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Abstract

In this paper, we investigate the effectiveness of integrat-
ing a hierarchical taxonomy of labels as prior knowledge
into the learning algorithm of a flat classifier. We introduce
two methods to integrate the hierarchical taxonomy as an
explicit regularizer into the loss function of learning algo-
rithms. By reasoning on a hierarchical taxonomy, a neural
network alleviates its output distributions over the classes, al-
lowing conditioning on upper concepts for a minority class.
We limit ourselves to the flat classification task and provide
our experimental results on two industrial in-house datasets
and two public benchmarks, RCV1 and Amazon product re-
views. Our obtained results show the significant effect of a
taxonomy in increasing the performance of a learner in semi-
supervised multi-class classification and the considerable re-
sults obtained in a fully supervised fashion.

Introduction
Large Language Models (LLMs), e.g., BERT and GPT-3,
have made significant advances in Natural Language Pro-
cessing (NLP). In general, pre-training, where a model first
trains on massive amounts of data before being fine-tuned
for a specific task, has proven to be an efficient technique
for improving the performance of a wide range of language
tasks (Min et al. 2021).

If we break down the architecture of LLMs, we can cat-
egorize their components into two general concepts: Deep
Neural Network (DNN) as a part of Machine Learning
(ML), and Training Data. Despite all the advantages of
LLMs, they come with some limitations. Starting from
the very beginning, machine learning has its own limita-
tions, from supervised ML which heavily relies on large
amounts of human-labeled data to Reinforcement Learning
(RL) which requires a very large number of interactions be-
tween the agent and the environment. The brittleness of deep
learning systems is largely due to machine learning models
being based on the independent and identically distributed
(i.i.d.) assumption, which is not a realistic assumption in the
real world. In general, Multi-Layer Perceptrons (MLPs) are
good at generalizing within the space of training examples,
but they perform poorly at generalizing outside the space
of training examples, and this limitation is not improved
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Figure 1: A symbolic representation/sentence for node a2 in
a higher level l2 of a hierarchical taxonomy for multi-class
classification

even by adding more layers. So, the question is, what can
be done? Can increasing the size of training data solve these
shortcomings?

Another shortcoming, which is not addressed by simply
using more data, is curve fitting (Pearl 2019), mapping in-
puts to outputs. If our systems rely solely on curve-fitting
and statistical approximation, their inferences will necessar-
ily be shallow (Bender and Koller 2020). Instead of inducing
a more abstract and causal understanding of the world, they
try to approximate the statistical curves of how words are
used to infer how the world works.

Let us take a step back and explore another approach to
training a machine, which is Symbolic Machine learning. A
symbolic machine combines a sophisticated reasoner with
a large-scale knowledge base. Knowledge can be formu-
lated in a logical function with symbolic variables, for ex-
ample, δ22 in Figure 1 expresses that for the set of variables
< X1, X2, .., X6 >, one and exactly one of X3, X4, or X5

must be true, with the rest being false. One well-known ex-



ample of a symbolic machine is CYC 1, It was launched in
1984 by Doug Lenat and required thousands of person-years
of effort to capture facts about psychology, politics, eco-
nomics, biology, and various other domains in a precise log-
ical form. One famous test of CYC is the Romeo and Juliet
quiz, in which CYC demonstrates an internal distillation of
a complex scenario and provides an example of rich cogni-
tion. However, despite the extensive efforts put into CYC, it
falls short compared to the remarkable results achieved by
transformers and GPT-2, even without explicit knowledge
engineering.

What Gary Marcus (Marcus 2020) believes is that sym-
bol manipulation could be the solution, particularly for ex-
trapolating beyond a training regime. Symbol manipulation,
specifically the machinery of operations over variables, of-
fers a natural albeit incomplete solution to the challenge of
extrapolating beyond a training regime. It also provides a
clear basis for representing structured representations (such
as the tree structures foundational to generative linguistics)
and records of individuals and their properties. It can bring
a hybrid approach that combines the best of both worlds:
the ability to learn from large-scale datasets and the capac-
ity to represent abstract concepts. The power of combining
statistical and symbolic artificial intelligence techniques to
accelerate learning and improve transparency is exemplified
by (Mao et al. 2019).

In this work, we aim to integrate abstract/prior knowl-
edge (Hierarchical Taxonomy of labels) into the structure
of machine learning. As one of our contributions, we lever-
age symbolic manipulation to represent the taxonomy. Ac-
cording to Henry Kautz’s proposal on Neural-Symbolic
Computing (NSC) (Garcez and Lamb 2023), our work can
be categorized as type 5; NOUROSYMBOLIC ; a tightly-
coupled neural-symbolic system where a symbolic logic
rule is mapped onto a distributed representation (an embed-
ding) and acts as a soft-constraint (a regularizer) on the net-
work’s loss function. Additionally, we combine type 5 with
a method from type 1; SYMBOLIC NEURO SYMBOLIC;
which involves standard deep learning in which input and
output of a neural network can be made of symbols. Our tar-
get is an imbalanced classification problem where we have a
Hierarchical Taxonomy of labels as our prior knowledge.

Many real-world classification problems exhibit imbal-
anced class distributions. In current fully supervised classi-
fication tasks, models are trained on labeled datasets where
labels are primarily injected into the objective function (e.g.,
cross-entropy) as prior knowledge. These labels typically
originate from a larger hierarchical taxonomy, allowing for
comprehensive reasoning over the labels. Labels in Machine
Learning (ML), especially in supervised ML, play an impor-
tant role. However, labels often present challenges. Despite
the human cost required for labeling, labels are frequently
incomplete, ambiguous, and redundant. Using a hierarchical
taxonomy for labels can provide more information that leads
to improved labels and ultimately enhances model quality in
supervised learning, and even yields further gains in semi-
supervised learning.
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In this paper, we introduce two methods to represent
and incorporate the hierarchical taxonomy. The first method
(Section ) represents the taxonomy as constraints in Boolean
logic. For example, Figure 1 illustrates a hierarchical tax-
onomy for class labels, where leaves at level l1 indicate
the actual class labels used in the loss function (e.g., cross-
entropy), and nodes at a higher level l2 indicate a higher
level of conceptualization for the labels, which are typi-
cally not used in the classification algorithm. The second
method (Section ) involves using Graph Convolutional Net-
works (GNN) to represent and incorporate the hierarchical
taxonomy into the loss function. Our experimental results
for both methods demonstrate the significant effect of higher
levels of the hierarchical taxonomy in alleviating the un-
equal distribution of classes in severely imbalanced classi-
fication problems2.

Our contributions in this paper focus on flat/general clas-
sification, referring to the standard multi-class classification
problem. This differs from hierarchical classification, where
the class set to be predicted is organized into a class hier-
archy, typically represented as a tree or a Directed Acyclic
Graph (DAG).

Related Work
Imbalanced Classification: Approaches for dealing with
imbalanced classification problems can be categorized into
three groups: data-level approaches, algorithm-level tech-
niques, and hybrid methods (Johnson and Khoshgoftaar
2019). Data-level approaches aim to address the unequal dis-
tribution of classes by employing sampling techniques such
as over-sampling the minority class or under-sampling the
majority class. However, under-sampling may result in the
loss of important information for the model to learn from,
while over-sampling can increase training time and lead to
overfitting (Johnson and Khoshgoftaar 2019). Algorithm-
level techniques, on the other hand, adjust the learning or de-
cision process to give more importance to the minority class.
Hybrid methods combine data-level and algorithm-level ap-
proaches in various ways to tackle the class imbalance prob-
lem (Seiffert et al. 2009; Chen et al. 2021).

Taxonomy-aware Classification: The use of hierarchical
concepts in classification has been explored in various stud-
ies. For example, (Brust and Denzler 2020) leverages a pub-
licly available hierarchy like WordNet to integrate additional
domain knowledge into classification.

Existing works on integrating taxonomy into machine
learning can generally be grouped into two approaches. The
first approach involves indirectly incorporating taxonomy
information into the ML model, such as label expansion (Li
et al. 2017). The second approach focuses on directly in-
tegrating taxonomy information into the model architecture
(Karamanolakis, Ma, and Dong 2020; Jenkins, Bloom, and
Zhang 2021; Ong et al. 2022). (Ong et al. 2022) demon-
strates that using taxonomy information of plant species can
alleviate class sparsity issues when optimizing for a large

2The code and datasets will be hosted on https://github.com/
mpourvali/TaxoKnow.



number of classes. In the domain of semi-supervised learn-
ing, (Su and Maji 2021) proposes techniques for incorpo-
rating coarse taxonomic labels to train image classifiers in
fine-grained domains.

While previous works have explored the effectiveness of
label taxonomies in hierarchical classification, our paper
emphasizes the positive impact of hierarchical taxonomies
in flat classification problems. To the best of our knowledge,
our work is the first to propose injecting hierarchical tax-
onomies of labels as prior knowledge into flat classification
problems. Our approach falls under algorithm-level tech-
niques for addressing imbalanced classification problems, as
we directly inject a hierarchical taxonomy of class labels as
prior knowledge into the existing loss function (i.e., data-
driven) of a deep neural network.

Proposed Methods
We propose two approaches to represent and integrate the
hierarchical taxonomy as prior knowledge into the loss func-
tion of a learning algorithm.

Symbolic-based Approach
To integrate the hierarchical taxonomy of the classes into the
loss function, we first represent the taxonomy as symbolic
logical constraints. Building on the work of (Xu et al. 2018)
we derive a differentiable semantic loss function that cap-
tures how well the neural network satisfies the constraints
on its output.

General Notation. We employ concepts in propositional
logic to formally define taxonomy and semantic loss.
Boolean variables are written in uppercase letters (X,Y ),
and their instantiation (X = 0 or X = 1) are written in low-
ercase (x, y). We write sets of variables in bold uppercase
(X,Y), and their joint instantiation in bold lowercase (x, y).
A literal is a variable (X) or its negation (¬X). A logical
sentence (α or β) is created by variables and logical connec-
tives (∧, ∨, etc.), and is also called a formula or constraint.
A state x satisfies a sentence α, denoted as x |= α, if the
sentence evaluates to be true in that world, as defined in the
usual way. The output vector of a neural network is denoted
by p, where each value in p represents a probability of an
output in [0, 1]. The output vector of a set of sentences is de-
noted by s, where each value in s represents a satisfaction
value in [0, 1].

Taxonomy. Each level of concepts in a taxonomy is de-
noted as li, i ∈ [1,K], where K is node-based length of
the taxonomy and l1 indicates the leaves of the taxonomy,
which is associated with the class labels. Each node in tax-
onomy except nodes in the leaves is denoted as ai. For in-
stance, in Figure 1, for a taxonomy used in multi-class clas-
sification, sentence δ22 states that for a set of indicators
X = {X1, .., X6}, one and exactly one of X3, X4, X5 must
be true, while the rest must be false. This statement indeed
represents node a2 of the taxonomy in terms of its children/-
variables (X3, X4, X5). To represent hierarchical nature of
the taxonomy, a set of variables B = {B1, B2, .., BK−1} is
defined over the taxonomy levels. B1, ..., BK−1 correspond
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Figure 2: An illustration for supervised semantic loss. ι1 is
the matrix of model output for a batch, ι2 is the matrix of
one-hot vectors over nodes in level l2 in the batch, and ι3 is
the matrix of one-hot vectors over nodes in level l3 in the
batch. |bi| = |di| since each element in one-hot vector b is
corresponding to a sentence δ in d.

to the variables of each non-leaf node in the taxonomy tree,
where each variable of B corresponds to a set of one-hot vec-
tors bj , e.g., b1 and b2 correspond to level 1 and level 2, as
shown in Figure 2 and Figure 3. bj corresponds to one-hot
vector over a0, a1, ..., am, where m is number of nodes in
level lj , e.g., as it is shown in Figure 1 a1, a2, a3 for level l2.
A logical sentence β is created from variables B and logical
connective ∧. For a given taxonomy there would be a sen-
tence δij corresponding to the node ai (i.e., propositional
logic) which all sentences for each level lj are stored in dj
(d1 and d2 as it’s shown in Figure 2), and sentence α is de-
fined over d1, d2, ..., dK−1.

Semantic Loss. The semantic loss Ls(α, β, p, s) is de-
fined as a function of sentences (α,β) in propositional logic,
which is defined over variables X = {X1, X2, .., Xn} and
B = {B1, B2, .., BK−1}, a vector of probabilities p for
variables X, and a satisfaction vector s for variables B =
{B1, B2, .., BK−1}. The element pi denotes the predicted
probability of variable Xi, corresponding to a single output
of the neural network. The element si represents the satis-
faction score of variable Bi, corresponding to the output of
a sentence α. Similar to (Xu et al. 2018), we provide two
examples of integrating semantic loss Ls into an existing
loss function as an additional regularization term, in both
supervised and semi-supervised manners. Specifically, with
a weight w, Equation 1 shows the new loss.

existing loss+ w · semantic loss (1)

Supervised-based Definition. In the Supervised-based
definition, we assume that all the training dataset is labeled,
and the hierarchical taxonomy is complete, meaning that for
labeled class, all the upper parents are known. Formally, for
a class label cli, its K − 1 upper concepts in the taxonomy
are given. With this assumption, let p be a vector of proba-
bilities, one for each variable in X, let α be a sentence over
X, and β be a sentence over B. Equation 2 represents the
hierarchical taxonomy as a logical constraint.

Ls(α, β, p, s) ∝ − log
∏
y|=β

∑
x|=α

∏
i:x|=Xi

pi

∏
i:x|=¬Xi

(1− pi) (2)



ι1
ι2

ι3
t d1 d2−

B
at

ch

ta
rg

et

labels b1 b2

CrossEntropy(ι1, t) − w1 × log(ι2 · wmc(d1)) − w2 × log(ι3 · wmc(d2))

· ·
−

Figure 3: An illustration for semi-supervised semantic loss.
ι1 is the matrix of model output for the labeled (i.e., leaves
in taxonomy) data, ι2 is the matrix of one-hot vectors over
nodes in level l2 without labels in leaves, and ι3 is the matrix
of one-hot vectors over nodes in level l2 without labels in
leaves and level l2.

where y is a state that satisfies β. By applying the negative
logarithm, we enforce the training model to satisfy the con-
straint. Figure 2 provides an illustration of Equation 2.

Our goal is to develop a tractable loss for computing both
semantic loss and its gradient. From propositional logic the-
ories, we know that a Model is a solution to a given propo-
sitional formula ∆, and Model Counting or #SAT is the
problem of computing the number of models for ∆. In case
of mapping literals of the variables to non-negative real-
valued weights, we will have Weighted Model Counting
(WMC) (Chavira and Darwiche 2008; Sang, Beame, and
Kautz 2005). The well-known task of model counting cor-
responds to the special case where all literal weights are 1
(and counts thus restricted to the natural numbers), whereas
probabilistic inference (Prob) in a setting where all variables
are independently assigned truth values at random restricts
the weight function ω of WMC to values from [0, 1] such
that weights of positive and negative literals for each var
sum to one, i.e., for every variable υ, ω(υ) ∈ [0, 1] and
ω(¬υ) = 1−ω(υ) (Kimmig, Van den Broeck, and De Raedt
2017).

From (Darwiche 2003), we know about differential cir-
cuit languages that compute WMCs, which are amenable
to backpropagation. Following (Xu et al. 2018), we use
the circuit compilation techniques from (Darwiche 2011),
namely the Sentential Decision Diagram (SDD), to construct
a Boolean circuit representing semantic loss. The SDD cir-
cuit form exhibits two main properties: determinism and de-
composability, allowing us to compute both the values and
gradients of the semantic loss in time linear to the size of the
circuit (Darwiche and Marquis 2002).

Semi-supervised-based Definition. In this section, we
demonstrate the integration of a hierarchical taxonomy with
unlabeled data. In the Semi-supervised-based definition, the
assumption is that there is unlabeled data and the hierarchi-
cal taxonomy is not complete. The semantic loss is defined
for unlabeled data using an incomplete taxonomy. The la-
beled data is directly used in an existing loss function (e.g.,
cross entropy). For the unlabeled data, we employ the avail-
able deepest concepts/nodes from the root, and the upper
node is considered in case of a missing lower node. In this
definition of the semantic loss, since there are no conflicts

between different levels of concepts in the hierarchical tax-
onomy, there is no need for a sentence β over B. The intu-
ition behind this is to emphasize the information carried by
unlabeled data and provide a level-based weighting for the
incomplete taxonomy.

Ls(α, β, p, s) ∝ − log
∑

j∈{1,K}

∑
x|=α

∏
i:x|=Xi

pi

∏
i:x|=¬Xi

(1− pi)

(3)
Equation 3 is illustrated in Figure 3, including the training

batch and SDDs.
In essence, Equation 2 and 3 expand semantic loss (Xu

et al. 2018) over hierarchical structure. They are propor-
tional to the negative logarithm of the probability of generat-
ing a state that satisfies the constraint when sampling values
according to p.

GCN-based Approach
Graph Convolutional Networks is a powerful method pre-
sented for semi-supervised learning on graph-structured data
(Kipf and Welling 2016), in which the authors introduced
GCN to address the problem of classifying nodes, such as
documents, in a graph, such as a citation network, where la-
bels are only available for a small subset of nodes. Similarly,
in representing hierarchical taxonomy in semi-supervised
learning, we deal with the labeling concept in different levels
of the hierarchy. Our objective is to identify representations
for some nodes in the taxonomy, given the labels of other
nodes. Moreover, the ability of GCN to handle symbolic in-
puts/outputs offers a differentiable alternative for semantic
loss and logical constraints. These two reasons led us to uti-
lize a graph neural network (GCN) for knowledge integra-
tion. We consider a hierarchical taxonomy as a labeled graph
and seek the GCN encoding of any externally connected
node to this graph. Figure 4 illustrates the 2-Dimensional
GCN encoding of the nodes in the sample taxonomy.

One issue with GCN is the large memory requirement
when encoding a big graph-structured data to provide repre-
sentations for each node. Moreover, using GCN on the entire
graph data avoids the need for explicit regularization with
another supervised loss function, such as Cross Entropy. In
this section, we propose a method to incorporate the hierar-
chical taxonomy of a classification task as prior knowledge
into the loss function through a Batch-based Graph Convo-
lutional Networks (BGCN). A representation for a graph A
in GCN is defined as:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (4)

where Ã = A+LN is the adjacency matrix of the undirected
graph A with added self-connections. IN is the identity ma-
trix, D̃ii =

∑
j Ãij and W (l) is a layer-specific trainable

weight matrix. σ(.) Denotes an activation function (we used
ReLU in our experiments). H(l) ∈ R is the matrix of acti-
vations in the lth layer; H0 = X , H2 = softmax(H1).

We provide a taxonomy backbone graph for each batch,
which is consistent across all batches and is generated from
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Figure 4: An illustration for GCN encoding of the nodes in
the taxonomy with labeled nodes a0, .., a3, and unlabeled
nodes X1, .., X6.

the taxonomy tree. Our method aims to mimic the Knowl-
edge Distillation (Hinton, Vinyals, and Dean 2015) ap-
proach, where the hierarchical taxonomy serves as knowl-
edge transferred from a teacher model (i.e., GCN model) to a
student model (i.e., Symbolic-based model). In this method,
we want the training algorithm (DNN) to not only rely on
a supervised loss function but also consider prior domain
knowledge encoded in a taxonomy tree. Therefore, a batch
includes a few documents from the training data along with
the taxonomy tree representing the hierarchical categories of
the classification, which serves as the backbone of a larger
graph A. In other words, A is a graph generated by con-
necting the documents of a batch to the taxonomy tree. The
workflow of the end-to-end training of BGCN is shown in
Figure 5. The regularization term Lreg, explicitly added to
the existing loss function, is defined as:

Lreg =∥ P −H ∥22 (5)

The generated graph A is used to provide representations
H for batch of document in the same space of the predicted
probabilities from a supervised DNN. Euclidean distance is
measured as the regularization loss to be added to the train-
ing loss. The final loss function is:

L = L0 + w × Lreg (6)

where L0 is a Cross Entropy loss and Lreg is the regulariza-
tion loss.

Figure 5: An illustration of BGCN training workflow on
documents D = {d1, d2, .., d7} which are inter connected
through a backbone graph, i.e., taxonomy.

Experimental Results
Taxonomy
To demonstrate the impact of taxonomy on both fine-grained
and general classification, we adopt a policy. Our aim is
to incorporate a wide range of categories at the top-1 level
(excluding the root), while avoiding excessive depth in the
taxonomy hierarchy. Specifically, we limit the taxonomy
to three levels, thereby preventing the task from becoming
solely focused on fine-grained classification.

Data
In our experiments, we utilize datasets in two languages:
Chinese ,i.e., In-house datasets, and English ,i.e., RCV1 and
Amazon Product Review.

In-house Data: We utilize two imbalanced Chinese
datasets from a private company. The first dataset comprises
user query logs from a Shopping Mall, consisting of 84
classes. The taxonomy associated with this dataset has three
levels: level 1 encompasses 18 domains, level 2 comprises
45 intents, and level 3 includes 84 sub-intents. The second
dataset consists of user query logs from a Call Center Ser-
vice, which consists of 134 classes. The hierarchical taxon-
omy for this dataset also has three levels: level 1 contains 5
domains, level 2 includes 24 intents, and level 3 (leaves/la-
bels) contains 134 sub-intents.

RCV1: The Reuters Corpus Volume I (RCV1) is a widely
recognized archive of over 800,000 manually categorized
newswire stories provided by Reuters, Ltd. A new version of
RCV1(RCV1-v2/LYRL2004) was provided by (Lewis et al.
2004), regarding this version of RCV1, we have generated a
new dataset and a corresponding hierarchical taxonomy suit-
able for multi-class classification. We have created a hier-
archical taxonomy with three levels tailored for multi-class
classification. The first level comprises four categories, the
second level consists of 33 categories, and the third level
(leaves/labels) includes 53 sub-categories.

Amazon Product Review: This dataset consists of re-
views from Amazon Since our focus is on multi-class flat
classification, similar to the Reuters dataset, we filter out
documents with multiple labels and create an adjusted hi-
erarchical taxonomy accordingly. The updated taxonomy is



Method Accuracy% Macro Avg F1% Weighted Avg F1%

Baseline 74.54 56.55 75.63
+Symbolic-based 76.23 60.84 77.39
+GCN-based 76.10 59.46 77.32

Table 1: A comparison of the methods in Supervised fashion
on Call Center Service dataset.

Method Accuracy% Macro Avg F1% Weighted Avg F1%

Baseline 93.80 81.69 93.57
+Symbolic-based 94.12 83.60 93.79
+GCN-based 93.99 86.11 93.74

Table 2: A comparison of the methods in Supervised fashion
on Shopping Mall dataset.

organized into three levels: the first level includes 22 cate-
gories, the second level consists of 116 categories, and the
third level (leaves/labels) encompasses 300 sub-categories.

Baseline Method
No Constraint: LLMs have demonstrated significant im-
provements in machine learning performance, particularly
in classification problems. It has yielded remarkable results
even in few/zero-shot learning scenarios. To compare our
results, we consider a LLM as the baseline without utiliz-
ing any constraints or taxonomy. It is a fine-tuned BERT
model with two stacked layers on the pooler output, em-
ploying tanh and softmax activation functions, respectively.
We utilize two models from Hugging Face platform: bert-
base-cased for English datasets, and hfl/chinese-bert-wwm
for Chinese datasets.

One-hot Constraint: It is challenging to demonstrate the
impact of explicit injected knowledge in pre-trained models,
e.g., BERT, because of its already trained implicit knowl-
edge. Therefore, to emphasize the effectiveness of integrat-
ing taxonomy knowledge into machine learning, we also
employ the exactly-one or one-hot constraint, as presented
in (Xu et al. 2018). This constraint captures the encod-
ing used in multi-class classification, stating that for a set
of indicators X = {X1, ..., Xn}, one and exactly one of
those indicators must be true, with the rest being false.
The logical function for three variables can be expressed as
(x1 ∧¬x2 ∧¬x3)∨ (¬x1 ∧ x2 ∧¬x3)∨ (¬x1 ∧¬x2 ∧ x3).

Method Accuracy% Macro Avg F1% Weighted Avg F1%

Baseline 94.10 81.22 93.99
+Symbolic-based 95.16 82.45 95.08
+GCN-based 94.49 83.55 94.41

Table 3: A comparison of the methods in Supervised fashion
on Reuters dataset.

Ablation Study
We conduct an ablation study on our proposed approach. We
refer to our base model as the Tax-based model and consider
the following variant:

Method Accuracy% Macro Avg F1% Weighted Avg F1%

Baseline 52.62 41.67 51.78
+Symbolic-based 53.77 42.14 52.64
+GCN-based 53.58 41.71 52.58

Table 4: A comparison of the methods in Supervised fashion
on Amazon dataset.

Method Accuracy% Macro Avg F1% Weighted Avg F1%

Tax-basedSymbolic−based +2.12 +3.66 +2.11
Tax-basedGCN−based +0.59 +2.72 +0.71
Tax-L1-based +0.07 +1.09 +0.06

Table 5: The results of the ablation study.

Portion Method Accuracy% Macro Avg F1% Weighted Avg F1%

20% Baseline 65.94 43.58 64.95
+Symbolic-based 70.51 52.85 70.12
+GCN-based 68.00 50.28 67.74

30% Baseline 66.07 46.93 65.13
+Symbolic-based 69.09 54.29 69.04
+GCN-based 70.38 54.68 70.25

40% Baseline 68.58 51.67 68.20
+Symbolic-based 71.93 58.54 71.88
+GCN-based 69.99 55.17 69.59

Table 6: A comparison of the methods in Semi-Supervised
fashion on Call Center Service dataset.

Portion Method Accuracy% Macro Avg F1% Weighted Avg F1%

20% Baseline 87.67 57.54 86.93
+Symbolic-based 90.88 66.12 90.09
+GCN-based 90.56 67.18 89.84

30% Baseline 91.53 71.87 90.48
+Symbolic-based 92.22 76.23 91.75
+GCN-based 92.22 81.26 91.93

40% Baseline 92.22 75.70 91.73
+Symbolic-based 92.68 76.48 92.20
+GCN-based 92.22 76.78 91.83

Table 7: A comparison of the methods in Semi-Supervised
fashion on Shopping Mall dataset.

Portion Method Accuracy% Macro Avg F1% Weighted Avg F1%

20% Baseline 91.23 68.51 90.94
+Symbolic-based 91.60 71.88 91.38
+GCN-based 91.70 74.94 91.43

30% Baseline 92.74 75.38 92.56
+Symbolic-based 93.43 76.54 93.40
+GCN-based 92.54 77.08 92.45

40% Baseline 93.26 76.52 93.09
+Symbolic-based 93.53 79.93 93.42
+GCN-based 93.48 80.26 93.35

Table 8: A comparison of the methods in Semi-Supervised
fashion on Reuters dataset.

Portion Method Accuracy% Macro Avg F1% Weighted Avg F1%

20% Baseline 40.93 19.99 36.94
+Symbolic-based 44.00 27.94 41.83
+GCN-based 43.76 25.34 40.90

30% Baseline 44.66 26.37 42.34
+Symbolic-based 46.45 32.02 44.89
+GCN-based 46.64 29.97 44.40

40% Baseline 48.09 32.13 45.43
+Symbolic-based 49.14 36.47 47.87
+GCN-based 48.80 33.39 47.01

Table 9: A comparison of the methods in Semi-Supervised
fashion on Amazon dataset.
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Figure 6: The satisfiability of WMC in semantic loss, train-
ing loss, and accuracy in first epoch.

Tax-L1-based: This variant of our base model includes
only the first level l1 of the taxonomy. Essentially, this vari-
ant is equivalent to the One-hot Constraint, as it represents
the same formula proposed in (Xu et al. 2018). In this model
variant, all upper levels of the taxonomy are removed, and
only the leaf nodes are considered. To ensure a fair com-
parison with the One-hot Constraint, we evaluate the results
only in a supervised fashion. To ensure reproducibility of
our evaluation, we set all the seeds and run for one epoch.
The average performance improvements, measured by three
metrics across all four datasets, are presented in Table 5.

Evaluation Measure
We use three measures: Accuracy, Macro Average F1-score,
and Weighted Average F1-score to evaluate the obtained re-
sults. Specifically, for evaluating the effect of hierarchical
taxonomy in imbalanced classification, we use Macro Aver-
age F1-score, which is the arithmetic mean of F1-scores per
class. It does not use weights (i.e., number of true labels of
each class) for aggregation of F1-scores per class, and this
results in a bigger penalization when a model does not per-
form well with the minority classes.In all experiments, we
obtain the results with/without injecting taxonomy into the
existing data-driven loss function. We run all experiments
for 10 epochs, with a batch size of 32. The experiments are
repeated 3 times, and the best result for each method and
baseline is selected.

In semi-supervised learning, we define a policy to gener-
ate datasets in which some of the target labels, i.e., leaves
in taxonomy, for documents and some of internal nodes in
the taxonomies, are randomly masked/removed. For exam-
ple, 20% semi-supervised learning means that in the leaves
of the taxonomy, which also correspond to the target labels,
80% of the data rely on the taxonomy. Moreover, from the
80% unlabeled data in this case, 40% of it relies on level 2 of
the taxonomy, and the rest relies on first level. Respectively,
in 30% and 40% semi-supervised learning, it is increased
by 10% less relying on taxonomy in the leaves, and 20%
on level 2. To examine the pure effect of taxonomy, we do

not consider the taxonomy knowledge for both the labeled
and unlabeled data in semi-supervised learning (Tables 6, 7,
8, and 9). We only take the knowledge from taxonomy into
account for unlabeled data, and separately in different exper-
iments (Tables 1, 2, 3, and 4), it is considered for all data.

Injecting the abstracted taxonomy into the existing loss
function provides a learning signal on unlabeled samples by
forcing the underlying learner to make decisions that satisfy
the constraint. Figure 6 shows the satisfiability of the regu-
larization term (i.e., WMC in semantic loss) of the training
loss function in the first epoch, together with the training
loss and the accuracy. The results indicate that as we reason
on the hierarchical taxonomy, we will see improvement in
categorizing documents.

Overall, the proposed methods consistently yield supe-
rior results in both supervised and semi-supervised scenar-
ios when compared to the baseline. Notably, the substan-
tial impact of the taxonomy becomes evident in the semi-
supervised context, as demonstrated in tables (Tables 6, 7,
8, and 9), with a clear emphasis on improving the Macro
Average F1-score. While Symbolic-based method demon-
strates superior results, particularly in the accuracy of learn-
ers in supervised and semi-supervised scenarios, Tables 2,
3, 7, and 8 reveal that the GCN-based method outperforms
in terms of Macro Average F1-score. This observation holds
true even when considering that the size of the hierarchical
taxonomies generated for the Shopping Mall and Reuters
datasets is smaller than that of the other two datasets in
our experiments, all while using a fixed batch size. These
observations offer valuable insights from our experiments,
highlighting two key takeaways. First, the Symbolic-based
approach exhibits scalability for larger hierarchical tax-
onomies, showcasing its potential for handling more exten-
sive taxonomic structures. Second, the GCN-based method
proves to be particularly effective in addressing long-tailed
problems, showcasing its utility in scenarios with imbal-
anced data distributions.

However, as shown in our experiments, the effect of the
taxonomy on the model‘s performance reduces increasing
of the labeled samples. As Table 5 shows, the one-hot con-
straint does not significantly affect performance, and it is
almost zero because the constraint is always satisfied by ex-
isting data-driven loss, and it can perfectly fit training data.
Despite this satisfaction, we can still see the effect of the tax-
onomy on overall performance, specially in minor classes,
even in fully supervised learning Table 1 and 2. This is be-
cause of the hierarchical structure of the constraint, which
alleviates model output distributions over the classes to al-
low conditioning on upper concepts.

Conclusion
In this paper, we aimed to explore several key challenges in
deep learning: reasoning, semi-supervised learning, and the
long-tailed issue. We developed two methods to represent
and integrate a hierarchical taxonomy of labels into the loss
function of a flat classifier. We demonstrated the effect of
these methods in supervised and semi-supervised learning.
Moreover, our experimental evaluations show that integrat-
ing a well-designed hierarchical taxonomy into the learning



algorithm of a neural network effectively guides the learner
to achieve significant results on long-tailed problems.
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