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ABSTRACT

Estimation of sound field in one-dimension finds extensive applications in many1

areas such as speech, automotive, aerospace and biomedical industries. Tradition-2

ally, it is obtained by solving Helmholtz equation using analytical and numerical3

methods (finite difference, finite element, etc.). This paper discusses a neural4

network methodology to solve 1-D Helmholtz equation subjected to some con-5

straints. Unlike other governing equations, Helmholtz equation poses a biasing6

problem with the loss functions at higher frequencies. In the current work, an au-7

tomatic weight update algorithm is proposed to bypass this difficulty. The results8

obtained from the proposed methodology are compared with those of the analyti-9

cal method. A good correlation has been observed between the two methods. The10

robustness of the methodology with respect to the frequency is also verified.11

1 INTRODUCTION12

In many engineering applications, sound propagation is dominant in one-dimension(Munjal, 2014).13

For instance, in the modelling and analysis of speech, automotive intake/exhaust sounds, human14

respiratory sounds, etc., the acoustic field variation is primarily significant in the direction of largest15

dimension as compared to the other directions. In those cases, 1-D Helmholtz equation with appro-16

priate boundary condition will provide an acoustic field distribution required to perform the intended17

study. Traditionally, this task is performed by means of analytical(Veerababu & Venkatesham, 2020;18

2021) and numerical methods(Ihlenburg & Babuška, 1995; Shen & Liu, 2007; Lourier et al., 2012).19

Recently, data-driven methods using machine learning techniques have emerged as a new alternative20

in providing reliable solutions(Megalmani et al., 2021; Rao et al., 2017). However, there is always21

a possibility of contamination of measured data which affects the accuracy of the solution. Hence,22

there is need to develop methods that are driven by physics apart from the data(Raissi et al., 2019).23

Towards this direction, a neural network solution for the 1-D Helmholtz equation is presented in the24

current article.25

According to universal approximation theorem, the solution of a well-posed problem can be approxi-26

mated to a desired accuracy with a feedforward neural network of infinite number of neurons(Hornik27

et al., 1989). Using this fact, a feedforward neural network is constructed to approximate the 1-D28

acoustic field. Unlike other governing equations, Helmholtz equation encounters biasing problem29

between the loss functions at higher frequencies(Wang et al., 2021). This problem can be bypassed30

by introducing unequal weights to the loss functionsMaddu et al. (2022); Basir & Senocak (2022).31

In this current article, an algorithm that automatically adjust the weights based on the calculated loss32

functions is proposed. Section 2 describes the neural network formulation for the 1-D Helmholtz33

equation. Problems associated with the higher frequencies, algorithm implementation to address34

this issue, and correlation with the true solution are presented in detail in Section 3. The article is35

concluded with final remarks in Section 4.36

2 NEURAL NETWORK FORMULATION FOR THE 1-D HELMHOLTZ EQUATION37

In many engineering applications such as human speech synthesis, automotive intake/exhaust sys-38

tems, HVAC ducts, etc., the acoustic field variation is primarily dominated in the direction of longest39

dimension. The acoustic field in that direction can be obtained by solving 1-D Helmholtz equation40
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given below(Munjal, 2014)41 (
d2

dx2
+ k2

)
ψ(x) = 0, x ∈ [0, L] (1)

subjected to the boundary conditions ψ(0) = ψ0 and ψ(L) = ψL. Here, ψ(x) is the acoustic field,42

k = 2πf/c is the wavenumber, f is the frequency and c is the speed of sound in air (340 m/s).43

According to the universal approximation theorem(Hornik et al., 1989), the acoustic field ψ(x) can44

be approximated with a feedforward neural network ψ̂(x; θ) and can be estimated by minimizing45

the following loss functional L with respect the parameters θ(Raissi et al., 2019).46

L(θ) = LF (θ) + LB(θ), (2)

where LF (θ) is the loss functions associated with the Helmholtz equation47

LF (θ) =
1

N

N∑
i=1

∥∥∥∥ d2

dx2
ψ̂(x(i); θ) + k2ψ̂(x(i); θ)

∥∥∥∥2
2

, (3)

and LB(θ) is the loss functions associated with the boundary conditions48

LB(θ) =
1

2

(
|ψ̂(0; θ)− ψ0|2 + |ψ̂(L; θ)− ψL|2

)
. (4)

Here, N is the number of internal collocation points in [0, L].49

3 RESULTS AND DISCUSSION50

A feedforward neural network with 4 hidden layers and 90 neurons in each layer is constructed to51

predict the acoustic field ψ. The loss functional L is optimised using Adam algorithm with tanh52

activation function. The domain is divided into 10000 random collocation points and 10000 full-53

batch iterations were performed with a learning rate of 10−3.54

Figure 1 shows the acoustic field predicted by the neural network against the true solution obtained55

from the analytical method (refer Appendix A) for different frequencies. It can be observed that the56

neural network is able to learn the underlying physics from the governing equations successfully at57

lower frequencies (100 Hz). At higher frequencies (above 200 Hz), there is a drastic deviation from58

the true solution. The reason for this behaviour can best be understood by observing the variation of59

individual loss functions with respect to iterations.
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Figure 1: Correlation between true ( ) and predicted solution ( ) for different frequen-
cies.

60

Figure 2 shows the variation of the loss functionsLF , LB andLwith respect to iteration for different61

frequencies. It can be observed that both the loss functions decreases with respect to iterations at62

lower frequencies (100 Hz). However, at higher frequencies (200 Hz and above), the loss function63

associated with the Helmholtz equation LF decreases, whereas the loss function associated with the64

boundary conditions LB does not decrease and becomes stable at particular value.65

In other words, a biasing behaviour is introduced during the training process at higher frequencies,66

which enforces the optimization process to favour LF alone and minimises it, leaving LB . This67

problem can be bypassed by assigning weights to the loss functions as given below68

L = λFLF + λBLB , (5)
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Figure 2: Variation of the loss functions with respect to the iterations: 100 Hz, 200
Hz, 500 Hz, 750 Hz.

where λF and λB are the weights associated with the loss functions LF and LB , respectively.69

One of the simplest method to find λF and λB is to choose them on the trial-and-error basis method.70

Even though this method is relatively easy, finding appropriate weights for each frequency makes71

it cumbersome. In addition, any change in the boundary conditions will alter the problem and72

the procedure needs to be repeated. Therefore, there is a need to develop an automatic weight73

update procedure that guarantees the correlation for the chosen frequency range and the boundary74

conditions. In the current work, an automatic weight update algorithm that works on the values of75

the loss functions is proposed. In this algorithm λF is chosen as unity and λB is updated with each76

iteration as follows

Algorithm: Training algorithm to update weights
Input: E // Input number of iterations
λF , λB ← 1 // Initialize weights

β ← 10−3 // Assign hyperparameter

ϵ← 10−3 // Assign tolerance for the weight update

for iter 1 to E do
if LF /λB ≤ ϵ then

λ̂B ← 1
else

λ̂B ← LB/LF /ϵ // Update intermediate weight
end
λB ← (1− β)λB + βλ̂B // Update weight associated with boundary loss

end

77

Figure 3 shows the comparison of results obtained with the weight update algorithm and the true78

solution. It can be observed that a good correlation has been achieved by updating the weights79

based on the loss functions. In other words, the algorithm is able to avoid the biasing behaviour of80

the training process and is helping to optimise both the loss functions simultaneously. This can be81

confirmed from the loss function plots draw in Fig. 4 with the automatic weight update algorithm.82

Figure 4 shows the loss functions with respect to iterations for various frequencies. It can be ob-83

served that unlike with the case of equal weights, LB with the weight update algorithm starts reduc-84

ing with respect to iterations at higher frequencies. This ensures the neural network to learn physics85

properly from the Helmholtz equation as well as the boundary conditions.86

Table 1 shows the percentage of relative error between the prediction solution and the true solution87

calculated as per Eq. (6) at different frequencies using the two methods88

%Error =

∥∥∥ψ̂t(x; θ)− ψ(x)
∥∥∥
2

∥ψ(x)∥2
× 100. (6)
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Figure 3: Correlation between true ( ) and predicted solution ( ) for different frequen-
cies.
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Figure 4: Variation of the loss functions with respect to the iterations: 100 Hz, 200
Hz, 500 Hz, 750 Hz.

Table 1: Comparison of relative error (in percentage) at different frequencies.

Frequency (Hz) Equal weights Weight update
100 0.03 0.02
200 91.08 0.01
500 99.99 0.58
750 100 0.31

The weight update algorithm significantly reduces the error at higher frequencies and ensures proper89

correlation with the true solution.90

4 CONCLUSION91

The acoustic field in a 1-D duct is estimated using neural network by posing the problem of govern-92

ing differential equations as an unconstrained optimization problem with two loss functions. One93

associated with the Helmholtz equation and the other associated with the boundary conditions. The94

results reveal that at higher frequencies, the training process exhibits biasing behaviour. The opti-95

mization process favours the loss function associated with the Helmholtz equation, and leaves that96

associated with the boundary conditions. This problem is bypassed by introducing weights which97

adjust their values based on the individual loss functions. The proposed automatic weight update al-98

gorithm ensures the boundary loss to converge with respect to the iterations and helps the network to99

learn the underlying physics properly. Quantitatively, the proposed algorithm keeps the relative error100

to a maximum value of 0.58% within the frequency range considered for the analysis. The method101

is having a potential to predict the acoustic field governed by the higher dimensional Helmholtz102

equation as well as complicated boundary conditions and is need to be explored.103
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A ANALYTICAL SOLUTION143

The analytical solution for the 1-D Helmholtz equation144 (
d2

dx2
+ k2

)
ψ(x) = 0, x ∈ [0, L] (7)

subjected to the boundary conditions145

ψ(0) = ψ0; ψ(L) = ψL (8)

can be obtained by assuming a solution of the form146

ψ(x) = Ceγx, (9)

where C and γ are the constants.147
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Upon substituting Eq. (9) in Eq. (7) yields the general solution148

ψ(x) = C1 cos(kx) + C2 sin(kx). (10)

By substituting the boundary conditions, the constants C1 and C2 can be evaluated and the actual149

solution can be written as150

ψ(x) = ψ0 cos(kx) +

[
ψL − ψ0 cos(kL)

sin(kL)

]
sin(kx). (11)
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