the server, initialize a random network with weight vector w™™* € R? using a random SEED, and broadcast it to the
clients.
At the server, initialize the random score vector s(*:9) € R?, and compute 6(*:9) «+ Sigmoid(s(%:9)).
At the server, initialize Beta priors a(®) = 3(0) = X,.
fort=1,....,Tdo
Sample a subset C; C {1,..., N} of |C;| = C clients without replacement.
On Client Nodes:
for c € C; do
Receive 0(*~19) from the server and set s(“¢) < Sigmoid~*((*=19)).
forl=1,...,7do
(t¢) « Sigmoid(s(t:©))
Sample binary mask m () ~ q,,,.c) = Bern(¢(9)).
,u'](t,c) «— m(t,c) ® hit
Gt — & Zszl Vi(w'H9); S¢); where {S¢}E_, are uniformly chosen from D,
59 5B — - ge
end for
t°) « Sigmoid(s(:©))
Sample a binary mask m) ~ Bern(¢(*)).
Send the arithmetic coded binary mask m () to the server.
end for

On the Server Node:
Receive m(*<)’s from C client nodes.
0(t9) < BayesAgg({m®}.cc,,t) /I See Algorithm 3.
Broadcast (9 to all client nodes.
end for
Sample the final binary mask m™ ~ Bern(#(79)).
Generate the final model: w1 «— ymfinal @ qpinit,

Algorithm 3 BayesAgg. (Isik et al., 2023b)

Inputs: clients’ updates {m)} .cc,, and round number ¢
Output: global probability mask 7(*)

if ResPriors(t) then
a1 -1 — x,

end if

Compute m(*:2) = 3~ . m(t:<),

a® «— o= 4 pltaze)

BY Bl 4 ¢ 1 — mlte)

) . _ab
L N N[O}

Return 7

assumed to be proportional to the product pye) ~ Hf:f:l e~U@"™) of N local unnormalized posteriors associated with
each client, expressed as potential functions {U((b(t’"))} N_,. At the beginning of each local training round, the local clients’
posteriors are initialized with the global posterior ¢(™%) « (1) Vn e [N]. Then the clients compute an unbiased estimate

of their gradients H (¢(*™) = % Yjestm VU; (¢+™)), where | D(™)| is the size of the local dataset of client 7, and

9

Leveraging Side Information for Communication-Efficient Federated Learning

Algorithm 4 Quantized Stochastic Gradient Descent (QSGD) (Alistarh et al., 2017).
Hyperparameters: server learning rate 7g, local learning rate 77, number of quantization levels s, minibatch size B.

Inputs: local datasets D,,, n = 1, ..., N, number of iterations 7.
Output: final model w™).

At the server, initialize a random network with weight vector w(®:9) e R and broadcast it to the clients.
fort=1,...,T do
Sample a subset C; C {1,..., N} of |C;| = C clients without replacement.
On Client Nodes:
for c € C; do
Receive w*~19) from the server and set the local model parameters w () « w(®:9),
fori=1,...,7do
g LB (w9 85); where {S¢}2., are uniformly chosen from D,
w®9) — wte) — 'gg,c)
end for
v(60) qp(t:e) _ qp(t:9)
fori:=1,...,ddo
Find integer 0 < ¢ < s such that |[v\"“|/||v(#9)]||5 € [¢/s, (¢ + 1)/s].

Take a sample z ~ Bern(1 — (Ms —q)).
if z = 1 then
/igt’c) —q/s.
else
R (g +1)/s.
end if
end for
Send vectors x(¢), sign(v(*9), and norm ||v(*™)||, to the server using Elias coding (Elias, 1975) as in (Alistarh
et al., 2017).

end for

On the Server Node:
Receive x(¢), sign(v(®)), and norm ||v(*€)||5 from the clients ¢ € C;.
for c € C; do

fori=1,...,ddo

Reconstruct 979 « [[v(®9) ||, - sign(v{") - k(")

end for
end for
Aggregate and update w(*9) w19 —pg L 37 o),
Broadcast w(*9) to the clients.

end for

S(7) is the batch of data used to estimate the gradient. They then communicate these estimates to the server, which
aggregates them by computing

N

60+ = 60—y 3" H(g") + /20¢ ",)

n=1

where & ® is a sequence of i.i.d. standard Gaussian random variables. As reported in (El Mekkaoui et al., 2021; Vono et al.,
2022), the sequence of global updates 8(*) converges to the posterior sampling. Notice that the clients communicate their
gradient vectors H ((b(t*”)) to the server at every round, which is as large as the model itself. To reduce this communication
cost, in (Vono et al., 2022), the authors propose a compression algorithm called QLSD that stochastically quantizes the
updates with essentially the Bayesian counterpart of QSGD (Alistarh et al., 2017). (We provide the pseudocode for QL.SD
in Algorithm 5. See (Vono et al., 2022) for more details.) However, neither QLSD nor the other compression baselines
in the Bayesian FL literature (Chen & Chao, 2021; El Mekkaoui et al., 2020; Plassier et al., 2021) take full advantage of

10

Leveraging Side Information for Communication-Efficient Federated Learning

the stochastic formulation of the Bayesian framework, where the server and the clients share side information (the global
posterior py(+) that could be used to improve the compression gains. Instead, they quantize the updates ignoring this side
information. This approach is suboptimal since (i) the precision is already degraded in the quantization step, and (ii) the
compression step does not account for the side information py;). We show that we can exploit this inherent stochastic
formulation of Bayesian FL by applying KLMS with the global posterior distribution as the pre-data distribution py(), and
the local posterior distribution as the post-data distribution gy . . In addition to benefiting from the side information, KLMS
does not restrict the message domain to be discrete (as opposed to the baselines) and can reduce the communication cost by
4 times, while also achieving higher accuracy than the baselines.

Algorithm 5 Quantised Langevin Stochastic Dynamics (QLSD) (Vono et al., 2022).

Hyperparameters: server learning rate 7, number of quantization levels s, minibatch size B.
Inputs: local datasets D,,, n = 1, ..., N, number of iterations 7.

Output: samples {G(t)}th .

At the server, initialize a random network with weight vector 0 € R% and broadcast it to the clients.
fort=1,...,Tdo
Sample a subset C; C {1,..., N} of |C;| = C clients without replacement.
On Client Nodes:
for c € C; do
Receive 6(*~1) from the server and set the local model parameters ¢(©¢) < (*—1),
Sample a minibatch S¢ s.t. |S¢| = B uniformly from D...

|D{|

Compute a stochastic gradient of the potential H (¢()) +— —4— 3" jese VU;j (pt:9)).

fori=1,...,ddo
. . H,y(qﬁ(t’”))
Find integer 0 < ¢ < s such that m € lq/s, (g +1)/s].

Take a sample z ~ Bern(1 — (%s —q)).
if z = 1 then
K§t7c) —q/s.
else
RO (g +1)/s.
end if
end for
Send vectors £, sign(H(¢*))), and norm ||[H(¢*))||5 to the server using Elias coding (Elias, 1975) as
in (Alistarh et al., 2017).
end for

On the Server Node:
Receive £(¢), sign(H (¢(+°))), and norm || H (¢*)) ||, from the clients ¢ € C;.
for c € C; do
for:=1,...,ddo
Reconstruct H;(¢9)) « ||H (")) || - sign(H;(¢*9))) - Hl(-t’c).
end for
end for
Compute ﬁ(gb(t)) — % Zcect I:I(qﬁ(t"")).
Sample £ ~ N(04, I,).
Compute) — 9= — s H(¢®)) 4 /270,
Broadcast 6®*) to the clients.
end for

A.2. Other Related Work

In this section, we briefly discuss the related work in (i) communication-efficient FL and (ii) importance sampling literatures.

11

Leveraging Side Information for Communication-Efficient Federated Learning

Communication-Efficient FL: There has been extensive research in reducing the communication cost of FL (i) by
compressing the model updates through sparsification (Aji & Heafield, 2017; Barnes et al., 2020; Lin et al., 2018; Ozfatura
et al., 2021; Wang et al., 2018), quantization (Mitchell et al., 2022; Suresh et al., 2017; Vono et al., 2022; Wen et al.,
2017), and low-rank factorization (Basat et al., 2022; Mohtashami et al., 2022; Vogels et al., 2019; Wang et al., 2018);
or (ii) by training sparse subnetworks instead of the full model (Isik et al., 2023b; Li et al., 2020; 2021; Liu et al., 2021;
Mozaffari et al., 2021; Vallapuram et al., 2022). Among these approaches, those based on stochastic updates have shown
success over the deterministic ones in similar settings. For instance, for finding sparse subnetworks within a large random
model, FedPM (Isik et al., 2023b) takes a stochastic approach by training a probability mask, indicating the probability
for each random model parameter to be part of the subnetwork, and extracting those subnetworks by taking samples from
the distribution parameterized by the trained probability mask. With this approach, FedPM outperforms other methods
that find sparse subnetworks (Li et al., 2021; Mozaffari et al., 2021; Vallapuram et al., 2022) with significant accuracy and
bitrate gains. Similarly, for the standard FL setting (training model parameters), QSGD (Alistarh et al., 2017) is an effective
stochastic quantization method — outperforming most other quantization schemes such as SignSGD (Bernstein et al., 2018)
and TernGrad (Wen et al., 2017) by large margins. Lastly, in the Bayesian FL setting, QL.SD (Vono et al., 2022) proposes
a Bayesian counterpart of QSGD, and performs better than other baselines (Chen & Chao, 2021; El Mekkaoui et al., 2020;
Plassier et al., 2021). While all these stochastic approaches already perform better than the relevant baselines, in this work,
we show that they do not take full advantage of the side information available to the server. We provide a guideline on
how to find useful side information under each setting and introduce KLMS that reduces the communication cost to the
fundamental distance between the client’s distribution that they want to communicate samples from and the side information
at the server (with 50 times reduced communication cost compared to the baselines).

Importance Sampling: Our strategy is inspired by the importance sampling algorithm studied in (Chatterjee & Diaconis,
2018; Harsha et al., 2007; Theis & Ahmed, 2022), and later applied for model compression (Havasi et al., 2019), learned
image compression (Flamich et al., 2020; 2022), and compressing differentially private mechanisms (Shah et al., 2022;
Triastcyn et al., 2021). One relevant work to ours is (Havasi et al., 2019), which applies the importance sampling strategy in
(Chatterjee & Diaconis, 2018) to compress Bayesian neural networks. Since the model size is too large to be compressed at
once, they compress fixed-size blocks of the model parameters separately and independently. As we elaborate in Section 2,
this can be done much more efficiently by choosing the block size adaptively based on the information content of each
parameter. While this adaptive strategy could bring some extra communication overhead when applied for model compression
(to locate the adaptive-size blocks), we explain how to avoid this overhead in the FL setting by exploiting temporal
correlations. Another relevant work is DP-REC (Triastcyn et al., 2021), which again applies the importance sampling
technique in (Chatterjee & Diaconis, 2018) to compress the model updates in FL, while also showing differential privacy
implications. However, since their training strategy is fully deterministic (no probabilistic learning or stochastic compression),
the choice of pre-data and post-data distributions is somewhat arbitrary. Instead, in our work, the goal is to exploit the
available side information to the full extent by choosing natural pre-data and post-data distributions — which improves the
communication efficiency over DP—-REC significantly. Another factor in this improvement is the adaptive bit allocation
strategy mentioned above — which could actually be integrated into DP—REC as well by avoiding the extra communication
overhead as we do in our work (since DP—-REC works in an FL setting too). Our experimental results demonstrate that these
two improvements are indeed critical for boosting the accuracy-bitrate tradeoff. Finally, we extend the theoretical guarantees
of importance sampling, which quantifies the required bitrate for a target discrepancy (due to compression), to the distributed
setting, where we can recover the existing results in (Chatterjee & Diaconis, 2018) as a special case by setting N = 1.

12

Leveraging Side Information for Communication-Efficient Federated Learning

B. KLMS Pseudocode

In this section, we provide pseudocodes for both versions of KLMS: Algorithm 6 with fixed-sized blocks (Fixed-KLMS),
and Algorithm 7 with adaptive-sized blocks (Adapt ive—-KLMS). The algorithms are standalone coding modules that can
be applied to the different FL frameworks (see Appendix D). In the experiments in Section 3, we used Adaptive—-KLMS
and called it KLMS for simplicity. The decoding approach at the server is outlined in Algorithm 9.

Algorithm 6 Fixed-KLMS.
Inputs: post-data g,) and pre-data py(distributions, block size S, number of per-block samples K.

Output: selected indices for each block {%“"}M_, where M = [4] is the number of bloks.

[m] Jm=1>

Define {g 5(00) }f\,{:l and {peu,c) },1‘,/{:1 splitting Qg t.0) and pyy into M distributions on S-size parameters blocks.
[m] [m]
foralm e {1,...,M} do
I+ [(m-1)S:mS].
Take K samples from the pre-data distribution: {y{ M~ Py(t)-
(i

q(bf;]'c) (y[k])
Oé[k] — WVICE {1,,[(}
k) ¢ = VEe{1,..., K}
7T() Z;i(/:la[k’] { }
Sample an index k[(ﬁz]* ~ (k).

end for
Send the selected indices {k{*)}}_, with M - log, K bits overall for M blocks.

13

Leveraging Side Information for Communication-Efficient Federated Learning

Algorithm 7 Adapt ive—-KLMS.

Inputs: post-data Qg tr) and pre-data py(:) distributions, block locations M (a list of start indices of each block), number of
per-block samples K, target KL divergence D}a;iet, the flag UPDATE indicating whether the block locations will be updated,
the maximum block size allowed MAX_ BLOCK S IZE.

Output: selected indices for each block {k where the number of blocks M may vary each round.

m 1>
if UPDATE then
Construct the sequence of per-coordinate = KL-divergence of size d: D —
[DKL(q o [Py), Drr(q .o l[pyw)s - Drrn(q, o |p m)}-
¢1 01 ¢2 92 ¢d ed
Divide D into subsequences of {D[i; = 1 : i3], D[is : 43],...,D[iprs : ipr41 = d]} such that forallm =1,..., M,
Z;mjl D[l] =~ D5 or iy 11 — im = MAX_BLOCK_SIZE. Here M, i.e, the number of blocks, may vary each round.
Construct new block locations: I,;, < [ty @ ipy1] form =1,... M.
else
Keep the old block locations I.
end if

Construct per-block post-data {gq 5(1) IM_ | and pre-data {py }M_ distributions.
(Tm] (Tm]
foralm e {1,...,M} do
Sample {Y[k]}kK:1 ~ pr? -

a,(e.e) (Y181
Qg] < %Vke {1,...,K}.

Pe(z) Y[k])
w(k)(—# Vke{l,...,K}.

Sample k[('rch]* (k)
end for
if UPDATE then
Return the selected indices {k[(C —1 and the new block locations I spending ~ D
bits per block (block sizes are dlfferent for each block).
else
Return the selected indices {k[(:rz]* MM spending ~ D% bits per block (block sizes are different for each block).
end if

2 +log,(MAX_BLOCK_SIZE)

Algorithm 8 Aggregate-Block—-Locations.

Inputs: client block locations {19} .cc,.
Output: new global block locations 1),

Define empty 1(*).
Mmax 4 Max.cc, {length(1#))}.
form € {1,2,...,mmu} do
im < O.
[+ 0.
for c € C; do
if length(I(t ©)) > m then
b < T + I()
I+ 1+1.
end if
end for
im < [im/1].
Add i, to I®),
end for
Return 7).

14

Leveraging Side Information for Communication-Efficient Federated Learning

Algorithm 9 K1LMS-Decoder.

Inputs: pre-data py(:) distribution, block locations I of M blocks, number of per-block samples K, selected indices for
each block {k[(frz]*}n]‘le, where M = [£] is the number of blocks.

Output: The selected samples {y7,,},;—; for each block.

m=

Define {p,w MM splitting py(r) into M distributions with block locations in 1.
I

forallm e {1,..., M} do
Take K samples from the pre-data distribution: {y[k] }sz1 ~ Do) -
u

m

Recover yf‘m] Y-
[m]
end for
Return the selected samples {yf‘m] M_. for each block.

15

Leveraging Side Information for Communication-Efficient Federated Learning

C. Proofs

In this section, we provide the proof for Theorem 2.1. But before that, we first define the formal problem statement, introduce
some new notation, and give another theorem (Theorem C.1) that will be required for the proof of Theorem 2.1.

We consider a scenario where NV distributed nodes and a centralized server share a prior distribution py over a set X equipped
with some sigma algebra. Each node n also holds a posterior distribution g,) over the same set. The server wants to
estimate E x)., (n)Vne[N][L Zm L (X)), where f(-) : X — R is a measurable function. In order to minimize the
cost of communication from the nodes to the centralized server, each node n and the centralized server take K (") samples

from the prior distribution y[(ﬁ), . ~ pg. Then client n performs the following steps:

,y[(?(n)]

1. Define a new probability distribution over the indices k = 1, ..., K("):

ot <yf,?>>/pe<yf;?>

7 (k) = “
Zl 1 Q¢(") (y[l])/pO(y[l])
(n) (n) .
and over the samples Yoo Yy
K®)
Gron () = D 7™ (k) - Uyl = v} (5)
k=1

2. Sample k(™* ~ 7("),

3. Communicate k(™* to the centralized server with log K (™ bits.

Then, the centralized server recovers the sample y[(,:()")*} that it generated in the beginning. (Note that yfg ()n)*] is actually a

sample from ¢, (»).) Finally, the server aggregates these samples % Zﬁle f (yl(ﬁ)) which is an estimate of

1
— (m)
Ey) ng gy vmneini (7 2 SO)] 6)
m=1
We want to find a relation between the number of samples KW .. KN (or the number of bits l% KM . log KV
and the error in the estimate, [Ey g, vae[n 1b Yo f()] Ex g, vnelv % et f((m))]|_ In our
proofs, we closely follow the methodology in Theorems 1.1. and 1.2. in (Chatterjee & Diaconis, 2018). In Theorem C.1,

dq (n
¢(). We refer to the

we use the probability density of g,») with respect to py for each node n and denote it by p,, =
following definitions often:

1
_ [.. 1 <)) TT dgyom (), -
/x<1> /x<N> (N ot) H 4o @

K@ K@) 1 N - -
B = s S Y (Nz 0,)Hpn Yo, ®
n= 1 k(l) 1 k(N)=1 n=1

and

16

Leveraging Side Information for Communication-Efficient Federated Learning

K® K@) N N (n) (n)
1) Qo) (Y o)) /PO (Y pimry)
0= 3 5 (3 i | T e ©
k(=1 E(N) =1 n=1 n=1 2_1=1 4¢ (y[l])/pH(y[l])

Notice that I(f) corresponds to the target value the centralized server wants to estimate, Jg (f) is the estimate from the
proposed approach, and Ik (f) is a value that will be useful in the proof and that satisfies E[Ix ()] = I(f).

Theorem C.1. Let pg and qy) for n = 1,..., N be probability distributions over a set X equipped with some sigma-

algebra. Let X™) be an X-valued random variable with law qpmy. Let v > 0 and qpny forn = 1,...,N be

n (n)
Ipe) + 1) samples {y[(k()n)]}ﬁn):l from py defin-

discrete distributions each constructed by K () — exp (DK L (q¢(n)

L K™ a0) /ey) (n)
ing ¢ = _ 2 -1 = y}. Furthermore, for f(-) defined above, let =
g Grm (Y) k=1 ZlK:(l) 4y (Y[ZT]L))/PO(Y%L)) {y[k] v} for f(-) defi ||f|‘qa>

\/EXWM%(”)WG[N] (& fo:l J(X)2 be its 2-norm under qg = qy), - - -, qp). Then,

N
BTk (f) = I(H) < Ifllay [€7 + 24| JT P (log pn(X ™) > Dicr(ggem llpe) +7/2) | - (10)

n=1

Conversely, let 1 denote the function from X into R that is identically equal to 1. If forn = 1,...,N, K" =

exp (DKL(qu(n) |lpe) — r) for some r > 0, then for any § € (0, 1),

N
e=NT/2 | I[P (1og pn(X M) < Dir(qgom||po) — 7"/2) .

P(Ix(1) >1-6) < 1-6

Y

Proof. Let L™ = Dicp,(qym||pe), Vn € [N]. Suppose that K (") = eL™+7 and a(™ = L™ +1/2 Let h(2) = f(z) if
pn(2) < a'™ and 0 otherwise Vn € [N]. We first make the following assumption:

1
Bl Y. JXM)vneQC N pa(X™) > a™] <
n€QC[N]

Ell+ > FXMYn € [N pu(X™) > at™].
n€e[N]

(12)

This is indeed a reasonable assumption. To see this, following (Chatterjee & Diaconis, 2018), we note that log p,,(Z) is
concentrated around its expected value, which is L™ =D KL (q¢<n) ||pe), in many scenarios. Therefore, for small ¢ (and ¢ is

indeed negligibly small in our experiments), the events 1{Vn € Q C [N], p,(X(™) > a(™} occur with the approximately
same frequency for each set Q C [N] since the likelihood of event 1{p,,(X ™) > a(™} is close to being uniform. Consider
also that |+ > neQCIN] FXM) < |4 D onelN] f(X ()| holds when f(X™)’s have the same signs per coordinate for
eachn =1,..., N, which is a realistic assumption given that the clients are assumed to be able to train a joint model and
hence should not have opposite signs in the updates very often. With these two observations, we argue that the assumption
in (12) is indeed reasonable for many scenarios, including FL.

Now, going back to the proof, from triangle inequality, we have,

Ik (f) = I())| < Ik (f) = Ix (h)| + [Tk (h) = I(R)] + [I(R) — I(f)] (13)
First, note that by Cauchy-Schwarz inequality and by the assumption in (12), we have

17

Leveraging Side Information for Communication-Efficient Federated Learning

(W) = 1(f)l=) E *Zf () ¥n € Q, pa(X ™) > at™].

QC[N] meQ
P(Vn € Q, pu(X™) > al™)

SB[l Y SX)¥n € [N], (X)) > a™] 3 Bvn € Q,pu(X) > o)

me[N] GCIN]
If 3 AX);Yn € [N], pa(X™) >)]
mG[N]
1 & N
- /<), x () |N Z FEM)] - 1{vn € [N], pu(x™) > al™} H dqgm (x(™)
- "=t n=1

IN

1 N N
/(yxn N Z Fxm)P2 H dggon (x)-
x(x m= n=1

.....

n=1

N
’ 1{Vn € [N|, pn x(M)) > g(n) daom (x(m)
J / {¥n € [N), pu () > al} T daggeor (<)

N
1
JEXWW () e[N Z f(Xm)) \/P Vn € [N], pn(X™) > a(m)

m=1

= [|flla - \/B(¥n € [N], pu(X) > alm).

Similarly,

K@ KM 1 N N
ElLic(f) = I (h)| = K(n) S 2 O i) -) T en(¥ie,
Hn 1 k(=1 k(N)=1 m=1 n=1
1 N
<E N(Z FOeh) = RV) TT (X ™)
m=1 n=1

1 N

=El g Z F(X)]:9n € [N], p (X () > al™)

=

< |[fllqy - \/]P’ Y € [N], pu(X(™) > a(m).

From (23) to (24), we follow the same steps in (16)-(20).

Finally, note that

Ellg(h) — I(h)| < v/Var(Ik(h))

Hn:l m=1 n=1
1 L iy e T (n)
< E|(x Y bV T (oY)))2]
N n 1 1
Hn:l K() N m=1 [] n=1 []

(14)

(15)

(16)

a7

(18)

(19)

(20)

21

(22)

(23)

(24)

(25)

(26)

27)

Leveraging Side Information for Communication-Efficient Federated Learning

SNRILSTLIN R ER) 28
A gm [~ 2 f H/’” i) 28)
n=1 m=1
N)\ M2
:Ilfll%l_[l(mn)) | 29)

Combining the upper bounds above, we get

o™ 1/2 N
()~ 1) < 1 la, [IT (i) +2\ T2 Gospuxi) > loga) a0
n=1 n=1
N
= Ifllq, | e ¥*+2,| [] P (log pn(X ™) > LW +1/2) (31)
n=1
N
= Ifllay { e *+2,| [T P (log pn(X™) > Dicr(gpem lp) +7/2) | - (32)
n=1

This completes the proof of the first part of the theorem.

For the converse part, suppose K () = L™ =" and a(") = L™ =7/2 ¥ € [N]. Then,

P(Ix(1) >1-) =P<H 0 Z Z Hpn Vo) > 1_5> (33)

=1 kEn=1n=1

§]P’< max p, (V") > o™ ¥n € [N])

1<hsiem PPt
KM KM N (34)
y () n
+P H K(n) Z Z Hpn [k(”)1{Vn € [N], p ([k(”)<a()}>1—5
n=1 k(1) =1 E(N)=1n=1

K@ KW

Z Z (k(ﬂ) >a™ Vn e [N })

kW =1 k(N)=1

) KD K - - 35)
+ 1_ (5E H IR0 Z Z H Pn Y[k(n) JH{Vn € [N], Pn(Y[k?n)]) < a(n)}
n=1 k(1) =1 E(N)=1n=1
K@M KN 1— Hflv IIP (p (Z) > a(n))

TR Ol | LI B L @

k(l) 1 k(N)=1n=1

_ ﬁ K(n) + Hg:lp(pn(z) < a(n))
B a(™ 1-9§

(37

_ N2 | TTo_1 P (log pu (X ™) < Dgcr(qsem |Ipe) — 7/2)

s , (38)

where from (33) to (35) and (34) to (35), we use Markov’s inequality. This completes the proof of the second inequality in
the theorem statement. O

19

Leveraging Side Information for Communication-Efficient Federated Learning

Now, we restate Theorem 2.1 below and provide the proof afterward.

Theorem C.2 (Theorem 2.1). Let all notations be as in Theorem C.1 and let Jk (f) be the estimate defined in (9). Suppose
that KW = exp (L(”) + 7“) for some r > 0. Let

1/2
N
e=[e N4y H (log pn (X (™) > L) 4 1 /2) . (39)
n=1
Then
2
IP’<|JK(f)—I(f)| > ”1f|_|‘f€> < 2. (40)
Proof. Suppose that K (") = L™ +7 and (™ = L™ +7/2 v, € [N]. Let
T 1 X)) > g
b= HK(n 1;[1) > a). (4D)
Then, by Theorem C.1, for any €, € (0, 1),
b
B(() 1126 < @)
and
b
P (f) ~ 10| 2 o) < Llacl: @)
Now, if [Tk (f) — I(f)| < d and |Ix (1) — 1| < ¢, then
| kx(f)
() = 101 = | 1545~ 1) (@)
< k() = TN+ DI = T (V)] 45)
Ik (1)
_ Sl »
1—e¢

Taking € = Vb and § = || f|lq, € completes the proof of the first inequality in the theorem statement. Note that if € is bigger
than 1, the bound is true anyway.

This completes the proof of the theorem. O

D. Examples of KLMS Adaptated to Well-Known Stochastic FL. Frameworks

In this section, we provide four concrete examples illustrating how KLMS can be naturally integrated into different FL
frameworks with natural choices of pre-data and post-data distributions. Later, in Section 3, we present experimental results
showing the empirical improvements KLMS brings in all these cases.

20

Leveraging Side Information for Communication-Efficient Federated Learning

D.1. FedPM-KLMS

As described in Appendix A.1, in FedPM (Isik et al., 2023b), the server holds a global probability mask, which parameterizes
a probability distribution over the mask parameters — indicating for each model parameter, with what probability it should
remain in the subnetwork. Similarly, each client obtains a local probability mask after local training — parameterizing
their locally updated probability assignment for each model parameter to remain in the subnetwork. Choosing the global
probability mask () as the parameters of the pre-data distribution povy and the local probability mask »t™) as the
parameters of the post-data distribution g, is only natural since the goal in (Isik et al., 2023b) is to send a sample from
the local probability distribution Bern(:; qﬁ(t’")) with as few bits as possible. This new framework, FedPM-KLMS, provides
50 times reduction in bitrate over vanilla FedPM. The pseudocode for FedPM—-KLMS can be found in Algorithm 10.

D.2. QSGD—-KLMS

As explained in detail in Appendix A.1, QSGD (Alistarh et al., 2017) is a stochastic quantization method for FL frameworks
that train deterministic model parameters, which outperforms many other baselines in the same setting. Focusing on the
most extreme case when the number of quantization levels is s = 1, we can express the QSGD distribution in (2) as follows:

—v(tm o A (1
WaX | oty if 9" = —[[v(tm)|
(&) ot
Posen(¥,") = { max { oty 0 if 9{"" = v (47)

(t:n) (t.n)
—v! v coa(tm)
1 — max { CRIATCRIE 0} if ¥, =0

which is again a very natural choice of post-data distribution g, .= since vanilla QSGD requires the clients to take a sample
from pgsep(+) in (47) and communicate the deterministic value of that sample to the server. As for the pre-data distribution,
exploiting the temporal correlation in FL, we use the empirical frequencies of the historical updates the server received in
the previous round. In other words, in every round ¢, the server records how many clients communicated a negative value
(corresponding to —||v(“:™|), a positive value (corresponding to ||v(#™)||), or 0 per coordinate, and constructs the pre-data
distribution py:) from these empirical frequencies for the next rounds. This new framework, QSGD-KLMS, yields 12 times
reduction in bitrate over vanilla QSGD. The pseudocode for 0SGD—KLMS can be found in Algorithm 11.

D.3. SignSGD-KLM

Since SignSGD (Bernstein et al., 2018) is not a stochastic quantizer, we first introduce some stochasticity to the vanilla
SignSGD algorithm and then integrate KLMS into it. Instead of mapping the updates to their signs +1 deterministically as
in vanilla S1gnSGD, the stochastic version we propose does this mapping by taking a sample from the following SignSGD
distribution

t,n

vi

) n
() _) Sigmoid () if 90 =1

pSignSGD(Vi . U . (t,n)
1 — Sigmoid(—57—) if v, = —1

) (48)

t,n)

for some M > 0. Instead of taking a sample from ps: qnseo () and sending the deterministic value of the sample by spending
1 bpp, we can take advantage of the sign symmetry in the model update (about half of the coordinates have positive/negative
signs in the update) and reduce the communication cost. For this, we choose psignsep () in (48) as the post-data distribution
qgt.n)» and the uniform distribution U (0.5) from the support {—1, 1} as the pre-data distribution pyc). This new method,
SignSGD-KLMS, achieves higher accuracy than vanilla SignSGD with 60 times smaller bitrate. The pseudocode for
S1gnSGD-KLMS can be found in Algorithm 12.

D.4. SGLD-KLMS

From the Bayesian FL family, we focus on the recent SGLD framework (Vono et al., 2022) as an example since it provides
state-of-the-art results. As explained in detail in Section A.1, due to the stochastic formulation of the Bayesian framework, it
is natural to choose the local posterior distributions as the post-data distribution g, .=, and the global posterior distribution
at the server as the pre-data distribution py). While extending the existing SGLD algorithm (see Section A.1) with KLMS,

21

Leveraging Side Information for Communication-Efficient Federated Learning

Algorithm 10 FedPM-KLMS.

Hyperparameters: thresholds to update block locations D and D™ ' maximum block size MAX_BLOCK_SIZE.
Inputs: number of iterations 7', initial block size .S, number of samples K, initial number of blocks M = [%} , target KL

. target
divergence D 7"

Output: random SEED and binary mask parameters m(7) .

At the server, initialize a random network with weight vector w™ € R using a random SEED, and broadcast it
to the clients; initialize the random score vector s(>9) ¢ R%, and compute #(>9) « Sigmoid(s(®9)), Beta priors

al® = B30 = X\y; initialize UPDATE+TRUE and the block locations Ii(t) =[(i—-1)S:4S]fori=1,...,M and

broadcast to the clients.
fort=1,...,7T do
Sample a subset C; C {1,..., N} of |C;| = C clients without replacement.
On Client Nodes:
for c € C; do
Compute ¢(*) as in FedPM in Algorithm 2.
if UPDATE then
{kf HL 1)« Adaptive-KLMS(Bern(6(9)), Bern(p(:)), 1) D) // See Algorithm 7.
M < length(I(:¢)). // New number of blocks.

else
kM« Adaptive-KLMS(Bern(#(9)) Bern(¢(t9), I D) /7 See Algorithm 7.
[i]Ji=1 KL
end if

Send {kf‘z]}f\il with K - M bits and the average KL divergence across blocks D%’z)

LM DKL(Bern(¢E;:s]))||Bern(9[(;f]))) with 32 bits to the server.
if UPDATE then
Send 7(“¢) with M - log,(MAX_BLOCK_STIZE) bits.
end if
end for

On the Server Node: B
Receive the selected indices {kf; }M. and the average KL divergences {Dgf) Yeee, -

Compute DY) = LS . DIy,
if UPDATE then
I® « nggregate-Block-Locations ({I*9}.cc,) // See Algorithm 8.
UPDATE = False.
else
19 « IO forall ¢ € Cy.
it D'V > Dmax or D'V < D™in then UPDATE = True else UPDATE = False.
end if

for c € Cﬁ do
mff]c WM« KLMS-Decoder(Bern(6!)), I:¢) K) // See Algorithm 9.
end for

0 = BayesAgg ({9} .cc,,t) // See Algorithm 3.
Broadcast UPDATE, I®) and #(*) to the clients.
end for
Sample m™ ~ Bern(#(”)) and return the final model ™ « mfna! © wit,

we inject Gaussian noise locally at each client and scale it such that when all the samples are averaged at the server, the
aggregate noise sample £() (see Eq. (3)) is distributed according to A/(0, I;) (more details in Appendix D). This new
framework, SGLD-KLMS, provides both accuracy and bitrate gains over QL.SD (Vono et al., 2022) — the state-of-the-art

compression method for Federated SGLD. The pseudocode for SGLD-KLMS can be found in Algorithm 13.

22

Leveraging Side Information for Communication-Efficient Federated Learning

Algorithm 11 QSGD-KLMS.

Hyperparameters: server learning rate 7g, thresholds to update block locations DT, D" ' maximum block size
MAX_ BLOCK_STIZE.

Inputs: number of iterations 7', initial block size .S, number of samples K, initial number of blocks M = [%W , target KL
divergence D5

Output: Fmal model w

At the server, initialize a random network parameters w(®) € R? and broadcast it to the clients; initialize UPDATE <+ TRUE
and the block locations Ii(t) =[(i —1)S :4S] fori =1,..., M and broadcast to the clients.
fort=1,....,Tdo
Sample a subset C; C {1,..., N} of |C;| = C clients without replacement.
On Client Nodes:
for c € C; do
Receive the empirical frequency from the previous round py(:) from the server.
Compute v(#°) as in QSGD in Algorithm 4.
Compute the local post-data distribution gy:.c) with v(1:€) using posap (+) in (47).
if UPDATE then

(kL 1)+ Adaptive—KLMS(pyo, ¢y, IV, Dgs) Il See Algorithm 7.
M «+ length(I (t:)). // New number of blocks.

else
{k[f] M+ Adaptive-KLMS (P, g0, I DY) J/ See Algorithm 7.

end i

Send {k[* M, with K - M bits and the average KL divergence across blocks D%’z) —
i Zm 1 DKL(Gottre ||p6<f o)) with 32 bits to the server.

if UPDATE then "
Send I(®) with M - log,(MAX_BLOCK_SIZE) bits.
end if
end for

On the Server Node: ~
Receive the selected indices {kf;, }M .. and the average KL divergences {D%E) Yeee, -

Compute Dg()L = 5 D cee, Dgz)'
if UPDATE then
1) + Aggregate-Block-Locations ({I(9}.cc,) // See Algorithm 8.
UPDATE = False.
else
1) « 1®) forall ¢ € C,.
if D\, > Dmax or DIV < Dmin then UPDATE = True else UPDATE = False.

end if

for c € Ct do
{v (t M < KLMS-Decoder(pyer, 149, K) I/ See Algonthm 9.
Construct the empirical frequency py+1) from {v M

end for

Compute w'®) = w1 — gl Sece, (te)
Broadcast UPDATE, 1), w®), and py to the clients.
end for

23

Leveraging Side Information for Communication-Efficient Federated Learning

Algorithm 12 SignSGD-KLMS.
max Dmm

Hyperparameters: server learning rate 7)s, thresholds to update block locations D™, D™ ' maximum block size
MAX_ _BLOCK_SIZE.

Inputs: number of iterations 7', initial block size .S, number of samples K, initial number of blocks M = [%L target KL
divergence D' 5.

Output: Fmal model w(™)

At the server, initialize a random network parameters w(® € R? and broadcast it to the clients; initialize UPDATE<+TRUE
and the block locations Ii(t) =[(i —1)S :iS]fori =1,..., M and broadcast to the clients.
fort=1,...,Tdo
Sample a subset C; C {1,..., N} of |C;| = C clients without replacement.
On Client Nodes:
for c € C; do
Compute v(*:°) as in other standard FL frameworks such as QSGD in Algorithm 4.
Compute the local post-data distribution g, ..) with v(te) using psignsen(+) in (48).
Doy < Unif(0.5) over {—1, 1}.
if UPDATE then
{k*]}Z 1, 19+ Adaptive-KLMS(py, gguer, I, DRE") /I See Algorithm 7.
M < length(I(:¢)). // New number of blocks.
else
{km M, «+ Adaptive-KLMS(pyw, gye.e, I, DEE") I/ See Algorithm 7.
end if
Send {k:* =, with K - M bits and the average KL divergence across blocks D%’z) —

&= Zm:l Dkr(q gt lpy(t.0))) with 32 bits to the server.
[IYYL] [IT’L]

if UPDATE then
Send I(“¢) with M - log,(MAX_BLOCK_SIZE) bits.
end if
end for

On the Server Node: ~
Receive the selected indices {k:* M, and the average KL divergences {Dﬁﬁf) Yeee,-

Compute Diy, = & ¥ cc, D%E)
if UPDATE then
I® « Aggregate-Block-Locations ({I(t*c)}cect) // See Algorithm 8.
UPDATE = False.
else
I « J® forall ¢ € C,.
if D(t)L > DX or D!)L < D% then UPDATE = True else UPDATE = False.
end if
for c € C; do
{¥ [t ()}Ml < KLMS-Decoder(py) , I, K) // See Algorithm 9.
end for
Compute w'") = w =D —ngd 3, 0o,
Broadcast UPDATE, 1) and w® to the clients.
end for

24

Leveraging Side Information for Communication-Efficient Federated Learning

Algorithm 13 SGLD-KLMS.

Hyperparameters: server learning rate 75, minibatch size B, thresholds to update block locations D™ D™ ' maximum
block size MAX_BLOCK_SIZE.

Inputs: number of iterations 7', initial block size S, number of samples K, initial number of blocks M = [%L target KL

(¢ L
divergence D7 .

Output: samples {6® }le.

At the server, initialize a random network with weight vector 0 e R and broadcast it to the clients; initialize
UPDATE+TRUE and the block locations Ii(t) =[(i—1)S:iS]fori=1,..., M and broadcast to the clients.
fort=1,...,Tdo
Sample a subset C; C {1,..., N} of |C;| = C clients without replacement.
On Client Nodes:
for c € C; do
Receive #(*~1 from the server and set ¢(-:¢) 9(t=1),
Compute a stochastic gradient of the potential H (qb(tvc)) as in QLSD in Algorithm 5.

Set Pot) N (O, ,YCQ Id>

Set q¢(t,c) < N ((qﬁ(t,c))7 ’Yéz Id) .
if UPDATE then
{k[z] M Ite) « Adaptive-KLMS(pyo), Qpitors I®, D}a(riet) // See Algorithm 7.
M + length(I(:¢)). // New number of blocks.
else
{kr[l]} | < Adaptive-KLMS(pyc), dyt.e) I DY) 1/ See Algorithm 7.
end if
Send {k* M, with K - M bits and the average KL divergence across blocks

~(t,c
Dg(L) —

&= M Dk 1.(q40. [[gcr.0))) with 32 bits to the server.
Ul il

if UPDATE then
Send I(“¢) with M - log,(MAX_BLOCK_SIZE) bits.
end if
end for

On the Server Node: ~
Receive the selected indices {k*] }M . and the average KL divergences {D%LC) Yeec, -

Compute Dg(L =C ZCECt D%Tf)

if UPDATE then
I® + Aggregate-Block-Locations ({I#9}.cc,) // See Algorithm 8.
UPDATE =False.
else
It « 1O forall ¢ € C,.
it D', > Dmax or D'V < Dmin then UPDATE = True else UPDATE = False.
end if
for c € C; do
{H(gb(f] M.+ g1MS-Decoder(py, I49), K) // See Algorithm 9.
end for
Compute §() = 9= — g LS~ . H(¢"9).
Broadcast UPDATE, 1Y) and 8 to the clients.
end for

25

Leveraging Side Information for Communication-Efficient Federated Learning

E. Additional Experimental Details

In Tables 1, 2, and 3, we provide the architectures for all the models used in our experiments, namely CONV4, CONV6,
ResNet-18, and LeNet. In the non-Bayesian experiments, clients performed three local epochs with a batch size of 128
and a local learning rate of 0.1; while in the Bayesian experiments, they performed one local epoch. We conducted our
experiments on NVIDIA Titan X GPUs on an internal cluster server, using 1 GPU per run.

Table 1: Architectures for CONV4 and CONV6 models used in the experiments.

Model CONV-4 CONV-6
64, 64, pool
Convolutional 64, 64, pool 128, 128, pool
Layers 128, 128, pool 256, 256, pool
Fully-Connected

256, 256, 10 256, 256, 10
Layers

Table 2: ResNet-18 architecture.

Name Component

convl 3 x 3 conv, 64 filters. stride 1, BatchNorm
Residual Block | 35 com 0 o] <2
Residual Block 2 g » §§§§§ };2 E}IZE x 2
Residual Block 3 g i gzgﬁz’ 322 2}::2 X2
Residus Block 4 5 5 com a1] <

Output Layer |4 x 4 average pool stride 1, fully-connected, softmax

Table 3: LeNet architecture for MNIST experiments.

Name Component
convl [5 x 5 conv, 20 filters, stride 1], ReLU, 2 x 2 max pool
conv2 [5 x 5 conv, 50 filters, stride 1], ReLU, 2 x 2 max pool
Linear Linear 800 — 500, ReLU

Output Layer Linear 500 — 10

During non-i.i.d. data split, we choose the size of each client’s dataset |D(")| = D,, by first uniformly sampling an integer

Jn from {10,11,...,100}. Then, a coefficient Zj i is computed, representing the size of the local dataset D,, as a fraction

of the full training dataset size. Moreover, we impose a maximum number of different labels, or classes, cyax, that each
client can see. This way, highly unbalanced local datasets are generated.

26

Leveraging Side Information for Communication-Efficient Federated Learning

F. Additional Experimental Results
F.1. Non-i.i.d. Data Split:

For the non-i.i.d. experiments in Figure 3, we only compare against the best of our baselines from the i.i.d. results — namely
FedPM, QSGD, DRIVE, EDEN, and DP-REC. As explained in Appendix E, cyax 1s the maximum number of classes each
client can see due to the non-i.i.d. split data. In the experiments in Figure 3, we set cpax = 4 for CIFAR-10 and cpax = 40
for CIFAR-100; with 20 clients out of 100 participating in each round. In Figure 4, we set cmax = 2 for CIFAR-10 and
cmax = 20 for CIFAR-100; with 10 clients out of 100 clients participating in each round. Figures 3 and 3 show similar gains
over the baselines as the i.i.d. experiments in Figure 1; in that, KLMS adaptations provide up to 50 times reduction in the
communication cost compared to the baselines with final accuracy as high as the best baseline. This indicates that the statis-
tical heterogeneity level in the data split, while reducing the performance of the underlying training schemes, does not affect
the improvement brought by KLMS. We further corroborate this observation with additional experiments in Appendix F.4.2.

CIFAR-10 (CONV6) 0.62 —CIFAR-10 (CONV6) - zoomed CIFAR-100 (ResNet-18) CIFAR-100 (ResNet-18) - zoomed
S . 5] 050
FedPM-KLMS
0.60 0.60 0.48
0.48 QSGD-KLMS
>0.58 0.58 SignSGD-KLMS
2 0.46
@ 0.46 & FedPM
5 0.56 0.56
o a o 0.44 o QSGD
<054 0.54 a 0.44 DRIVE
B e o] ° a o EDEN
0.42 o
0.52 0.52 0.42 DP-REC
000 035 050 075 Loo %800 005 010 015 020 000 025 050 075 1.00 0.00 0.05 0.10 0.15
Bitrate (bpp) Bitrate (bpp) Bitrate (bpp) Bitrate (bpp)

Figure 3: FedPM-KLMS, QSGD-KLMS, and SignSGD-KLMS against FedPM (Isik et al., 2023b), QSGD (Alistarh et al.,
2017), DRIVE (Vargaftik et al., 2021), EDEN (Vargaftik et al., 2022), and DP-REC (Liu et al., 2021) with non i.i.d. split
and 20 out of 100 clients participating every round.

CIFAR-10 (CONV6) CIFAR-10 (CONV6) - zoomed CIFAR-100 (ResNet-18) CIFAR-100 (ResNet-18) - zoomed
0.28 S 0.28 0.18 6 018
- FedPM-KLMS

0.26 0.26 0.16 QSGD-KLMS
N 0.16 : SignSGD-KLMS
go.24 0.24 & FedPM
3022 o 8 0.22 o 0.14 0.14 o QsGD
< DRIVE

020 pg 0.20 o 012 B0 o 012 o o ° E,EERNEC

0.18 0.18 :

000 025 050 0.75 1.00 0.00 005 010 015 0.0 0.00 025 050 0.75 1.00 0.00 0.05 0.10 0.15 020 0.25
Bitrate (bpp) Bitrate (bpp) Bitrate (bpp) Bitrate (bpp)

Figure 4: Comparison of FedPM-KLM, QSGD-KLM, and S1ignSGD-KLM with FedPM (Isik et al., 2023b), QSGD (Alistarh
etal., 2017), DRIVE (Vargaftik et al., 2021), EDEN (Vargaftik et al., 2022), and DP-REC (Liu et al., 2021) with non i.i.d.
split and 10 out of 100 clients participating every round.

F.2. Bayesian Federated Learning

We present the comparison of SGLD-KLMS with QLSD (Vono et al., 2022) in Figure 5-(left). We consider i.i.d. data split
and full client participation with the number of clients N = 10. It is seen that SGLD-KLMS can reduce the communication
cost by 5 times more than QLSD with higher accuracy on MNIST, where in this case the accuracy is a Monte Carlo average
obtained by posterior sampling after convergence.

F.3. Ablation Study: The Effect of the Adaptive Bit Allocation Strategy

We conduct an ablation study to answer the following question: Does adaptive bit allocation strategy really help optimize
the bit allocation and reduce # bits down to KL divergence? To answer this question, in Figure 5-(right), we show how the
average per-parameter KL divergence and # bits spent per parameter change over the rounds for FedPM-KLMS with fixed-
and adaptive-size blocks. We adjust the hyperparameters such that the final accuracies differ by only 0.01% on CIFAR-10.
For the fixed-size experiments, since we fix K (number of samples per block) and the block size for the whole model and
across rounds, # bits per parameter stays the same while the KL divergence shows a decreasing trend. On the other hand,
in the adaptive-size experiments, the block size changes across the model parameters and the rounds to guarantee that
each block has the same KL divergence. Since all blocks have the same KL divergence, we spend the same # bits for
each block as suggested by Theorem 2.1, which adaptively optimizes the bitrate towards the KL divergence. This is indeed

27

Leveraging Side Information for Communication-Efficient Federated Learning

0.950 o #0125
o
>0.925 o ﬁ 0.100 £ # Bits (adaptive)
© o = 0.075 : Dki(qp||pe) (adaptive)
g 0.900 3 : — # Bits (fixed)
< =) s
SRR Dki(gy||pe) (fixed)
0.875 SGLD-KLMS §0030 % ¢
) > L
0.850 d QLSD S 0025 Mesaa N I S —
0.0 0.5 1.0 1.5 0 20 40 60 80 100
Bitrate (bpp) Rounds

Figure 5: (left) SGLD-KLMS against QLSD (Vono et al., 2022) using LeNet on i.i.d. MNIST dataset. (right) FedPM-KLMS
(fixed) against FedPM-KLMS (adaptive) on how well the number of bits approaches the fundamental quantity, KL
divergence — using CONV6 on i.i.d. CIFAR-10. Both KL divergence and the number of bits are normalized by the number of
parameters. The final accuracies that FedPM-KLMS (fixed) and FedPM-KLMS (adaptive) reach differ by only
0.01%.

justified in Figure 5-(right) since the # bits curve quickly approaches the KL divergence curve.

F.4. KLMS on a Toy Model

We provide additional insights on KLMS employed in a distributed setup similar to that of FL. Specifically, we design a set
of experiments in which the server keeps a pre-data distribution p = A/(0,1), and N clients need to communicate samples
according to their local post-data distributions {¢(™ }N_, = {\ (u(")7 1) N_.,, which are induced by a global and unknown
distribution N (u, 1). Each client n applies KLMS (see Algorithm 1) to communicate a sample (") from ¢(™) using as
coding distribution the pre-data distribution p. The server then computes ji = % 25:1 z(™ to estimate p. We study the
effect of [V, i.e., the number of clients communicating their samples, on the estimation of y in different scenarios by varying
the rate adopted by the clients (Appenix F.4.1), and the complexity of the problem (Appendix F.4.2).

F.4.1. THE EFFECT OF THE OVERHEAD r

In this example, we simulate an i.i.d. data split by having all clients the same local post-data distribution ¢(™) = N (0.8,1)
Vn € [N]. We analyze the bias in the estimation of 1 by computing a Monte Carlo average of the discrepancy defined in
Section 2.1 (see Figure 7-(right)), together with its empirical standard deviation (see Figure 7-(left)). From Figure 7, we can
observe that, as conjectured, the standard deviation of the gap decreases when [V increases, meaning that the estimation
is more accurate around its mean value, which is also better for larger values of N. Also, as expected, a larger value of
overhead r induces better accuracy.

F.4.2. THE EFFECT OF NON-I.I.D. DATA SPLIT

In this other set of experiments, we simulate a non-i.i.d. data split by inducing, starting from the same pre-data distribution
p, different local post-data distributions, simulating drifts in updates statistics due to data heterogeneity. Specifically, we set
again p = 0.8, and then, ¥n € [N], u(™ = 0.8 + u(™), where u(™ ~ Unif([—n, 7)), for n € {0.05,0.1,0.25,0.4}. In all
experiments, » = 6. As we can see from the figure, when [V is very small (~ 1), a high level of heterogeneity in the update
statistics can indeed lead to poor estimation accuracy. However, for reasonable values of N, this effect is considerably
mitigated, suggesting that for real-world applications of FL, where the number of devices participating in each round can be
very large, KLMS can still improve state-of-the-art compression schemes by a large margin, as reported in the results of
Section F.1 and Appendix E.5.

F.5. More detailed Results with Confidence Intervals

We now report the confidence intervals for all the experimental results in the paper in Tables 4, 5, 6, 7, 8, 9, 10, and 11
corresponding to Figures 1, 3, and 4.

28

Leveraging Side Information for Communication-Efficient Federated Learning

0.5 5= * * * *
0.100 0.4
0.075 =5 0.3
| " -
< -+ ™ e %*
0.050 2 0.2
0.025 0.1 \
0.000 0.0 lad de————f
0 2 4 0 2 4
logV log N

Figure 6: Estimation gap statistics for different values of r, as a function of the number of participating clients N. (left)
The empirical standard deviation of the estimation gap, computed over 100 runs; (right) Estimation gap between . and i
averaged over 100 runs.

0.15
0.100 *~ n=0.05
0.10
0.075 -
e} |
0.050 =~
0.05
0.025
0.000 0.00
0 2 4 0 2 4
logV logN

Figure 7: Estimation gap statistics for different values of n, as a function of the number of participating clients V. (left)
Empirical standard deviation of the estimation gap, computed over 100 runs; (right) Estimation gap between p and [
averaged over 100 runs.

29

Leveraging Side Information for Communication-Efficient Federated Learning

Table 4: Average bitrate ¢ vs final accuracy 4o in i.i.d. split CIFAR-10 with full client participation. The training duration
was set to f.x = 400 rounds.

Framework Bitrate Accuracy
FedPM-KLMS (ours) 0.070 £ 0.0001 0.787 £ 0.0012
FedPM-KLMS (ours) 0.004 £ 0.0001 0.786 + 0.0010
FedPM-KLMS (ours) 0.014 £ 0.0001 0.786 + 0.0012

QSGD-KLMS (ours)
QSGD-KLMS (ours)

0.071 £ 0.0001
0.0355 £ 0.0001

0.765 £ 0.0011
0.761 £ 0.0012

OSGD-KLMS (ours) 0.0142 £ 0.0001 0.755 % 0.0010
SignSGD-KLMS (ours) 0.072 4 0.0002 0.745 + 0.0008
SignSGD-KLMS (ours) 0.040 & 0.0002 0.745 + 0.0008
SignSGD-KLMS (ours) 0.015 & 0.0001 0.739 + 0.0008

FedPM (Isik et al., 2023b) 0.845 + 0.0001 0.787 & 0.0011

0SGD (Alistarh et al., 2017) 0.140 & 0.0000 0.766 + 0.0012

QSGD (Alistarh et al., 2017)
SignSGD (Bernstein et al., 2018)
TernGrad (Wen et al., 2017)
DRIVE (Vargaftik et al., 2021)
EDEN (Vargaftik et al., 2022)
FedMask (Li et al., 2021)
DP-REC (Triastcyn et al., 2021)
DP-REC (Triastcyn et al., 2021)
DP-REC (Triastcyn et al., 2021)
DP-REC (Triastcyn et al., 2021)

0.072 £ 0.0000
0.993 £ 0.0012
1.100 £ 0.0001
0.890 £ 0.0000
0.890 £ 0.0000
1.000 +£ 0.0001
1.12 £ 0.0001
0.451 £ 0.0001
0.188 £ 0.0001
0.124 £ 0.0001

0.753 £ 0.0013
0.705 +£ 0.0021
0.680 £ 0.0016
0.760 = 0.0010
0.760 = 0.0010
0.620 £ 0.0017
0.720 £ 0.0011
0.690 £ 0.0012
0.640 £ 0.0011
0.622 £ 0.0013

Table 5: Average bitrate +o¢ vs final accuracy £o in i.i.d. split CIFAR-100 with full client participation. The training
duration was set to ty.x = 400 rounds.

Framework Bitrate Accuracy
FedPM-KLMS (ours) 0.072 + 0.0001 0.469 + 0.0010
FedPM-KLMS (ours) 0.040 + 0.0001 0.461 £+ 0.0011
FedPM-KLMS (ours) 0.018 + 0.0001 0.455 £+ 0.0010

QSGD-KLMS (ours) 0.074 + 0.0001 0.327 £ 0.0010
QSGD-KLMS (ours) 0.043 + 0.0001 0.319 + 0.0012
QSGD-KLMS (ours) 0.020 + 0.0001 0.320 4+ 0.0010
S1gnSGD-KLMS (ours) 0.073 + 0.0001 0.260 + 0.0014
S1gnSGD-KLMS (ours) 0.041 + 0.0001 0.259 £+ 0.0014
S1ignSGD-KLMS (ours) 0.018 + 0.0001 0.250 £+ 0.0014
FedpPM (Isik et al., 2023b) 0.880 + 0.0001 0.470 £+ 0.0010
QSGD (Alistarh et al., 2017) 0.150 + 0.0000 0.335 £+ 0.0011
QSGD (Alistarh et al., 2017) 0.082 + 0.0000 0.330 £+ 0.0011
SignSGD (Bernstein et al., 2018) 0.999 + 0.0002 0.230 4+ 0.0019
TernGrad (Wen et al., 2017) 1.070 £+ 0.0001 0.220 + 0.0015
DRIVE (Vargaftik et al., 2021) 0.540 + 0.0000 0.320 + 0.0011
EDEN (Vargaftik et al., 2022) 0.540 4+ 0.0000 0.320 4+ 0.0010
FedMask (Li et al., 2021) 1.000 4+ 0.0001 0.180 + 0.0014
DP-REC (Triastcyn et al., 2021) 1.06 4+ 0.0001 0.280 4+ 0.0012
DP-REC (Triastcyn et al., 2021) 0.503 £ 0.0001 0.240 £ 0.0012
DP-REC (Triastcyn et al., 2021) 0.240 £+ 0.0001 0.220 £ 0.0012

DP-REC (Triastcyn et al., 2021)

0.128 £ 0.0001

0.170 £ 0.0012

30

Leveraging Side Information for Communication-Efficient Federated Learning

Table 6: Average bitrate +o vs final accuracy +o in i.i.d. split MNIST with full client participation. The training duration

was set to f.x = 200 rounds.

Framework

Bitrate

Accuracy

FedPM-KLMS (ours)
FedPM-KLMS (ours)
FedPM-KLMS (ours)
QSGD—-KLMS (ours)
QSGD-KLMS (ours)
QSGD—-KLMS (ours)

0.067 £ 0.0001
0.041 +£ 0.0001
0.014 +£ 0.0001
0.071 £ 0.0001
0.041 £ 0.0001
0.019 £ 0.0001

0.9945 £+ 0.0001
0.9945 £+ 0.0001
0.9943 £+ 0.0001
0.9940 £ 0.0001
0.9938 £+ 0.0001
0.9935 £ 0.0001

S1gnSGD-KLMS (ours) 0.0720 £ 0.0001 0.9932 + 0.0002
S1gnSGD-KLMS (ours) 0.0415 4+ 0.0001 0.9930 + 0.0002
S1gnSGD-KLMS (ours) 0.0230 £+ 0.0001 0.9918 + 0.0001
FedPM (Isik et al., 2023b) 0.99 £+ 0.0001 0.995 + 0.0001
QSGD (Alistarh et al., 2017) 0.13 £0.0000 0.994 4+ 0.0001
QSGD (Alistarh et al., 2017) 0.080 + 0.0000 0.994 + 0.0001
S1gnSGD (Bernstein et al., 2018) 0.999 + 0.0012 0.990 + 0.0004
TernGrad (Wen et al., 2017) 1.05 +£0.0001 0.980 + 0.0003
DRIVE (Vargaftik et al., 2021) 0.91 +0.0000 0.994 + 0.0001
EDEN (Vargaftik et al., 2022) 0.91 £0.0000 0.994 4+ 0.0001
FedMask (Liet al., 2021) 1.0 £ 0.0001 0.991 + 0.0003
DP-REC (Triastcyn et al., 2021) 0.996 + 0.0001 0.991 + 0.0001
DP-REC (Triastcyn et al., 2021) 0.542 4+ 0.0001 0.989 + 0.0001

DP-REC (Triastcyn et al., 2021)
DP-REC (Triastcyn et al., 2021)

0.191 +£ 0.0001
0.125 £ 0.0001

0.988 £ 0.0001
0.985 £ 0.0001

Table 7: Average bitrate =0 vs final accuracy 4o in i.i.d. split EMNIST with full client participation. The training duration
was set to ty.x = 200 rounds.

Framework Bitrate Accuracy
FedPM-KLMS (ours) 0.068 + 0.0001 0.889 + 0.0001
FedPM-KLMS (ours) 0.034 + 0.0001 0.888 + 0.0001
FedPM-KLMS (ours) 0.017 + 0.0001 0.885 + 0.0001

QSGD-KLMS (ours) 0.072 + 0.0001 0.884 + 0.0001
QSGD-KLMS (ours) 0.042 + 0.0001 0.884 + 0.0001
QSGD-KLMS (ours) 0.022 + 0.0001 0.883 + 0.0001
SignSGD-KLMS (ours) 0.072 + 0.0001 0.881 + 0.0003
SignSGD-KLMS (ours) 0.044 + 0.0001 0.880 + 0.0003
SignSGD-KLMS (ours) 0.025 + 0.0001 0.875 + 0.0003
FedPM (Isik et al., 2023b) 0.890 4+ 0.0001 0.890 + 0.0001
QSGD (Alistarh et al., 2017) 0.150 + 0.0000 0.884 + 0.0001
QSGD (Alistarh et al., 2017) 0.086 + 0.0000 0.882 + 0.0001
SignSGD (Bernstein et al., 2018) 1.0 £ 0.0001 0.873 4 0.0005
TernGrad (Wen et al., 2017) 1.1 £0.0001 0.870 £ 0.0005
DRIVE (Vargaftik et al., 2021) 0.9 +0.0001 0.8835 + 0.0001
EDEN (Vargaftik et al., 2022) 0.9 +£0.0001 0.8835 4 0.0001
FedMask (Li et al., 2021) 1.0 £ 0.0001 0.862 4+ 0.0005
DP-REC (Triastcyn et al., 2021) 1.100 £ 0.0001 0.885 + 0.0001
DP-REC (Triastcyn et al., 2021) 0.488 £ 0.0001 0.880 £ 0.0001

DP-REC (Triastcyn et al., 2021)
DP-REC (Triastcyn et al., 2021)

0.196 +£ 0.0001
0.119 £ 0.0001

0.873 + 0.0001
0.861 £ 0.0001

31

Leveraging Side Information for Communication-Efficient Federated Learning

Table 8: Average bitrate ¢ vs final accuracy +o¢ in non-IID split CIFAR-10 with ¢y,0x = 2, and partial participation with
10 out of 100 clients participating every round. The training duration was set to tn.x = 200 rounds.

Framework Bitrate Accuracy
FedPM-KLMS (ours) 0.073 £ 0.0001 0.277 + 0.0005
FedPM-KLMS (ours) 0.036 £ 0.0001 0.276 + 0.0005
FedPM-KLMS (ours) 0.0161 £+ 0.0001 0.261 £ 0.0004

QSGD-KLMS (ours) 0.071 £ 0.0001 0.277 £ 0.0005

OSGD-KLMS (ours) 0.036 & 0.0001 0.208 + 0.0005

0SGD-KLMS (ours) 0.014 4+ 0.0001 0.198 + 0.0005
SignSGD-KLMS (ours) 0.074 & 0.0001 0.211 + 0.0009
SignSGD-KLMS (ours) 0.060 & 0.0001 0.195 + 0.0008

SignSGD—-KLMS (ours)

0.018 £ 0.0001

0.180 £ 0.0009

FedPM (Isik et al., 2023b) 0.997 £ 0.0001 0.277 & 0.0006
QSGD (Alistarh et al., 2017) 0.140 & 0.0000 0.220 £ 0.0005
QSGD (Alistarh et al., 2017) ~ 0.072 &+ 0.0000 0.200 £ 0.0005

DRIVE (Vargaftik et al., 2021) 0.885 £ 0.0000 0.221 £ 0.0005
EDEN (Vargaftik et al., 2022) 0.885 £ 0.0000 0.219 £ 0.0004
DP-REC (Triastcyn et al., 2021) 1.080 £ 0.0001 0.220 £ 0.0007

DP-REC (Triastcyn et al., 2021)
DP-REC (Triastcyn et al., 2021)
DP-REC (Triastcyn et al., 2021)

0.490 £ 0.0001
0.205 £ 0.0001
0.171 £ 0.0001

0.201 £ 0.0006
0.193 £ 0.0006
0.180 £ 0.0006

Table 9: Average bitrate =0 vs final accuracy o in non-IID split CIFAR-10 with ¢y,,x = 4, and partial participation with
20 out of 100 clients participating every round. The training duration was set to ¢y,ax = 200 rounds.

Framework Bitrate Accuracy
FedPM-KLMS (ours) 0.073 £ 0.0001 0.612 4+ 0.0010
FedPM-KLMS (ours) 0.036 £+ 0.0001 0.606 4+ 0.0010
FedPM-KLMS (ours) 0.016 £ 0.0001 0.599 £+ 0.0010

QSGD-KLMS (ours) 0.071 £ 0.0001 0.552 4+ 0.0010
QSGD-KLMS (ours) 0.036 + 0.0001 0.549 4+ 0.0011
QSGD-KLMS (ours) 0.014 £+ 0.0001 0.545 4+ 0.0010
S1gnSGD-KLMS (ours) 0.074 £+ 0.0001 0.530 £+ 0.0013
S1gnSGD-KLMS (ours) 0.060 + 0.0001 0.522 £+ 0.0013
Si1gnSGD-KLMS (ours) 0.018 + 0.0001 0.518 4+ 0.0013
FedpPM (Isik et al., 2023b) 0.993 4+ 0.0001 0.612 + 0.0009
QSGD (Alistarh et al., 2017) 0.140 £ 0.0000 0.552 4+ 0.0010
QSGD (Alistarh et al., 2017) 0.072 £ 0.0000 0.531 4+ 0.0010
DRIVE (Vargaftik et al., 2021) 0.888 + 0.0000 0.526 + 0.0010
EDEN (Vargaftik et al., 2022) 0.888 + 0.0000 0.528 4+ 0.0010
DP-REC (Triastcyn et al., 2021) 1.080 £+ 0.0001 0.530 + 0.0012
DP-REC (Triastcyn et al., 2021) 0.490 £+ 0.0001 0.521 + 0.0012
DP-REC (Triastcyn et al., 2021) 0.205 £ 0.0001 0.519 £ 0.0012
DP-REC (Triastcyn et al., 2021) 0.171 £ 0.0001 0.506 + 0.0012

32

Leveraging Side Information for Communication-Efficient Federated Learning

Table 10: Average bitrate =0 vs final accuracy 4o in non-IID split CIFAR-100 with cy,,x = 20, and partial participation
with 10 out of 100 clients participating every round. The training duration was set to t,,x = 200 rounds.

Framework Bitrate Accuracy

0.076 £ 0.0001 0.180 % 0.0012

FedPM-KLMS (ours)
FedPM-KLMS (ours)
FedPM-KLMS (ours)
QSGD—-KLMS (ours)
QSGD—-KLMS (ours)
QSGD-KLMS (ours)
S1gnSGD—-KLMS (ours)
SignSGD-KLMS (ours)
SignSGD—-KLMS (ours)

0.048 £ 0.00101
0.012 £ 0.0001
0.072 £ 0.0001
0.040 £ 0.0001
0.017 £ 0.0001
0.073 £ 0.0001
0.041 £ 0.0001
0.018 £ 0.0001

0.176 £ 0.0011
0.170 £ 0.0011
0.122 £+ 0.0012
0.117 £ 0.0012
0.115 £ 0.0012
0.117 £0.0014
0.113 £0.0014
0.110 £ 0.0013

FedPM (Isik et al., 2023b)

QSGD (Alistarh et al., 2017)
QSGD (Alistarh et al., 2017)
DRIVE (Vargaftik et al., 2021)
EDEN (Vargaftik et al., 2022)

0.999 + 0.0001
0.150 £ 0.0000
0.082 £ 0.0000
0.840 £ 0.0000
0.840 £ 0.0000
1.060 £ 0.0001

0.181 £ 0.0011
0.123 £ 0.0012
0.118 £ 0.0012
0.121 £ 0.0012
0.121 £ 0.0012
0.119 £ 0.0012

DP-REC (Triastcyn et al., 2021)
DP-REC (Triastcyn et al., 2021)
DP-REC (Triastcyn et al., 2021)
DP-REC (Triastcyn et al., 2021)

0.503 £ 0.0001
0.240 £ 0.0001
0.128 £ 0.0001

0.118 £ 0.0013
0.117 £ 0.0013
0.110 £ 0.0013

Table 11: Average bitrate =0 vs final accuracy o in non-IID split CIFAR-100 with ¢,x = 40, and partial participation
with 20 out of 100 clients participating every round. The training duration was set to ¢, = 200 rounds.

Framework Bitrate Accuracy
FedPM-KLMS (ours) 0.074 + 0.0001 0.488 + 0.0013
FedPM-KLMS (ours) 0.048 4+ 0.0001 0.484 + 0.0013
FedPM-KLMS (ours) 0.012 £ 0.0001 0.480 £ 0.0013

QSGD-KLMS (ours) 0.072 +0.0001 0.428 + 0.0013
QSGD-KLMS (ours) 0.040 £+ 0.0001 0.424 + 0.0013
QSGD-KLMS (ours) 0.017 £ 0.0001 0.419 £ 0.0013
SignSGD-KLMS (ours) 0.072 £ 0.0001 0.421 £+ 0.0016
SignSGD-KLMS (ours) 0.044 + 0.0001 0.419 £+ 0.0016
SignSGD-KLMS (ours) 0.020 +0.0001 0.415 + 0.0016
FedPM (Isik et al., 2023b) ~ 0.980 + 0.0001 0.488 + 0.0012
QSGD (Alistarh et al., 2017) 0.150 £ 0.0000 0.429 + 0.0013
QSGD (Alistarh et al., 2017) 0.082 £+ 0.0000 0.424 + 0.0013
DRIVE (Vargaftik et al., 2021) 0.81 + 0.0000 0.424 + 0.0013
EDEN (Vargaftik et al., 2022) 0.81 + 0.0000 0.425 + 0.0013
DP-REC (Triastcyn et al., 2021) 1.00 £ 0.0001 0.424 4+ 0.0014
DP-REC (Triastcyn et al., 2021) 0.49 + 0.0001 0.422 4+ 0.0014
DP-REC (Triastcyn et al., 2021) 0.27 + 0.0001 0.412 4+ 0.0014
DP-REC (Triastcyn et al., 2021) 0.13 £ 0.0001 0.408 4+ 0.0014

33

