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Abstract

We consider the problem of minimizing the number of matrix-vector queries
needed for accurate trace estimation in the dynamic setting where our underly-
ing matrix is changing slowly, such as during an optimization process. Specif-
ically, for any m matrices Ay, ..., A,, with consecutive differences bounded in
Schatten-1 norm by «, we provide a novel binary tree summation procedure that
simultaneously estimates all m traces up to ¢ error with § failure probability with
an optimal query complexity of O(ma/log(1/d)/e + mlog(1/6)), improving
the dependence on both « and ¢ from Dharangutte and Musco (NeurIPS, 2021).
Our procedure works without additional norm bounds on A; and can be gener-
alized to a bound for the p-th Schatten norm for p € [1, 2], giving a complexity

of O(ma(y/log(1/6)/e)P + mlog(1/d)). By using novel reductions to commu-
nication complexity and information-theoretic analyses of Gaussian matrices, we
provide matching lower bounds for static and dynamic trace estimation in all rel-
evant parameters, including the failure probability. Our lower bounds (1) give the
first tight bounds for Hutchinson’s estimator in the matrix-vector product model
with Frobenius norm error even in the static setting, and (2) are the first uncon-
ditional lower bounds for dynamic trace estimation, resolving open questions of
prior work.

1 Introduction

Implicit matrix trace estimation is ubiquitous in numerical linear algebra and arises naturally in a
wide range of applications, see, e.g., [25]. In this problem, we are given an oracle which gives us
matrix-vector products Axy, Axs,--- , Ax,, for an unknown n X n square matrix A and queries
z1,...,Zm of our choice, that may be chosen adaptively. In typical applications, one cannot afford
to compute the diagonal entries of A explicitly, due to A being implicitly represented and compu-
tational constraints. The goal is to efficiently estimate Tr A using only matrix-vector products.

In machine learning and data science, applications of trace estimation include training Gaussian
Processes [8, 11], triangle counting [1], computing the Estrada Index [10, 9], and studying opti-
mization landscapes of deep neural networks from Hessian matrices [|2, 26]. In these applications,
it is common that A is represented implicitly due to its large memory footprint. For example, while
it is possible to compute Hessian-vector products via Pearlmutter’s trick [20], it is prohibitive to
compute or store the Hessian matrix H, see, e.g., [12].

Moreover, A may be a matrix function f of another matrix B in some applications. Since computing
f(B) is expensive, it is desirable to apply implicit trace estimation. For example, during the training
of Gaussian Processes, the marginal log-likelihood contains a heavy-computation term, i.e., the log
of the determinant of the covariance matrix, log(det(K)), where K € R™*™ and n is the number
of data points. The canonical way of computing log(det(K)) is via a Cholesky factorization on
K, which takes O(n?3) time. Instead, implicit trace estimation methods provide fast algorithms for

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



approximating log(det(K)) = Y log()\;) = tr(log(K)) on large-scale data. Therefore, it is
important to understand the fundamental limits of implicit trace estimation as the query complexity,
i.e., the minimum number of matrix-vector multiplications required to achieve a desired accuracy
and success rate.

Static trace estimation and Hutchinson’s method. On the algorithmic side, Hutchinson’s

method [14] is a simple and widely used method for trace estimation. Let Q = [¢1,...,q¢] € R x4
be ¢ vectors with i.i.d. standard Gaussian or Rademacher random variables. Given matrix-vector
multiplication access to A, Hutchinson’s method estimates tr(A) by ¢ = % ) gl Ag; =
%tr(QTAQ). It is known [2] that the estimator satisfies that for any ¢, € (0, 1),

|t — Tr A| < ¢||A||F, with probability at least 1 — ¢, (D

provided the number ¢ of queries satisfies £ > C'log(1/6)/e? for some fixed constant C.

For Hutchinson’s method, there is also previous work which showed for queries of the form xT Az,
Q(1/€?) queries are required [2 1]; however, this does not imply even a lower bound for non-adaptive
algorithms that use matrix-vector queries. Though stronger algorithmic results and matching lower
bounds are known for the important case of PSD matrices in the non-adaptive setting [18, 16], the
optimality of Hutchinson’s estimator as an trace estimator for general square matrices in the matrix-
vector product model still remains an open problem. Notably, Hutchinson’s method chooses the
query vectors non-adaptively and it is furthermore unclear whether adaptivity could help.

More generally, there has been a flurry of recent work that gives trace estimators with o(1/£2) query
complexity but with a different error guarantee. Specifically, let us consider a Schatten-p norm error
guarantee, where the goal is to provide an estimate ¢ such that

[t — Tr A| < ¢||A||p, with probability at least 1 — 4, 2
where || A||, denotes the Schatten-p norm.

For p = 1, a previous work [18] proposes a variance-reduced version of Hutchinson’s method that
uses only O(1/¢) matrix-vector product queries to achieve a nuclear norm error of || A||., in con-
trast to the O(1/€?) queries used when the error is in the Frobenius norm. When the matrix is
positive semidefinite (PSD), the nuclear norm error is equivalent to a (1 + &) multiplicative approx-
imation to the trace. Their work, along with a subsequent work [16], shows that €2(1/¢) queries are
therefore sufficient and necessary to achieve a (1 4 ¢) multiplicative trace approximation in this set-
ting. While this line of work mainly focuses on PSD matrices and nuclear norm error, we consider
trace estimation on general square matrices with Schatten-p norm error for any p € [1, 2].

Furthermore, we note that the variance-reduced Hutchinson’s method splits the queries between
approximating the top O(1/¢) eigenvalues, i.e., by computing a rank-O(1/¢) approximation to
A, and performing Hutchinsons’s method on the remainder. Due to the low rank approxima-
tion subroutine, the query complexity’s dependence on the failure probability is more concretely
O(y/log(1/d)/e 4 log(1/4)) for additive ¢|| A||. error. The additive log(1/J) rate is shown to be
necessary when non-adaptive queries are used, but it is an open problem whether adaptive queries
can remove the additive log(1/d) term for trace estimation with Schatten-p norm error [16].

This motivates the natural question:

Question 1: Is Hutchinson’s method optimal in terms of € and § for static trace
estimation of general square matrices, even when adaptivity is allowed? How do
we generalize Hutchinson’s method for error in general Schatten-p norms?

Dynamic trace estimation. In various applications the input matrix is not fixed. For example,
during model training, we need to estimate the trace of a dynamically changing Hessian matrix
with respect to some loss function. One may assume that the change at each step is not very large.
Motivated by such a scenario, a recent work by Dharangutte and Musco [0] studies dynamic trace
estimation.

Formally, letp € [1,2] and A;, Ao, - -, A,, be n x n matrices in a stream such that (1) || 4|, <1
for all ¢ > 1, where || - ||, denotes the Schatten-p norm, and (2) ||A;+1 — Asll, < a < 1 for all
i <m — 1. The goal is to output a sequence of estimates ¢, - - - , t,,, such that for each ¢ € [m],

|t; — Tr A;| < e, with probability at least 1 — ¢, 3)



Upper Bounds
Prior Work Query Complexity Matrix Type Failure Rate Algorithm Type
[2,22] O(log(1/8)/?) general square 0 non-adaptive, p = 2

[18] O(+/1og(1/0) /e + log(1/6)) PSD J adaptive, p =1

[18] O(log(1/4)/¢) PSD ] non-adaptive, p = 1

[16] O(+y/1og(1/0) /e + log(1/6)) PSD d non-adaptive, p = 1
This work ! O((y/1og(1/6)/2)P + log(1/4)) PSD 5 non-adaptive, general p

Lower Bounds (Adaptive)

[18] Q(1/(b + elog(1/2))) general square, bit constant adaptive, p = 1
This work 2 | Q (sp(hﬂjg(l/g)) + (b+ll:§§(l>é€1)/6))> general square, bit 5 adaptive, general p
This work * Q ((\/ log(1/6)/ 5)”) general square, ram d adaptive, general p

Lower Bounds (Non-Adaptive)

[18] O(1/e) PSD, ram constant non-adaptive, p = 1

[16] Q(y/1og(1/8) /e + ﬁ%) PSD, ram 5 non-adaptive, p = 1
This work ¢ | Q (logp / 2(1/8)/(eP(b +log(1/ 5)))) general square, bit 0 non-adaptive, general p
This work 5 | ((\ /log(1/6)/e)? + %) general square, ram 0 non-adaptive, general p

Table 1: Upper and lower bounds on the query complexity for static trace estimation. In the bit
complexity model, each entry of the query vector is specified by b bits, and the dependence on b is
necessary.

1. A static upper bound generalizing Hutch++ [18] to Schatten-p norm error (Theorem C.1).

2. An adaptive lower bound via communication complexity of the Gap Equality and Approximate
Orthogonality problem (Theorem 4.1), which combines Theorem D.2 and Theorem D.3, resolving
an open problem that log(1/9) queries are required in the adaptive setting.

3: An adaptive lower bound via information-theoretic analysis of Gaussian Wigner matrices (Theo-
rem 4.2), showing optimal dependence on log(1/6).

4: A non-adaptive lower bound via communication complexity of Augmented Indexing (Theo-
rem F.1), optimal in all parameters up to the bit complexity term.

5: A non-adaptive lower bound combining our Theorem 4.2 and the prior result from [16].

via matrix-vector multiplication query access to the first i matrices (A;)%_;. Naively, one could
estimate each Tr A; independently using Hutchinson’s method. This, however, does not exploit that
the changes are bounded at each step. Alternatively, one can rewrite Tr A; as Tr A1+ _;_, Tr(A;),
where A; = A; — A;_1, by linearity of the trace, and apply Hutchinson’s method on each term.
Unfortunately, this scheme suffers from an accumulation of errors over the steps.

The prior work [6] is focused on p = {1, 2} and improves upon the naive ideas above. For p = 1,
the authors give a method that uses O (m\ Jafd)e ++/1/6/ s) queries. For p = 2, they provide an

algorithm with query complexity O (malog(1/68)/e? +1og(1/8)/e?) and a conditional lower bound
showing that this is tight. This leaves open the question:

Question 2: Can we design improved algorithms for dynamic trace estimation
under a general Schatten norm assumption? Can we prove an unconditionally
optimal lower bound?

1.1 Our Results

Our work resolves the proposed questions (nearly) optimally, and we next discuss our main results.

Static trace estimation: For Question 1, we prove query complexity lower bounds for implicit
trace estimation in both bit complexity and real RAM models of computation, resolving the open
problem of establishing unconditional lower bounds for the optimality of Hutchinson’s method even
in the adaptive setting.

To do so, we provide new reductions from classic communication complexity problems, includ-
ing GAP-EQUALITY and APPROXIMATE-ORTHOGONALITY, to matrix trace estimation. Our main
lower bounds demonstrate that log(1/4) queries are always needed even with adaptivity and for gen-
eral p, there is an additional 1/eP dependence. A key idea is a communication protocol simulation



using the product of two matrices rather than the sum, as was used in prior work on PSD lower
bounds [18].

Theorem 1.1 (Informal; see Theorem 4.1). In the bit complexity model, where each entry of each
query vector is specified using b bits,

QO 1 log(1/6)
eP(b+log(1l/e))  b+loglog(1/0)
number of adaptive queries is necessary to achieve €|| A||, error with probability at least 1 — 4.

When adaptivity is not allowed, we give a stronger lower bound (Theorem F.1) of

Q(log”’?(1/8)/eP). This matches the guarantee of Hutchinson’s non-adaptive estimator up to a
constant factor, for which random sign vectors suffice and so one can take b = O(1).

We also provide a query complexity lower bound in the real RAM model for general Schatten p-
norms with p € [1,2] by using Gaussian ensembles and controlling the remaining entropy of the
distribution conditioned on prior queries. In the special case of p = 2 (i.e., Frobenius norm error
guarantee), our bound again matches the classic Hutchinson’s method up to a constant factor for
p = 2, and an additive log(1/d) factor for p < 2. Note that in the non-adaptive setting, our lower
bound in the RAM model can also be improved for p < 2 to include alog(1/§)/loglog(1/4) factor.
Therefore, this lower bound emphasizes that our dependence on log(1/4) in the e-dependent term is
tight, even in the adaptive setting.

Theorem 1.2 (Informal; see Theorem 4.2). In the real RAM model, where the queries are real-

valued, for sufficiently small e and any p € [1,2], ((\ /log(1/4) /s) ) number of adaptive queries
is necessary to achieve ¢|| A||,, error with probability at least 1 — §.

On the algorithmic front, we give a matching upper bound for static trace estimation for general
Schatten-p norm error for p € [1,2]. The argument requires a careful balancing of the ¢ and ¢
parameters in the low rank approximation of the Hutch++ procedure from [18]. See Theorem C.1
for a full statement.

Dynamic trace estimation: To answer Question 2, we first give an improved algorithm for dy-
namic trace estimation that uses a binary tree-based decomposition to estimate all matrix traces with
only a small logarithmic overhead. The algorithm improves upon the previous work [6] and gets an
optimal dependence on 0 < «,d < 1, up to logarithmic factors. Specifically, for p = 1, the prior

work gives a method that uses O (m\/a /0/ 8) queries for small €, while our algorithm gives an

improved O(ma-/log(1/§)/e) bound with a linear dependence on « and square root dependence
on log(1/4). For p = 2, our algorithm matches the query complexity of O(malog(1/48)/e?) given
by previous work. Furthermore, our algorithm works under a general Schatten p-norm assumption
forany p € [1,2]:

Theorem 1.3 (Informal; see Theorem 3.1 and Theorem C.2). For any p € [1, 2], there is a dynamic
trace estimation algorithm that achieves error € and failure rate 6 at each step. The algorithm uses

a total of
O (( ( ma + 1 (\/log 1/(ad)) /E) + mlog( 1/(a6))) 4)

matrix-vector product queries. Furthermore, for p = 1, it can be improved to
9] ( ma + 1) (\/log 1/(ad)) /5) +mmin(l, a/e) log(l/(ad))) 3)

Furthermore, since our algorithm avoids the variance reduction technique from [6], we may relax the
assumptions of dynamic trace estimation and require only the first matrix to have norm || A4 || < 1,
instead of asking the entire sequence A; to be bounded in such a way. While the norm bound on
all A; is crucial for the algorithm in [6] (rerunning the analysis naively would give a worse query
complexity of O(m3a?/e)), our tree-based algorithm achieves a nearly optimal query complexity
even when the norm of A; grows, and we suffer only a log m overhead in that case. Moreover, in
our experiments, we find that our algorithm significantly outperforms previous algorithms on real
and synthetic datasets. See Section 6 for our experimental results.



To complement our algorithms, we give unconditional lower bounds showing that our algorithm is
nearly optimal. Our lower bounds rely on a reduction from dynamic trace estimation to static matrix
trace estimation from [6] and make use of our new lower bounds in the static setting. In particular,
the reduction shows that if for a fixed set of parameters ¢, d, p, a static trace estimation scheme
requires (r) queries, then Q(mar) queries are necessary for any dynamic algorithm. Combining
this observation with our static trace estimation lower bounds, we get:

Theorem 1.4 (Informal; see Theorem 5.2 and Theorem 5.3). For any p = [1,2), our algorithm
attains the optimal query complexity, up to bit complexity and logarithmic terms.

More specifically, we prove lower bounds that match the first term in our upper bound (4) for all
p € [1,2]. For p = 1, we give a lower bound (Theorem 5.4) matching the the second term in (5) as
well, showing that the m(log(1/4)) additive dependence is necessary.

For p = 2, the prior work [6] gives a upper bound of O(malog(1/4)/e? + log(1/§)/e?). Our
lower bounds are unconditional and show that the first term is tight. Moreover, the second term is
necessary due to the static lower bound when m = 1. This result is not contradicted by the claim of
Theorem 5.4. In particular, when o > 2, Theorem 5.4 is weaker than the Q(ma log(1/68)/e?) lower
bound; and when « < &2, the construction by itself requires £/« update steps to change the trace by
e, which leads to a lower bound of 2(malog(1/4)/c), again weaker than Q(malog(1/5)/e?).

2 Preliminaries

A matrix A € R™*"™ is symmetric positive semi-definite (PSD) if it is real, symmetric and has non-
n

negative eigenvalues. Hence, " Az > 0 for all z € R™. Let tr(A) = Y1 | A;; denote the trace of
A Let||Allp = (372, 27—, AZ;)!/? denote the Frobenius norm and || Alop = supjy, =1 [|AV|2

denote the operator norm of A. We let ||Al|, = (3, o7 )1/ ” be the Schatten-p norm, where o; are

the singular values of A. Two special cases are the Frobenius norm, which equals the Schatten-2
norm (|| A|| g = ||Al|2) and the nuclear norm, equals the Schatten-1 norm (|| A|. = || A]1).

3 Algorithm for Dynamic Trace Estimation

We give an algorithm for dynamic trace estimation under a general Schatten-p norm assumption,
for p € [1,2]. For p = 1, our algorithm provides an improved guarantee upon the DeltaShift++
procedure from [6]. In a later section we complement the result by showing that it is indeed near-
optimal. Specifically, we give an algorithm that achieves the following guarantees:

Theorem 3.1 (Improved dynamic trace estimation). Let A1, As,--- , A,, be n X n matrices such
that (1) ||Aill« < 1foralli, and (2) || Aix1 — Aill« < aforalli < m — 1. Given matrix-vector

multiplication access to the matrices, a failure rate § > 0 and error bound €, there is an algorithm
that outputs a sequence of estimates ty,- - , t,, such that for each i € [m),

[t; — Tr A;| < e, with probability at least 1 — 0. (6)
The algorithm uses a total of
o) ((ma +1)log%(1/a)y/log(1/(ad))/e + mmin(1, a/e) 1og(1/(a5))) (7)
matrix-vector multiplication queries to A1, As, -+ , Ay,

Compared with DeltaShift++ in [6], this guarantee provides an exponential improvement in ¢ and a
polynomial improvement in « for p # 2, while maintaining the optimal dependence on m and €.

3.1 Algorithm

We now describe our algorithm. The first idea is to partition the m updates into groups of size
s = [1/(2a))]. Each group will be treated independently, and we will use

0 (log%l/a)\/log(l/(aa»/e n iloga/(aé») . ®)
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queries on each group. This leads to our claimed query complexity, as there are O(ma) groups.
Note that if o < ¢, since | Tr(A; — A;_1)| < ||A; — A;_1|l« < o, the trace can change by at most
an additive «, so we can simply ignore every subsequence of length £/«. Therefore, we only need
to apply our estimators to ma/e matrices.

Without loss of generality, consider a group of matrices Ay, , Aj/z,. As the first step, we
estimate Tr(A; — A;_q) for each j > 2 by using the Hutch++ static trace estimator [18] as a
black box. Then, for each even integer j = 2k (for an integer 2 < k < s/2), we also estimate
Tr(Agg — AQ(k,l)) in the same way. More generally, for each integer j = 20k, for0 < £ < log, s,
we use Hutch++ to approximate Tr (AQek — Age( k_l)). We view this scheme as a binary tree: the
bottom level consists of leaves corresponding to the trace difference of neighboring matrices, and
nodes at level £ correspond to the trace difference of matrices that are 2¢ apart in their indices.

To output an estimate of Tr A;, we will write ¢ in its binary representation and approximate it by
Tr(A;) plus a sequence of O(log(1/«)) differences, at most one for each level in the binary tree.
By setting the success rates and errors bounds at each level carefully, we can achieve the desired
error guarantee of Equation (6).

To formalize the construction, we first cite the following guarantee of the Hutch++ algorithm:

Lemma 3.2 (Hutch++, nuclear norm, Theorem 5 of [18]). The Hutch++ estimator uses

N=0 (W/e/ + log(1/5’)>

matrix-vector multiplication queries such that given any square matrix A and parameters €', ¢,
with probability at least 1 — &', the algorithm’s output t satisfies

t—Tr Al < Ve'||[A— Ay, <Al 9)

Let Hutch++(A, €', ¢") denote the output of Hutch++ on matrix A with parameters £, §’. It will be
invoked with different parameters at different levels of the binary tree construction. A description of
the algorithm is given by the pseudocode Algorithm 1, with a helper function Algorithm 2.

For simplicity of analysis, note that since we can add dummy matrices (say, extra copies of A1), we
assume that each group has size exactly s = [1/(2«)] and s is a power of two. This blows up the
total number of matrices by at most a constant factor.

Algorithm 1: Improved Dynamic Trace Estimation

Input : A sequence of square matrices (A;)7~, € R™*", failure rate 4, error bound ¢
Ouput: Trace estimate ¢; for each matrix

Partition the matrices into groups of size s = [1/(2a)].

Forevery g > 0Oandi € {0,1,---,s — 1}, let A§9> = Ags4it1 denote the i-th matrix in the
g-th group.
for each group A(()g ), cee Agg) 1 independently do
Let to = Hutch++(AY) £/2,5/2))
for each level { from 0 to log, s — 1 do
gap = 2°
for k from 110 (s — 1)/gap do
Compute tj, ; = Hutch++ (Aj.gap — A(r—1).gap, € (£),8'), with
e'(0) = /(2" alog, s) and &' = ad.
| Outputtgeiip1 = to + SUMTREE(L,,logy s — 1,t) foreach i € [0,s — 1].

3.2 Analysis

The analysis of the algorithm is rather lengthy and is delayed to Appendix C.1. In addition, we
give a general analysis of the algorithm under Schatten-p norm assumption and the specific im-
proved bounds for p = 1 in Appendix C.2 and show how to relax the bounded norm assumption in
Appendix C.3.



Algorithm 2: SUMTREE: Helper Function for Tracing the Binary Tree

Input: Indices i, j, level ¢, binary tree node values ¢

1 gap = 2¢
2 if j < i then

w

wm

| return 0.
if gap = 1 then

| return ;.
if j — 7 > gap then

| returnt;|(;_1)/gap| + SUMTREE(i +gap, j, ¢ — 1,t).
else

| return SUMTREE(i, j, £ — 1,9ap).

4 Lower Bounds for Adaptive Trace Estimation

In this section, we provide (nearly) optimal lower bounds for trace estimation with adaptive matrix-
vector multiplication queries, under general square matrices and Schatten-p norm error.

4.1 Adaptive Lower Bound, Bit Complexity

First, we show two separate lower bounds under bit complexity model, both proven via reductions
from communication complexity problems. One shows an (1 /) lower bound (Theorem D.2) and
the other 2(log(1/6)) (Theorem D.3), up to bit complexity terms. Combined together, they yield:

Theorem 4.1 (Adaptive query lower bound, bit complexity). Any algorithm that accesses a square
matrix A via matrix-vector multiplication queries requires at least

Q 1 log(1/6)
eP(k +1log(1/e)) k4 loglog(1/6)
queries to output an estimate t such that with probability at least 1 — ¢, |t — Tr A| < ¢|| A, for
any p € [1,2], where the query vectors may be adaptively chosen with entries specified by k bits.

The proofs of the theorems can be found in Appendix D.1.

4.2 Adaptive Lower Bound, RAM

Next, we prove a tight lower bound under the real RAM model (Theorem 4.2). The bounds hold
for any Schatten-p norm error. Our proof is via information-theoretic analysis of random Gaussian
matrices and is delayed to Appendix D.2.

Theorem 4.2 (Lower Bound for Any Schatten Norm). For all p € [1,2], § > 0and 0 < ¢ <

(log(1/6))/?2=1/?, any algorithm that takes in any input matrix A and succeeds with probability at
least 1 — § in outputting an estimate t such that |t — tr(A)| < ¢||A||, requires

(22

3

matrix-vector multiplication queries.

5 Lower Bounds for Dynamic Trace Estimation

Using the query complexity lower bounds for adaptive trace estimation, we can now prove tight
lower bounds for dynamic trace estimation. The recent work of Dharangutte and Musco [6] only
provides a conditional lower bound, assuming that Hutchinson’s scheme is optimal. We remove
this assumption and make the lower bound unconditional. We additionally prove a lower bound by
constructing an explicit hard instance in the dynamic setting. Our lower bounds hold under a general
Shatten norm assumption and nearly matches the guarantee of our algorithm.



5.1 Lower Bounds via Static-to-Dynamic Reduction

We first show a lower bound for dynamic trace estimation under a Frobenius norm assumption. This
immediately implies that the DeltShift algorithm due to [6] is optimal for p = 2.

First, we cite a static-to-dynamic reduction from [6] and its implication. The reduction shows how
to solve a static instance using a dynamic trace estimation scheme, and therefore any hardness on
the static problem translates to the dynamic setting as well. It holds generally for an error bound in
any Schatten norm. For completeness, we give a proof in Appendix E.1.

Lemma 5.1 (Conditional lower bound for dynamic trace estimation [6]). Suppose that any algo-
rithm that achieves Equation (2) for static trace estimation must use €(r) matrix-vector product
queries. Then any dynamic trace estimation algorithm requires Q(ram) matrix-vector product
queries under a general Schatten-p norm assumption, when o = 1/(m — 1).

It follows immediately from this lemma and our adaptive query lower bound (Theorem 4.1):

Theorem 5.2 (Unconditional lower bound for dynamic trace estimation, bit). For all p € [1,2] and
g,0 € (0, 1), any algorithm for dynamic trace estimation under a Schatten-p norm assumption must

use at least
1 log(1/4)
& (O‘m (sp(k Flog(1/9) k¥ loglog(1/6)>>

matrix-vector multiplication queries, where each entry of the query vectors is specified by k bits.

Combining the same reduction (Theorem D.6) with our previous real RAM lower bound (Theo-
rem 4.2) in the static setting gives:

Theorem 5.3 (Unconditional lower bound for dynamic trace estimation, RAM). Forall p € [1,2],
§ > 0and 0 < & < (log(1/6))/27Y/?, any algorithm for dynamic trace estimation under a

P
Schatten-p norm assumption must use at least (am (\ /log(1/6)/ 5) ) matrix-vector multiplica-
tion queries.

5.2 Lower Bound via Explicit Hard Instance

Using the hard instance based on GAP-EQUALITY in the static setting (from the proof of Theo-
rem D.3), we give an explicit hardness construction against any dynamic trace estimation scheme.
This yields the following lower bound, and its proof is in Appendix E.2.

Theorem 5.4. Forallp € [1,2] and €,5 € (0,1/4), any algorithm for dynamic trace estimation
under Schatten-p norm assumption must use at least

. @ o i
Q <mm1n (1, g) k:ﬁ;ﬁw)

matrix-vector multiplication queries, where each entry of the query vectors is specified by k bits.

6 Experiments

We experimentally validate our algorithmic results. We compare Algorithm 1, with the following
procedures on both synthetic and real datasets. More experimental details are in Appendix G.

* Hutchinson’s: Apply the classic Hutchinson’s scheme for each Tr(A;) independently.
* DiffSum: Approximate ¢; ~ Tr(A;) and each neighboring difference d; ~ Tr(A;) —
Tr(A;_1) using Hutchinson’s independently. Then output ¢; = t; + Z;ZQ d;.

* DeltaShift: The main algorithm of [6]. The experiments from [6] demonstrate that
DeltaShift outperforms DiffSum and other Hutchinson-based schemes on various datasets.

Synthetic data. We simulate a dynamic trace estimation instance by first generating a (symmetric)
random matrix A™*"™ and then adding random perturbations over 7' = 100 time steps. The details
and results are found in Appendix G.1.
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Figure 1: ArXiv datasets. Query budget is 8, 000. In this experiment, the trace values are large, so
we measure the performance of the algorithms by their relative error |¢; — Tr A?|/ max; Tr A3.
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Figure 2: MNIST. Query budget is 50, 000.

Counting triangles. Our first experiment on a real-world dataset is on counting triangles in dy-
namic undirected (simple) graphs. Note that the number of triangles in a graph equals % Tr A3,
where A is the adjacency matrix of the graph. Thus, triangle counting reduces to trace estimation.

We use two arXiv collaboration networks with 5,242 and 9, 877 nodes [17]." The nodes represent
authors, and edges indicate co-authorships. To simulate a real-world scenario, we add a random
clique of size at most 6 to the graph in each step, indicating a group of researchers jointly publishing
a paper. We note that our algorithm significantly outperforms other methods (Figure 1).

Neural network weight matrix. We evaluate the performance of the algorithms on a sequence of
weight matrices of a neural network, generated during the training process. In particular, we choose
a three-layer neural network with a hidden layer of 100 x 100. We train the network on the MNIST
dataset via mini-batch SGD and consider the first 1, 000 steps, when the weights are changing most
rapidly. Our algorithm achieves much smaller error than DiffSum and DeltaShift (Figure 2).

!"The first is the collaboration network of arXiv General Relativity (ca-GrQc) and the second High Energy
Physics Theory (ca-HepTh). Both are available at https://sparse.tamu.edu/SNAP.


https://sparse.tamu.edu/SNAP
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