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ABSTRACT

Recent advancements in head avatar rendering using Gaussian primitives have
achieved significantly high-fidelity results. Although precise head geometry is
crucial for applications like mesh reconstruction and relighting, current meth-
ods struggle to capture intricate geometric details and render unseen poses due
to their reliance on similarity transformations, which cannot handle stretch and
shear transforms essential for detailed deformations of geometry. To address this,
we propose SurFhead, a novel method that reconstructs riggable head geometry
from RGB videos using 2D Gaussian surfels, which offer well-defined geometric
properties, such as precise depth from fixed ray intersections and normals derived
from their surface orientation, making them advantageous over 3D counterparts.
SurFhead ensures high-fidelity rendering of both normals and images, even in ex-
treme poses, by leveraging classical mesh-based deformation transfer and affine
transformation interpolation. SurFhead introduces precise geometric deforma-
tion and blends surfels through polar decomposition of transformations, including
those affecting normals. Our key contribution lies in bridging classical graphics
techniques, such as mesh-based deformation, with modern Gaussian primitives,
achieving state-of-the-art geometry reconstruction and rendering quality. Unlike
previous avatar rendering approaches, SurFhead enables efficient reconstruction
driven by Gaussian primitives while preserving high-fidelity geometry.

1 INTRODUCTION

The construction of personalized head avatars has seen rapid advancements in both research and
industry. Among the most notable developments in this field is the Codec Avatar family (Ma et al.,
2021; Saito et al., 2024), which aims to reconstruct highly detailed, movie-quality head avatars using
high-cost data captured from head-mounted cameras or studios. This approach has spurred signifi-
cant research efforts to bridge the gap between high-cost and low-cost capture systems by utilizing
only using RGB video setups. Neural Radiance Fields (NeRFs) (Mildenhall et al., 2021) have fur-
ther accelerated these efforts with their topology-agnostic representations. As a result, numerous
NeRF-based methods (Gafni et al., 2021; Athar et al., 2022; Zielonka et al., 2023b) for construct-
ing head avatars from RGB videos have emerged, demonstrating potentials of improving high-cost
systems (Ma et al., 2021; Yang et al., 2023; Saito et al., 2024).

Recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has been used to create photo-realistic
head avatars. However, there has been no attempt to create geometrically accurate head avatars
within the 3DGS framework. While other representation-based methods (Bharadwaj et al., 2023;
Zheng et al., 2022; 2023; Grassal et al., 2022) demonstrate plausible geometry using implicit or
explicit representations, they still suffer from suboptimal results; over-smoothed geometry from
implicit neural representations or inherently limited explicit representations such as 3D Morphable
Face Model (3DMFM) learned meshes or inflexible points.

In response, we introduce SurFhead, the first geometrically accurate head avatar model within the
Gaussian Splatting framework (Kerbl et al., 2023), designed to capture deformation of head ge-

∗Equal contribution

1

https://summertight.github.io/SurFhead/


Published as a conference paper at ICLR 2025

Figure 1: SurFhead reconstructs photo-realistic head avatars and high-fidelity surface normals,
depth, and meshes from RGB videos alone. These avatars are represented through affine rigging of
2D surfel splats bound to a parametric morphable face model. SurFhead can fully control poses,
expressions, and viewpoints, enhancing both appearance and geometry.

ometry. Our method integrates intricate affine rigging by combining Gaussians and their normals
using only RGB videos. Building on 2DGS (Huang et al., 2024) with 2D surfel disks and adopting
3DMFM mesh binding from prior works (Qian et al., 2024; Shao et al., 2024; Zielonka et al., 2023b;
Lombardi et al., 2021), we address limitations of previous Gaussian-based methods that rely solely
on rigid, isotropic transformations. This strategy often leads to undesirable deformations during
pose extrapolation when 3DMFM meshes stretch in certain directions (Fig. 2a). To address these
issues, we extend affine transformations beyond simple similarity transformations to handle shear
and stretch, which often occur in extreme poses. However, applying the same affine transformation
to normals can lead to incorrect deformations, violating the orthogonality of their primitive-normals.
To correct this, we introduce the inverse-transpose of the affine transformation. In previous simi-
larity transformations, this step was unnecessary because rotations and scaling were handled sepa-
rately, and the rotation matrix inherently preserved normal directions due to its invariance under the
inverse-transpose operation.

Our method is fundamentally based on 3DMFM mesh binding inheritance, similar to GaussianA-
vatars (Qian et al., 2024), which uses 3DMFM-based mesh triangle deformation. However, if we
only consider local deformation, discontinuities can occur between adjacent triangles (Zielonka
et al., 2023b), and the method becomes limited in capturing deformations beyond the parametric
head model. To address these discontinuities, previous methods (Zielonka et al., 2023b; Shao et al.,
2024) blend the transformations of adjacent triangles using element-wise summation. However, as
illustrated in Fig. 2b, this naive element-wise blending results in unnatural geometric interpolation
within the matrix space. To overcome this issue, we propose the Jacobian Blend Skinning algo-
rithm, which blends adjacent transformations while avoiding geometric distortions. This algorithm
leverages the concept of linearizing the non-linear matrix interpolation space, drawing on classical
matrix animation techniques (Shoemake & Duff, 1992) and employing geometrically smooth po-
lar decomposition. Since the interpolation space of affine transformations is inherently non-linear,
simple element-wise operations can lead to distortions (Fig. 2b).

Last but not least, we have witnessed a hollow illusion in the cornea, where a concave surface
appears convex. This occurs during training as the model prioritizes photometric losses, constructing
a concave retinal surface filled with low-bandwidth Spherical Harmonics (SHs) color to partially
maintain specularity. However, this approach misleads the loss function by simulating mirror-like
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(a) A conceptual illustration of how triangle shear and
stretch deformation are applied to 2D surfels. (Mid-
dle) shows rigid and isotropic scaling deformation, while
(Right) depicts our Jacobian deformation. Jacobian de-
scribes deformations more precisely.

(b) Comparison of deformation interpola-
tions between direct element-wise interpola-
tion and polar decomposition interpolation.
The above tuple label indicates the weight of
each left and right-most matrix.

Figure 2: Toy examples on Jacobian deformation and Polar Decomposition.

specularity with SHs. To address this, we regularize corneal convexity and enhance specularity using
computationally efficient Anisotropic Spherical Gaussians (ASGs) (Xu et al., 2013).

To summarize our key contributions,

• We introduce a novel representation for geometrically accurate 2D Gaussian primitive-
based head avatars, utilizing intricate deformations driven by the affine Jacobian gradient
instead of similarity transformation and corresponding normal adjustments.

• We propose a method called Jacobian Blend Skinning (JBS) to naturally interpolate affine
transformations across adjacent deformations, effectively mitigating discontinuities, such
as those arising from unseen pose extrapolation cases due to variations in a local space.

• We demonstrate the advantages of our methods across a variety of subjects captured with
real and synthetic data, achieving superior results in challenging scenarios, such as sharp
reflections on convex eyeballs, fine geometric details, and exaggerated deformations.

2 PROPOSED METHOD

This section highlights the key technical contributions of our work. We introduce a novel representa-
tion for geometrically accurate 2D Gaussian primitive-based head avatars, alongside a geometrically
precise Jacobian deformation gradient and corresponding principled normal deformation (Sec. 2.2).
Our proposed Jacobian Blend Skinning (JBS) approach (Sec. 2.3) allows for the interpolation of
affine transformations, effectively addressing the discontinuities caused by piece-wise deformation
in meshes. Additionally, we tackle the concavity (hollow-illusion) issue observed in the cornea by
regularizing the modern 3DMFM model, FLAME (Li et al., 2017)’s eyeball model, to better man-
age high specularity through the use of Anisotropic Spherical Gaussians (ASGs) (Xu et al., 2013)
(Sec. 2.4). We begin with preliminary on Gaussian Splatting and GaussianAvatars in Sec. 2.1.

2.1 PRELIMINARY

The two key building blocks of our approach are 2D Gaussian Splatting (2DGS) (Huang et al., 2024)
and GaussianAvatars (Qian et al., 2024). The former provides intricate geometric properties, such
as depth and normal. The latter employs a mesh-based rule-governed rigging strategy, allowing
primitives to be rigged directly according to mesh triangles.

2.1.1 GAUSSIAN SPLATTING

3D Gaussian Splatting (Kerbl et al., 2023) (3DGS) reconstructs a scene with anisotropic 3D Gaus-
sian primitives. Each Gaussian is defined by a positive semi-definite covariance matrix Σ that is
centered at a position µ. The covariance Σ is decomposed as Σ = RSSTRT , where R is a rotation
matrix and S is a diagonal scaling matrix. This covariance matrix is used when estimating each
Gaussian’s function value at 3D point x such as G(x) = exp(− 1

2 (x− µ)TΣ−1(x− µ)). Besides
these geometrical properties, each Gaussian has appearance properties opacity α and color c. To
render the scene, the final color C is computed by alpha-blending Gaussians after projecting them
to the image plane: C =

∑
i=1 ciαiG

proj(x)
∏i−1

j=1(1− αiG
proj(x)). Gproj is given by evaluating
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Figure 3: Overall pipeline of SurFhead. Only from RGB videos, SurFhead constructs geometri-
cally accurate head avatars, equipped with our intricate deformations. The Jacobian J covers stretch
and shear deformations avoiding surface distortion. Moreover, the blended Jacobian Jb alleviates
inherent local deformations’ discontinuity. Finally, elaborated modeling of eyeballs such as preser-
vation of specularity and convexity achieves more realistic appearance and geometry.

the function value of 2D projection of the 3D Gaussian in image space by EWA volume splatting
algorithm (Zwicker et al., 2001).

An extension to 3DGS, 2DGS (Huang et al., 2024), modifies 3D primitives to 2D “flat” surfels
embedded in 3D space for reconstructing high-fidelity geometry. 2D surfels have some advantages
compared with 3DGS in the respect of geometry; deriving intricate depth by ray-splat intersection
algorithm (Weyrich et al., 2007), and closed-form modeling of the normal n as cross-product of
tangents r1 and r2. Thus, R := [r1; r2;n], n := r1 × r2, and each scales s1, s2, and 1 composes the
scale matrix S. Details are provided in 2DGS (Huang et al., 2024) paper.

2.1.2 GAUSSIANAVATARS

GaussianAvatars (Qian et al., 2024) (GA) is an efficient head avatars model with FLAME (Li et al.,
2017) mesh binding inheritance. Namely, each Gaussian has a single parent triangle in a canonical
(local) space. When they are rendered in a deformed space, each Gaussian is transformed with their
parent’s current state such as relative rotation matrix Rp, relative triangle’s area volume as isotropic
scale sp, and relative barycenter position of triangle Tp in the world space. Namely,

R = RpRc, µ = spRpµc + Tp, S = spSc, (1)

where Rc is canonical rotations, µc is canonical position, and Sc is canonical scaling in par-
ent’s triangle. Although this deformation approach is frequently utilized in certain head avatar
research (Qian et al., 2024; Shao et al., 2024), we emphasize that it falls short in capturing the
stretch and shear deformations that are essential for accurately extrapolating extreme expressions.

2.2 AFFINE TRANSFORMATION OF 2D SURFELS

Our goal is to reconstruct geometrically accurate head avatars using the 2D surfel splatting regime,
which employs a normal consistency energy (Huang et al., 2024). This approach implies that high-
fidelity normals originate from high-fidelity depths. Previous methods only adopt rigid deformation
to maintain the positive semi-definite (PSD) property of Gaussian. However, as shown in Fig. 2a,
using only rigid deformation for rigging can result in over- or under-occupying phenomena and
deformation distortion.

Local Geometry Descriptor. Let us consider a triangle in the canonical space as the matrix formed
by its vertices vi ∈ R3, and its edge matrix as E = [v1 − v0, v2 − v0, v3 − v0] ∈ R3×3, where
v3 := v0 + (v1−v0)×(v2−v0)√

|(v1−v0)×(v2−v0)|
. Ẽ is the deformed version with the deformed triangle’s vertices

ṽi following Eq. 1. Note that in GaussianAvatars, the edge matrix is defined with a normalized
base, height, and normal direction. This constructs an orthogonal matrix and approximates the shear
or stretching-related deformations with isotropic scaling from the average of the base and height
length. Please find a detailed derivation in GaussianAvatars (Qian et al., 2024).
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Jacobian Deformation Gradient for Surface. The deformation gradient J is defined as ẼE−1

following (Sumner & Popović, 2004). We introduce affine rigging with 2D surfels. The new pa-
rameterization is Σ1/2 = JRcSc, instead of spRpRcSc, where Σ = Σ1/2(Σ1/2)T . We note that the
Jacobian deformation gradient J can correct inaccuracies in deformation, such as the lack of stretch
or shear awareness, which can lead to incorrect surface reconstruction. It is also important to keep in
mind that the Gaussian primitives retain their physical meaning only when the positive semi-definite
is kept (Kerbl et al., 2023). We prove whether the covariance matrix Σ remains PSD after applying
affine transformations in Appendix A.2.2.

Both depth and normals are essential for constructing high-fidelity head geometry. While recent
works on 3DGS-based full-body avatars (Zielonka et al., 2023a) and physical simulations (Xie et al.,
2024; Jiang et al., 2024a) have shown that Jacobian deformation gradients accurately describe de-
formations, no prior work has addressed normal deformation with Jacobians. We found that the
inverse-transpose of the Jacobian, J−T , is the correct deformation matrix for normals, based on the
principle that ”Orthogonality must be maintained in any space.” In canonical space, if there is a tan-
gent vector rc in a surfel, the normal nc is orthogonal to tangent (nT

c · rc = 0). Then, the deformed
tangent is defined as rd = Jrc. Let A be the matrix that transforms a normal vector from the canon-
ical to the deformed space such as nd = Anc. Trivially, the normal and tangent must preserve the
orthogonality in the deformed space: nT

d · rd = (Anc)
T · Jrc = nT

c A
TJrc = 0. We already know

that nT
c rc = 0, then AT = J−1 (since J is non-singular). Therefore, (AT )T = A = J−T .

Consequently, we use the principled transformation of normal as inverse-transposed form of Jaco-
bian, nd = J−Tnc.

2.3 JACOBIAN BLEND SKINNING (JBS)

Replacing the scaled-rotation component spRp of the similarity transform with the proposed J en-
ables better representation of shear and stretch. However, ensuring the continuity of adjacent de-
formations is crucial for achieving smoother transformations. To address this, we introduce an im-
proved technique to mitigate such discontinuities by substituting J again with a blended Jacobian,
Jb. We refer to this approach as Jacobian Blend Skinning (JBS), which builds on the principles of
Linear Blend Skinning (LBS) (Badler & Morris, 1982) while addressing its inherent limitations.

Degenerate Solution of Linear Blend Skinning in Matrix Space. Linear Blend Skinning (LBS)
is widely used for dynamic modeling of the human body and head (Li et al., 2017; Loper et al.,
2015), but it struggles with the non-linearity of rotation matrix interpolation in SO(3), causing
distortions in rotational transformations. Our toy experiments (Fig. 2b) show how element-wise
linear interpolation distorts shapes. Previous works (Zielonka et al., 2023b; Shao et al., 2024) also
adopt this sub-optimal approach to handle local deformations. Techniques like matrix-logarithm
interpolation or quaternion’s SLERP can address this but are limited to rotations.

Introducing Jacobian Blend Skinning (JBS). The Jacobian Blend Skinning (JBS) algorithm over-
comes the limitations of LBS by focusing on the interpolation of Jacobian gradients, which encap-
sulate not only rotations but also shear and stretch, both residing in the broader GL(3) (General
Linear) field. The key to JBS is leveraging Polar Decomposition (PD) (Shoemake & Duff, 1992)
to break down Jacobian gradient J into two meaningful components: rotation (orthogonal matrix
U) and stretch/shear (symmetric positive semi-definite matrix P): J = UP. This decomposition
is unique and coordinate-independent (proof in Appendix A.2.1), making it geometrically sound for
interpolation. By blending the rotation in matrix-logarithm space and the stretch/shear in linear ma-
trix space, JBS ensures that the resulting transformations remain geometrically valid, avoiding the
distortions seen with LBS (Fig. 2b).

JBS is applied to the Gaussian deformations considering not only its parents’ triangle, but its adja-
cent triangles. The blending itself is performed separately for the rotational (Ub) and stretch/shear
(Pb) components. For rotations, the blending weights are applied in the matrix-logarithm space
so(3), followed by an exponential mapping back into the SO(3) space. For stretch/shear, the weights
are applied directly in the linear matrix space, ensuring positive semi-definiteness, which avoids ge-
ometrical distortions. Mathematically, this Jacobian Blend Skinning is defined as:

Jb := JBS(J, w) = exp(
∑

i∈adj.

wilog(Ui))︸ ︷︷ ︸
Ub

·
∑

i∈adj.

wiPi︸ ︷︷ ︸
Pb

, (2)
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where adj. implies the set of adjacent triangles. The blending weights, wi, in JBS are learnable
convex weights that control how much influence each adjacent triangle has on the resulting blended
Jacobian Jb. Note that since wi is activated by Sigmoid function, the blended stretch/shear compo-
nent Pi is also guaranteed positive semi-definite property. The exponential and logarithm mappings
for rotations are performed using Rodrigues’ formula. Finally, the blended Jacobian Jb is then used
to deform the canonical Gaussian’s covariance and mean position and also transform the normal.

Σ1/2 = JbRcSc, µ = Jbµc + Tp (3)

nd = J−T
b nc (4)

In summary, JBS improves on LBS by using Polar Decomposition to separately blend rotation and
stretch/shear transformations. This approach ensures more accurate and geometrically meaningful
deformations, avoiding the issues caused by linear interpolation. By operating in the appropriate
spaces—matrix-logarithm for rotations and linear for stretch/shear—JBS preserves the integrity of
transformations, making it a more reliable solution for complex deformations.

2.4 RESOLVING HOLLOW-ILLUSION IN EYEBALLS

Many studies (Park et al., 2021; Li et al., 2022; 2024) have witnessed that
volumetric approaches often fail to produce a good approximation of the eye-
ball geometry and yield hollow eyes. We also have empirically found that the
cornea of the human eye often appears as concave geometry without proper
constriction. Since the cornea exhibits high specularity due to its multiple
membranes (Dua et al., 2013), the limited representation capability Spherical
Harmonics (SHs) can distort the geometry, unnaturally struggling to satisfy
the photometric losses. This deceptive phenomenon is harmful to achieving
accurate geometric representation as can be seen in the inset.

To address the issue of concave geometry around the eyeball, we eliminate the geometrical gradient
on the eyeball-bound Gaussians, excluding Gaussians’ cloning and splitting. We use the FLAME
eyeball mesh as an approximation for the eyeball geometry. Additionally, we regularize the opacity
of the eyes to approach 1, following the energy Leye in Sec. 3. Although this improves the geometry,
SHs still fall short of capturing eye specularity.

In mitigation, we employ Anisotropic Spherical Gaussians (ASGs) (Xu et al., 2013). Since the
cornea and sclera often reflect their light environment, ASGs excel at capturing sharp reflections.
Implementation details of ASGs can be found in Appendix A.3. To preserve computational effi-
ciency, we leverage common knowledge from casual data capture. First, eyeballs aren’t affected by
light from the back of the head, so we limit the sampling range to the frontal hemisphere of the world
space, reducing ASGs by 50% compared to previous methods (Han & Xiang, 2023). Second, given
that captured data is often in environments with ample white light, representing specular reflections
as a monochrome intensity channel is sufficient.

3 TRAINING STRATEGY

3.1 OPTIMIZATION

We supervise the rendered images with photometric loss Lphoto which is a combination of L1 term
Ll1 and a D-SSIM term Lssim following 3DGS (Kerbl et al., 2023). Moreover, since we aim to re-
construct high-fidelity geometry, we followed the geometric energies in 2DGS (Huang et al., 2024),
depth-distortion Ldepth and normal consistency energies Lnormal. Toward the better alignment be-
tween Gaussians and their parent triangles, we utilize two regularization energy terms Lscaling and
Lposition from GA (Qian et al., 2024).

Eyeball Regularization. We have empirically found that the highly specular eyeball region, es-
pecially the cornea, tends to yield overly transparent Gaussians to satisfy the photometric losses.
This leads to an incorrectly shaped, concave cornea, although the genuine surface should be roughly
convex (Li et al., 2022). To alleviate this issue, we constrain the cornea regions to be opaque by
regularizing the opacity of the respective Gaussians: Leye =

∑
i∈E(1 − αi)

2, where the E de-
notes the set of Gaussian in the eyeball region. Since we utilize the 3DMFM parametric mesh, this
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set can be easily extracted. We provide more details about the entire energies with coefficients in
Appendix A.3.

3.2 ADAPTIVE DENSITY CONTROL

We enable adaptive density control with binding inheritance (Qian et al., 2024). Moreover, to avoid
degenerate transparent solutions of eyeballs, we stop the gradient of eyeball-bound Gaussians’ rota-
tion Rc and position µc by blocking the proliferation, initialized identity and zero. We describe the
proliferation of Gaussians, so-called Adaptive Density Control (ADC) (Kerbl et al., 2023) below.

Occlusion Gradient Amplification. The original adaptive density control (ADC) strategy (Kerbl
et al., 2023) relies on view-space gradients. Occluded regions such as the lower tooth tend to suffer
from less frequent updates. To remedy this, we amplify the view-space gradients of the tooth by
20×. This amplifier is a hyper-parameter that depends on the extent of the occluded parts shown.

4 EXPERIMENTS

As shown in Fig. 3, the input to our pipeline is a tracked RGB video. For head tracking, we adopt the
same preprocessing approach used in GaussianAvatars (Qian et al., 2024) (GA) for the multiview
RGB video dataset, NeRSemble (Kirschstein et al., 2023). Furthermore, since the strength of our
method lies in accurately reconstructing the geometry of dynamic head avatars, we validate our
approach using a synthetic dataset FaceTalk (Zheng et al., 2022) that includes ground truth normal.

4.1 EVALUATION PROTOCOL

4.1.1 BASELINES

For evaluation, we train our model with five baselines: IMAvatar (Zheng et al., 2022),
FLARE (Bharadwaj et al., 2023), PointAvatar (Zheng et al., 2023), SplattingAvatar (Shao et al.,
2024), and GaussianAvatars (Qian et al., 2024). IMAvatar employs a neural occupancy field, FLARE
uses mesh-based avatars with intrinsic material decomposition, and PointAvatar adopts a point-based
explicit model. GaussianAvatars and SplattingAvatars, utilizing mesh-binding inheritance, represent
3D Gaussian splatting. We exclude 3D Gaussian splatting models for the synthetic dataset due to
the lack of surface normals and omit IMAvatar for the real dataset due to training instability.

4.1.2 DATASETS

Monocular Synthetic Dataset (FaceTalk (Zheng et al., 2022)). FaceTalk, rendered from the
FLAME (Li et al., 2017) model, includes diverse expressions and poses at a resolution of 512×512.
With ground truth normals available, we assess geometry fidelity. For experiments, we selected five
identities, using 49 sequences for training and 3 with extreme poses for testing.

Multi-view Real Dataset (NeRSemble (Kirschstein et al., 2023)). NeRSemble, a real human head
dataset with 16 cameras, follows the protocol of GaussianAvatars, using 11 video sequences (four
emotions, six expressions, and one free performance). One sequence is reserved for testing, and the
free performance sequence is used for cross-identity reenactment. To assess generalization for ex-
treme poses, we manually constructed a new held-out set (detailed in Appendix A.3). LPIPS (Zhang
et al., 2018) is excluded for efficiency but included in Tab. 2 only for fair comparison.

4.1.3 METRICS AND TASKS

To evaluate self-reenactment and dynamic novel-view synthesis, we use PSNR, SSIM, perceptual
LPIPS (Zhang et al., 2018), and normal cosine similarity (NCS). As the FaceTalk dataset (Zheng
et al., 2022) lacks multi-view data, we only evaluate NVS on the NeRSemble dataset (Kirschstein
et al., 2023). For NCS on NeRSemble, we use pseudo-ground truth normals from the Sapiens
model (Khirodkar et al., 2024). Alongside quantitative evaluations, we report qualitative cross-
reenactment results in Fig. 5. Each table highlights Best and Second best scores.
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Table 1: Quantitative comparison on Fac-
eTalk (Zheng et al., 2022).

PSNR↑ SSIM↑ LPIPS↓ NCS↑
IMAvatar 32.23 0.983 0.037 0.931
PointAvatar 34.93 0.984 0.065 0.756
FLARE 31.64 0.968 0.027 0.943
Ours 40.15 0.992 0.020 0.983

Table 2: Quantitative comparison on NeRSem-
ble (Kirschstein et al., 2023).

Novel-View Synthesis Self-Reenactment

PSNR↑ SSIM↑ LPIPS↓ NCS↑ PSNR↑ SSIM↑ LPIPS↓ NCS↑
PointAvatar 20.56 0.844 0.206 0.410 20.59 0.854 0.190 0.611
Flare 21.91 0.814 0.228 0.817 21.11 0.802 0.227 0.737
SplattingAvatars 23.68 0.858 0.232 0.704 20.25 0.828 0.265 0.688
GaussianAvatars 30.29 0.934 0.067 0.797 23.43 0.891 0.093 0.716
Ours 30.07 0.934 0.079 0.896 23.53 0.892 0.103 0.832
Ours + LPIPS 29.94 0.933 0.062 0.894 23.78 0.894 0.089 0.826

4.2 HEAD AVATAR RECONSTRUCTION AND REENACTMENT
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Figure 4: Qualitative results on the FaceTalk
dataset (Zheng et al., 2022). Distinguished
from other baselines, SurFhead simultaneously
achieves convex eyeballs, and highly-detailed ears
and nasal line. Best viewed when zoomed in.

Synthetic Dataset. Fig. 4 presents qualita-
tive comparisons on FaceTalk synthetic dataset.
IMAvatar (Zheng et al., 2022) demonstrates
plausible rendering and geometry, but it of-
ten misses geometrical details with over-
smoothing, particularly in the ears and nasal
line, and displays concave artifacts in the pupil
region. Furthermore, this method is quite
slow, as training requires numerical searches
to locate the surface, making it approximately
200× slower than PointAvatar (Zheng et al.,
2023). While PointAvatar offers faster perfor-
mance, it suffers from dotted noise in geome-
try due to its fixed, isotropic point size, mak-
ing it challenging to represent extreme poses.
FLARE (Bharadwaj et al., 2023) also shows
mangled rendering and geometry, particularly
in cases of extreme facial expressions, as it in-
volves decomposing intrinsic material from a
single environment, an ill-posed problem. This
trend is reflected in the quantitatives in Tab. 1.

Real Dataset. For the NeRSemble real dataset, Fig. 5 shows qualitative comparisons.
FLARE (Bharadwaj et al., 2023)’s mesh involving unstable remeshing technique leads both over-
smoothed rendering and normal with inferior quality. PointAvatar (Zheng et al., 2023) excels in fine
detailed normals such as wrinkles, owing to their drastic pruning strategy to avoid the ambiguity of
normal volumetric rendering, but they show salt-and-pepper artifacts from inflexible point represen-
tation. We also regard these two baselines’ degradations stem from their inherent representations
intractability of their personalized blendshape space. SplattingAvatar (SA) (Shao et al., 2024) and
GaussianAvatars (GA) (Qian et al., 2024), which utilize 3DGS (Kerbl et al., 2023), aim for high-
quality renderings. Note that the normal from SA and GA is derived from the shortest axis of the
Gaussians, a method commonly used in recent relighting research (Jiang et al., 2024b). SA lacks
explicit regularization of Gaussian positions, allowing them to drift far from their parent triangles,
leading to inferior normal quality and floating artifacts. In both quantitative (Tab. 2) and qualitative
evaluations, GA produces results comparable to ours, but its coarse deformation strategy, similar-
ity transformation, does not account for triangle stretching and deformation discontinuity, resulting
in semi-transparent and blob-like artifacts during extreme pose extrapolation. Additionally, SA and
GA’s normal quality suffer due to the absence of geometry-level optimizations. Otherwise, thanks to
our design of capturing high-fidelity geometry and accurate deformations, ours show superior qual-
ity of normal with detailed geometry. Not only the geometry, ours outperforms other state-of-the-art
methods in terms of rendering quality. The qualitative observation is also proved in Tab. 2. Notably,
GA shows better PSNR and LPIPS than ours, owing to 3DGS (Kerbl et al., 2023)’s representations.
This phenomenon in rendering quality gap is also reported in 2DGS (Huang et al., 2024) in view
of the absence of representation dimensionality. Although this numerical scores, as can be seen in
red boxes Fig. 5, ours result is more robust than GA on extreme expression scenarios. However,
ours with LPIPS achieves the best LPIPS with preserving other metrics. Ours scores best in the
NCS which indicate its high fidelity for dynamic geometry reconstruction with a large margin. In
summary, ours outperform other baselines in terms of reconstruction capability with appearance and
geometry, both.
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Figure 5: Qualitative results on NeRSemble dataset (Kirschstein et al., 2023). Thanks to Jacobian
and their blending, our method produces high-quality geometry with intricate details, visible in the
normal maps. Please be aware of red boxes.

4.3 ABLATION STUDY

Jacobian and JBS help intricate rigging.

Table 3: Ablations. +/- in-
dicate incremental changes
from the previous.

PSNR↑ SSIM↑ LPIPS↓ NCS ↑
GaussianAvatars 22.49 0.920 0.089 0.727
Vanilla 22.32 0.907 0.093 0.803

+ eyeballs 22.35 0.901 0.093 0.809
+ Jacobian 22.38 0.902 0.091 0.812
+ JBS (= Ours) 23.09 0.931 0.082 0.845
- ASGs 23.07 0.922 0.089 0.846
- eyeballs 23.03 0.925 0.087 0.820

We further validate the effectiveness of our method’s Jacobian and
Jacobian Blend Skinning (JBS) in Tab. 3 and Fig. 6a. Here,“Vanilla”
refers to the combination of 2DGS (Huang et al., 2024) and Gaussian
Avatars (Qian et al., 2024).

When incorporating the Jacobian deformation gradient, we observe a
noticeable improvement in normal quality, particularly in reducing ar-
tifacts near the jaw and nasal lines, resulting in more coherent normal
representations.
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Figure 6: Qualitative ablation for proving the proposed method. The left side show how Jacobian
deformations and Jacobian Blend Skinning alleviate artifacts in extreme poses. The right side shows
degradations in the eye region when training without eyeballs or without anisotropic spherical Gaus-
sians (ASG).

Rendered images show better alignment between floating artifacts and surface geometry, creating a
more structured and accurate overall appearance. With JBS applied, the normal achieves even higher
quality, showing smoother and more distinct separation. Pop-out artifacts are nearly eliminated,
leading to refined representations of facial features, especially around the nasal area, surpassing the
coarse expressions captured by the FLAME mesh. JBS significantly enhances the fidelity and detail
of the normal maps by compensating for deformation discontinuities.

Effects of ASGs and Eyeball Regularization. To model the cornea of the eyeballs more accurately,
we propose the use of Anisotropic Spherical Gaussians (ASGs) with a new, efficient implementa-
tion and eyeball regularization. To validate these improvements, we present qualitative results in
Fig. 6b and quantitative results in Tab. 3. Without ASGs, the rendered color of the eyeball regions
shows low-frequency reflections, resulting in a matte appearance. This occurs because, during the
optimization of the eyeball region with convexity regularization, Spherical Harmonics alone are
insufficient to capture the specular highlights. Moreover, when eyeball regularization is further re-
duced, the eyeballs appear to retain specularity, but the normals exhibit concave shapes, creating a
hollow illusion. These observations suggest that the intricate modeling of both the geometry and
appearance of the eyeballs is not feasible without either our ASGs or eyeballs regularization.

5 CONCLUSION AND DISCUSSION

SurFhead introduces a novel method for reconstructing dynamic head avatars that strikes a balance
between photorealism and geometrically accurate rigging. By integrating Jacobian deformation
with detailed normal adjustments and Jacobian Blend Skinning (JBS), our approach enables precise
control over both appearance and geometry. As a result, SurFhead surpasses existing state-of-the-art
dynamic head models, excelling in accurate geometry reconstruction, pose and expression extrapola-
tion, and demonstrating its applicability in areas such as relighting (see Appendix A.6) and dynamic
mesh reconstruction by leveraging the efficient, rule-governed rigging regime of 3DMFM meshes.

However, there is still room for improvement in the near future. First, similar to other 3DMFM and
Gaussian-based methods, certain challenges persist, particularly regarding the bounded represen-
tation of the expression space in 3DMFM. Additionally, expressions that are grossly exaggerated
and fall outside the span of 3DMFM’s expression space, even cannot be head tracked in the prepro-
cessing stage. Furthermore, elements like the tongue and individual hair strands are still missing in
modern 3DMFMs. Besides, one of the strengths of our rule-governed deformation from 3DMFM
meshes is efficiency. Therefore, we also discuss the improvement room for computational effi-
ciency of polar decomposition, which, unlike other Gaussian primitive-based methods relying on
black-box learning, is deterministically governed in SurFhead. These further discussions on these
limitations are in Appendix A.6.
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One critical issue is the potential for creating deepfake videos, which could spread false information,
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A APPENDIX

A.1 RELATED WORK

Static to Dynamic Radiance Field Reconstruction. NeRF (Mildenhall et al., 2021) and NV (Lom-
bardi et al., 2019) have opened the era of photorealistic renderings with undertaking novel-view
synthesis task. Optimization and rendering efficiency could be improved by hash encoding (Müller
et al., 2022) and tensor decomposition (Chen et al., 2022). Later, Mixture of Volumetric Prim-
itives (Lombardi et al., 2021) proposes efficient methodology with surface-aligned cuboid prim-
itives which boost only ray marching around surfaces. Few years later, 3D Gaussian Splatting
(3DGS) (Kerbl et al., 2023) utilizes anisotropic 3D Gaussians by rasterizing them without expensive
ray-marching like previous strategies. We leverage the 3DGS, benefiting from the expressiveness
and efficiency.

Neural Surface Reconstruction. Emerging from the success of NeRF (Mildenhall et al., 2021),
neural surface reconstruction (Oechsle et al., 2021; Yariv et al., 2020; Wang et al., 2021) has garnered
significant attention from researchers, leveraging Occupancy Fields and Signed-Distance Functions
(SDFs). Notably, subsequent works (Rosu & Behnke, 2023; Li et al., 2023) have introduced method-
ologies that integrate fast and efficient hash-encoding-based radiance fields (Müller et al., 2022) with
SDFs. This development has inspired research into human head geometry reconstruction, moving
beyond mesh-based topology-invariant 3D Morphable Face Models (3DMFMs) (Li et al., 2017;
Paysan et al., 2009). The first major work in this area, H3D-Net (Ramon et al., 2021), proposed
an SDF-based approach for few-shot human head geometry reconstruction using an auto-decoder-
trained model. Building on this, a subsequent study (Xu et al., 2023a) targeted a similar setting
as H3D-Net, focusing on more detailed human head geometry reconstruction with single-person
refinement. Recently, MonoNPHM (Giebenhain et al., 2024a) introduced a few-shot head recon-
struction framework based on a pretrained neural parametric head model (Giebenhain et al., 2023),
which combines the topology-free advantages of SDFs with the manipulability of parametric mod-
els. Departing from these SDF-based approaches, we are the first to propose reconstructing dynamic
head geometry from RGB videos, including monocular setups, utilizing Gaussian primitives (Huang
et al., 2024).

Reconstructing and Animating Head Avatars. Existing approaches for reconstructing and animat-
ing avatars mainly differ in two fundamental aspects: implicit or explicit models. Implicit models
reconstruct the face by neural radiance field in combination with volumetric rendering or using im-
plicit surface functions. (Gao et al., 2022), (Zielonka et al., 2023b), (Zheng et al., 2022), (Xu et al.,
2023b) With explicit models (Grassal et al., 2022),(Zheng et al., 2023),(Khakhulin et al., 2022), the
seminal work of 3DMFM uses principal component analysis (PCA) to model facial appearance and
geometry on a low-dimensional linear subspace. 3DMFM and its variants have been widely applied
in optimization-based and deep learning-based head avatar creation. Recently, due to its efficient
rendering and topological flexibility, there are many works utilizing 3D Gaussian Splatting (Kerbl
et al., 2023). These works can be further categorized based on how they define and use Gaussians.
Some approaches bind Gaussians directly to the mesh (Shao et al., 2024; Qian et al., 2024), while
others map them onto UV coordinates (Xiang et al., 2024). In some cases, Gaussians are extracted
as features (Giebenhain et al., 2024b),(Xu et al., 2024), or a neural parametric model replaces the
traditional 3DMFM (Giebenhain et al., 2024b). However, in most cases, the deformation is often
handled by the mesh itself with little additional consideration.

A.2 PROOFS

A.2.1 POLAR DECOMPOSITION’S UNIQUENESS

Lemma 1. There exists a unique polar decomposition of an arbitrary invertible matrix A such that

A = UP,

where U is an orthogonal matrix and P is a positive semidefinite symmetric matrix.

Proof (Lemma 1). Suppose that there are two polar decompositions of the matrix A:

A = U1P1 = U2P2,

where U1,U2 are orthogonal matrices and P1,P2 are positive semidefinite symmetric matrices.
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Now, multiply both sides of U1P1 = U2P2 by UT
1 on the left:

P1 = UT
1 U2P2.

Let Q = UT
1 U2, so that

P1 = QP2.

Since Q is an orthogonal matrix and both P1 and P2 are positive semidefinite symmetric matrices,
we conclude that Q = I, the identity matrix. Hence,

UT
1 U2 = I ⇒ U1 = U2.

Thus, P1 = P2, and therefore the polar decomposition A = UP is unique.

A.2.2 PRESERVATION OF POSITIVE SEMIDEFINITE WITH JACOBIAN GRADIENTS

Lemma 2. Consider an arbitrary matrix M . The matrix multiplication MMT is positive semidefinite
(PSD) because for any vector x,

xTMMTx ≥ 0 ⇔
∥∥MTx

∥∥2 ≥ 0.

The matrix Σ also follows this form. Therefore, Σ retains its positive semidefinite property after the
affine transformation.

A.3 IMPLEMENTATION DETAILS

Optimization Specifications. We use Adam (Kingma & Ba, 2014) optimizer for learnable Gaussian
parameters and translation, joint rotations, and expression parameters of FLAME (Li et al., 2017).
We set the learning rates for all parameters same as with GA (Qian et al., 2024), except for the
blending weights w. For the w, we set the learning rate as 1e-3. We train for 300,000 iterations, and
exponentially decay the learning rate for the µ until the final iteration, where it reaches 0.01× the
initial.

Finally, the entire energies are defined as:

L = Lphoto + λdepthLdepth + λnormalLnormal + λeyeLeye. (5)

The energy balances are λdepth = 100, λnormal = 0.05, and λeye = 0.1.

Calculation Jacobian with Covariance. Since there is no support for precomputation of covariance
with original 2DGS (Huang et al., 2024) rasterizer implementation 1, we calculate the Jacobian
deformation gradient Jb combining with 3DGS’s original covariance as NVIDIA CUDA kernel
implementation.

Color Change with Geometrical Transformations.

Most previous dynamic head avatars almost neglect the color change with
deformations (Zielonka et al., 2023b; Qian et al., 2024; Shao et al., 2024;
Lombardi et al., 2021). When the bases of SHs do not rotate, they just query
the same direction with facing identical side of Gaussians in any deformed
space. This phenomenon is illustrated in the inset of the upper right branch.
To mitigate this, we suggest a simple solution like the lower right of the in-
set, we inversely rotate the view direction d with the inverse of Gaussian’s
blended rotation part UT

b . Namely, we rewrite the rotated input view direc-
tion: drot = UT

b d.

Anisotropic Spherical Gaussians for Eyeballs’ specularity. Comparing with Spherical Gaussians
(SGs), ASGs (Xu et al., 2013) have been demonstrated to effectively represent anisotropic scene
with a relatively small number.

ASGs are theoretically defined as:

ASG(ν|[x, y, z], [λ, µ], ξ) = ξ ·max(ν · z, 0) · e−λ(ν·x)2−µ(ν·y)2 , (6)
1https://github.com/hbb1/diff-surfel-rasterization.git
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GA self-reenact set Our self-reenact  set

SUBJECT 74 SUBJECT 264

GA self-reenact set Our self-reenact  set

Figure 7: Dataset example of custom self-reenactment held-out.

Subject ID 074 140 175 210 253 264 302 304 306

Table 4: The held-out sequence of each subject for self-reenactment evaluation.

where z is lobe-axis, x and y are each tangent and bi-tangent of z, {λ, µ} ∈ R+ are sharpness
parameters, ν is the unit direction function input, and the max term implies the smooth term.

Given that most specular BRDFs feature a lobe aligned with a specific reflection direction, we cal-
culate the reflection vector to serve as the input direction: ωo = 2(drot · n)n − drot, where drot is
the rotated input view direction, n is a normal direction computed for each Gaussian, and ωo is the
reflect direction. Lastly, since a simple summation of ASG output limits its representative ability,
we utilize tiny two-hidden layered MLP F to obtain the final specular color, following (Yang et al.,
2024):

cs(ωo;x) = F

(
N−1⊕
i=0

ASG(ωo|[ωλ
i ,ω

µ
i ,ωi], [λi, µi], ξi), γ(drot),n · drot

)
(7)

where
⊕

indicates the concatenation operation, γ denotes the positional encoding, and N is the
number of basis SGs.

Not to compromise the computational efficiency, we leverage the common prior knowledge from the
casual data capture setting. First, the eyeballs could not be effected by lights from backside of heads.
Therefore, we sample ωi with limited range from frontal hemisphere of world space; N = 4 × 4
relatively 50% reduced ASGs compared with (Han & Xiang, 2023; Yang et al., 2024). Second,
since the captured data typically lie under environments with abundant white light, representing the
MLP F output color as a monochrome channel for intensity is sufficient.

For a sampled direction ωi = (θ, ϕ) in the spherical coordinate system, we set ωλ
i = (θ + π/2).

Using quaternion operations, ωλ
i is then rotated around ωi by π/2 to derive ωµ

i . Then, we finally
obtain the color with c = cd + cs used in volume rendering equation, where cd is obtained by SHs
from 3DGS (Kerbl et al., 2023).

NeRSemble Real Dataset Division We conduct experiments on video recordings of 9 subjects
from the NeRSemble (Kirschstein et al., 2023) dataset as described on Tab. 4. As we focus on
deformation, we select extreme expression set for self-reenactment to emphasize the difference.
Therefore, among the emotion (EMO) and expression (EXP) sequences, we hold out EMO-1 for
self-reenactment evaluation and use the rest nine for training as shown in Tab. 5.
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Train Sequences EMO-2 EMO-3 EMO-4 EXP-2 EMO-3 EMO-4 EMO-5 EMO-8 EMO-9

Test Sequences EMO-1

Table 5: The train and test held-out sequences.

Method GA Base + Jacobian +JBS +SGs (= Ours)

Rendering Speed (FPS) +PyTorch 71.18 109.36 107.59 92.62 90.13

+RoMA N/A N/A N/A 97.29 94.72

Training Time (hours) 1.65 1.68 1.73 1.98 2.11

Table 7: Comparison of training and rendering (test) computational costs.

A.4 ADDITIONAL EXPERIEMENT

Comparsion with Gaussian Head Avatars (GHA) (Xu et al., 2024) GHA serves as a strong base-
line in rendering quality, leveraging an additional super-resolution model in screen space. As shown
in Tab. 6, GHA outperforms our method in terms of PSNR. However, in other metrics such as SSIM
and LPIPS, GHA falls behind.

Table 6: Quantitative com-
parsion with GHA (Xu
et al., 2024)

PSNR↑ SSIM↑ LPIPS↓ NCS ↑
GHA 27.25 0.909 0.153 0.505
Ours 26.20 0.932 0.052 0.837

Fig. 8 reveals potential reasons for this discrepancy. Notably, arti-
facts such as over-saturation are visible, which we attribute to GHA’s
screen-space refinement. This refinement struggles when rendering
extreme poses that fall outside the distribution expected by the super-
resolution model. Additionally, GHA faces challenges in reconstruct-
ing high-fidelity geometry and handling extreme expressions, both of
which are key strengths of our approach. We would like to emphasize
the importance of capturing the specular highlights of the eyes, particularly the cornea. GHA renders
the pupils with a matte appearance, neglecting the high-frequency specular reflections in the corneal
region. We argue that these specular details are critical for enhancing the realism of the eyes, which
play a pivotal role in creating immersive and lifelike head avatars.

A.5 ADDITIONAL ABLATION STUDY

Adaptive Density Control (ADC) Amplification on Teeth. We posted qualitatives with the oc-
clusion amplification on the teeth part in Fig. 9. This technique is very simple yet efficient with
boosting Gaussian proliferation to overlooked parts in terms of optimization.

Training and Rendering Time Complexity Measurement Tab. 7 summarizes the rendering speed
and training time for our method and GaussianAvatars (Kerbl et al., 2023). The Base configuration
refers to replacing the 3D Gaussian Splatting rasterizers in GaussianAvatars with their 2D coun-
terparts. Our method incurs only a 17% drop in rendering speed and an additional 25 minutes of
training time, while still achieving 3× real-time rendering speeds (generally over 30 FPS) and main-
taining efficient training. A detailed analysis attributes the minimal training and testing overhead to
our GPU-level CUDA kernel implementation for Jacobian computations.

For rendering, the primary factor behind the speed reduction is the Jacobian Blend Skinning (JBS),
where the overhead mainly arises from the Polar Decomposition step. Our current implementation
utilizes PyTorch’s SVD, which relies on the cuSOLVER backend. To further investigate this bot-
tleneck, we conducted additional experiments using RoMA (Brégier, 2021)’s specialized Procrustes
routine, which is designed to efficiently compute the 3× 3 unitary matrix U of the Jacobian J. No-
tably, replacing torch.svd with roma.special-procrustes yielded a performance gain
of approximately 4–5 FPS.

Although this demonstrates the potential of alternative approaches, there is still room for further
improvement. Higham’s routine (Higham & Noferini, 2016), specifically tailored for 3×3 matrices,
offers a promising direction to address this overhead and is well-suited for CUDA-based implemen-
tations.
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A.6 LIMITATION AND SEMINAL FUTURE WORK

Bounded Representation from 3DMFM. We utilized a 3DMFM model, FLAME (Li et al.,
2017) to enable our model to be equipped cross-reenactment and rigged compactly. However, the
3DMFMs’ expression space has only PCA-based coarse rigging-ability such that cannot easily de-
scribe the dynamics of facial muscles such as wrinkles and extreme pose or expression (Fig. 10).

To end this, we believe that the image-based latent expression representations (Burkov et al., 2020;
Wang et al., 2022; Drobyshev et al., 2022; 2024) can alleviate this issue some extent. However,
naively applying the latent expression to dynamic head avatars is non-trivial. Because only designing
dynamics of the geometrical deformation is hard to handle ambient-occlusion (such as shadow of
neck and jaw from head and lips, each) without intricate physical-based rendering (PBR). Therefore,
we guess that the future work should be conducted as learning the deformation dynamics with those
latent expression spaces, also simultaneously covering the deformation-aware color changes.

Second, the inherent limitations of 3DMFM’s representation, particularly the absence of hair strands
and the tongue, can degrade the render quality. Since 3DMFM is fundamentally a bald model for
human heads, it lacks the capability to represent the high-frequency details of human hair (Fig.
11). We believe that integrating our model with parametric strand models (Sklyarova et al., 2023;
Zakharov et al., 2024; Rosu et al., 2022) could help alleviate these issues.

Computational Efficiency for Calculating Polar Decomposition with Numerical Views. Our
Jacobian Blend Skinning (JBS) algorithm is based on polar decomposition, which is indirectly com-
puted using byproducts of singular value decomposition (SVD). Specifically, J = WΣVT , where
W and V are orthogonal matrices, and Σ is a diagonal matrix with singular values. This can be
rewritten as J = (WVT )(VΣVT ) = UP, where U is the rotation matrix, and P is the positive
semidefinite symmetric matrix.

However, as reported in RoMa (Brégier, 2021), PyTorch (Paszke et al., 2019)’s SVD routine scales
linearly in time as the batch size increases. In the Gaussian Splatting (Kerbl et al., 2023; Huang
et al., 2024) regime, over 10K operations for Gaussians are performed simultaneously to render an
image, which requires the SVD routine to be executed in parallel. The polar decomposition process
involves finding the nearest rotation matrix given a matrix. We believe that adopting RoMa (Brégier,
2021)’s Procrustes process or Higham’s (Higham & Noferini, 2016) routine, which is specifically
designed to solve problems for 3× 3 matrices, could significantly improve efficiency.

Extending SurFhead to Relighting Task. Normal is one of the key intrinsic material properties.
We demonstrate the possibility of using the normals generated by SurFhead for avatar relighting
tasks in Fig. 13, utilizing GaussianShader (Jiang et al., 2024b). The relit results exhibit high plausi-
bility, with high-fidelity reflections of the environment maps. We present objects reconstructed using
our method, including relighting scenarios under various lighting conditions, featuring both warm
and cool tones, as well as indoor and outdoor environments. Our renderings, across three diverse
sets, convincingly demonstrate that the relit scenes maintain realism, exemplifying our method’s
proficiency in relighting applications.
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Figure 8: Qualitative Comparison with GHA (Xu et al., 2024)

Ours GT- teeth

Figure 9: Ablations for ADC amplification on teeth.
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GT FLAME Mesh Overlay

Figure 10: Limitation#1. Example for bounded representation of expression space from 3DMFM.

GT RGB Normal

Figure 11: Limitation #2: The lack of hair modeling in 3DMFM can result in blurry hair appearance.
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A.7 CONCEPTUAL COMPARISON WITH PREVIOUS METHOD

Stretching
(x, y axis)

Shearing
(x axis)

x
y

Canonical Anisotropic Scaling
Deformed (Ours)

Isotropic Scaling
Deformed:  Mis-aligned area

Figure 12: Conceptual illustration of stretching
and shearing: (Left) rigid and isotropic scaling
and (Right) affine deformation (ours)

Previous methods, (Qian et al., 2024; Shao
et al., 2024), utilize isotropic scaling for de-
forming mesh-bound Gaussians, with scalar
scaling parameter sp. GaussianAvatars com-
puted sp using the mean length of one of the
edges and its perpendicular, while SplattingA-
vatars computed sp based on the ratio of canon-
ical and deformed triangle areas. However, we
find that these approaches can result in undesir-
able Gaussian deformations when the 3DMFM
meshes undergo stretch or shear in specific di-
rections. When the deformed and canonical tri-
angle areas or the sum of an edge’s length and
its perpendicular are the same but the shape is
differ, the Gaussians become misaligned and fail to cover the necessary regions accurately. In con-
trast, our method uses affine deformation, allowing Gaussians to more precisely reflect the deforma-
tion of the triangles and cover the regions as intended.
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Figure 13: Results for relighting with GaussianShader (Jiang et al., 2024b).

Figure 14: SurFhead can reconstruct high-fidelity meshes from Truncated Signed Distance Fucn-
tion (TSDF) alongside diverse pose and expression.
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