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Abstract

Large Language Models (LLMs) create exciting
possibilities for powerful language processing
tools to accelerate research in materials science.
While LLMs have great potential to accelerate ma-
terials understanding and discovery, they currently
fall short in being practical materials science tools.
In this paper, we show relevant failure cases of
LLMs in materials science that reveal current lim-
itations of LLMs related to comprehending and
reasoning over complex, interconnected materials
science knowledge. Given those shortcomings,
we outline a framework for developing Materials
Science LLMs (MatSci-LLMs) that are grounded
in materials science knowledge and hypothesis
generation followed by hypothesis testing. The
path to attaining performant MatSci-LLMs rests
in large part on building high-quality, multi-modal
datasets sourced from scientific literature where
various information extraction challenges persist.
As such, we describe key materials science in-
formation extraction challenges which need to
be overcome in order to build large-scale, multi-
modal datasets that capture valuable materials sci-
ence knowledge. Finally, we outline a roadmap
for applying MatSci-LLMs for real-world mate-
rials discovery through six interacting steps: 1.
Materials Query; 2. Data Retrieval; 3. Materials
Design; 4. Insilico Evaluation; 5. Experiment
Planning; 6. Experiment Execution.

1. Introduction

The advent of large language models (LLMs) has started
to reshape many technology development efforts and re-
search roadmaps. Apart from significantly impacting the
space of natural language processing, LLMs have had sig-
nificant impact on many related fields, such as computer
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vision with text-to-image generators (Zhang et al., 2023),
and have sparked the creation of efforts to integrate their
capabilities into diverse industries. Examples of these ef-
forts include task automation in healthcare (He et al., 2023),
legal (Dahl et al., 2024), finance (Wu et al., 2023a), software
engineering (Fan et al., 2023) and multiple scientific fields.
The successful application of LLMs to materials science
(MatSci) has the potential to transform the field by acceler-
ating the discovery, synthesis and analysis of new materials
that can address some of today’s complex societal-scale
challenges, such as climate change, energy security, sustain-
able agriculture and manufacturing, personalized medical
devices, and access to more powerful computing systems.
While recent research work has seen increased adoption
of LLMs in adjacent scientific fields, such as chemistry
(Jablonka et al., 2023) and diverse areas of biology (Lin
et al., 2023; Hsu et al., 2022; Xu et al., 2023; Cui et al.,
2023; Dalla-Torre et al., 2023), the application of LLMs
in MatSci has been significantly slower. In this paper, we
analyze current failures of LLMs in MatSci, and propose
requirements for MATerials SClence LLMs (MatSci-LLMs)
along with a roadmap to enable the impactful application of
MatSci-LLMs for furthering the field of materials.

1.1. MatSci-LLM Requirements

Material science is a highly interdisciplinary field — the first
scientific branch that emerged out of fusion of different
branches (physics, chemistry, mechanical engineering, and
metallurgy) rather than a division — that studies how the
interaction of atomic matter affects the properties and be-
havior of materials systems across diverse sets of conditions.
The broad scope of materials systems encompasses multiple
physical scales ranging from nanostructures with a small
number of atoms which are used in modern computing de-
vices, to continuum materials, such as metals and cement,
that make up modern infrastructure like roads, bridges and
buildings. Moreover, the wide range of materials application
can range from electronic materials (e.g., transistors, bat-
teries), to chemical materials (e.g., polymers) to biological
materials (e.g., medical implants), each of which have very
different requirements and application environments. As
such MatSci often borrows concepts from related scientific
fields, including physics, chemistry and biology, leading to
vast and dynamic body of work covered by the field. This
diversity also informs the wide range of tasks that materials
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Figure 1. Overview of MatSci-LLM requirements related to knowledge acquisition and science acceleration. MatSci-LLMs require
knowledge contained across multiple documents along multiple data modalities. Pertinent materials science knowledge includes
understanding materials structure, properties and behavior covering diverse conditions, as well as materials synthesis and analysis
procedures based on experimental descriptions. To effectively accelerate science, MatSci-LLMs should interact with human scientists
as robust question-answering system and act as grounded hypothesis generators that augment a scientist’s knowledge. Additionally,
MatSci-LLMs should provide executable procedures for real-world experiments through machine-machine and human-machine interfaces.

scientists perform across different subfields, which further
informs the requirements of MatSci-LLMs.

Given the diversity of MatSci knowledge and its associated
technical tasks, we propose that MatSci-LLM should meet
the following requirements, shown in Figure 1: 1. Domain
Knowledge & Grounded Reasoning: MatSci-LLMs should
have an understanding of MatSci as a subject area to pro-
vide useful information to material scientists and be able to
reason over core MatSci principles, 2. Augmenting Mate-
rials Scientists: MatSci-LLMs should have the ability to
perform useful tasks to accelerate materials science research
that augments the work of materials scientists in reliable
and interpretable manner.

Domain Knowledge & Grounded Reasoning: Earlier ef-
forts on MatSci information extraction relied on rule-based
(e.g. regex) approaches and domain-specific training. These
approaches, however, could rarely scale beyond the specific
materials family studied as described in Appendix A. Re-
cent research efforts have yielded progress towards infusing
MatSci domain knowledge into LLMs to solve text-based
tasks. Early work, such as Walker et al. (2021); Gupta et al.
(2022); Huang & Cole (2022) focused on training BERT
(Devlin et al., 2019) architecture on domain-specific text
corpora relevant to MatSci. A detailed analysis of these
and other scientific language models by Song et al. (2023a)
revealed that domain-specific pretraining did infuse the lan-
guage models with relevant materials knowledge showing
the importance of building high-quality MatSci language
datasets. Recent works by Song et al. (2023b) and Xie et al.
(2023) showed that instruction fine-tuning leveraging com-
mercial scale LLMs can further improve performance on
MatSci language tasks. While this suggests that practical
MatSci knowledge can be extracted from today’s commer-
cial LLMs (e.g., GPT-3.5, Claude and GPT-4) their under-

standing of MatSci remains incomplete as shown by Zaki
et al. (2024). As we discuss in Section 2, grounded reason-
ing over materials science principles remains a challenge.

Augmenting Materials Scientists: Research work in this
direction has been primarily limited to adjacent domains, in
particular chemistry. Jablonka et al. (2023) showed different
applications of LLLMs across diverse chemistry tasks, and
Bran et al. (2023) and Boiko et al. (2023) provided exam-
ples of how a tool-agumented GPT-4 can perform real-world
experimental planning and execution based on user queries.
While such works show great relevance to MatSci, they are
incomplete in addressing the vast diversity of knowledge and
scientific tasks in MatSci, thereby falling short on the crite-
ria needed to be considered MatSci-LLMs. One concrete
difference between chemistry LLMs and MatSci-LLMs, for
example, is the fact that [UPAC names in chemistry make
the identification and tracking of molecular structures sig-
nificantly easier. As discussed in Section 3, the materials
domain contains much greater diversity including periodic
crystal structures, surfaces, nanostructures, metals and al-
loys, and disordered materials like glasses, limiting the de-
gree of systematization that can be achieved for indexing
these materials with natural language.

1.2. What is needed for MatSci LLMs?

To fully unlock the power of LLMs for materials discovery,
further progress is needed along the following directions.
1. Hypothesis Generation Grounded on MatSci Knowl-
edge: MatSci-LLMs require understanding of diverse
MatSci knowledge and the ability to reason over core do-
main principles. This will enable MatSci-LLMs to answer
queries of domain-specific questions and generate useful
hypotheses that can be verified with real-world experiments.
Modern LLMs struggle to provide well-reasoned answers
that reference relevant supporting evidence for in depth ques-
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tions. While ongoing progress highlights the capability of
modern LLMs to provide relevant MatSci knowledge (Song
et al., 2023b), clear gaps remain (Zaki et al., 2024).

2. Multi-Modal MatSci Datasets: To enable MatSci-
LLMs to capture the true extent of human knowledge of
MatSci, we require large-scale, high-quality, multi-modal
datasets based primarily on peer-reviewed MatSci publica-
tions. Much of the knowledge in the MatSci literature is
contained in tables, figures and other modalities that express
important materials properties and behavior in addition to
the physical and chemical relationships that underlie them.
Additionally, modern LLMs still struggle to understand
domain-specific MatSci language and effectively process
MatSci notation, including chemical formulas and mathe-
matical formulas expressed in line with other text.

3. Real-World Materials Design: Connecting MatSci-
LLMs to real-world simulation and experimental tools in
creative ways can comprehensively accelerate materials de-
sign, synthesis and analysis by enabling end-to-end automa-
tion. As described in Section 5, MatSci-LLMs can provide
powerful human-machine and machine-machine interfaces
for increased automation in MatSci research, as well as
commercial materials production. Recent work in chemistry
LLMs (Bran et al., 2023; Boiko et al., 2023) has shown
promise in deploying tool-augmented LLMs in for end-to-
end materials design tasks driven by text-based user input.

2. Failure Cases of LLMs in MatSci

While recent work has shown great promise in applying
LLMs to materials science and adjacent fields, it is impor-
tant to understand the limitations of LLMs on a broad set
of challenges in the MatSci domain. To this extent, several
efforts have focused on tasks related to question-answering,
code writing, named-entity recognitions, abstract classifi-
cation, and composition extraction from tables in materials
literature (Zaki et al., 2024; Gupta et al., 2023; Song et al.,
2023b;a). Here, we outline some of the failure cases demon-
strating the need of developing robust MatSci-LLMs before
deploying them for practical applications.

Proficient LLMs such as GPT-4 (Achiam et al., 2023) and
LLaMA-2 (Touvron et al., 2023) are trained on vast corpora
of publicly available text data (Computer, 2023). Accord-
ingly, commercial LLMs should have had some reasonable
exposure to the MatSci domain based on the wikipedia and
other public domain information on MatSci. To evaluate
the MatSci domain knowledge of LLMs, Zaki et al. (2024)
curated a dataset of 650 questions requiring undergraduate-
level knowledge to answer them. The analysis of the re-
sponses from LLMs revealed that GPT-4 with chain-of-
thought (CoT) (Wei et al., 2022) reasoning performed the
best with a score of 62% accuracy. Interestingly, GPT4-
CoT performed the worst in numerical type questions with
a score of only 39%. This suggests that present LLMs per-
form poorly in identifying the correct equations, grounding

the context by substituting appropriate numerical values,
and subsequently solving the original question. Moreover,
a comparison of the performance of LLMs with human
performance in the same exam revealed that GPT4-CoT,
while outperforming other baselines, consistently obtained
only 50% of the top performing human and ultimately never
cleared the cutoff to pass the exams.

A task where LLMs are known to perform well is code
generation (Chen et al., 2021; Lai et al., 2023; Zan et al.,
2023). While code generation for chemistry tasks has
yielded mostly promising results as detailed in White et al.
(2023), Zaki et al. (2024) evaluated the performance of
LLMs on code generation tasks as well and found that GPT-
4 exhibited an accuracy of only 71% even in code writing
tasks related to MatSci. A careful analysis of the questions
and code-writing tasks where GPT4-CoT performed poorly
reveals two salient conclusions: (i) LLMs have difficulty in
solving complex numerical problems, not just because of
the complex arithmetic (which could potentially be solved
by translating the numerical question into code (Wu et al.,
2023b)), but because of their inability to ground the avail-
able data in the given equation. This includes wrong substi-
tution, incorrect conversion of units, and missing constants
while converting units (e.g., taking into account the speed
of light, Avagadro number, etc.). (ii) LLMs have difficulty
in understanding the information related to 3D structure.
Specifically, the crystal structures and the symmetries asso-
ciated with materials are misinterpreted leading to incorrect
conclusions. Zaki et al. (2024) observed these errors consis-
tently in both code generation tasks and question-answering
tasks for multiple LLMs.

To elucidate current LLM failure cases in MatSci, consider
the question below. “The materials belonging to which one
of the following crystal classes would be both piezoelectric
and ferroelectric: (A) 222 (B) 4mm (C) -1 (D) 2/m”. Here,
while (B) 4mm is the correct answer, GPT4-CoT suggests
2/m as the correct answer with the reasoning that “(D) 2/m:
This crystal class does not have a center of symmetry, which
means it can be piezoelectric. Additionally, it is a polar
crystal class, making it able to be ferroelectric as well.”.
However, this reasoning is incorrect—2/m is centrosymmet-
ric, and hence is not a polar crystal. Answering this question
requires the knowledge of crystal structures, which needs
to be grounded on the concept of polarity of atoms based
on the crystal structure. Although the LLM understands
this requirement, it performs poor reasoning and inference,
potentially due to the lack of such data during training.
Another example worth noting is the following question.
“The Miller indices of the first three Bragg peaks in the X-
ray diffraction pattern obtained from a polycrystalline iron
sample at room temperature are (A) (111), (200), (220)
(B) (100), (110), (111) (C) (100), (110), (200) (D) (110),
(200), (220)”. While the correct answer is (D), GPT4-CoT
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suggests (C) as the answer, based on the reasoning that “sys-
tematically listing all possible combinations of h, k, and
I, and identifying those that satisfy the BCC selection rule
(h + k + [ = even), we get the following allowable Miller
indices as: (100), (110), and (200)”. Howeyver, this is con-
tradictory as for the first Miller index (100) in the list, h
+k+1=1+0+0=1, which is odd and not even. Ac-
cordingly, while the understanding that the BCC selection
rule requires (h + k + 1) should be even is correct, the LLM
was unable to ground this concept correctly and suggest the
correct Miller indices. Ten such examples are listed in the
Appendix F, where we provide the question, the answer and
the reasoning provided by GPT-4, along with the correct
solution. We observe consistent mistakes made by GPT-4
in numerical errors and reasoning inconsistencies both in
conceptual MatSci questions and in MatSci code generation
tasks. These observations strongly suggest that LLMs need
to be exposed to more domain-specific information and de-
velop greater reasoning capabilities for them to be usable
for any real-world application in this domain.

LLM reasoning difficulties extend beyond the MatSci do-
main, including in general language tasks (BehnamGhader
et al., 2023). Given the great importance of reasoning abili-
ties to formulate and test scientific hypothesis, this remains
a major gap in the development of MatSci-LLMs which also
has implications for the broader LLM community. While
LLMs have shown promise in solving concrete planning
tasks, such as retrosynthesis planning (Boiko et al., 2023;
Bran et al., 2023), and executing code-based functions as
part of a greater workflow (Buehler, 2023; Yoshikawa et al.,
2023), LLMs still rely on human intervention and correc-
tion in many cases. In addition to greater robustness, future
LLMs can also benefit from greater interpretability to ac-
celerate hypothesis testing and enable scientists to better
understand the various aspects of the system they are inter-
ested in. This is especially important in MatSci where many
experimental procedures can expose valuable information
about the underlying material properties and behavior under
diverse settings, which in turn can inform broader under-
standing of fundamental physical and chemical relationships
of the underlying material system.

3. Grounding LL.Ms in Domain-Specific
Language in MatSci

The MatSci domain requires great technical depth and
breadth due to the field’s broad technical scope that inter-
faces with physics, chemistry, biology, and various engineer-
ing disciplines. Hence, MatSci presents unique challenges
for knowledge acquisition for domain-specific language
models. While some of the challenges, such as domain-
specific notations, are unique to MatSci, others have a broad
intersection with multiple machine learning fields, such as
multi-modal information extraction involving text, images,

and video.

Domain-Specific Notations: Unlike IUPAC (Hellwich
et al., 2020) nomenclatures in chemistry, there exist no
standard notations for MatSci; for instance, NaAlSi5Osg,
Nay0.Al503.2Si04, Si02—0.5Na;0-0.5A1,03 all repre-
sent the same material in different contexts. Moreover,
several common domain-specific names represent materials,
including soda and lime, for NayCO3 and CaCOs, respec-
tively. Furthermore, some sub-domains, such as cement,
employ their own chemical notations that are contradic-
tory with the general chemistry notation; C-S-H represents
calcium silicate hydrate in cement chemistry, whereas, in
standard chemistry notation, it represents carbon, sulfur,
and hydrogen, respectively. Similarly, there are several in-
consistent abbreviations used in the literature to refer to
properties in MatSci. These abbreviations are sometimes
specific to a given document or can also be present in mul-
tiple documents. Thus, understanding these notations re-
quires grounding the LLMs in different domains with the
right context.

Incomplete Descriptions: Research publications regularly
refer to previous works in the text to omit specific infor-
mation. This is exemplified by the sentences such as “the
fracture simulations were carried out using an established
methodology as outlined in Griffith et al.”’; a common prac-
tice in the MatSci literature. Such approaches are also ex-
tremely common when reporting experimental or simula-
tion protocols, material compositions, syntheses, and testing
conditions, and optimizing process parameters. The context
of the work reported in a manuscript, in this case, is thus
grounded in a different manuscript. Moreover, the descrip-
tions can occasionally be highly non-linear while referring
to different sources in an extremely complicated manner.
Finally, there could be a reference to the manuals of differ-
ent instruments and material sources, which are described
elsewhere. Thus, an LLM needs to procure information
across multiple sources and process it together in the proper
context to create a sequential description of the process and
the related analysis that was carried out.

Text-to-Structure: MatSci employs text to represent sev-
eral 3D or 2D structures in different ways. For instance,
the crystal structures are represented using the Wyckoff
positions (Aroyo et al., 2006) <4mm in crystallography rep-
resents a crystal structure, whereas, in general literature,
it might be confused with a distance metric (millimeter).
Moreover, crystals are represented using a widely used for-
mat known as crystal information file (CIF), which explains
the details of the crystal along with the positions of the
atoms as shown in Appendix E with a CIF of Silicon. Cur-
rent LLMs are unable to read, interpret, or generate CIF
in their entirety, which is a strong limiting factor for novel
materials discovery. Similarly, there are several other ap-
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proaches to represent the 3D structure using text, such as
XYZ files or other software-specific files for diverse pur-
poses. As such, the ability of LLMs to understand such files
plays a crucial role in the materials domain. Recent work by
Gruver et al. (2023) shows that LLMs can generate correct
CIF-formatted materials with targeted fine-tuning but fail to
provide context describing important details of the CIF file.

Multi-Modal Information Extraction: Text and Tables:
Pertinent information for materials in peer-reviewed papers
are generally represented using multiple modalities, includ-
ing text, tables, figures, and videos—audio is rarely used,
although not absent. Significant progress has been made
in effectively extracting tabular information (Gupta et al.,
2023; Zhao et al., 2023; Zhao & Cole, 2022) with work
still remaining on how to best make use of extracted data
to infuse the underlying knowledge of the tables into lan-
guage models. Extraction can be particularly challenging
for property-based data, which often includes numbers that
map to various scientific units. A simple exercise on infor-
mation extraction from tables revealed that GPT-4 was able
to extract only ~ 55% of materials properties from a table
(Zaki et al., 2024) in contrast to ~ 73% by a model trained
for the task (Gupta et al., 2023). This problem is amplified
by the fact that more than 80% of material compositions and
properties are reported in tables (Hira et al., 2023). Finally,
in several cases, table information is incomplete, even when
read together with the caption. For instance, when reporting
the composition of Magnesium alloys, many tables in re-
search papers report the values of all the components other
than Magnesium in a given alloy. Thus, the percentage of
Magnesium in these alloys needs to be computed as 100-
(the sum of reported elements in the tables for a given alloy).
Such a task requires grounding the table information along
with the text and then performing the necessary arithmetic
to obtain the percentage.

Multi-Modal Information Extraction: Text and Figures:
Materials are characterized by many experimental methods
such as Raman analysis, X-ray diffraction (XRD), X-ray flu-
orescence, scanning electron micrographs, or atomic force
microscopy, the results of which are represented in figures.
Such information could include the visual representation
captured by the measurement technique, such as an optical
micrograph or a plot that summarizes this information, as
in the case of XRD patterns. Moreover, this information
will be elaborated briefly in the figure caption, followed by
a detailed explanation in the text. A sample text from a
materials literature could be as follows: “The XRD patterns
shown in Figure XY(a) suggest that the sample is amorphous
and does not have any crystalline content. Further, the XRF
in Fig. XY(b) reveals the presence of clustering of Calcium
instead of a uniform distribution”. In this particular case,
the text and figure need to be interpreted together. Moreover,
the specific aspects of the image that allow one to interpret

it, such as the clustering of calcium or the specific feature
of the XRD patterns, allow a researcher to identify that the
material is amorphous and is not labeled. In order for the
LLM to learn these aspects, a large number of images and
aligned text are needed for joint training.

Multi-Modal Information Extraction: Text, Figures, Ta-
bles, and Videos: Additional modalities of presenting rel-
evant information involve a combination of text, figures,
and tables. In such cases, the information from the table
should be read along with the figures while grounding the
reasoning in the context of the manuscript, all of which fur-
ther compound the cumulative importance of multi-modal
information extraction. Occasionally, additional modalities,
such as audio-visual files, are used to demonstrate material
response. This includes material failure modes illustrating
cracks, crystal growth, thermal response, the response of
actuators, and simulations, amongst others. In this case,
there are additional challenges that require the training of
LLMs to properly link the information in video, figures, text,
and tables. These are open problems for which the commu-
nity may need to develop novel methods and architectures.
While these challenges are far from exhaustive, we note that
the tasks mentioned here reveal novel domain-specific prob-
lems whose solutions can have a potentially strong impact
on other scientific and machine learning domains as well.

3.1. Context Across Multiple Documents & Sources

Most of the information generated through scientific inquiry
is documented and communicated through natural language
in peer-reviewed publications. Understanding this text —
and potentially extracting the information — presents sev-
eral unique challenges distinct from other domains (Hira
et al., 2023). One of the major challenges in this regard
includes understanding the importance of context across
multiple documents and sources of information. As high-
lighted above, this is additionally complicated by the fact
that a given material can have multiple correct names and
designations, meaning that important information can be
contained across all of the names for a given material. Hav-
ing unique IUPAC-style naming conventions can accelerate
the deployment of LLMs as observed in chemistry (Jablonka
et al., 2023), yet this is often not sufficient to capture all the
relevant details needed to fully understand materials proper-
ties and synthesis leading to the development of additional
data initiatives to fill that gap (Kearnes et al., 2021; Mer-
cado et al., 2023). Hence, while proposing an IUPAC-style
naming convention might seem like a natural solution to
aid the deployment of LLMs in MatSci, many proposals of
such conventions have previously fallen short, given the vast
diversity of the field.

3.2. Diverse Experimental and Simulation Procedures

While understanding context is the first step toward auto-
mated discovery, the next natural step is to identify the
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appropriate experimental or simulation protocols relevant
to the context. There is a multitude of experimental and
simulation procedures that can be used to evaluate the same
objective. As such, understanding them and choosing the
relevant one or a set of relevant experiments is a challenging
task, which requires domain-specific information and rea-
soning. Early works have shown some promise in providing
useful tools for creating synthesis procedures of specific
materials (Olivetti et al., 2020; Jensen et al., 2021), but
much work remains in effectively deploying LLMs for these
tasks. Additionally, understanding experimental MatSci
procedures provides additional challenges given the diver-
sity of synthesis, characterization techniques across data
modalities (e.g., phase identification using X-ray diffrac-
tion, spectroscopic techniques), and processing conditions
that can be observed across materials design use cases even
within similar materials classes (see App. D for a detailed
discussion). Similarly, effective insilico design and filtering
of materials requires accurate simulations, and the inabil-
ity to generate the correct codes grounded in the context
can make this task challenging. This is exemplified by the
mistakes in the code generation tasks where the LLMs are
unable to either ground the concept correctly or the gener-
ated code exhibits numerical errors. Thus, it is imperative
that large amounts of curated and complete data associated
with simulation and experimental procedures are used to
train effective MatSci-LLMs.

4. Multi-Modal MatSci Corpus Building

The performance of a language model heavily depends on
the quality of the dataset on which they are trained on. Thus,
dataset creation remains an integral part in enabling progress
across various deep learning subfields, including computer
vision, graph learning, as well as natural language in both
general and scientific domains. Given the vast amount of
MatSci information expressed in diverse modalities, multi-
modal language models would unlock significantly more
powerful capabilities for scientific language modeling.

The gold standard data for training these LLMs for MatSci
is mostly contained in peer-reviewed publications at estab-
lished editorials, such as the family of journals at Else-
vier, Royal Society, American Society, and Springer Nature
amongst others. Unfortunately, much of the content of
peer-reviewed publications at established journals remains
inaccessible beyond paywalls limiting public access, which
makes it difficult to access these valuable text data. Ac-
cordingly, it is unlikely that any general-purpose language
models, such as GPT-4 or LLaMa, have had access to this
data, which likely contributes to their poor performance on
MatSci tasks highlighted in Section 2. While there have
been promising developments in making scientific text data
available via open access through various preprint servers
and portals like Semantic Scholar, text data obtained from

such sources often requires extensive cleaning and prepara-
tion processes before becoming useful for training scientific
LLMs (Lo et al., 2020). Research work in making text data
more accessible has already produced meaningful results
in making language model training and evaluation more
successful (Song et al., 2023a;b). However, curating such
data on which an LLLM can be trained requires addressing
additional data-related challenges described below.

1. Data Availability: While families of journals such as
Elsevier and Springer provide text and data-mining APIs
based on paid subscriptions, machine-readable formats such
as xml files are available only for manuscripts published
in the 21st century. Our analysis of MatSci-related articles
in Springer and Elsevier journals revealed that ~ 6 million
peer-reviewed articles with a total of ~ 20 billion words are
available in a machine-readable format through institutional
subscriptions (see Appendix C). While this corpus is signif-
icantly smaller compared to general language LLMs, the
quality and domain relevance is significantly higher. Nev-
ertheless, almost all the publications from the 20th century
or earlier are only available as PDFs or scanned files of the
hardcopy publication which are not easily machine-readable.
Thus, a vast amount of data representing the cumulative sci-
entific endeavor before the 21st century is not available for
LLM training. Additionally, many other families of peer-
reviewed journals do not either allow text and data mining or
have a framework to support it. Data sourced from preprint
servers, such as arXiv, often require extensive cleaning to
make them amendable to LLM training.

2. Large-Scale Description & Annotation: While pretrain-
ing does not require annotations, several downstream tasks
require high-quality annotations for finetuning the model
or employing it using in-context or few-shot learning. This
is particularly important when data is obtained from multi-
ple sources and in multiple modalities, such as tables, text,
images, videos, and codes. For instance, a CIF document
of Silicon should have a detailed description of what infor-
mation is contained in the file so that the LLM can learn
to interpret the information in the CIF in addition to under-
standing its format. However, such large-scale annotations
are currently unavailable and would require input from do-
main experts for them to be reliable. Given these challenges,
to ensure scalable dataset generation, we propose:

1. Distant Supervision: Here, sparse supervision signals
are used to alleviate the amount of high-quality annota-
tions required. This has shown promise in data extraction
(Gupta et al., 2023) and can be applied along with exist-
ing materials databases, such as the Cambridge Structure
Database (Groom et al., 2016). 2. In-Context Learning:
General purpose LLMs, such as GPT4, exhibit excellent
in-context learning capabilities. Thus, prompt engineer-
ing along with in-context learning can be used to generate
high-quality training data. Song et al. (2023b) demonstrated
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this approach for instructions-based finetuning of an LLM
for materials science tasks. We provide several examples
of composition extractions detailed in Appendix G, which
show some of the capabilities and gaps of in-context learn-
ing for GPT-4.

3. Domain-Specific Regex can also be very useful in de-
veloping high-quality training data. Robocrystallographer
(Ganose & Jain, 2019), for example, is a regex-based ap-
proach that can produce a textual description for a CIF file.
Similarly, ChemDataExtractor (Swain & Cole, 2016) em-
ploys a regex-based approach for chemical data extraction.
Regex tools, along with LLMs and distant supervision, com-
prise promising methods for scalable data generation and
materials design challenges discussed in Appendix B.

3. Linking Multiple Entities: While obtaining data on mul-
tiple entities is possible, linking them appropriately so they
can be read together with relevant context is a non-trivial
task. For instance, the description of a figure or a table in
a manuscript could be spread across multiple paragraphs
and even the supplementary material. This is in contrast to
standard machine learning approaches where a figure and
description are given together while training. Thus, devel-
oping a dataset that links multiple entities appropriately and
employing an appropriate training scheme that respects the
dataset and the context remains an open challenge for the
research community.

4. Handling External References: Another major chal-
lenge while curating a dataset based on peer-reviewed pub-
lications relates to the use of external references. In a
manuscript, references to multiple documents will be made
to either support the claims made in the current work and
thereby base the manuscript to be read in the context of the
referred work. In other words, information in the present
manuscript is grounded on the claims or observations in
the referenced manuscript, which in turn is grounded in its
own references. Dataset and training schemes developed
to train a MatSci-LLM should respect this fact to reduce
hallucinations and provide well-reasoned, executable hy-
potheses. It is also worth noting that several LLMs often
hallucinate when asked for references. Furthermore, when
asked to generate a text in the form of a scientific manuscript,
these LLMs generate fictitious references which are arbitrar-
ily written to fit sentences generated in the process. This
motivates the need to appropriately account for external ref-
erences in the training data.

Altogether, these challenges suggest that the development
of a dataset for MatSci-LLMs requires close collaboration
between multiple entities, including publishers, government,
industry and academia. While development of high-quality
datasets are indeed challenging, employing some of the
aforementioned approaches along with the development
of new methods for managing sparse datasets can spark
research for novel solutions that effectively manage data

sparsity in the MatSci domain. Moreover, MatSci-LLMs
warrant machine learning solutions for several new chal-
lenges such as: (i) handling old and non-machine readable
data through computer vision techniques that can convert the
scanned documents to text respecting the original formats,
and (ii) novel machine learning methods that can handle
external references and multi-modal data that are linked to-
gether across different contexts. Such solutions could have
implications beyond the MatSci domain, such as analyzing
old documents relevant to the history, law, and finance.

5. MatSci-LLMs Roadmap

Figure 2 shows our proposed outline of an end-to-end ma-
terials discovery framework with MatSci-LLM at the core.
Each part of the roadmap contains diverse research opportu-
nities building towards performant MatSci-LLMs.

BRIy

Data Retrieval Materials Design
MatSci
7 _: P @
Materials Query b - .
Insilico Evaluation
LILM

Experiment Execution Experiment Planning

Figure 2. Roadmap of a Mat-Sci LLM based materials discovery
cycle. The cycle starts with materials query from a researcher
that specifies desired properties or an application. The MatSci-
LLM then draws from external and internal knowledge bases to
generate a materials design hypothesis which is evaluated in-silico.
Next, the MatSci-LLM ingests the in-silico results and prepares an
experimental plan to synthesize and characterize the material, after
which the MatSci-LLM interfaces with the relevant machines to
execute the experimental workflow. The final result is then shown
to the user for evaluation and feedback. Each stage can interact
with another for refinement and improvement by the MatSci-LLM.

1. Materials Query: Materials queries may span diverse
user queries, such as, “Suggest potential candidate materials
for Li-solid state battery electrolytes”. Alternatively, more
complex queries may require the MatSci-LLM to gener-
ate hypotheses based on presented experimental data, a text
document or a combination of multiple such sources. As pre-
viously described, hypothesis generation remains an open
research problem for MatSci-LLMs and may require interac-
tion with other steps in the roadmap. Thus, materials query
refers to the initial stage where the problem identification
is performed either manually or through an LLM, present-
ing a research opportunity for novel, specialized querying
methods. Emerging work may also build on top of novel
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human-machine interfaces for designing complex materials
systems (Kanarik et al., 2023; Vasudevan et al., 2022) that
enable greater efficiency and faster scientific understanding.
2. Data Retrieval: The second step toward materials discov-
ery is to exploit the existing knowledge from MatSci-LLM
internal and external knowledge bases. External knowledge
includes databases of diverse materials properties (e.g., com-
position—structure—properties), unstructured data from text,
or images, or a combination thereof that capture diverse
aspects of the materials simulation, synthesis and charac-
terization pipeline. The vast amount of publications and
knowledge sources makes it non-trivial to extract such in-
formation. As such, externalizing the knowledge of MatSci-
LLMs could be useful. Recent works by Cox et al. and
Buehler (2024) have shown that intentional use of LLMs
has the potential to broaden the availability of useful sci-
entific knowledge by externalizing domain-specific LLM-
knowledge in a structured, human-interpretable manner.
Cox et al. generated annotations for a database of > 15, 000
protein-codings using robust methods that rely on citations
and cross-checking of the generated information against
the scientific literature. Buehler (2024) and Venugopal &
Olivetti (2024) externalized LLM knowledge in a structured
knowledge graph, which can be probed by a scientist to
further their understanding and potentially make corrections
and adjustments as needed. Future work can build on top
of these early approaches leading to more reliable retrieval
methods along with creating interpretable MatSci-LLMs.
3. Materials Design: Based on the query and retrieved
information, MatSci-LLMs may directly generate structures
based on CIF files (Gruver et al., 2023; Flam-Shepherd
& Aspuru-Guzik, 2023; Antunes et al., 2023) or in com-
bination with current graph or point-cloud based genera-
tive methods (Xie et al., 2021; Jiao et al., 2023; Merchant
et al., 2023). As shown in Zeni et al. (2023); Govindarajan
et al. (2023), conditional materials generation is a promising
approach for designing materials with specific properties,
where the properties can also be predicted based on the tex-
tual description (Rubungo et al., 2023). The rapid progress
on generative modeling techniques in adjacent fields such
as computer vision, as well as the vast space of unsolved
materials problems, such as designing complex real-world
systems with multiple structures, provides great opportuni-
ties for future research work.

4. Insilico Evaluation: Code generation abilities can enable
tool-agumented MatSci-LLMs to execute complex simula-
tion workflows to evaluate materials designs. Recent work
by Buehler (2023) shows a possible example of how LLMs
can be integrated with relevant tools to perform end-to-end
insilico design of polymer materials where an LLM can gen-
erate a new molecular compound in SMILES notation and
then query different LLM-based agents to perform relevant
calculations for the same materials. Further examples in
Buehler (2023) show how the LLM system can also set up

the relevant computation environment by installing relevant
packages, showing further benefits of end-to-end tool inte-
gration. While many of these systems have not yet been
tested at large scales, this represents a great step forward in
constructing impactful MatSci-LLMs. Whereas recent work
provides many reasons to be optimistic about LL.Ms capa-
bilities to solve concrete in-silico MatSci problems, much
published work fails to include negative results outlining
current LLM failures. As such, it is important to continue to
have broader analysis of LLMs’ capabilities for code gener-
ation in MatSci similar to Zaki et al. (2024), which can point
to relevant research directions for more robust integration
of MatSci-LLMs into materials simulation workflows.

5. Experiment Planning: Following insilico evaluation,
the next step involves the development of experiment plan
to synthesize and characterize the materials. LLMs have
shown promise in automating simple laboratory experiments
(Boiko et al., 2023; Bran et al., 2023), while adjacent work
aims to build necessary infrastructure for autonomous lab-
oratories that perform experiments without human inter-
vention (Sim et al., 2023; Szymanski et al., 2023). The
selection of synthesis and characterization remains highly
non-trivial and depends significantly on the material sys-
tems, length and time scales, and the properties of interest
(see App. D). As such, further research is needed to have
MatSci-LLMs effectively identify realistic, detailed, and
executable experimental procedures informed by the con-
straints of state-of-the-art technology and user needs. More-
over, the development of effective digital twins for different
synthesis procedures will be immensely valuable for insilico
testing and refinement of experimental plans. As described
in Appendix A, data mining approaches sometimes provide
useful directions for targeted use cases, but still require large
amount of expert intervention, making them unsuitable for
large-scale use.

6. Experiment Execution: The actual execution of the
experiments require identification of the relevant commands
and the sequence in which these should be given. This also
involves intermediate analysis and appropriate modification
of the protocol according to the real experimental condi-
tions at a given time. For instance, melting of a silicate
system would require continuous strirring until the system
is bubble free; a standard protocol while preparing glasses.
Thus, MatSci-LLMs should be able to make and change
the plans dynamically as per the actual conditions of the
experiment. Recent work by Yoshikawa et al. (2023) shows
that LLMs can provide practical interfaces that more ef-
fectively connect scientists to robotic systems to perform
chemical tasks. Current capabilities, however, are still in
their early stages with significant future work needed to
create robust control methods for a single machine, as well
as machine-to-machine communication capabilities.
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6. Conclusion

The virtuous cycle show in Figure 2 has the potential to
enable impactful scientific discoveries through end-to-end
automation while concurrently augmenting human knowl-
edge through the discovery of new physical and chemical
relationships for an expanding set of materials. The unique
challenges of deploying LLMs in MatSci oulined in this
paper, however, require further research to make MatSci-
LLMs effective scientific assistants. Meaningful research
advances will require advances along the interface many
fields, including machine learning, materials simulation,
materials synthesis, materials characterization and robotics.

7. Broader Impact

Among the 17 sustainable development goals (SDGs) pro-
posed by United Nations, 10 can be achieved or accelerated
through materials innovation. The development of an end-
to-end framework for accelerating materials discovery can
have broader impacts in several domains such as healthcare,
agriculture, energy, sustainability, water filtration, and car-
bon capture, to name a few. Traditional materials discovery
remains an extremely slow process often taking a period
of 20-30 years from starting a design to final deployment.
Al-driven materials discovery has a potential to reduce this
cycle to a few years or even months, thereby providing a
means to address major societal-scale challenges. Moreover,
the availability of cloud computing and web services can
make this process extremely efficient and economical lead-
ing to democratization of materials discovery. This could
reduce the gap between large corporations and small and
medium scale industries allowing materials discovery with-
out the availability of large lab facilities and vast R&D bud-
gets. While Mat-Sci LLMs have great promise in reducing
the cost and democratizing materials discovery, great care
must be taken to ensure that MatSci-LLMs and all related
technologies be used in an ethical and harm-limiting manner.
As such, we propose the following framework to reduce the
risk of potentially harmful deployment of MatSci-LLMs:

1. Transparency: Encouraging sharing of models,
datasets, and research methodologies to promote trans-
parency, replication, and validation of findings by
the broader scientific community is key to ensure
risk mitigation. This approach facilitates peer review
and enables independent verification of results and
claims. Further, maintaining comprehensive logs of
data sources, model training processes, and decision-
making pathways should be encouraged to ensure ac-
countability and traceability.

2. Risk Assessment: Developing methodologies for as-
sessing the risks associated with the application of
LLMs in MatSci, focusing on both direct impacts (e.g.,

safety of newly discovered materials) and indirect im-
pacts (e.g., environmental effects of scaled produc-
tion) is of paramount importance. Further, systems
should be established for ongoing monitoring of the
outcomes and impacts of materials discovered or op-
timized through LLMs to identify and address unfore-
seen risks promptly.

3. Regulatory Compliance & Standardization: Guide-
lines that address the unique challenges and risks asso-
ciated with using LLMs in materials discovery should
be created and enforced by governing agencies. Fur-
thermore, standards should be developed for data rep-
resentation, algorithms, and model transparency to fa-
cilitate oversight and ensure quality and reliability.

4. Education & Training: Education and training pro-
grams that integrate ethics, environmental science, sus-
tainability, and Al should be developed to prepare a
workforce capable of navigating the complexities of
using LL.Ms in materials discovery. Additionally, di-
alogues and knowledge exchange between scientists,
policymakers, industry stakeholders, and the public to
build understanding and trust in Al-driven materials
discovery should be facilitated. A noteworthy aspect
that requires discussion is the tendency of LLMs to
hallucinate. It is important to educate the issues asso-
ciated with hallucinations in LLLMs and how this can
have impact on the task that it is applied for.

One example where MatSci-LLMs could cause unintended
harmful consequences relates to the use of natural resources.
One can imagine a case where new materials discoveries
could put greater demand on minerals that were previously
unterutilized. This, in turn, could result in significant im-
pacts on the local communities and the surrounding ecosys-
tem and would therefore require action at policy level to
avoid inadvertent consequences.
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A. Text-Based Methods in Materials Science Before LLMs

Early work applying text-based methods to materials science largely focused on text-and-data mining. While much progress
has been made to enable data mining, many of the challenges data-mining identified in early work by Kononova et al.
(2021) still remain. One particularly common task for early text-mining methods was mining text for the purpose of
predicting synthesis procedures based on peer-reviewed literature (Kim et al., 2017; 2020). While the deployment of targeted
text-mining techniques was successful in developing targeted synthesis procedures for a subset of materials systems, the
proposed approaches did not provide scalable solutions to a diversity of materials design challenges (Ravinder et al., 2021)
(see App. D for additional discussion).

In addition to text-mining, early work also focused on classifying the text in materials science publications according to
their semantic meaning, which is similar to named-entity-recognition (NER) in traditional language processing (Gupta et al.,
2022; Walker et al., 2021). As studied by Song et al. (2023a), specialized BERT models perform quite well on common NLP
tasks for materials science, assuming labeled data exists. This, however, is not scalable given the sparsity of labeled data in
materials science. Ensuing information extraction methods, such as ChemDataExtractor (Swain & Cole, 2016) spanned
different modalities of data, including scientific text, property data, spectroscopy data, as well as tabular data. Additional
efforts were also used to extract information related to images (Venugopal et al., 2021; Zaki et al., 2022b; Mukaddem et al.,
2019), which were then used to create either databases or to even extract features (Mukaddem et al., 2019; Zaki et al., 2023).
While specialized methods continue to improve the performance of data extraction for applicable modalities in materials
science (Gupta et al., 2023), the advent of LLMs has led to a more unified and reliable way to arrive at reliable information
extraction (Dagdelen et al., 2024). As described in Dagdelen et al. (2024) and in Section 4, in-context learning abilities of
modern LLMs are a powerful tool to accelerate the abilities to process and extract information in materials science text.
While further research is needed to improve such methods, they represent significant progress that enables new research
opportunities discussed in this paper.

B. MatSci-LLM Tasks

A set of tasks for MatSci-LLMs to perform spanning the six steps specified in the roadmap in Figure 2.

Roadmap Step MatSci-LLM Tasks References

1. Materials Query Prompting

Human-Machine Interfaces

RAG

(Vasudevan et al., 2022)

2. Data Retrieval

Externalizing Knowledge (Buehler, 2024; Venugopal & Olivetti, 2024)
(Gruver et al., 2023; Flam-Shepherd & Aspuru-Guzik, 2023)
(Zeni et al., 2023; Govindarajan et al., 2023)
(Rubungo et al., 2023; Jablonka et al., 2023)

(Zaki et al., 2024)
(Bran et al., 2023; Boiko et al., 2023)
(Sim et al., 2023; Szymanski et al., 2023)

(Yoshikawa et al., 2023)

3. Materials Design Text-Based Design

Generative Model Tools

4. Insilico Evaluation Predictive Modeling

Code Generation

5. Experimental Planning Task Automation

Task Planning

. . Machine-to-Machine Interface
6. Experimental Execution

Real-Time Data Monitoring

Table 1. MatSci-LLM tasks based on the roadmap identified in Figure 2.
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C. Materials Science Journals

journal papers word_count
Journal_of_Alloys_and_Compounds 66829 238537453
Science_of_The_Total_Environment 59490 354781803
Applied_Surface_Science 51627 191223396
Chemical_Engineering_Journal 42530 228873825
International_Journal_of_Hydrogen_Energy 39913 62269929
Journal_of_Biological_Chemistry 39370 9020708
Ceramics_International 37643 135734837
Journal_of_Cleaner_Production 37118 253572991
Chemosphere 36689 176012463

Electrochimica_Acta 34396 150818043

Food_Chemistry 33565 149308849
Nuclear_Instruments_and_Methods_in_Physics_Res... 32843 107224761
Materials_Science_and_Engineering:_A 32692 131945933
Materials_Letters 32352 50776687
Construction_and_Building_Materials 32032 176566669
Materials_Today:_Proceedings 29214 75989713
Chemical_Physics_Letters 29134 83262010
Journal_of_Power_Sources 29025 124779521
Journal_of_Magnetism_and_Magnetic_Materials 28963 78504883
Sensors_and_Actuators_B:_Chemical 28918 109397473

Figure 3. List of 20 MatSci journal publications with maximum articles published along with the number of articles and their associated
word counts that are available through publisher APIs for text mining.

Figure 3 shows the list of top 20 MatSci publications (in terms of the number of papers published). along with the number
of papers and the associated word count. These represent the manuscripts that are available for download through the
text-mining API. The complete list of journals are provided in https://anonymous.4open.science/r/LLM-B7FC/.

D. Materials synthesis and characterization

It is worth noting that automating materials synthesis and characterizing them is far from trivial as there is a huge diversity
for these, even among the same family of materials. From a traditional perspective, materials can be broadly classified in
metals, ceramics and glasses, polymers. Additionally, there are other material families including composites, nanomaterials,
alloys, biomaterials, to name a few. Further, these materials can exist in liquid, solid (both amorphous and crystalline),
or gaseous phases. Composites could also where multiple phases are present in a single system such as a gel, which is a
liquid in solid, or a colloid, which is a solid in liquid. Thus, the synthesis procedure can vary vastly such as melt-quenching,
sintering, annealing, sol-gel process to name a few. Characterizing the synthesized structure is also a problem, far from
trivial. For instance, for an amorphous material, XRD along with ICP-MS could be used to ensure the amorphous nature and
the precise composition. on the contrary, for a liquid system, this might not be appropriate. AFurther, the characterization
technique to be used for the material also depends on the nature of the property of interest and the length scale of interest.
For instance, hardness measured by nanoindentation, microindentation, atomic force microscopy, or a picoindenter can
yield significantly different results. Altogether, the diversity in these approaches suggest that it is nearly impossible to
build a one-size-fit-all solution to this problem. Rather, it should be customized for the material system of interest. Such
information should be at the disposal of the LLM so that it can suggest the appropriate experimental technique, plan it and
enable the execution.

15


https://anonymous.4open.science/r/LLM-B7FC/

Are LLMs Ready for Real-World Materials Discovery?

Addressing this challenge requires a comprehensive database of synthesis and characterization data of materials. One of the
efforts in this direction is the synthesis project. (Kim et al., 2017; 2020). There have been several other efforts to extract
processing and testing conditions of materials (Mysore et al., 2019; Venugopal et al., 2021; Zaki et al., 2022a), to name a
few. Recently, efforts have also been employed to use the textual data for predicting the corrosion of alloys by incorporating
the testing conditions (Sasidhar et al., 2023). These are some of the promising directions to pursue to have an extensive KN
system for the synthesis and characterization of materials. Note that these approaches employ classical natural language
processing. Combining these datasets along with LLMs could further enhance the usability of these approaches.

E. Crystal Information File of Silicon

The following represents a CIF document of silicon atom. The meta data includes the source based on which the CIF is
developed, that is, the journal publication details including author names, title of the paper, journal, vol, year and pages.
Further, the complete lattice parameters are also included in the file. data_global

_chemical name mineral ’Silicon’

loop-

_publ_author_name

"Kasper J S’

"Richards S M’

_journal _name_full 'Acta Crystallographica’

_journal _volume 17

_journal_year 1964

_journal_page_first 752

_journal_page_last 755

_publ_section_title

2

The crystal structures of new forms of silicon and germanium

14

_database_code_amcsd 0009282

_chemical_compound_source ’Synthetic’

_chemical formula_sum ’Si’

_cell_length.a 6.636

_cell_length b 6.636

_cell_length.c 6.636

_cell_angle_alpha 90

_cell_angle_beta 90

_cell_angle_gamma 90

_cell volume 292.226

_exptl_crystal density.diffrn 2.553

_symmetry_space_group-name_ H-M "I a 3’

loop-

_space_group-symop_operation_xyz

’ X,V,2 ’

"1/24+x,1/2+y,1/2+z'

"1/2+z,%x,1/2-y’

"+z,1/24+x, -y’

"1/2+z,-%,y’

"+2,1/2-%,1/2+y’

'—z,%x,1/2+y’

"'1/2-z,1/2+x,+y’

[ , =X, _yl
"1/2-2,1/2-%x,1/2-y’
"1/2+y,1/2-2z,-x"'
"+y,-z,1/2-x'
'—y,1/2-z,x’'
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"1/2-y,-z,1/2+x’
"1/2-y,2z,-x’'
'-y,1/24z,1/2-x'
Iy, Z,XI
"1/2+y,1/2+z,1/2+x’
'x,1/2-y,1/2+z"’
"1/2+%x, -y, tz’
'—-x,y,1/2+z’
"1/2-%x,1/2+y,+z’
'x,1/2+y,-2z’
"1/2+4x,+y,1/2-z"
I_X,_y,_zl
"1/2-x%,1/2-y,1/2-2z"'
"1/2-z,-x,1/2+y’
'—z,1/2-x,+y’
"1/2-z,%x,-y’
'—z,1/2+x,1/2-y’
"z,-%,1/2-y’
"1/2+z,1/2-x,-y’

’ Z,X,y’
"1/2+z,1/2+%, 1/2+y’
"1/2-y,1/2+z,x’
-y, +z,1/2+x’
'y,1/24+z,-x’'
"1/2+y,+z,1/2-x'
"1/2+y, -z, x’
"+y,1/2-2,1/2+x’
I_y,_Z,_XI
"1/2-y,1/2-z,1/2-x"'
'-x,1/2+y,1/2-z"'
"1/2-x,+y,-z’

'k, -y, 1/2-z"
"1/2+x,1/2-y,-z"'
r-x,1/2-y,z’
"1/2-%x,-y,1/2+z"
loop-
_atom_site_label
_atom_site_fract_x
_atom_site_fract.y
_atom_site_fract_z
_atom_site U_iso_or_equiv
Si 0.10030 0.10030 0.10030 0.01127

F. Mistakes in Q&A by GPT4-CoT

Following are some of the materials science questions where GPT4-CoT gave incorrect answers. We provide the detailed
question and answer provided by the GPT4-CoT, correct answer and the mistake in the solution (highlighted in red).

Question 1

The materials belonging to which one of the following crystal classes would be both piezoelectric and ferroelectric: (A) 222
(B) 4mm (C) -1 (D) 2/m

Correct: B, GPT4-CoT: D
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Solution by GPT4-CoT

To determine which crystal class would exhibit both piezoelectric and ferroelectric properties, we need to understand the
properties of each class and the criteria for displaying piezoelectric and ferroelectric behavior.

Piezoelectric materials: These materials generate an electrical charge when subjected to mechanical stress or strain. For a
material to be piezoelectric, it must not have a center of symmetry (also called a center of inversion). In other words, it
should belong to a non-centrosymmetric crystal class.

Ferroelectric materials: These materials possess a spontaneous electric polarization that can be reversed by an external
electric field. Ferroelectric materials must also lack a center of symmetry and fall within a polar crystal class, meaning they
have a unique polar axis.

Now, we can evaluate each crystal class:
(A) 222: This crystal class has a center of symmetry, so it cannot be either piezoelectric or ferroelectric.

(B) 4mm: This crystal class does not have a center of symmetry, which means it can be piezoelectric. However, it is
non-polar, meaning it cannot be ferroelectric.

(C) -1: This crystal class has a center of symmetry, so it cannot be either piezoelectric or ferroelectric.

(D) 2/m: This crystal class does not have a center of symmetry, which means it can be piezoelectric. Additionally, it is a
polar crystal class, making it able to be ferroelectric as well.

Thus, among these crystal classes, only class 2/m would be both piezoelectric and ferroelectric.
The correct answer is: [D].

Correct solution.
2/m is centro-symmetric, and hence it is not polar. In contrast, 4mm point group is polar.

Question 2 (Given: Universal gas constant, R = 8.31 J mol ' K !, Faraday’s constant, F = 96500 C mol~1). A half cell
consisting of pure Ni immersed in an aqueous solution containing Ni?* ions of unknown concentration, is galvanically
coupled with another half cell consisting of pure Cd immersed in a 1M aqueous solution of Cd?* ions. The temperature is
25°C and pressure is 1 atm. The standard electrode reduction potentials of Ni and Cd are -0.250 V and -0.403 V, respectively.
The voltage of the cell is found to be zero. The concentration(in micro molar) of N32* in the solution is

Correct answer: 6 to 7.3, GPT4-CoT: 0
Solution by GPT4-CoT

Given the standard electrode reduction potentials of Ni and Cd are -0.250 V and -0.403 'V, respectively. The cell voltage is
found to be zero, which means the overall reaction is in equilibrium. We can use the Nernst equation to find the concentration
of Ni?* in the solution.

The Nernst equation is as follows:
E=E"—1mQ

where, F is the cell voltage, E° is the standard cell voltage, R is the universal gas constant, T is the temperature in Kelvin,
n is the number of moles of electrons transferred in the reaction, F' is Faraday’s constant, and () is the reaction quotient.

Since the cell voltage is zero, the Nernst equation becomes:

0=EY; — Egy— 15 InQ

Before plugging in the known values, we need to convert the temperature to Kelvin:
Temperature (T) = 25°C +273.15=298.15K

Now we can plug in the values:

0 = (—0.250) — (—0.403) — S3LX298.15 1) ()

5 385 —4
0 =0.153 — 24685x10_ 15,
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Solve for Q:
_ _ 0.153x2
InQ = 536s5%10-7

In Q = 1239.5083

Take the exponent of both sides:
Q = ¢1239.5083

Since the cell reaction is:

Ni** + Cd = Ni+ Cd**
The reaction quotient Q is:

2+
Q= ﬁfz#

Given that the concentration of C'd?t is 1M:
1= lee] 1

N2 F] = TNi%F]

Therefore, the concentration of Ni27 is:

[Ni**] = & = comsososs

Since the question is asking for the concentration in micro molar, we will convert the concentration into micro molar:
[Ni?*] = —zmsoss x 10% uM

However, as the exponent in this case is too big (1239.5083) and practically the answer is tending towards zero. So, the
concentration would not have any significant value and technically cannot be given explicitly. Therefore, the answer comes
out to be very close to O (approximately zero) and is negligibly small.

Answer: [0]
Mistake made by GPT4-CoT

There’s a calculation error in the solution. The numerator in the highlighted fraction should be 256.872 x 10~* instead of
2.4685 x 107%.

Correct Solution

The balanced equation for the reaction occurring in the cell is:

Ni(s) + Cd**(aq) — Ni**(aq) + Cd(s)

The standard cell potential can be calculated using the standard reduction potentials of the half-reactions:
Ecen = Eniz+ yNi — Ecaz+/ca

Ecenn = (—0.250) — (—0.403)

Ecep =0.153V

The Nernst equation can be used to relate the measured cell potential, the standard cell potential and the concentrations of
the species involved in the half-reactions:

Ecell = Ecell - %Z’I‘L(Q)

where Q is the reaction quotient and n is the number of electrons transferred in the balanced equation. Since the cell potential
is zero, we can simplify the equation to:

F
InQ = %Ecell

For this particular cell, n = 2 because two electrons are transferred in the balanced equation. The temperature is 25°C, so we
can use R =8.31 Jmol ' K~! and F = 96500 C'mol~!. Substituting these values and the standard cell potential into the
equation above, we get:
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InQ = 2x96500 o (153

8.31x298
In@ =1.931
Q — 61'931
@ = 6.885
Since the reaction quotient is equal to the concentration of Ni2* in the solution, we can solve for the concentration:
_ [y
@ = e
6.885 = V']

1
[Ni?T] = 6.885uM
Therefore, the concentration of N42% in the solution is 6.885 uM.
Answer: [6.885]
Question 3

The Miller indices of the first three Bragg peaks in the X-ray diffraction pattern obtained from a polycrystalline iron sample
at room temperature are: (A) (111), (200), (220) (B) (100), (110), (111) (C) (100), (110), (200) (D) (110), (200), (220)

Correct Answer: D, GPT4-CoT: C
Solution by GPT4-CoT
To solve this problem, we first need to understand some key concepts:

Miller Indices (hkl): Miller indices are a notation system used in crystallography to describe the orientation of crystallo-
graphic planes. They are represented as (hkl) where h, k, and 1 are integers that are inversely proportional to the intercepts of
the planes with the lattice vectors.

Bragg’s Law: Bragg’s law describes the relationship between the angle of incident X-rays, the crystal lattice spacing (d),
and the order of reflection (n) in X-ray diffraction. It is given by

nA = 2dsin @
where ) is the wavelength of X-rays, and 6 is the angle between the incident X-ray and the crystal plane.

For Bragg reflections, the interplanar spacing d depends on the crystal structure and Miller indices. In the case of Iron (Fe),
the crystal structure is Body-Centered Cubic (BCC).
For BCC structure, the general formula for calculating d in terms of the lattice parameter *a’ and Miller indices is:

1 (h®+k>+1?)

z ~ a?

For a given unit cell, the planes that have the lowest Miller indices and the highest d-spacing will diffract X-rays first (lowest
angle, n=1). So, we need to find the first three Bragg peaks for Fe, which means identifying the three lowest Miller indices
sets.

By systematically listing all possible combinations of h, k, and 1, and identifying those that satisfy the BCC selection rule (h
+ k +1=-even), we get the following allowable Miller indices as:

(100), (110), and (200)
Now, we can rank these by their d-spacing. Based on the formula for d in BCC structure:

1 (h*+k>+17)

a2~ a?
The magnitudes of the squared Miller indices (h? + k2 + [?) for these combinations are:
(100) = 12+ 02+ 0% =1

(110) - 12+ 12+ 0% =2
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(200) = 22+ 02+ 0% =4
Now, we can order these combinations by their magnitudes:
(100) < (110) < (200)

Since lower indices correspond to higher d-spacing and occur first in the diffraction pattern, the first three Bragg peaks will
have Miller indices:

(100), (110), and(200)

Thus, the correct answer is:

(C) (100), (110), (200)

Mistake made by GPT4

In the highlighted text, (1 + 0 + 0) is not even. Hence, BCC should be ruled out.
Question 4

Which of the following statement(s) is/are true: (i) All piezoelectric materials are necessarily ferroelectric (ii) All ferroelectric
materials are necessarily piezoelectric (iii) All pyroelectric materials are necessarily piezoelectric (iv) All pyroelectric
materials are necessarily ferroelectric

(A) (i) and (ii) (B) (ii) and (iii) (C) (i) and (iv) (D) (ii) and (iv)

Correct answer: B, GPT-4-COT: D

Solution by GPT4-CoT

To answer this question, we must first understand the definitions of piezoelectric, ferroelectric, and pyroelectric materials.

Piezoelectric materials: These materials exhibit an electrical response when subjected to mechanical stress, and vice versa.
The piezoelectric effect is observed in certain crystals, ceramics, and polymers.

Ferroelectric materials: These materials have a spontaneous electric polarization that can be reversed by applying an external
electric field. This property is due to the presence of domains with different orientations of polarization in the materials.

Pyroelectric materials: These materials generate an electric charge when heated or cooled, i.e., they exhibit a temperature-
dependent polarization. Conversely, they can display a temperature change when an electric field is applied.

Now, let’s analyze each statement.
(i) All piezoelectric materials are necessarily ferroelectric:

This statement is not true. While all ferroelectric materials are piezoelectric, not all piezoelectric materials are ferroelectric.
Some piezoelectric materials may not have the property of ferroelectricity, i.e., the spontaneous polarization that can be
reversed using an electric field.

(ii) All ferroelectric materials are necessarily piezoelectric:

This statement is true. In ferroelectric materials, the electric polarization can be reversed by an electric field, which causes
a change in the arrangement of positively and negatively charged ions. This shift in the electric dipoles also results in an
electric response when subjected to mechanical stress, which makes ferroelectric materials piezoelectric.

(iii) All pyroelectric materials are necessarily piezoelectric:

This statement is not true. Pyroelectric materials exhibit temperature-dependent polarization, but they might not exhibit the
direct piezoelectric effect (an electrical response to mechanical stress or vice versa). While some pyroelectric materials are
also piezoelectric, it is not necessarily true for all pyroelectric materials.

(iv) All pyroelectric materials are necessarily ferroelectric:

This statement is true. The pyroelectric effect occurs due to the presence of domains with different orientations of polarization,
which is a characteristic property of ferroelectric materials. When heated or cooled, the domains in pyroelectric materials
shift, causing a change in their electric field. Thus, all pyroelectric materials are ferroelectric.
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In conclusion, the correct answer is (D) (ii) and (iv).
Mistakes made by GPT4

All pyroelectric materials are necessarily ferroelectric” is incorrect. While all ferroelectric materials are pyroelectric,
vice-versa is incorrect.

Question 5

For a binary system at constant pressure, there are two types of invariant reactions: (i) a <> 8 +
gamma (ii) a + 5 <> v Analogously, how many different types of invariant reactions may exist under variable temperature
and pressure, for a binary system?

(A)1(@B)2(C)3(D)4
Correct : C, GPT-4-COT: B
Solution by GPT4-CoT

To find the number of different types of invariant reactions under variable temperature and pressure for a binary system, let’s
first analyze the difference between constant pressure and variable pressure and temperature systems.

1. Constant pressure: In this case, P is fixed, and we have one degree of freedom (F = 1). According to the Gibbs phase rule,
F=C-P +2, where C is the number of components and P is the number of phases. Thus, for a binary system, C = 2.

Under constant pressure, we can have two types of invariant reactions:

(i) & <= 8 + : In this case, there are 3 phases (P = 3), and substituting in the Gibbs phase rule, we get F=2-3 +2 =1.
Hence, this is a valid reaction for constant pressure.

(ii) a + 8 <= ~: In this case, there are 2 phases (P = 2), and substituting in the Gibbs phase rule, we get F=2 -2 + 2 =2.
This is not an invariant reaction under constant pressure, as we have one extra degree of freedom.

2. Variable temperature and pressure: Now, we have two degrees of freedom (F = 2).
Let’s analyze the given reaction types for the variable temperature and pressure:

(i) a <= B + : There are 3 phases (P = 3). Substituting in the Gibbs phase rule, F =2 - 3 + 2 = 1. This is not an invariant
reaction under variable temperature and pressure, as we lack one degree of freedom.

(ii) a 4 B <= ~y: There are 2 phases (P = 2). Substituting in the Gibbs phase rule, F =2 - 2 + 2 = 2. This is a valid invariant
reaction under variable temperature and pressure.

Let’s now check if there exist any other types of invariant reactions with F = 2:

(iii) @ <= B: There are 2 phases (P = 2). Substituting in the Gibbs phase rule, F =2 - 2 + 2 = 2. This is a valid invariant
reaction under variable temperature and pressure.

(iv) @ + 8 4 v <> None: There are no phases (P = 0). Substituting in the Gibbs phase rule, F =2 - 0 + 2 = 4. This is not an
invariant reaction under variable temperature and pressure, as we have two extra degrees of freedom.

Hence, there are two different types of invariant reactions that may exist under variable temperature and pressure for a binary
system: « + 3 <= v and o <= f5.

So, the answer is (B) 2.
Correct explanation:
Under variable temperature and pressure, there can be up to three types of invariant reactions for a binary system.

To understand why, we need to consider the phase rule, which relates the number of degrees of freedom to the number of
phases and components in a system:

F=C-P+2

where F is the number of degrees of freedom, C is the number of components, and P is the number of phases.
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For a binary system (C = 2) with two phases (« and f3), the phase rule becomes:
F=2-24+2=2

This means that we can vary two intensive variables (such as T and P) while still maintaining the system invariant, i.e. at a
fixed composition and with two coexisting phases.

Now, let’s consider the possible reactions that can occur in this system:

- Reaction (i) « <> 8 + «y involves one component (the other is a product of the reaction) and two phases. This means that it
will be an invariant reaction at a certain T and P, but as we vary T and P, the reaction may become non-invariant because it
will no longer be possible to have all three phases («, 5 and ) coexisting. Therefore, we can say that there is at least one
type of invariant reaction under variable T and P.

- Reaction (ii) o + 8 <— +y involves both components of the system and two phases. Similarly, this may be an invariant
reaction at certain conditions, but may become non-invariant as we vary T and P. Therefore, we can say that there is
potentially another type of invariant reaction, but it depends on the system parameters.

- Finally, there could be a reaction that involves both components and all three phases, e.g. a + 3 <= v + J. In this case, the
phase rule becomes:

F=2-3+2=1

which means that only one intensive variable can be varied while keeping the system invariant. Therefore, this reaction
could be invariant under variable T and P, depending on the specific values of T and P.

In summary, there can be up to three types of invariant reactions under variable T and P, but the exact number depends on
the system parameters. Therefore, the correct answer is (C) 3.

Question 6

The best magnetostrictive material is

(A) NdoFe14B (B) FesOy4 (C) CusMnAl (D) ZnFesOy
Correct: A, GPT-4-CoT: C

Solution by GPT-4-CoT

Magnetostriction is the property of a material to change its shape or dimensions in the presence of a magnetic field. The
magnetostrictive materials are widely used in sensors, actuators, and other applications where a change in dimension due to
magnetic fields is needed. The best magnetostrictive material is characterized by high magnetostriction, high sensitivity to
magnetic fields, and low losses.

Now let’s look at the given options:

(A) NdyFeq4B - Neodymium Iron Boron is well-known for its high energy product and strong magnetic properties. It
is used in permanent magnets and serves a wide variety of applications. However, its magnetostrictive properties are not
strong.

(B) Fe304 - Magnetite, or Iron (II, III) Oxide, is a ferrimagnetic material, which means it has both ferromagnetic and
antiferromagnetic properties. Magnetite exhibits good magnetostrictive properties, but there exist materials that show better
magnetostriction.

(C) CuagMnAl - Copper Manganese Aluminum, also known as Heusler alloy or Cu-Al-Mn alloy, shows strong magne-
tostrictive properties, and is among the best magnetostrictive alloys. Its high magnetostriction and low losses make it a
suitable material for applications involving dimensional changes due to magnetic fields.

(D) ZnFes04 - Zinc Iron Oxide, or Zinc Ferrite, is a spinel ferrite material, which is also used in certain applications where
magnetostriction is required. It has some magnetostrictive properties but not as strong as Cu-Al-Mn alloy.

Based on the above information, the correct answer is:

[Option (C) Cus MnAl]
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Question 7

With reference to the stress intensity factor, find the correct match of nomenclature (Column A) with the mode of deformation
applied to the crack (Column B).

Column A: [(P) Mode I, (Q) Mode II, (R) Mode III]

COlumn B: [(X) Forward shear mode, (Y) Parallel shear mode, (Z) Crack opening mode ]

Options: (A)P-Z,Q-Y,R-XB)P-Z,Q-X,R-Y(CO)P-Y,Q-X,R-Z(D)P-Y,Q-Z,R-X
Correct: B, GPT4-CoT: A

Solution by GPT4-CoT

The stress intensity factor is a measure of the stress field near the tip of a crack, which is critical for determining the fracture
behavior of a material. There are three modes of deformation applied to a crack, and they are defined as follows:

1. Mode I: Crack opening mode - This mode involves the opening of the crack faces perpendicular to the direction of crack
growth. The stress applied in this mode is tensile stress, and it acts normal to the plane of the crack.

2. Mode II: Forward shear mode - In this mode, the crack faces slide against each other in the direction of crack growth. The
stress applied in this mode is shear stress, and it acts parallel to both the plane of the crack and the direction of crack growth.

3. Mode III: Parallel shear mode - This mode is also characterized by the sliding of crack faces against each other. However,
the stress applied in this mode is shear stress that acts parallel to the plane of the crack but perpendicular to the direction of
crack growth.

Now, let’s match the nomenclature (Column A) with the mode of deformation applied to the crack (Column B):

(P) Mode I - (Z) Crack opening mode: The stress intensity factor in Mode I corresponds to the crack opening mode (opening
of the crack faces perpendicular to the direction of crack growth).

(Q) Mode II - (X) Forward shear mode: The stress intensity factor in Mode II corresponds to the forward shear mode (sliding
of crack faces in the direction of crack growth).

(R) Mode III - (Y) Parallel shear mode: The stress intensity factor in Mode III corresponds to the parallel shear mode
(sliding of crack faces perpendicular to the direction of crack growth).

So, the correct option is:

(A)P-Z,Q-Y,R-X

Question 8

Which one of the following modern practices is used for retarding the solution loss reaction in blast furnace ironmaking?
(A) High top pressure (B) Bell-less top (C) Pulverized coal injection (D) Rotating chute for burden distribution

Correct: A, GPT4-CoT: B

Solution by GPT4-CoT

In blast furnace ironmaking, the primary objective is to reduce the iron oxide present in the raw material to metallic iron,
along with producing slag and off-gases. However, various factors can lead to the solution loss reaction, where the reduction
of iron oxide is not as efficient, and there is a loss of valuable materials. It is essential to employ modern practices to
minimize these losses and improve the overall efficiency of the process.

Let’s analyze each option given:
(A) High top pressure:

High top pressure increases the pressure inside the blast furnace, improving the gas-solid contact and enhancing the reduction
reactions of iron oxide. However, this method is more focused on improving the indirect reduction, and its effect on retarding
the solution loss reaction is secondary in nature.

(B) Bell-less top:
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The bell-less top is a type of charging system used in a blast furnace. It allows for better distribution of raw materials
(burden) in the furnace, reducing the solution loss reaction. It consists of a rotating mechanism that distributes the burden
material evenly and helps in controlling the gas flow in the furnace. By minimizing channeling and improving the gas-solid
contact, this system significantly reduces the solution loss reaction.

(C) Pulverized coal injection (PCI):

Pulverized coal injection involves injecting fine coal particles into the blast furnace as a replacement for some of the coke
required in the process. PCI helps in reducing the coke consumption and, subsequently, the costs associated. It also improves
the overall energy efficiency of the furnace. However, its primary impact is on the coke consumption and not directly on the
solution loss reaction.

(D) Rotating chute for burden distribution:

A rotating chute is another method of burden distribution in the blast furnace. Its purpose is similar to the bell-less top, i.e.,
to distribute the raw materials evenly to ensure proper gas-solid contact and prevent channeling. By doing so, it can help in
retarding the solution loss reaction.

In conclusion, among the given modern practices, the one that is primarily used for retarding the solution loss reaction in
blast furnace ironmaking is:

Answer: (B) Bell-less top
Question 9

In the absence of any external stress, which one of the following statements related to the interaction of point defect and a
dislocation is FALSE:

(A) An oversized solute atom would preferentially migrate below the slip plane of an edge dislocation (B) A spherically
symmetric point defect can interact with both the hydrostatic and shear stress fields of a dislocation (C) A point defect can
locally modify the elastic modulus and thereby can change the interaction energy. (D) Vacancies are attracted towards the
compressive region of dislocation

Correct: B, GPT4-CoT: D

Solution by GPT4-CoT

Let’s analyze each statement one by one:

(A) An oversized solute atom would preferentially migrate below the slip plane of an edge dislocation.

This statement is TRUE. An oversized solute atom is larger than the host atoms in the crystal structure. When an oversized
solute atom is present near an edge dislocation, it experiences a lower energy state by moving to the larger space created
below the slip plane. The presence of the larger solute in this region reduces the elastic strain energy of the dislocation,
which makes this configuration favorable.

(B) A spherically symmetric point defect can interact with both the hydrostatic and shear stress fields of a dislocation.

This statement is TRUE. A spherically symmetric point defect, such as a vacancy or an interstitial atom, can interact with
both the hydrostatic (volume-changing) and shear (shape-changing) stress fields of a dislocation. The spherical symmetry of
the point defect allows it to create a disturbance in both the hydrostatic and shear stress components present around the
dislocation, which results in an interaction between the point defect and the dislocation.

(C) A point defect can locally modify the elastic modulus and thereby can change the interaction energy.

This statement is TRUE. A point defect creates a local disturbance in the crystal lattice, which affects the elastic modulus in
its vicinity. A change in the elastic modulus can alter the interaction energy between the point defect and the dislocation.
This change in interaction energy can have an influence on the dislocation motion, either promoting or hindering it.

(D) Vacancies are attracted towards the compressive region of dislocation.

This statement is FALSE. Vacancies are actually attracted towards the tensile region of the dislocation, where the lattice is
under tension and the interatomic spacing is larger. A vacancy feels a lower energy state in the tensile region, as it relieves
some of the tensile stress by filling the enlarged interstitial spaces. This attraction of vacancies to the tensile region can help
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the dislocation motion by allowing atoms to easily ’jump” into the vacancies, thereby promoting slip.
Therefore, the correct answer is [D].

Question 10

Critical value of the Gibbs energy of nucleation at equilibrium temperature is

(A) zero (B) infinite (C) positive (D) negative

Correct: B, GPT4-CoT: D

Solution by GPT4-CoT

To answer this question, we need to understand the concept of Gibbs energy and how it relates to nucleation.

Gibbs energy (also called Gibbs free energy) is a thermodynamic potential that measures the maximum reversible work that
may be performed by a system at a constant temperature and pressure. It is represented by G and defined as:

G=H-TS

where H is the enthalpy, T is the temperature, and S is the entropy of the system. In a phase transformation or nucleation
process, the Gibbs energy change (AG) determines the thermodynamic driving force for the process to occur.

Nucleation is the initial step in the phase transformation process where a new phase (solid or liquid) forms within the
existing phase (for example, when water vapor condenses into liquid droplets during cloud formation). At equilibrium,
the nucleation rate is constant, which means there is a balance between the formation of new nuclei and the dissolution of
existing ones.

Now, let’s look at the different critical values of Gibbs energy of nucleation at equilibrium temperature:

(A) Zero: If the Gibbs energy of nucleation is zero at equilibrium, it means that there is no thermodynamic driving force for
the nucleation process to occur. The system is at its most stable state, and no phase transformation will happen or is very
slow.

(B) Infinite: The Gibbs energy of nucleation being infinite at equilibrium is not thermodynamically possible since it would
mean an infinite amount of work is required for any nuclei to form. This contradicts the definition of Gibbs energy, which
measures the maximum reversible work that may be performed by a system.

(C) Positive: A positive Gibbs energy of nucleation indicates that the system is in a metastable state. While the nucleation
process can still occur at this state, the rate of nucleation is significantly lower than if AG were negative. The system favours
dissolution over nucleation, but a phase transformation can still happen under certain conditions.

(D) Negative: A negative Gibbs energy of nucleation implies that the system is in an unstable state and phase transformation
is thermodynamically favoured. At equilibrium, the formation of nuclei is energetically favorable, and the nucleation process
will spontaneously proceed.

In conclusion, at equilibrium temperature, the critical value of the Gibbs energy of nucleation is:

Answer: [(D) negative]

G. Composition extraction by GPT-4

Prompt 1 Extract all the compositions from the following expression. (70 - x)TeO2 + 15B203 + 15P205 + xLi20, where x
=5, 10, 15, 20, 25 and 30 mol%

GPT-4 Response To extract all the compositions based on the given expression for different values of x (5, 10, 15, 20, 25,
and 30 mol%), substitute each value of x into the expression and calculate the resulting composition. The expression given
is: (70 - x) TeO2 + 15B203 + 15P205 + xLi20 Let’s substitute the values of x one by one and write down the resulting
compositions. Forx=5mol%: (70-5)TeO2+15B203+ 15P205 + 5Li20 = 65Te02 + 15B203 + 15P205 + 5Li20 For x = 10
mol%: (70 - 10)TeO2 + 15B203 + 15P205 + 10Li20 = 60TeO2 + 15B203 + 15P205 + 10Li20 For x = 15 mol%: (70 -
15)TeO2 + 15B203 + 15P205 + 15Li20 = 55TeO2 + 15B203 + 15P205 + 15Li20 For x = 20 mol%: (70 - 20)TeO2 +
15B203 + 15P205 + 20Li20 = 50TeO2 + 15B203 + 15P205 + 20Li20 For x = 25 mol%: (70 - 25)TeO2 + 15B203 +
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15P205 + 25Li20 = 45Te02 + 15B203 + 15P205 + 25Li20 For x = 30 mol%: (70 - 30)TeO2 + 15B203 + 15P205 +
30Li20 =40TeO2 + 15B203 + 15P205 + 30Li20

Outcome GPT-4 is able to extract information correctly for the cases where the compositions are given in the form of
variables.

Prompt 2 Extract all the compositions from the following expression. Glasses with composition in mol%: 51ZrF4, 16BaF2,
5LaF3, 3AIF3, 20LiF, 5SPbF2 have been prepared. +xErF3 from 0.01 to 11 mol%

GPT-4 Response The given expression lists the components of a glass system in terms of their mole percentage (mol%).
Additionally, it mentions that the glass composition can be doped with varying amounts of ErF3 (erbium fluoride) from
0.01 to 11 mol%. The base composition of the glasses is as follows: - ZrF4 (zirconium fluoride): 51 mol% - BaF2 (barium
fluoride): 16 mol% - LaF3 (lanthanum fluoride): 5 mol% - AIF3 (aluminium fluoride): 3 mol% - LiF (lithium fluoride): 20
mol% - PbF2 (lead(I) fluoride): 5 mol% Additionally, we have the ErF3 dopant, which ranges from 0.01 to 11 mol%. A
specific glass composition would include a certain percentage of ErF3 within the given range, and because the total mol%
must sum up to 100%, adding ErF3 will decrease the percentages of the other components proportionally. Here’s how to
calculate the adjusted percentages for a specific amount of ErF3 added: Let’s say we add x mol% ErF3 to the glass: - The
sum of the other components without ErF3 is 100% - After adding x mol% ErF3, the sum of the original components must
be scaled down to (100 - x)% - Each of the original components will be scaled by multiplying their percentages by (100 -
x)% / 100 For example, for a composition with 2 mol% ErF3: - Total of the original components: 100% - 2% ErF3 = 98% -
ZrF4: 51 mol% * (98/100) = 49.98 mol% - BaF2: 16 mol% * (98/100) = 15.68 mol% - LaF3: 5 mol% * (98/100) = 4.90
mol% - AIF3: 3 mol% * (98/100) = 2.94 mol% - LiF: 20 mol% * (98/100) = 19.60 mol% - PbF2: 5 mol% * (98/100) =
4.90 mol% So the new composition with 2 mol% ErF3 added would be approximately: - ZrF4: 49.98 mol% - BaF2: 15.68
mol% - LaF3: 4.90 mol% - AIF3: 2.94 mol% - LiF: 19.60 mol% - PbF2: 4.90 mol% - ErF3: 2 mol% For every specific
addition of ErF3 within the range of 0.01 to 11 mol%, this calculation would have to be performed to determine the adjusted
composition. The exact values would of course depend on the precise amount of ErF3 being added to the composition.

Outcome GPT-4 understands the doping element, but since the entire information is not present in the same sentence, as
well as exact values of doping content is not specified, it is able to give just the partial information.

Prompt 3 Extract all the compositions from the following expression. Lithium disilicate glass was prepared in 30 g quantity
by heating stoichiometric homogeneous mixtures of lithium carbonate (99.0%), Synth, and silica (99.9999%), Santa Rosa,
for 4 h at 1500°C in a platinum crucible.

GPT-4 Response The compositions mentioned in the given expression include: 1. Lithium Carbonate (Li2CO3) with
a purity of 99.0% - This is one of the starting materials used to prepare the lithium disilicate glass. 2. Silica (Si02)
with a purity of 99.9999% - This is the other starting material used in the preparation. ”Santa Rosa” is likely a brand
name or location associated with the high-purity silica used. There are no exact quantities provided for each individual
component (lithium carbonate and silica); however, the overall quantity of the prepared lithium disilicate glass is given as 30
g. The process involves heating these stoichiometric mixtures at 1500 °C for 4 hours in a platinum crucible, which avoids
contamination as platinum is inert to the process. To determine the stoichiometry, you would need the molecular weights of
the reactants and the targeted lithium disilicate (Li2Si205) product. Even though exact proportions are not given in this
expression, you can infer that the molar ratios are configured to produce lithium disilicate without excessive amounts of
either lithium carbonate or silica. ”Synth” could represent that the lithium carbonate used is synthetic or refers to a brand or
grade, but no additional context for this term is provided.

Outcome GPT-4 was able to understand the chemical compounds but was unable to produce exact composition percentages
for the same.

Prompt 4 Extract all the compositions from the following expression. The formation of SiO3 groups was also confirmed by
electron diffraction analysis on thin (4-80 A) films of pure SiO2. The strong cohesive energy of the SiO4 groups (previously
noted during studies of displacement cascades in complex glasses) makes them less ‘vulnerable’ than BO4 or A104 groups,
which more easily give up an oxygen atom.

GPT-4 Response From the provided expression, the compositions mentioned are: 1. SiO3 groups 2. SiO2 (pure silicon
dioxide) 3. SiO4 groups 4. BO4 groups 5. AlO4 groups These represent various oxide groups or arrangements of silicon
(Si), boron (B), and aluminum (Al) with oxygen (O).

Outcome GPTH4 fails to differentiate compositions from the unstable structures.
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