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Abstract
The local inductive bias of message-passing graph
neural networks (GNNs) hampers their ability
to exploit key structural information (e.g., con-
nectivity and cycles). Positional encoding (PE)
and Persistent Homology (PH) have emerged as
two promising approaches to mitigate this issue.
PE schemes endow GNNs with location-aware
features, while PH methods enhance GNNs with
multiresolution topological features. However, a
rigorous theoretical characterization of the rel-
ative merits and shortcomings of PE and PH
has remained elusive. We bridge this gap by
establishing that neither paradigm is more ex-
pressive than the other, providing novel construc-
tions where one approach fails but the other suc-
ceeds. Our insights inform the design of a novel
learnable method, PiPE (Persistence-informed
Positional Encoding), which is provably more
expressive than both PH and PE. PiPE demon-
strates strong performance across a variety of
tasks (e.g., molecule property prediction, graph
classification, and out-of-distribution generaliza-
tion), thereby advancing the frontiers of graph rep-
resentation learning. Code is available at https:
//github.com/Aalto-QuML/PIPE.

1. Introduction
Many natural systems, such as social networks (Freeman,
2004) and proteins (Jha et al., 2022), exhibit complex rela-
tional structures often represented as graphs. To tackle
prediction problems in these domains, message-passing
graph neural networks (GNNs) (Scarselli et al., 2009; Bron-
stein et al., 2017; Hamilton et al., 2017; Velickovic et al.,
2018) have become the dominant approach, leading to break-
throughs in diverse applications such as drug discovery
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(Gilmer et al., 2017; Stokes et al., 2020; Satorras et al.,
2021), simulation of physical systems (Cranmer et al., 2019;
Sanchez-Gonzalez et al., 2020; Verma & Jena, 2021), algo-
rithmic reasoning (Dudzik et al., 2023; Jurss et al., 2023),
and recommender systems (Ying et al., 2018).

Despite this success, message-passing GNNs have rather
limited expressivity — they are at most as powerful as the
1-Weisfeiler-Lehman (1-WL) test (Weisfeiler & Leman,
1968) in distinguishing non-isomorphic graphs (Xu et al.,
2019; Morris et al., 2019; Nikolentzos et al., 2023). This
inherent limitation has prompted the development of more
expressive GNNs by leveraging, e.g., topological features
(Horn et al., 2022), random features (Sato et al., 2021),
higher-order message passing (Morris et al., 2019; Ballester
et al., 2024), and structural/positional encodings (Li et al.,
2020; You et al., 2019; Wang et al., 2023).

Inspired by the success of positional encodings (PEs) in
Transformers (Vaswani et al., 2017) for sequences, several
positional encodings for graphs have been proposed (You
et al., 2019; Dwivedi et al., 2022; Wang et al., 2023; Huang
et al., 2024). For instance, spectral methods exploit global
structure via the eigendecomposition of the graph Laplacian
(Lim et al., 2023; Kreuzer et al., 2021; Huang et al., 2024).
However, these encodings suffer from inherent ambiguities
due to sign flips, basis changes, stability, and eigenvalue
multiplicities. Recent efforts have addressed sign and ba-
sis symmetries (Lim et al., 2023; Wang et al., 2023) and
stability with respect to graph perturbations (Huang et al.,
2024). However, a common drawback persists: most meth-
ods partition the Laplacian eigenvalue/eigenvector space
and utilize only the partitioned eigenvalues/eigenvectors.
This approach discards valuable information contained in
the remaining eigenvalues and eigenvectors. Another class
of methods leverage relative distances (e.g., computed from
random walk diffusion) to anchor-nodes to capture struc-
tural information (Dwivedi et al., 2022; Eliasof et al., 2023;
Ying et al., 2021; You et al., 2019; Li et al., 2020). Despite
these advances, existing methods fail to extract detailed
multiscale topological information, such as the persistence
of connected components and independent cycles (i.e., 0-
and 1-dim topological invariants), which may be relevant to
downstream tasks and potentially more expressive.

Persistent homology (PH) (Edelsbrunner et al., 2002) is
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Main contributions

Shortcomings of PE and PH (Section 3):
Neither is more expressive: constructions exposing limitations Prop. 3.1, 3.2

PH enhanced with PE (Section 3.1):
Different base PE → different persistent diagrams Lem. 3.3
Comparison with standalone PE methods Prop. 3.4, 3.5
On degree-based filtrations and PE Prop. 3.6

PiPE (Section 4):
LPE-based PiPE ≻ LPE-based LSPE, PH+LPE Prop. 4.1, 4.2
RW-based PiPE and 3-WL Prop. 4.3
On k-FWL and color separating sets Prop. 4.4

Experiments (Section 5):
Graph classification, property prediction, and OOD tasks

Figure 1: Overview of our key contributions

the cornerstone of topological data analysis and offers a
powerful framework to capture multi-scale topological in-
formation from data. In the context of graphs, PH has been
recently used, e.g., to boost the expressive and representa-
tional power of GNNs (Horn et al., 2022; Immonen et al.,
2023; Carriere et al., 2020; Verma et al., 2024). However,
while both PE and PH schemes enhance the expressivity
of GNNs, their relative merits and shortcomings remain
unclear. Furthermore, whether the two can be harmonized
to enable further expressivity gains remains unexplored.

In this work, we introduce novel constructions to reveal
that neither paradigm is more expressive than the other.
Leveraging our insights, we introduce PiPE (Persistence-
informed Positional Encoding), a learnable positional en-
coding scheme that unifies PE and PH through message-
passing networks. Notably, PiPE is very flexible as it can
be based on any existing PE method for graphs, and renders
provable expressivity benefits over what can be achieved by
either PE or PH methods on their own.

Specifically, we theoretically analyze PiPE and compare
its representational power to popular learnable PE methods
such as LSPE (Dwivedi et al., 2022), and analyze it in terms
of the higher-order WL hierarchy, i.e., k-WL. To demon-
strate the effectiveness of our proposal, we conduct rigorous
empirical evaluations on various tasks, including molecule
property prediction, out-of-distribution generalization, and
synthetic tree tasks.

In sum, our contributions are three-fold:

1. (Theory) We establish theoretical results about incom-
parability of PE and PH methods, their limitations and
how we can combine PH and PE to elevate the repre-
sentational power – summarized in Figure 1.

2. (Methodolgy) Building on these insights, we intro-
duce Persistence-informed Positional Encoding (PiPE),
a novel learnable PE method that unifies PE and
PH through message-passing networks by combining
strengths of both.

3. (Empirical) We show that the improved expressivity
of our approach also translates into gains in real-world
problems such as graph classification, molecule prop-
erty prediction, out-of-distribution generalization, as
well as on synthetic tree tasks.

2. Background
This section overviews graph positional encoding methods,
and some basic notions in persistent homology for graphs.

Notation. We define a graph as a tuple G = (V,E), where
V = {1, . . . , n} is a set of vertices (or nodes) and E is a set
of unordered pairs of vertices, called edges. We denote the
adjacency matrix of G by A ∈ {0, 1}n×n, i.e., Aij is one if
{i, j} ∈ E and zero otherwise. We use D to represent the
diagonal degree matrix of G, i.e., Dii =

∑
j Aij . We define

the normalized Laplacian of G as ∆ = In −D−1/2AD−1/2

and its random walk Laplacian as ∆RW = D−1A, where In
is the n-dimensional identity matrix. The set of neighbors
of a node v is denoted by N (v) = {u ∈ V : {v, u} ∈ E}.
Furthermore, we use {{·}} to denote multisets. Attributed
graphs are augmented with a function x : V → Rd that
assigns a color (or d-dimensional feature vector) to nodes
v ∈ V — for notational convenience, hereafter, we denote
the feature vector of v by xv . Finally, two attributed graphs
G = (V,E, x) and G′ = (V ′, E′, x′) are said to be isomor-
phic if there is a bijection g : V → V ′ such that {u, v} ∈ E
iff {g(u), g(v)} ∈ E′ and x′ ◦ g = x.
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PiPE integration with backbone GNN Readout (graph-level)

Figure 2: Overview of PiPE and integration with backbone GNN. At each layer ℓ, the node embeddings {xℓ−1
u }u

are updated using the positional embeddings {pℓ−1
u }u and the topological embeddings {rℓ−1,0

u , rℓ−1,1
u }u. The position

embeddings {pℓ−1
u }u are updated and then leading to the computation of persistence diagrams D0

ℓ ,D1
ℓ leading to topological

embeddings {rℓ,0u , rℓ,1u }u. In readout phase, the final layer node embeddings {xL
u}u are combined with the topological

embeddings {rℓ,0u , rℓ,1u }u,ℓ for various tasks.

2.1. Graph positional encoding

Given a graph G, a positional encoder acts on A (adjacency
matrix of G) to obtain an embedding matrix P ∈ Rn×k,
where the v-th row of P comprise the positional feature
of node v, denoted by pv. Integrating PEs into message-
passing GNNs (Gilmer et al., 2017; Xu et al., 2019) enables
them to learn intricate relationships between nodes based
on positional information, ultimately enhancing their repre-
sentational power. Although several PE methods (Dwivedi
et al., 2022; Li et al., 2020; Lim et al., 2023; Wang et al.,
2023) have been proposed, most approaches build upon:

• Laplacian PE (Dwivedi & Bresson, 2020): This ap-
proach employs the idea of Laplacian eigenmaps
(Belkin & Niyogi, 2003) as PE. In particular, let
∆ = UΛU⊤, where U ∈ Rn×n is an orthonor-
mal matrix with eigenvectors u1, . . . , un and the ma-
trix Λ = diag(λ1, . . . , λn) comprises the correspond-
ing eigenvalues (or spectrum) of ∆, with λ1 ≤
λ2 ≤ · · · ≤ λn. Then, Laplacian PE uses the k
smallest (non-trivial) eigenvectors as positional en-
codings, i.e., pv = [u1,v, u2,v, . . . , uk,v] for all v ∈
V . We note that this corresponds to the solution to:
maxP∈Rn×k trace(P⊤∆P ) subject to P⊤DP = Ik.

• Distance PE (Li et al., 2020): Let S ⊆ V be a target
subset of vertices. Distance PE learns node features
for each node v based on distances from v to elements
in S (You et al., 2019). The distances comprise either
random walk probabilities or generalized PageRank
scores (Li et al., 2019). Formally, using sum-pooling,
Distance PE computes pv =

∑
s∈S f(dG(v, s)) with

dG(v, s) = [(∆RW)vs, (∆
2
RW)vs, . . . , (∆

k
RW)vs] or

dG(v, s) = (
∑k

i=1 γi∆
i
RW)

vs
, where γi ∈ R and f(·)

is a multilayer perceptron.

• Random walk PE (Dwivedi et al., 2022): This approach
captures node proximity through the random walk dif-
fusion process and can be viewed as a simplified ver-
sion of Distance PE. In particular, Dwivedi et al. (2022)
adopt pv = [(∆RW)vv, (∆

2
RW)vv, . . . , (∆

k
RW)vv].

Dwivedi et al. (2022) also propose learnable structural and
positional encodings (LSPE) as a general framework that
builds upon base positional encoders (e.g., LapPE). More
specifically, the key idea of LPSE lies at decoupling posi-
tional and structural representations and learn them using
message-passing layers. Formally, starting from x0

v = xv

and p0v = pv ∀v ∈ V , LSPE recursively updates positional
and node embeddings as

xℓ+1
v =Updxℓ

(
xℓ
v, p

ℓ
v,Aggxℓ ({{xℓ

u, p
ℓ
u : u ∈ N (v)}})

)
(1)

pℓ+1
v =Updpℓ

(
pℓv,Aggpℓ ({{p

ℓ
u : u ∈ N (v)}})

)
, (2)

where Aggpℓ and Aggxℓ are arbitrary order-invariant func-
tions, and Updxℓ and Updpℓ are arbitrary functions (often
multilayer perceptrons, MLPs). After iterative updating,
the final layer node embeddings are concatenated with the
final positional ones, i.e., {[xL

v , p
L
v ]}v, and then leveraged

for downstream tasks, such as node classification, graph
classification, or link prediction.

2.2. Persistent homology on graphs

A key notion in persistent homology is that of filtration. In
this regard, a filtration of a graph G is a finite nested se-
quence of subgraphs of G, i.e., ∅ = G0 ⊂ G1 ⊂ ... ⊂ G.
A popular choice to obtain a filtration consists of consid-
ering sublevel sets of a function defined on the vertices of
a graph. In particular, let f : V → R be a filtering func-
tion and Gα be the subgraph of G induced by the vertex
set Vα = {v : f(v) ≤ α} for α ∈ R. By varying α from
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Figure 3: Incomparability of PH and PE. The graph G , resembling an anthracene molecule, consists of three conjoined
3-cycles sharing a ring. Using the k = β0(G) + 1 lowest Laplacian PE eigenmaps, PE fails to capture the number of basis
cycles. The kth (Fiedler’s) eigenvector partitions G into two components, as shown in G′, missing the cyclic structure. The
graphs K consist of two 4-cycles sharing consecutive nodes, and K ′ consist of a 4-cycle inscribed in a 5-cycle sharing three
consecutive nodes. Both K and K ′ have the same number of connected components (β0) and basis cycles (β1) but have
distinct Laplacian eigenspectra.

−∞ to ∞, we obtain a sub-level filtration of G. Impor-
tantly, we can monitor the emergence and vanishing of topo-
logical characteristics (e.g., connected components, loops)
throughout a filtration, which is the core idea of PH. More
specifically, if a topological feature first appears in Gαb

and
disappears in Gαd

, then we encode its persistence as a pair
(αb, αd); if a feature does not disappear, then its persistence
is (αb,∞). The collection of all pairs forms a multiset that
we call persistence diagram (PD). We use Di(G, f) to de-
note the i-dimensional PD of G obtained using the function
f . Additionally, for any graph G, β0(G) and β1(G) are its
Betti numbers, i.e., the number of connected components
and independent (basic) cycles, respectively. For a formal
treatment of PH, we refer to Edelsbrunner & Harer (2010)
and Hensel et al. (2021).

In graph learning, persistent homology has been harnessed
to enhance the expressive power of GNNs. Horn et al. (2022)
introduced TOGL, a general framework for integrating topo-
logical features derived from PH into GNN layers. TOGL
employs a learnable function (a multilayer perceptron, MLP)
on node features / colors to obtain graph filtrations, which
we refer to as vertex-color (VC) filtrations. Importantly,
Immonen et al. (2023) characterized the expressive power
of VC filtrations via the notions of color-separating sets and
component-wise colors. Formally, a color-separating set
for a pair of attributed graphs (G,G′) with corresponding
coloring functions x and x′ is a set of colors Q such that
the subgraphs induced by V \ {w ∈ V | xw ∈ Q} and
V ′ \ {w ∈ V ′ | x′

w ∈ Q} have distinct component-wise
colors — defined as the multiset comprising the set of node
colors of each connected component. When dealing with
VC filtrations, we use Di(G,C, f) to denote the i-th dim
persistence diagram of G considering the indexed set of ver-
tex colors C = {cv}v∈V (G), with cv ∈ U , and the filtration
function f : U → R — U is the universe of possible colors.

3. Shortcomings of PE and PH
This section examines the limitations of positional encod-
ings (PE) and PH methods in distinguishing non-isomorphic
graphs. We focus on Laplacian PE, random-walk PE, and
distance encodings (see Section 2.1) as they are the funda-
mental building blocks behind most PE methods. Regarding
PH, we mainly consider persistence diagrams derived from
VC filtrations. We defer all proofs to Appendix C.

Our first result (Proposition 3.1) establishes the incompara-
bility of PH and LapPE on unattributed graphs, i.e., neither
method encompasses the capabilities of the other. Recall
that the expressive power of PH from VC filtrations on
unattributed graphs is bounded by β0 and β1.
Proposition 3.1. For any graph G and k > 0, let Φk(G)
denote the multiset of Laplacian positional encodings (LPE)
of G built using the k lowest eigenpairs. The following
holds:

S1. There exist G1≇G2 s.t. β0(G1)=β0(G2), β1(G1) =
β1(G2) but Φk(G1) ̸= Φk(G2) for all k > β0(G1);

S2. There exist G1 ≇ G2 such that β1(G1) ̸= β1(G2) but
Φk(G1) = Φk(G2);

S3. There exist G1 ≇ G2 such that β0(G1) ̸= β0(G2) but
Φk(G1) = Φk(G2).

This shows that the incomparability holds even if we con-
sider only 0-dim or 1-dim topological features. Proposition
3.2 shows the same result also applies to random walk PE.
Proposition 3.2. Let Φk(G) denote the multiset of random
walk positional encodings obtained from walks of length k.
The statements S1, S2, S3 of Proposition 3.1 still holds.

Overall, Propositions 3.1 and 3.2 reveal that both PE and
PH methods have complementary limitations. A key conse-
quence of statement S2 is that LapPE cannot determine the
number of basis cycles in a graph. As illustrated in Figure 3,
even when using k = β0 + 1 lowest Laplacian eigenmaps,
the kth (Fiedler’s) eigenvector merely bisects graph G′ into
two components, failing to capture the cyclic structure.
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Figure 4: Construction for Propositions 3.4 and 4.3. The graph G with two copies of C5 is indistinguishable from graph
G′ with C10 by RW-based PE , despite having disconnected components. This follows since every node in G and G′ has the
same degree and same RW-based PE Φk. In contrast, PH can separate them due to distinct connected components. Likewise,
K and K ′ are 4-regular and 2-WL equivalent graphs which are indistinguishable due to the same RW-based PE.

In the following, we describe how we can leverage PE and
PH methods to overcome their individual limitations and
achieve enhanced representational capabilities.

3.1. Benefits of combining PE with PH

We now show that persistent homology benefits from
additional expressive power due to positional encoding.
We start by showing that defining filtering functions on
positional encodings results in 0-dim persistence diagrams
that are at least as expressive as the positional encodings
in distinguishing non-isomorphic graphs. In other words,
we do not lose expressive power by relying only on 0-dim
diagrams. This is a direct consequence (corollary) of
Lemma 5 by Immonen et al. (2023).

Lemma 3.3. Let Φ(G) = {pv}v∈V (G) denote the node
embeddings of G from any base PE method. For any G1

and G2, if Φ(G1) ̸= Φ(G2), then there exists a function f
such that D0(G1,Φ(G1), f) ̸= D0(G2,Φ(G2), f).

In Propositions 3.4 and 3.5, we show there are pairs of
graphs that LapPE, random walk PE and distance encodings
cannot distiguish but their combination with PH can. Im-
portantly, together with Lemma 3.3, these results show that
combining PH and PE is strictly more expressive than the
base PE methods alone.

Proposition 3.4. Let Φk(G) be either the Laplacian PEs
with the k lowest eigenpairs or the random walk PEs with
walks of length k of G. Then, there exist G1 ≇ G2 and
filtration function f such that Φk(G1) = Φk(G2) and
D0(G1,Φk(G1), f) ̸= D0(G2,Φk(G2), f).

To illustrate this limitation, consider graphs G and G′ in
Figure 4. Despite having different connected components,
they share identical RW-based Φk for some k, demonstrat-
ing RW-based PE’s inability to determine the number of
connected components.

Proposition 3.5. Let Φd(G) denote the distance encodings
of G considering the d-sized node subset S ∈ Pd(V (G)).
Then, there exist G1 ≇ G2 and f such that Φ1(G1) =

Φ1(G2) and D0(G1,Φ1(G1), f) ̸=D0(G2,Φ1(G2), f).

Additionally, Proposition 3.6 considers PH based on degree
filtrations and shows that it does not subsume combinations
of PH with LapPE and RWPE.

Proposition 3.6. Consider D(G) = {dv}v∈V (G) where
dv is the degree of node v. Again, let Φk(G) be either
the k-dim Laplacian PEs or k-length random walk PEs
of G. Then, there exist k > 0, G1 ≇ G2 such that
D0(G1, D(G1), f) = D0(G2, D(G2), f) for all f , but
D0(G1,Φk(G1), f) ̸= D0(G2,Φk(G2), f) for some f .

Figure 8 (in the Appendix) illustrates two graphs G and G′

that are indistinguishable by degree-based filtration func-
tions. Note that in contrast, the Laplacian eigenspectra are
distinct, allowing LPE-based methods to distinguish them.
Next, we present a learnable approach that combines PH,
PE, and graph neural networks (GNNs), which are the most
widely used methods for learning on graphs.

4. Persistence-informed positional encoding
In this section, we introduce Persistence-informed positional
encoding (PiPE, in short). PiPE unifies PE with PH, via
GNN-based message passing networks and leverages de-
tailed topological information of graphs. Here, we also
analyze the expressivity properties of our proposal.

Let pv ∈ Rd be a base PE (e.g., Laplacian PE) for a node
v ∈ V (G). We propagate positional embeddings over the
graph following a vanilla message-passing procedure while
computing the topological features. In particular, starting
from p0v = pv for all v, we recursively update the positional
embeddings as

rℓ,0v = Ψℓ
0(D0

ℓ (A, {pℓv}v, fℓ))v (3)

rℓ,1v =
∑
e:v∈e

Ψℓ
1(D1

ℓ (A, {pℓv}v, fℓ))e (4)

pℓ+1
v = Updpℓ (r

ℓ,0
v , rℓ,1v , pℓv,

Aggℓ({{(rℓ,0u , rℓ,1u , pℓu) : u ∈ N (v)}}))
(5)
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Figure 5: Test MAE for drug molecule property prediction and graph classification results. Integration of PiPE into
backbone message passing schemes leads to better downstream performance across diverse datasets. For more details, see
Table 5.

where Aggpℓ is an order-invariant function, Updpℓ is an
arbitrary update function at layer ℓ, and Ψℓ

0 and Ψℓ
1 denote

diagram vectorization schemes, detailed in the following.

Computing topological features. We use the positional
encodings {pℓv}v as node features to compute persistence
diagrams D0

ℓ ,D1
ℓ induced by a filtering function fℓ followed

by the vectorization procedures Ψℓ
0,Ψ

ℓ
1 at each layer ℓ. We

followed the vectorization schemes in (Horn et al., 2022).
To obtain node features from D0 we note that |D0| = n,
and, therefore, we can define a bijection between V and D0.
Thus, we apply an MLP to each tuple to obtain the node-
level features rℓ,0v . For dimension 1, we first employ the
edge-level vectorization Ψℓ

1 (e.g., MLP) and then aggregate
the edge embeddings to obtain node-level ones rℓ,1v . Note
that, although |D1| is equal to the number of basic cycles
(not to the number of edges), we can use dummy tuples for
edges that have not created a cycle. Details of this procedure
can be found in Appendix A.4 in (Horn et al., 2022). We
refer to [rℓ,0v || rℓ,1v ] as the topological embedding associated
with the base PE pℓv .

Integration with backbone GNNs. A simple strategy to in-
tegrate PiPE with the backbone GNNs over node features is
to combine (e.g., concatenate or add) them with GNN node
embeddings {xℓ

v}v. Then, the resulting GNN’s message-
passing procedure at layer ℓ becomes

xℓ+1
v = Updxℓ

(
hℓ
v,Aggℓ({{hℓ

u : u ∈ N (v)}})
)

∀v ∈ V.

where hℓ
v = [xℓ

v ∥ pℓv ∥ rℓ,0v ∥ rℓ,1v ].

Achieving class predictions. For graph classification, as
usual, we apply a readout function (e.g., sum or mean) to the
embeddings at the last GNN layer, L, to obtain a graph-level
embedding xG, i.e., xG = Readout({xL

v }v). Similarly to
LSPE, we can also concatenate positional embeddings pLv
with node representations xL

v before applying the readout
function. Then, we combine xG with a global topological

embedding Pool({rℓ,0v , rℓ,1v }ℓ,v) and send the resulting vec-
tor through an MLP to achieve graph-level predictions —
Pool is either a global mean or addition operator.

Figure 2 describes the architectural steps of our method. Im-
portantly, our framework is versatile and can accommodate
any selection of base (initial) positional encoding as well as
various topological descriptors (e.g., RePHINE) and GNNs.

4.1. Analysis

We now report results on the expressiveness of LPE and
RW-based PiPE. All proofs are in Appendix C.

In Propositions 4.1 and 4.2, we show that PiPE is strictly
more expressive than simple PH and LSPE – a popular
method for learnable positional encodings using GNNs.

Proposition 4.1 (LPE-based PiPE ≻ LPE-based LSPE).
Consider the space of unattributed graphs. Let Q and J
be the classes of PiPE and LSPE models using Laplacian
PE as base encoding, respectively. Then, Q is strictly more
expressive than J in distinguishing non-isomorphic graphs.

Proposition 4.2 (LPE-based PiPE ≻ PH + LPE). Consider
the space of unattributed graphs. Let Q be the class of PiPE
models using Laplacian PE (LPE) as base encoding. Also,
let PH be the class of models that computes persistence
diagrams (dimensions 0 and 1) from filtrations induced by
vertex colors derived from LPE. Then, Q is strictly more ex-
pressive than PH in distinguishing non-isomorphic graphs.

Next, Proposition 4.3 describes a shortcoming of random
walk-based PiPE: its inability to distinguish certain graph
pairs that are separable by 3-WL.

Proposition 4.3 (RW-based PiPE and 3-WL). There exists
certain pair of non-isomorphic unattributed graphs, which
can be distinguished by 3-WL but RW-based PiPE cannot.

Figure 4 illustrates graphs K and K ′ that are 2-WL equiva-
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Figure 6: AUC-ROC (↑) results for DrugOOD Benchmark. PiPE outperforms the competing baselines in achieving
better scores for OOD-Test. For more details, see Table 7.

lent, sharing identical node degrees and RW-based PE Φk

for some k. Despite their structural differences, the PE
method fail to distinguish between them.

Since PiPE combines GNNs with PH, we also provide a
result on the connection between color-separating sets and
the k-WL hierarchy. Proposition 4.4 shows that whenever
k-FWL distinguishes two graphs, there exists a filtration
that produces 0-dim persistence diagrams for these graphs,
or equivalently, there is a color-separating set. We also
provide an explicit coloring for the graphs based on the
stable colorings from k-FWL.

Proposition 4.4. If k-FWL deems two attributed graphs
(G, x) and (G′, x′) non-isomorphic with stable colorings
C∞ : V k → N and C ′

∞ : V ′k → N, then Q = ∅ is a trivial
color-separating set for the graphs (G, x̃) and (G′, x̃′), with
x̃(u) = hash({C∞(v) : u ∈ v, v ∈ V k}) ∀ u ∈ V and
x̃′(u) = hash({C ′

∞(v) : u ∈ v, v ∈ V ′k}) ∀ u ∈ V ′.

We note that Proposition 4.4 strengthens the results by
Ballester & Rieck (2024) (Proposition 5) in two ways. First,
we show how to use k-FWL to find a specific filtering func-
tion that gives separable diagrams — in fact, given the pro-
posed coloring, separability holds for any injective vertex-
color function. Also, with our scheme, even 0-dim diagrams
are different, while Proposition 5 in (Ballester & Rieck,
2024) provides that k − 1 or k-dim diagrams are different.

5. Experiments
We assess the performance of PiPE on diverse and challeng-
ing tasks. In Section 5.1, we evaluate the expressivity of
persistent homology and its combination with positional en-
coding on unattributed graphs. In Section 5.2, we assess its
effectiveness in predicting properties of drug molecules and
performing real-world graph classification. In Section 5.3
we evaluate PiPE’s robustness by benchmarking its ability
to handle domain shifts in data, and Section 5.4 shows the

performance of PiPE on synthetic tree-structured tasks.

Implementation. PiPE is implemented in PyTorch (Paszke
et al., 2019) with same training configuration as the compet-
ing baselines. More details in Appendix D.

Baselines. To empirically demonstrate the effectiveness
of our method, we compared it against existing positional
encoding approaches on various tasks. We utilized several
established baselines for graph tasks: (i) No positional en-
codings, (ii) SignNet & BasisNet (Lim et al., 2023), (iii)
PEG (Wang et al., 2023), (iv) LapPE & RWPE (Dwivedi
et al., 2022), (v) SPE (Huang et al., 2024) and (vi) DE (Li
et al., 2020). In order to compute the topological descriptors
via persistence homology, we utilized (i) Vertex Color (VC)
(Horn et al., 2022) and (ii) RePHINE (Immonen et al., 2023)
as learnable methods to compute the diagrams. For the syn-
thetic tree tasks, we compared our method against these
positional encoding approaches: (i) Sinusodial (Gehring
et al., 2017), (ii) Relative (Shaw et al., 2018) and (iii) RoPE
(Su et al., 2024) positional embedding methods.

Table 1: Unattributed Graphs. The table below reports
accuracy, with the numbers in parentheses indicating the
number of graph pairs in each dataset.

Dataset PH PH+LPE PiPE

Basic (60) 0.03 0.10 0.72
Regular (50) 0.00 0.15 0.40
Extension (100) 0.07 0.13 0.67
CFI (100) 0.03 0.03 0.03
Distance (20) 0.00 0.00 0.05

5.1. Expressivity on Unattributed Graphs

We conducted an empirical study to assess the expressivity
of standard 0-dim PH and PH+LPE on the BREC dataset
(Wang & Zhang, 2023), which evaluates GNN expressive-
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ness across four graph categories: Basic, Regular, Extension,
and CFI. Table 1 presents the accuracy results for each graph
category. The findings indicate that PH+LPE demonstrates
greater expressiveness than standard PH, corroborating our
theoretical analysis.

5.2. Drug Molecule Property Prediction and Graph
Classification

We used the ZINC (Dwivedi et al., 2023) and Alchemy
(Chen et al., 2019) datasets, containing quantum mechan-
ical properties of drug molecules, with the aim to predict
these properties. We followed the data preparation strat-
egy of Huang et al. (2024) with GIN as the base model
for a fair comparison. For graph classification, we used
OGBG-MOLTOX21 (Huang et al., 2017; Wu et al., 2018),
a multi-task binary classification dataset comprising of 7.8k
molecular graphs for toxicity prediction across 12 measure-
ments; OGBG-MOLHIV (Hu et al., 2020), which contains
41k molecular graphs with a binary classification task for
HIV activity; and OGBG-MOLPCBA (Wang et al., 2012;
Wu et al., 2018), a large-scale dataset with 437.9k graphs
for predicting molecular activity or inactivity across 128
bioassays. We followed the experimental setup of Dwivedi
et al. (2022), using Gated-GCN as the base model.

Superior Results. Figure 5 and Table 6 present the
test Mean Absolute Error (MAE) for property predic-
tion tasks (ZINC, Alchemy) and graph classification tasks
(OGBG-MOLTOX21, OGBG-MOLPCBA) across various
PH-vectorization schemes. Additionally, Table 6 also re-
ports the ROC-AUC results on the OGBG-MOLHIV dataset.
We observe that incorporating PiPE into PE schemes con-
sistently outperforms baselines, particularly on ZINC and
MOLPCBA, achieving notable improvements. Integrating
PiPE with the PEG baseline yields the largest MAE reduc-
tion on ZINC, highlighting our approach’s ability to capture
richer graph representations.

5.3. Out of Distribution Prediction

To evaluate our method’s ability to handle domain shifts, we
used DrugOOD, an out-of-distribution (OOD) benchmark
(Ji et al., 2023). We focused on the ligand-based affinity
prediction task to assess drug activity. DrugOOD intro-
duces two types of distribution shifts: (i) Assay, denoting
the assay to which the data point belongs, and (ii) Scaffold,
representing the core structure of molecules. The DrugOOD
dataset is divided into five parts: training set, in-distribution
(ID) validation/test sets, and out-of-distribution (OOD) val-
idation/test sets. The OOD sets have different underlying
distributions compared to the ID sets, allowing us to assess
generalizability to unseen data.

Superior OOD Generalizability. Figure 6 summarizes the
AUC-ROC scores for different methods over test datasets.

Interestingly, all models achieve similar performance on
the in-distribution test set (ID-Test). However, performance
drops for all methods on the out-of-distribution test set
(OOD-Test). This highlights the challenge of generalizing
to unseen data. Our method exhibits the best performance
on the OOD-Test set. This demonstrates the effectiveness
of our approach in capturing features relevant for general-
izability, even when encountering unseen data distributions.

5.4. Synthetic Tree Tasks

We explored three synthetic tree-tasks involving binary
branching trees: (i) Tree-copy, analogous to a sequence
copy-task; (ii) Tree-rotation, where the output tree mirrors
the input, interchanging left and right children; and (iii)
Algebraic expression reduction, where input trees represent
complex expressions from the cyclic group C3, and the
model is tasked with performing a single reduction step, i.e.,
reducing all depth-1 subtrees into leaves. We followed the
data-preparation strategy of Kogkalidis et al. (2024) and
utilized same splits and hyperparameters.

Improved Performance on Tree Tasks. Table 2 presents
the Perplexity (PPL) scores for all methods on the synthetic
tree tasks. Our method consistently achieves lower PPL
scores compared to the baseline across all tasks. This indi-
cates that incorporating our approach on top of a positional
encoding method leads to improved performance on down-
stream tasks. This finding highlights the versatility of our
method, demonstrating its effectiveness across various data
domains, including those involving tree-structured data.

6. Ablations
Identity Filtrations. We investigated the impact of learn-
able versus non-learnable filtrations in vertex-color (VC) PH
method. We compared using positional encodings directly
via an identity filtration function (VC-I), to define filtra-
tion values for computing persistence diagrams, against a
learned filtration function. Figure 7 shows the results along-
side comparisons with learnable variants (VC & RePHINE)
on ZINC dataset. We observe that using the positional
encodings as filtration values to compute the persistence di-
agrams improves the performance. This is further enhanced
by learning a parameterized filtration function, highlighting
the method’s increased expressiveness.

Runtime Comparison. We conducted an ablation study to
investigate the computational cost of our method. We mea-
sured the time (in seconds) per epoch for different models
on a single V100 GPU. The results for various PH and PE
methods are shown in Figure 7 over the Alchemy dataset.
We observe that SPE introduces additional computational
overhead due to its more intensive computations compared
to the simpler methods such as PEG. However, PiPE only
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Figure 7: Identity filtrations and Runtime Comparisons.

Table 2: Synthetic Tree tasks. Perplexity (PPL) ↓ on syn-
thetic tree tasks, where B stands for breadth and D for depth.

Scheme Persistence C3 Reorder Copy

B D B D B D

Sinusodial
None 2.47 2.90 6.93 7.11 1.14 5.76
VC 2.42 2.75 6.80 7.21 1.10 5.47
RePHINE 2.33 2.64 6.75 7.51 1.00 5.32

Relative
None 1.85 2.62 6.00 7.72 1.10 5.94
VC 1.53 2.42 5.92 8.11 1.01 5.04
RePHINE 1.70 2.31 6.12 7.97 1.00 4.82

RoPE
None 1.84 2.52 4.93 6.63 1.85 3.17
VC 1.65 1.94 4.76 5.24 1.14 2.35
RePHINE 1.59 1.77 4.49 4.70 1.00 2.05

adds a slight overload over the base method.

7. Conclusion and Limitations
We highlight the incomparability of positional encoding and
persistent homology methods. Building on these insights,
we introduce “Persistence-informed Positional Encoding”
(PiPE), a novel method that unifies the power of PH with
general positional encoding methods. We theoretically ana-
lyze PiPE’s expressive power and characterize its capabil-
ities within the k-WL hierarchy. Our extensive empirical
evaluations across diverse tasks demonstrate PiPE’s effec-
tiveness, showing significant improvements over existing
methods. PiPE incurs computational overhead due to the
cost of computing persistent homology (PH) embeddings.
Moreover, combining message passing with persistence-
augmented node representations may result in graph-level
representations that are not permutation-invariant. Addi-
tionally, our current approach is limited to 1-dimensional
simplicial complexes.
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A. Related works
Graph positional encodings. Positional encodings enhance representations in Graph Neural Networks (GNNs) (Gilmer
et al., 2017; Xu et al., 2019; Velickovic et al., 2018) by incorporating relational information between nodes based on their
positions. Several approaches have been developed to achieve this, including Laplacian-based methods that utilize the
graph laplacian (Dwivedi et al., 2022; Kreuzer et al., 2021; Maskey et al., 2022; Lim et al., 2023; Wang et al., 2023; Huang
et al., 2024), random walk-based techniques that leverage walks on graphs (Dwivedi et al., 2022; Eliasof et al., 2023), and
PageRank-inspired approaches that compute auxiliary distances (Ying et al., 2021; Li et al., 2020). However, these methods
partition the Laplacian eigenvalue/eigenvector space and utilize only the partitioned eigenvalues/eigenvectors, disregarding
the valuable information contained in the remaining eigenvalues and eigenvectors. To address this limitation, we propose
complementing the existing approaches with topological descriptors based on persistent homology, which can capture
additional structural information from the graph.

Persistent homology on graphs Persistence homology methods (Horn et al., 2022; Carriere et al., 2020; Immonen et al.,
2023; Rosen et al., 2023; Hajij et al., 2021) from topological data analysis have made rapid strides, providing topological
descriptors that augment GNNs (Cesa & Behboodi, 2023; Verma et al., 2024) with persistent information to obtain more
powerful representations, enhancing the expressivity (Ballester & Rieck, 2024; Wang et al., 2024; Yan et al., 2025) and
generalizability (Brilliantov et al., 2024). However, these methods have not been analyzed in regards with positional
encodings in graphs, and the unification of these topological descriptors with positional encodings remains an unexplored
frontier.

B. WL Tests
The Weisfeiler–Leman test (1-WL), also known as the color refinement algorithm (Weisfeiler & Leman, 1968), aims to
determine if two graphs are isomorphic. It does so by iteratively assigning colors to nodes. Initially, nodes receive labels
based on their features. In each iteration, nodes sharing the same label get distinct labels if their sets of similarly labeled
neighbors differ. Termination happens when label counts diverge between graphs, indicating non-isomorphism.

Due to the shortcomings of the 1-WL in distinguishing non-isomorphic graphs, Babai (1979); Immerman & Lander (1990)
introduced a more powerful variant known as k-dim (folklore) Weisfeiler–Leman algorithm. In this approach, k-FWL colors
subgraphs instead of a single node. Specifically, given a graph G, it colors tuples from V (G)k for k ≥ 1 instead of nodes
and defines neighborhoods between these tuples. Formally, let G be a graph, and let k ≥ 2. If v ∈ V (G)k, then G[v] is
the subgraph induced by the components of v, where the nodes are labeled with integers from {1, ..., k} corresponding to
indices of v.

In each iteration i ≥ 0, the algorithm computes a coloring Ck
i : V (G)k → N, and in the initial iteration (i = 0) two tuples

v and w in V (G)k get the same color if the map vi → wi induces an isomorphism between G[v] and G[w]. For i > 0, the
algorithm proceeds as,

Ck
i+1(v) = RELABEL

(
(Ck

i (v),M(v))
)

(6)

where the multi-set M(v) = {{Ck
i (ϕ1(v, w)), . . . , C

k
i (ϕk(v, w)) | w ∈ V (G)}} and ϕj(v, w) =

{v1, . . . , vj−1, w, vj+1, wk}. The ϕj(v, w) replaces the j-th component of the tuple v with the node w. Consequently, two
tuples are adjacent or j-neighbors (with respect to a node w) if they differ in the jth component (or are equal, in the case of
self-loops). The algorithm iterates until convergence, i.e., Ck

i (v) = Ck
i (w) ⇐⇒ Ck

i+1(v) = Ck
i+1(w) for all v, defining

the stable partition induced by Ck
i , define Ck

∞(v) = Ck
i (v). The algorithm then proceeds analogously to the 1-WL.

We say that the k-FWL distinguishes two graphs G and H if their color histograms differ. This means there exist a color c
in the image of Ck

∞ such that G and H have distinct numbers of node tuples of color c. Morris et al. (2023) also describe
another variant of k-WL known as k-dim (oblivious) WL algorithm. The key distinction between the two lies in aggregating
over different neighborhoods. In this case, for each position j ∈ [k] we obtain a set of |V (G)| neighbors by replacing vj by
w ∈ V . A hash for position j is obtained using these colors, and the overall color is obtained by aggregating the hashed
colors across all k positions (and v’s color from previous iteration). We utilize the former variant throughout the paper and
refer to Morris et al. (2023); Huang & Villar (2021) for a thorough discussion of the algorithm and its properties.
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C. Proofs
C.1. Proof of Proposition 3.1

S1. There exist G1≇G2 s.t. β0(G1)=β0(G2), β1(G1) = β1(G2) but Φk(G1) ̸= Φk(G2) for all k > β0(G1)

To prove this statement, we will provide a pair of graphs G1 and G2 with β0(G1) = β0(G2) and β1(G1) = β1(G2) for
which Φk(G1) ̸= Φk(G2) with k = β0(G1) + 1. Naturally, if the graphs can be distinguished based on the k′ smallest
eigenpairs, they are also distinguished based on any k > k′.

Consider the unattributed graph complexes K = (V,E) and K ′ = (V ′, E′) as shown in Fig. 3, with associated positional
encodings Φk(K) and Φk(K

′) based on k = β0(K) + 1 lowest eigenvalue/vector pairs. Both K and K ′ has the same
number of connected components i.e. β0(K) = β0(K

′) = 1, and basis cycles β1(K) = β1(K
′) = 3. However, the

laplacian positional encoding based on k = β0(K) + 1 lowest eigenvalues, for K and K ′ are

Φk(K) =


−0.50 −0.32
−0.50 0.32

0 0.53
0 −0.53

0.50 −0.32
0.50 0.32

 ,Φk(K
′) =


−0.37 0
−0.17 0.62
−0.37 0
−0.17 −0.62
0.58 −0.35
0.58 0.35

 (7)

Hence, the positional encodings differ i.e. Φk(K) ̸= Φk(K
′).

S2 & S3. There exist G1 ≇ G2 s.t. β1(G1) ̸= β1(G2), β0(G1) ̸= β0(G2) but Φk(G1) = Φk(G2)

Similarly to statement S1, here we proceed with a proof by example.

To prove this statement, we will provide a pair of graphs G1 and G2 with β0(G1) ̸= β0(G2) and β1(G1) ̸= β1(G2) for
which Φk(G1) = Φk(G2) for some k.

Let Ki denote the complete graph with i nodes. Consider a graph G = ∪n/2
i=1K1 ∪ K3 — here K1 ∪ K3 denotes a

graph with two components comprising one isolated node and a triangle i.e. β0(G) = n, β1(G) = n/2. Also, consider
G′ = ∪n/2

i=1(K1 ∪K1 ∪K1 ∪K1) — i.e., 4n/2 isolated nodes i.e. β0(G
′) = 2n, β1(G

′) = 0, shown in Figure 8. The k
smallest eigenvalues corresponding to G are all equal to 0 with the identical constant eigenvector, when k ≤ n. Similarly,
G′ has the same eigenvalues with identical constant eigenvectors. However, the number of connected components and basis
cycles in G and G′ differ, i.e. β1(G) ̸= β1(G

′) and β0(G) ̸= β0(G
′)

C.2. Proof of Proposition 3.2

S1. There exist G1≇G2 s.t. β0(G1)=β0(G2), β1(G1) = β1(G2) but Φk(G1) ̸= Φk(G2) for all k > β0(G1)

To prove this statement, we will provide a pair of graphs G1 and G2 with β0(G1) = β0(G2) and β1(G1) = β1(G2) for
which Φk(G1) ̸= Φk(G2) for k = β0(G1) + 1. Naturally, if the graphs can be distinguished based on the k′ = β0(G1) + 1,
they are also distinguished based on any k > k′.

Consider the unattributed graph complexes K = (V,E) and K ′ = (V ′, E′) as shown in Fig. 3, with associated positional
encodings Φk(K) and Φk(K

′) based on k = β0(K)+ 1 length random walk positional encodings, where β0(K) = 1. Both
K and K ′ has the same number of connected components β0(K) = β0(K

′) = 1 , and basis cycles β1(K) = β1(K
′) = 3.

The positional encodings for both the graphs are,

Φk(K) =


0 0.41
0 0.41
0 0.44
0 0.44
0 0.41
0 0.41

 ,Φk(K
′) =


0 0.33
0 0.50
0 0.33
0 0.50
0 0.41
0 0.41

 (8)

Hence, the positional encodings differ i.e. Φk(K) ̸= Φk(K
′) for k = β0(K) + 1.

S2 & S3. There exist G1 ≇ G2 s.t. β1(G1) ̸= β1(G2), β0(G1) ̸= β0(G2) but Φk(G1) = Φk(G2)
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Figure 8: Exemplar graphs for Propositions 3.1, 3.4 and 4.2.

Similarly to statement S1, here we proceed with a proof by example.

To prove this statement, we will provide a pair of graphs G1 and G2 with β0(G1) ̸= β0(G2) and β1(G1) ̸= β1(G2) for
which Φk(G1) = Φk(G2) for some k.

Let Ci denote the cyclic graph with i nodes. Consider a graph G = C10 having β0(G) = 1, β1(G) = 1, and G′ = C5 ∪ C5

(Figure 4) with β0(G
′) = 2, β1(G

′) = 2, both having a total 10 nodes, with associated positional encodings Φk(G) and
Φk(G

′) based on k = 4 length random walk positional encodings. The positional encodings for both the graphs are

Φk(G) =



0 0.50 0 0.37
0 0.50 0 0.37
0 0.50 0 0.37
0 0.50 0 0.37
0 0.50 0 0.37
0 0.50 0 0.37
0 0.50 0 0.37
0 0.50 0 0.37
0 0.50 0 0.37
0 0.50 0 0.37


,Φk(G

′) =



0 0.50 0 0.37
0 0.50 0 0.37
0 0.50 0 0.37
0 0.50 0 0.37
0 0.50 0 0.37
0 0.50 0 0.37
0 0.50 0 0.37
0 0.50 0 0.37
0 0.50 0 0.37
0 0.50 0 0.37


(9)

Hence, the positional encodings for both the graphs are same i.e., Φk(G) = Φk(G
′), but the number of connected

components and basis cycle differ i.e. β0(G) ̸= β0(G
′) and β1(G) ̸= β1(G

′).

C.3. Proof of Lemma 3.3

To prove Lemma 3.3, we need to show that the persistence diagram pairs obtained when using Φ(G) and Φ(G′) as vertex
colors are different. Importantly, Lemma 5 in Immonen et al. (2023) states that the multiset of birth times of persistence
tuples encodes the multiset of vertex colors in VC filtrations when using injective filtration functions.

Therefore, if we use Φ(G1) and Φ(G2) as colors and adopt an injective filtration function, then the corresponding VC
diagrams D0(G1,Φ(G1), f) and D0(G2,Φ(G2), f) differ in their birth times since Φ(G1) ̸= Φ(G2). This is agnostic to
the chosen graphs and positional encoding.

C.4. Proof of Proposition 3.4

(1) Laplacian PE

To prove this statement, we will provide a pair of graphs G1 and G2 with for which Φk(G1) = Φk(G2) for some k, but the
persistence diagrams of G1 and G2 differ.

Let Ki denote the complete graph with i nodes. Consider a graph G = ∪n/2
i=1K1 ∪K3 — here K1 ∪K3 denotes a graph

with two components comprising one isolated node and a triangle. Also, consider G′ = ∪n/2
i=1(K1 ∪K1 ∪K1 ∪K1) — i.e.,

4n/2 isolated nodes, shown in Figure 8. The k smallest eigenvalues corresponding to G are all equal to 0 with the identical
constant eigenvector, for k ≤ n. Similarly, G′ has the same eigenvalues with identical constant eigenvectors. Therefore,
Laplacian PE relying on fixed k smallest eigenvalue/eigenvector pairs, cannot distinguish these graphs.

By leveraging Theorem 1 from Immonen et al. (2023), since the number of connected components in G and G′ are different,
they necessarily have different 0-dimensional persistence diagrams i.e., D0(G,Φk(G), f) ̸= D0(G′,Φk(G

′), f) for any
injective color-filtration function f over vertices and using Φk(G) and Φk(G

′) as colors. This difference in persistence
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diagrams allows us to distinguish between the graphs despite their identical n smallest eigenvalues and eigenvectors.

(2) Random Walk PE

Similarly to the above statement, here we proceed with a proof by example.

Consider a graph G = C10 having β0(G) = 1, β1(G) = 1, and G′ = C5 ∪ C5 (Figure 4) with β0(G
′) = 2, β1(G

′) = 2,
both having a total 10 nodes, with associated positional encodings Φk(G) and Φk(G

′) based on k = 4 length random
walk positional encodings. The positional encodings for both the graphs are same i.e., Φk(G) = Φk(G

′) as shown in
Equation (9). However, the number of connected components (β0) in G and G′ differ. Hence, by leveraging Theorem 1
from Immonen et al. (2023) and using the Φk as initial colors will provide different 0-dimensional persistence diagrams i.e.,
D0(G,Φk(G

′), f) ̸= D0(G′,Φk(G
′), f) for any injective color-filtration function f over vertices. Hence, PH ◦ RW can

separate these graphs.

C.5. Proof of Proposition 3.6

(1) Laplacian PE

To prove this statement, we will provide a pair of graphs G1 and G2 for which D0(G1, D(G1), f) = D0(G2, D(G2), f)
for all f but have different diagrams D0(G1,Φk(G1), f) = D0(G2,Φk(G2), f) derived from LapPE colors Φk(G1) and
Φk(G1) for some k and f .

Consider the unattributed graph complexes G = (V,E) and G′ = (V ′, E′) as shown in Fig. 8, with associated positional
encodings Φk(G) and Φk(G

′) based on k lowest eigenvalue/vector pairs, for k = β0(G) + 1, where β0(G) = 1. Using
degree as the initial colors and adopting an injective filtration function f , we can have the following two scenarios: (i)
γ > α, and (ii) γ < α, where γ = f(d = 2) and α = f(d = 3) — where d denotes node degree. In both cases, the obtained
diagrams for both G and G′ are identical, i.e.,

D0(G,D(G), f) =

{
{(α, α), (α,∞), 8× (γ, γ)} if γ > α

{8× (α, α), (γ,∞), (γ, γ)} if γ < α
(10)

D0(G′, D(G′), f) =

{
{(α, α), (α,∞), 8× (γ, γ)} if γ > α

{8× (α, α), (γ,∞), (γ, γ)} if γ < α
(11)

Thus, D0(G,D(G), f) = D0(G′, D(G′), f) — PH relying on degree information cannot distinguish these graphs.

However, the Laplacian positional encodings for these graphs are different:

Φk(G) =



−0.42 −0.18
−0.42 0.18
−0.26 0.39
0.00 0.34
0.26 0.39
0.42 0.18
0.42 −0.18
0.26 −0.39
−0.00 −0.34
−0.26 −0.39


,Φk(G

′) =



−0.37 0.35
−0.37 0.35
−0.29 −0.05
−0.19 −0.49
−0.29 −0.05
0.19 −0.49
0.29 −0.05
0.37 0.35
0.37 0.35
0.29 −0.05


(12)

By leveraging Theorem 1 from Immonen et al. (2023) and Lemma 3.3, using the Φk as colors and adopting an injective
filtration function, then the corresponding VC diagrams D0(G,Φk(G), f) and D0(G′,Φk(G

′), f) differ in their birthtimes.
This difference will help to distinguish between these graphs.

(2) Random Walk PE

Similarly to the above statement, here we proceed with a proof by example.

We follow the same proof for G and G′ having the same 0−dim diagrams based on degree-based filtration functions, as
described in the previous statement.
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The associated RW positional encodings for both graphs differ i.e. Φk(G) ̸= Φk(G
′) for k = 5 length, as shown in

Equation (13).

Φk(G) =



0 0.50 0 0.35 0
0 0.50 0 0.35 0
0 0.41 0 0.28 0
0 0.44 0 0.31 0
0 0.41 0 0.28 0
0 0.50 0 0.35 0
0 0.50 0 0.35 0
0 0.41 0 0.28 0
0 0.44 0 0.31 0
0 0.41 0 0.28 0


,Φk(G

′) =



0 0.50 0 0.35 0.04
0 0.50 0 0.35 0.04
0 0.41 0 0.28 0.04
0 0.44 0 0.31 0.04
0 0.41 0 0.28 0.04
0 0.44 0 0.31 0.04
0 0.41 0 0.28 0.04
0 0.50 0 0.35 0.04
0 0.50 0 0.35 0.04
0 0.41 0 0.28 0.04


(13)

Again, by leveraging Theorem 1 from Immonen et al. (2023) and Lemma 3.3, using injective filtration functions on these
colors leads to diagrams that differ in their birth times.

C.6. Proof of Proposition 3.5

To prove this statement, we will provide a pair of graphs G1 and G2 with for which Φd(G1) = Φd(G2) for d = 1, but the
persistence diagrams of G1 and G2 differ.

Let Qi denote a hypercube graph with i nodes. Consider a graph G = Q3 comprising of 23 nodes, with β0(G) = 1. Also,
consider G′ = Q2 ∪ Q2, with β0(G

′) = 2 — consisting of two Q2 graphs, having a total of 22 + 22 nodes . Since, Q2

and Q3 are distance regular graphs (Brouwer et al., 2012), both G and G′ have the same DE-1 i.e. Φd(G) = Φd(G
′) for

each node in the graph with d = 1. Therefore, distance encoding relying on shortest path distance, cannot distinguish these
graphs.

By leveraging Theorem 1 from Immonen et al. (2023), since the number of connected components in G and G′ are
different i.e. β0(G) ̸= β0(G

′), they necessarily have different 0-dimensional persistence diagrams i.e., D0(G,Φd(G), f) ̸=
D0(G′,Φd(G

′), f) for any color-filtration function over vertices and initial colors.

C.7. Proof of Proposition 4.1

To prove this statement, it suffices to show that i) PiPE subsumes LSPE for certain choices of Agg,Upd functions , and (ii)
there exists a pair of graphs which cannot be separated by LSPE but PiPE can. Note that LSPE can be seen as GNN ◦ LPE,
and we consider unattributed graphs here.

PiPE subsumes LSPE The message passing steps of PiPE are shown below, where hℓ
v = [xℓ

v ∥ pℓv ∥ rℓ,0v || rℓ,1v ].

zv = fℓ(p
ℓ
v) (14)

rℓ,0v = Ψℓ
0(D0

ℓ (A, z))v (15)

rℓ,1v =
∑
e:v∈e

Ψℓ
1(D1

ℓ (A, z))e (16)

pℓ+1
v = Updpℓ (r

ℓ,0
v , rℓ,1v , pℓv,Aggpℓ ({{(r

ℓ,0
u , rℓ,1u , pℓu) : u ∈ N (v)}})) ∀ v ∈ V (17)

xℓ+1
v = Updxℓ

(
hℓ
v,Aggxℓ ({{hℓ

u : u ∈ N (v)}})
)

∀ v ∈ V. (18)

Consider the following choices for the Aggx,pℓ and Updx,pℓ ,

PiPE =


Aggxℓ = Aggx,LSPE

ℓ ◦mx
ℓ ,

Aggpℓ = Aggp,LSPE
ℓ ◦mp

ℓ ,

Updpℓ = Updp,LSPE
ℓ ◦m′p

ℓ ,

Updxℓ = Updx,LSPE
ℓ ◦m′x

ℓ
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where Aggx,p,LSPE
ℓ and Updx,p,LSPE

ℓ are the aggregate and update functions used in LSPE, and mx,p
ℓ ,m′x,p

ℓ are the masking
function that that masks out the topological embeddings rℓ,0v , rℓ,1v at every layer of the message-passing step. These choices
for the functions will lead to the same message-passing dynamics of LSPE neglecting the topological features. Hence, this
shows that PiPE subsumes LSPE.

PiPE > LSPE Let Ci denote a cycle graph with i nodes without node attributes. Consider a graph G = ∪3n
i=1C4, having

3n connected components and 12n nodes. Also, consider G′ = ∪n
i=1C6 ∪ C6, having 12n nodes and 2n connected

components. Since, G and G′ have the same number of nodes and identical local neighborhoods, aggregate-combine GNN
cannot distinguish them. Moreover, for k ≤ 12n, the Φk(G) = Φk(G

′), are same having identical constant eigenvector,thus
LPE does not add any distinguishability power.

However, since the number of components in G and G′ are different, they have different 0-dimensional persistence diagram
D0(G,Φk(G), f) ̸= D0(G′,Φk(G

′), f) for any filtration function and initial colors. This difference in persistence diagrams
allows PiPE to distinguish between the graphs.

C.8. Proof of Proposition 4.2

To prove this, it suffices to show that i) PiPE subsumes PH+ LPE , and (ii) there exists a pair of graphs which cannot be
separated by PH+ LPE but PiPE can.

PiPE subsumes PH+LPE We can write PiPE as GNN ◦ PH ◦ LPE. Consider, the GNN to be an identity map, then it
will reduce to PH ◦ LPE. Hence, PiPE subsumes PH+LPE.

PiPE > PH+LPE Let Ci denote a cycle graph with i nodes without node attributes and Pi denotes a path graph with
i nodes without node attributes. Consider a graph G = ∪n

i=1C4 and G′ = ∪n
i=1P4 (shown in Figure 8), which has n

connected components and 4n nodes. The k smallest laplcian eigenvalues corresponding to G and G′ are all equal to
0 with the identical constant eigenvector, where k < 4n, and both of the graphs consists of same number of connected
components. Hence, by leveraging Theorem 1 from Immonen et al. (2023) the filtrations based on laplaician eigen value
and vector pairs would correspond to the same 0-dimensional diagram, i.e. D0(G,Φk(G), f) = D0(G′,Φk(G

′), f) for any
filtration function and initial colors. Hence, Laplacian eigen spectra relying on partial-decomposition and relying on 0-dim
persistence diagrams would not be able to separate these two graphs.

However, the nodes in G and G′ have different degrees, allowing GNNs (in PiPE) to distinguish these two graphs.

C.9. Proof of Proposition 4.3

To prove this, it suffices to show that a pair of graphs that can be separated by 3-WL have the same random walk positional
encoding Φk for k > 0.

Consider the graph representation of pair of cospectral and 4-regular graphs K and K ′ (Van Dam & Haemers, 2003) from
Figure 4, with the associated positional encodings Φk obtained via random walk PE for k = 4. These pair of graphs are
2-WL equivalent (Balcilar et al., 2021) i.e., these two graphs cannot be separated by 2-WL but 3-WL can separate them.
The positional encodings for both the graphs are

Φk(K) =



0 0.25 0.62 0.14
0 0.25 0.62 0.14
0 0.25 0.62 0.14
0 0.25 0.93 0.14
0 0.25 0.93 0.14
0 0.25 0.62 0.14
0 0.25 0.62 0.14
0 0.25 0.93 0.14
0 0.25 0.62 0.14
0 0.25 0.93 0.14


,Φk(K

′) =



0 0.25 0.93 0.14
0 0.25 0.62 0.14
0 0.25 0.93 0.14
0 0.25 0.93 0.14
0 0.25 0.93 0.14
0 0.25 0.62 0.14
0 0.25 0.62 0.14
0 0.25 0.62 0.14
0 0.25 0.62 0.14
0 0.25 0.62 0.14


(19)

Hence, the positional encodings for both the graphs are same i.e., Φk(K) = Φk(K
′) with β0(K) = β0(K

′) = 1.Thus,
using positional encodings Φk as initial colors with an injectve filtration function will lead to the same VC persistence
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diagrams, that is, D0(K,Φk(K), f) = D0(K ′,Φk(K
′), f). Thus, PiPE based on random walk positional encodings cannot

separate these graphs which can be separated by 3-WL.

C.10. Proof of Proposition 4.4

Consider two attributed graphs G = (V,E) and G′ = (V ′, E′) with their corresponding coloring functions x and x′.
Assume these graphs are deemed non-isomorphic by k-FWL with stable colorings, C∞ : V k → N and C ′

∞ : V ′k → N.

Then we can use hash functions x̃(u) = hash({C∞(v) : u ∈ v, v ∈ V k}) for all u ∈ V and x̃′(u) = hash({C ′
∞(v) : u ∈

v, v ∈ V ′k}) for all u ∈ V ′, to project the colorings from k-tuple of nodes to obtain node colors in the associated graphs
(G, x̃) and (G′, x̃′). Since, hash functions are injective in nature, and (G, x) and (G′, x′) can be distinguished via k-FWL,
then there exists a tuple vw ∈ V k such that C∞(vw) ̸= C ′

∞(v′
w), ∀ v′

w ∈ V ′k. Then, any node in v ∈ vw (note that
v ∈ V ) will have a color that is not in nodes of V ′, i.e., x̃(v) ̸= x̃′(u) for all u ∈ V ′. This will provide us with different
node colors for the associated graphs (G, x̃) and (G′, x̃′). Hence, by leveraging the definition of color-separating sets from
Immonen et al. (2023), Q = ∅ is a trivial color-separating set for these graphs.

D. Implementation Details
Below are the implementation details. We trained all the methods on a single NVIDIA V100 GPU.

D.1. Drug Molecule Property prediction and Graph Classification

We adhered to the precise hyperparameters and training configuration outlined in Huang et al. (2024) for predicting
drug molecule properties and in Dwivedi et al. (2022) for classifying real-world graphs in our experiments. For graph
classification, we used Gated-GCN (Kipf & Welling, 2017) as our base model. To compute the Persistence Homology (PH)
diagrams, we employed the learnable PH method proposed by Immonen et al. (2023). The PH layers operated exclusively
on the position encoding features of every layer with the following specified hyperparameters in Table 3.

Table 3: Default hyperparameters for RePHINE/VC method

Hyperparameter Meaning Value

PH embed dim Latent dimension of PH features 64
Num Filt Number of filtrations 8

Hiden Filtration Hidden dimension of filtration functions 16

D.2. Out of distribution Prediction

We adhered to the precise hyperparameters and training configuration outlined in Huang et al. (2024) for Drug OOD
benchmark. To compute the Persistence Homology (PH) diagrams, we employed the learnable PH method proposed by
Immonen et al. (2023). The PH layers operated exclusively on the position encoding features of every layer with the
following specified hyperparameters in Table 3.

D.3. Synthetic Tree Tasks

We created the synthetic tree dataset by sampling random trees of maximum depths from a discretized normal N (7, 1) and
followed similar training setup as described in Kogkalidis et al. (2024). We adhered to the hyper-parameters and training
configuration used in Kogkalidis et al. (2024) and employed the PH-layers on top of the position encoding features with an
additional layer to update position encodings, using hyper-parameters described in Table 4.

E. Tabular Results
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Table 4: Default hyperparameters for RePHINE/VC method

Hyperparameter Meaning Value

PH embed dim Latent dimension of PH features 64
Num Filt Number of filtrations 8

Hiden Filtration Hidden dimension of filtration functions 128

Table 5: Test MAE results. Baselines are taken from Huang et al. (2024).

PE method Persistence ZINC ↓ Alchemy ↓
None None 0.1772 ±0.004 0.112 ±0.001

PEG None 0.1878 ±0.012 0.114 ±0.001

PiPE VC 0.1256 ±0.017 0.112 ±0.003
RePHINE 0.1082 ±0.022 0.111 ±0.004

DE None 0.1356 ±0.007 0.125 ±0.003

PiPE VC 0.107 ±0.013 0.119 ±0.003
RePHINE 0.090 ±0.009 0.116±0.003

RW None 0.090 ±0.005 0.121 ±0.002

PiPE VC 0.075 ±0.011 0.113 ±0.002
RePHINE 0.070 ±0.010 0.111 ±0.002

SignNet None 0.0853 ±0.002 0.113 ±0.002

PiPE VC 0.0687 ±0.015 0.111 ±0.002
RePHINE 0.0632 ±0.012 0.110 ±0.002

SPE None 0.0693 ±0.004 0.108 ±0.001

PiPE VC 0.0599 ±0.010 0.105 ±0.003
RePHINE 0.0588 ±0.007 0.103 ±0.004

Table 6: (left) AUC-ROC results on OGBG-MOLHIV and (right) Test MAE results for TOGL.

PE method Persistence OGBG-MOLHIV ↑
RW None 0.762 ±0.007

PiPE VC 0.781 ±0.005
RePHINE 0.798 ±0.004

SPE None 0.776 ±0.004

PiPE VC 0.785 ±0.005
RePHINE 0.791 ±0.003

PE method Persistence ZINC ↓ Alchemy ↓
RW TOGL 0.080 ±0.005 0.114 ±0.002
PEG TOGL 0.143 ±0.012 0.112 ±0.002
SPE TOGL 0.062 ±0.003 0.112 ±0.002
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Table 7: AUC-ROC (↑) results. DrugOOD Benchmark and baselines are taken from Huang et al. (2024). PiPE outperforms
the competing baselines in achieving better scores for OOD-Test.

Domain PE method Persistence ID-Val ↑ ID-Test↑ OOD-Val ↑ OOD-Test↑

Assay

None None 92.92±0.14 92.89±0.14 71.02±0.79 71.68±1.10

PEG None 92.51±0.17 92.57±0.22 70.86±0.44 71.98±0.65

PiPE VC 92.62±0.19 92.75±0.49 71.62±0.57 72.13±0.93

RePHINE 92.42±0.27 92.35±0.19 72.02±0.51 72.33±1.03

SignNet None 92.26±0.21 92.43±0.27 70.16±0.56 72.27±0.97

PiPE VC 91.66±0.39 92.73±0.28 70.37±0.69 73.07±1.07

RePHINE 91.36±0.31 92.15±0.29 69.47±0.43 73.87±1.32

BasisNet None 88.96±1.35 89.42±1.18 71.19±0.72 71.16±0.05

PiPE VC 90.36±0.65 90.78±1.21 72.76±1.32 72.98±0.10

RePHINE 90.73±0.45 91.10±0.92 72.98±0.65 73.10±0.25

SPE None 92.84±0.20 92.94±0.15 71.26±0.62 72.53±0.66

PiPE VC 92.78±0.96 92.49±0.58 71.78±0.64 72.91±1.16

RePHINE 92.16±0.37 93.12±0.91 72.33±0.93 73.11±1.07

Scaffold

None None 96.56±0.10 87.95±0.20 79.07±0.97 68.00±0.60

PEG None 95.65±0.29 86.20±0.14 79.17±0.29 69.15±0.75

PiPE VC 96.65±0.31 86.44±0.81 79.79±0.47 70.12±0.52

RePHINE 96.94±0.62 86.54±0.77 79.40±0.35 69.31±0.97

SignNet None 95.48±0.34 86.73±0.56 77.81±0.70 66.43±1.06

PiPE VC 93.03±0.57 83.65±0.77 74.73±0.65 67.37±1.12

RePHINE 93.35±0.56 85.05±0.79 75.05±1.04 68.03±1.34

BasisNet None 85.80±3.75 78.44±2.45 73.36±1.44 66.32±5.68

PiPE VC 86.10±2.10 79.71±1.32 73.89±1.12 67.11±3.21

RePHINE 86.50±1.78 79.97±1.41 74.05±1.21 67.85±2.89

SPE None 96.32±0.28 88.12±0.41 80.03±0.58 69.64±0.49

PiPE VC 96.57±0.43 88.37±0.82 80.56±0.65 70.92±0.92

RePHINE 96.87±0.76 89.98±1.05 80.76±0.87 70.46±0.79
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