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Abstract

Data heterogeneity poses a significant challenge to federated learning. Observing
the universality of neural networks in approximating the ground-truth, one emerg-
ing perspective is to train personalized models via learning a shared representation
coupled with customized classifiers for each client. To the best of our knowledge,
except for the concurrent work FedPAC [XTH23]|, individual classifiers in most
existing works only utilize local datasets, which may result in poor generalization.
In this work, we propose FedLDA which enables federation in training classifiers
by performing collaborative Linear Discriminant Analysis (LDA) on top of the la-
tent shared representation. Our algorithm design is motivated by the observation
that upon network initialization the extracted features are highly Gaussian, and
client LDA models may benefit from distributed estimation of the Gaussian pa-
rameters. To support the high-dimension, low-sample scenario often encountered
in PFL, we utilize a momentum update of the Gaussian parameters and employ
¢, regularization of local covariances. Our numerical results show that, surpris-
ingly, in contrast to multiple state-of-the-art methods, our FedLDA is capable of
maintaining the initial Gaussianity. More importantly, through empirical study,
we demonstrate that our FedLDA method has improved generalization compared
to state-of-the-art algorithms. Compared with FedPAC [XTH23|] our method
is communication-efficient and does not require the availability of a validation
dataset.

1 Introduction

The empirical success of deep learning models is underpinned by the availability of large amounts
of labeled data [KSH17]. Federated learning (FL) emerged as a privacy-preserving learning frame-
work for training from decentralized datasets (clients) without collecting the raw data at a central
location [MMR ™17, [KMA™21]]. FedAvg [MMR™17] is one of the most widely adopted federated
learning algorithms under which a common model is trained but is used to serve possibly highly het-
erogeneous clients. Data heterogeneity poses a significant challenge to federated learning; highly
skewed local data across clients easily leads to slow convergence and poor prediction prediction at
individual clients [KMR20, LHY 19, ZLL™18].

Personalized federated learning (PFL) trains fully customized models for each of the participat-
ing clients [SCST17,  TYCY?22[]. Neural networks are universal in approximating the ground-truth
[MESL19]. Observing this, one emerging perspective inspired by representation learning [BCV13]
is to approach PFL as a problem of learning a shared representation coupled with a customized clas-
sifier for each client [LLZ™20,[CHMS2T] [OKY?21l [XTH23||. To the best of our knowledge, most
existing methods restrict client collaboration for shared representation only, neglecting the poten-
tial of exploiting collaboration in training local classifiers. Consequently, the training of the local
classifiers only utilizes the limited local datasets, which may result in poor generalization.
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One notable exception is the concurrent work [XTH23|, in which collaboration in training local
classifiers is done via a novel form of the soft clustering technique. Though elegant and insightful,
this method requires each client to access the local classifiers of all other clients, which is vulnerable
to privacy leakage. Moreover, it crucially relies on local validation data, which may be limiting in
data-scarce real-world applications.

Contributions. We propose FedLDA which enables client federation in training personalized clas-
sifiers by performing collaborative Linear Discriminant Analysis (LDA) on top of the latent shared
representation. Specifically, in addition to learning a set of shared neural network parameters, clients
also collaboratively estimate the density of the extracted features. Based on initial observations that
neural networks produce Gaussian representations at initialization, we model the density as a class-
conditional Gaussian with common covariance matrix, enabling the use of LDA classifiers. Inspired
by classical literature on sparse discriminant analysis, we mitigate local estimation noise through
a momentum update reminiscent of shrinkage estimators, and a ¢; regularization objective that en-
courages sparsity in the empirical covariance matrices.

In summary, the key contributions of our work include:

* Our numerical results show that, in contrast to multiple state-of-the-art methods, our
FedLDA can maintain the level of Gaussianity encountered at initialization.

 Through rigourous empirical study, we demonstrate that our FedLDA method leads to faster
convergence and improved generalization compared with commonly used and state of the
art baselines. We consider both ResNet18 and WideResNet-16-2 neural network architec-
tures, confirming the applicability of FedLDA to varying latent representation sizes.

* We show that our method outperforms the SOTA even in the challenging setting where the
latent dimension exceeds the local data volume.

2 Related Work

Non-IID Federated Learning. The prototypical work in Federated Learning FedAvg [MMR™17]
aims to learn a single global model that minimizes the average error across clients. However, this
method suffers from slow convergence and even divergence when the client data heterogeneity is
high [LSZ ™20, KKM ™20, [OKY21]. Particularly, [LHY"19] showed that a decaying learning rate
is required for convergence, resulting in slower training.

To facilitate convergence of FedAvg under non-IID data, several algorithmic solutions have been
proposed including local model regularization [LSZ¥20] and client variance reduction [KKM™20].
Other techniques such as loss balancing [HQB20, WXWZ21| |CC21]], knowledge distillation
[LKSJ20}, [ZHZ21], and prototype learning [TLL™22] have also been successfully applied to non-
IID FL. However, these methods implicitly call for well-controlled data heterogeneity [KMA™21].

Personalized Federated Learning. PFL has emerged as a field to handle data heterogeneity via ex-
ploiting the underlying connections with the local learning tasks. Popular techniques include meta-
learning a shared global model which is amenable to client fine-tuning [JKRK19, [FMO20]; multi-
task learning with model similarity regularization [TDTN20L [LHBS21]]; cross-client model col-
laboration [ZSFT21l,ZHW™22]; and decoupled representation and classifier learning [CHMS2T],
LLZ"20,[OKY21, [XTH23]. Our work shares the greatest similarity with the latter group.

FedRep [CHMS21] shares parameters of a neural network up to the classification layer across all
clients, and achieves personalization through client-specific training of classifiers. In each local step,
clients first learn their own optimal linear classifier with respect to the current global (fixed) feature
extractor. Then, the shared feature extractor is locally tuned using the optimal client classifier. Fed-
BABU [OKY21]] adopts a similar setup, but fixes client classifiers on a common initialization until
the base model has converged, in order to enforce a common criterion for representation learn-
ing. FedPAC [XTH23] also follows the format of FedRep, but with additional regularization to
push client feature distributions towards global feature distributions. Additionally, FedPAC enables
further client collaboration by learning a convex combination of personal classifiers. Our work in-
corporates aspects of each of these methods. We share a common training procedure to FedRep,
but we restrict personalization to solely the bias term of the local classifier, resembling FedBABU.



Similar to FedPAC, our clients collaborate on classifier learning, however we do not require access
to an additional validation set.

Linear Discriminant Analysis. Linear Discriminant Analysis (LDA) is a classical classification
method which has had much popularity due to its simplicity and performance [Han06]. In this
paper we view LDA as multivariate-Gaussian modelling, which considers samples 2 € R? follow a
Gaussian distribution with a class-specific mean u¢ for ¢ € C and a common covariance matrix 3 for
all classes. A well-adopted LDA classification rule can be derived by applying maximum-likelihood
estimation, Fishers’ linear discriminant [Fis36], as well as the optimal scoring problem [HTB94].

While the LDA classification rule is Bayes’ optimal and has been shown to be more efficient than
softmax regression [[Efr73]], it can not be applied in the settings where n < d, i.e., low data vol-
ume yet high dimensional feature, because that the corresponding covariance matrix X is singular.
The problem of supporting LDA in high-dimensions is well-studied, with common solutions intro-
ducing sparsity constraints [CHWEI1, [SWDWI11l| ICL11] or regularizing the estimate of X, e.g.
through shrinkage methods [PVNS82, |Fri89]]. These alterations of the LDA have been successful in
high-dimensional settings, to the extent of exhibiting similar optimally as in the low-dimensionality
setting under certain conditions [CHWEI1].

Several works have explored the use of LDA in conjunction with a neural networks. Stuhlsatz
[SLZ12] used Fishers’ LDA criterion as a way of fine-tuning a pretrained stack of restricted Boltz-
man machines. Dorfer et al. [DKW15]] proposed to train a neural network from end-to-end using
the generalized eigenvalue formulation [GKC19] of Fishers’ LDA. Multivariate-Gaussian LDA has
been applied on top of trained networks for applications of lifelong-learning [HK20] and biomedi-
cal imaging [DIS20]. Pang et al. [PDZ18]] utilized LDA with a fixed mean and covariance in order
to train adversarially robust neural networks. Departing from these works, we use the multivariate-
LDA to enable collaborative training personalized classifiers on top of a shared neural network base.

3 Problem Setup

Learning Goal. A parameter server and M clients (each indexed ¢ € {1,--- , M} := [M]) collab-
oratively train machine learning models without having the clients disclose their private data. Each
client i has a local dataset D; = {(7,y])}}Z,, where n; is the number of data points at client 4, and

xZ € R! and yzj € {1,---,C} :=C are the covariate and label of the j-th local data tuple.

Our goal is to solve a classification task under this setting, using a neural network with parameters
6. In the personalized federated learning, we are interested in finding a unique set of parameters for
each client {0;}£, that minimize the expected loss for each of the M local datasets:

M
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where Q) is the space of feasible sets of M models, F;(0;) = E(, )~p, [L(z,y;0;)] is the em-
pirical risk of dataset D;, and L is the loss function that penalizes the difference between y and the
prediction provided by 6; given input x.

Following [CHMS21) IOKY21| XTH23], we consider the setting wherein there exists a common
feature extractor ¢ : R’ — R? and client-specific heads h; : R¢ — C such that 6; can be written
as the composition of h; and ¢, i.e., 8;(xz) = (h; o ¢)(x). For example, in an I-layer perceptron, ¢
consists of the first [ — 1 layers of the neural network, and h; is the final linear classification layer.
With such decomposition, the objective in Eq.(T) can be rewritten as

1 M

min - 2 min Fi(hio¢). (2)
Data Heterogeneity. Observing that the local data distribution P; is a joint distribution on X X Y,
which can be written as P;(x,y) = P;(y)P;(x | y), data non-IID arises in both prior probability
shift (i.e., P;(y) # Pi(y)) and concept drift (i.e., P;(x|y) # Pu(x|y)) [KMAT21, LDCH22].
Furthermore, the local dataset D; may be unbalanced, i.e., n; # n; . In this work, we focus on the
prior probability shift scenario, as do most recent works.



4 FedLDA Algorithm

Our algorithm works by alternating between client update and server update routines, which are
formally described in Algorithm [I] These routines make use of three key sub-routines described
below. The variables that are iteratively refined are the shared representation ¢, the estimates of the
per-class mean of extracted features u¢ € R? for ¢ € C, and the estimate of common covariance
¥ e R4Xd Let m; € A be the local empirical distribution of classes for client ¢, i.e., 7§ = nf/n;
where n{ is the number of samples of class c at client 7’s local dataset D;.

Collaborative-Moment-Computation(CMC): Rather than only using local data to compute the new
per-class means and common covariance of the updated features, a client takes a momentum
weighted average of the local moments and the most recent global moments, i.e.,
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where parameter [ controls the update speed. This approach mitigates local noise that arises from
data unbalance and may be viewed as a shrinkage estimator towards the global model.

LDA Prediction: The classifier for client ¢ with parameters h; consists of a w; and bias b;, which
models the posterior of latent representations z as follows:

exp(zTw§ + b5)
1; = = 7 7 3
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in our LDA model, the corresponding weight w; and bias b; is derived from the server estimate of
. X, and the local data prior m;, resulting in Eq (). A full derivation is given in appendix [6.1]
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Local Loss Function: Using this classifier h;, the client updates the backbone parameters ¢ through
E epochs of gradient descent on the local dataset. The loss function for a mini-batch (X3, Y;) with
ny samples is the following regularized cross-entropy loss function:
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where Lreg(E) == %Zi;ém )im,n

variance matrix. We choose this particular regularization because that the local estimation of S is
challenging as the empirical covariance may be singular (n; < d). Historically this issue has been
alleviated through sparse estimation or by discarding off-diagonal entries, however these methods
may concede discriminative information if the underlying covariance matrix does not meet these
conditions. Thus, we introduce this regularization loss to encourage the network to produce features
with a sparse covariance matrix, enabling us to use empirical covariance estimates while maintaining
the optimality of high-dimension LDA.

, and im,n is the mth column and nth row of the batch co-

Server Update. The neural network representation ¢ is initialized using the popular Kaiming
method [HZRS15]. Each coordinate of ¢ is randomly and independently initialized according to
U(—0.1,0.1). X is initialized to be the identity matrix I. In each round, the server randomly selects
S(t) clients to perform local updates. After the client updates are complete, the server computes a
weighted average of ({1 }eec, X4, @) for i € S(t) as is done in FedAvg [MMR™17].

Client Update. If client i is selected to participate in a global round, it first receives the server
estimates for ({1°}eec, X, ). After computing the local LDA classifier, the client fine-tunes rep-
resentation ¢ using the local loss function described above. Finally, the client updates its estimate
of the Gaussian parameters according to the CMC method and broadcasts all updated parameters to
the server.



Discussion. The primary advantage of our FedLDA method comes from our Bayes-optimal classi-
fiers based on collaboratively estimated statistics. Other PFL methods, such as FedRep [CHMS21]],
produce client classifiers through iterations of gradient descent on local datasets. Thus the result-
ing classifiers may generalize poorly due to incomplete convergence or limited training data. Even
FedPAC [XTH23], which combines classifiers across clients based on validation set performance,
is restricted by the original training scheme of each client classifier.

Algorithm 1 Personalized LDA
(Inputs: learning rate o, momentum parameter (3, number of local epochs E )

Initialize neural network with Kaiming method [HZRS15];
Initialize per-class means: p°(0) ~ U(0.1,—0.1)4 for each ¢ € C;
Initialize tied covariance: 3(0) < Ig;
fort =1,2,--- do
Randomly sample S(¢) clients to participate in round ¢;
for each client ¢ € S(t) do
(i (1), {pi (t) yeec, Zi(t)) < ClientUpdate(¢(t), {n(t) }eee, 1(t)):
end for
m(t) < D icse i > weighted average of client updates
O +1) Doy iy $il0):
P+ 1) < X icse %Mf(t) for each ¢ € C;
S(t+1) Zigs(t) W'35)21-(15);

end for

ClientUpdate(¢, {1} ccc, 2): > local update of participating client
Gi < &

w§ — 27 e, b —%(MC)TE_luC—Hong forall c € C,

h’i «— {wzcv bg}cgc;
forr=1,---,FEdo

Split D; into B mini-batches B = {(X3, Y3) }eo1;

for Each batch (X3,Y:) € Bdo

¢i < ¢Z — aV@.Fi(Xb,Yb)

end for
end for
s Yeee, 2i) + CMC(Xs, i) > Momentum update of statistics using tuned feature extractor ¢;
return ¢ia {/‘LS}CGCv E’L

S Experiments

5.1 Experimental Setup

Datasets and Models. We evaluate our method on three popular image classification datasets:
Fashion-MNIST with 10 categories of clothing, and CIFAR10/CIFAR100 with 10 and 100 classes
of natural images.

We use two different model architectures for each experiment, to illustrate the robustness of our
method to the latent dimension d. These architectures are ResNet18 [HZRS16| with d = 512 and
WideResNet-16-2 [ZK16]|] with d = 128.

Non-IID Partition. We consider the commonly used realistic non-IID setting where the client
label distributions are drawn from the Dirichlet distribution, as in [LKSJ20]. We fix the Dirichlet
parameter o = 0.1 for all experiments. The data volume on each client follows a 80-20% split
between training and validation. Unless stated otherwise, we fix the total volume size to 500 for
CIFAR-10 and FMNIST, and 1000 for CIFAR-100.

Model Training. We train all models with SGD for 200 global rounds with £ = 5 local epochs per
round, and a local batch size of 50 for all experiments. Hyperparameters were tuned for all methods
using the CIFAR10 dataset with ResNet18 and n = 2000 local samples per client. Notably, we use
B =0.5and A = 0.1 for FedLDA. We report the average test accuracy across clients.



5.2 Numerical Results

Performance Comparison. We conduct two main experiments to illustrate the robustness of our
method to limited data volume sizes and consistency across multiple datasets. As presented in Table
[1l our method performs favorably in both small and large-sample settings, and and additionally is a
top performer for multiple benchmark datasets as shown in Table The benefit of our method is
even larger for the WideResNet architecture due to the smaller latent dimension.

ResNet18 WideResNet-16-2
500 1000 1500 2000 Dir 500 1000 1500 2000 Dir

FedAvg 3440 42.60 4895 5240 4390 25.05 3083 3442 3681 27.79
Ditto 76.30 78.03 80.07 80.14 87.52 7350 77.48 8042 81.30 88.00
LG-FedAvg 7425 76.20 77.65 78.15 86.94 7175 76.18 79.02 79.14 86.24
FedRep 76.30 7830 79.68 7940 86.85 7545 76.12 78.73 79.40 87.15
FedBABU 7570 80.10 81.87 82.25 87.59 715 7425 7528 77.32 85.80
FedPAC 7245 7548 7520 76.75 8330 7275 74772 76.88 7T7.42 84.92

FedLDA 77.75 81.25 8196 82.11 87.86 78.85 80.18 82.17 84.50 90.38

Table 1: Results on CIFAR-10 for varying local data volume size. In column ‘Dir’, we use the
entirety of CIFAR-10 with local volume sizes distributed according to the Dirichlet distribution.

Method

Method ResNet18 WideResNet-16-2
CIFAR10 CIFAR100 FMNIST CIFAR10 CIFAR100 FMNIST

FedAvg 34.40 18.02 76.60 25.05 11.75 28.90
Ditto 76.30 38.10 93.15 73.50 39.55 85.95
LG-FedAvg 74.25 39.48 93.05 71.75 43.88 90.35
FedRep 76.30 41.45 93.20 75.45 40.12 83.05
FedBABU 75.70 38.30 93.20 71.50 30.35 83.80
FedPAC 72.45 38.02 90.50 72.75 33.32 65.50
FedLLDA (ours) 77.75 45.68 92.75 78.85 48.20 93.10

Table 2: Average client accuracy on heterogeneous CIFAR10, CIFAR100, and FMNIST datasets.

Gaussianity and Convergence. We additionally show the mean negative log likelihood of the
class-conditional Gaussian across clients using ground-truth statistics for 1, 3 in Figure [Ta] This
demonstrates that our method successfully maintains the Gaussianity of latent representations, en-
abling the use of LDA for client classifiers. We additionally compare the testing accuracy at each
round in Figure [Tb] showing that FedLDA quickly converges to a better model.
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(a) Gaussianity on CIFAR-10 with WideResNet. (b) Client Accuracy on CIFAR-10 with WideResNet.
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6 Appendix

6.1 Appendix A: From Softmax to LDA.

We first review the form of the softmax classifier. On client 7, the local parameters h; consist of a
weight w; and bias b;, which model the posterior of latent representations z as follows:

exp(zTws + b§
pily = clz) = =L W) ©
Yooexp(zTw,” +b,")

Directly learning p;(y|z) in this manner can be challenging due to the shifts in client priors p;(y).
Instead, we tackle a decomposed view of the posterior:

(= el = Pily=0)p(zly = ©)
Py =2 = = = )pely = )

)

Noting that the class-conditional distribution p(z|y) is constant across clients, we propose to estimate
this distribution in parallel to model training in order to efficiently obtain personalized solutions with
the simple inclusion of client priors.

For ease of computation and for direct comparison with softmax classifiers, we consider the use of
a class-conditional Gaussian with a tied covariance matrix to approximate p(z|y). This model as
Linear Discriminant Analysis, as the resulting decision boundary is linear (T0).This is equivalent to
a softmax classifier with weight w® = X711 and bias b® = — 1 (u°)" S p° + log p; (y = c).

pily = )N (z|p*, %)

i(y = = 8
pi(y = cl2) S pily = )N (2|pe, X) ®)
1 )
logp;(y = c|z) x logpi(y = ¢) — i(z — /[‘)TE_l(z — u) 9)

— logpi(y = ¢) + 2781t — = () TS (10)
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