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Abstract

Knowledge editing emerges as a promising ap-001
proach for updating target knowledge in Large002
Language Models (LLMs) in a timely manner,003
thereby preventing undesirable behaviors stem-004
ming from outdated, inaccurate, or incomplete005
knowledge. However, existing methods mainly006
focus on instance-level editing, which is prone007
to over-editing risk featuring knowledge degra-008
dation and general ability deterioration, due to009
redundant instance-specific modifications for010
knowledge. To mitigate the over-editing risk,011
we explore the rule-level editing problem that012
avoids case-by-case modification by generaliz-013
ing rule-level knowledge to update rule-derived014
instances. We further construct a benchmark015
called RuleEdit for systematic evaluation on016
rule-level editing. Moreover, we propose a017
Rule-Transfer Editing (RTE) method to facil-018
itate effective updates and generalizations of019
rule-level knowledge in LLMs. Experimental020
results highlight our significant improvements,021
with the enhancements of 28.1% in portabil-022
ity and 8.1% in average performance over the023
best-performing baselines for LLaMA-2-7B on024
RULEmix.025

1 Introduction026

Large Language Models (LLMs) have demon-027

strated remarkable intelligence in performing Natu-028

ral Language Processing (NLP) tasks (Chang et al.,029

2024). As the world evolves dynamically, outdated,030

incorrect, or missing knowledge in LLMs may lead031

to impaired performance in NLP tasks (Zhang et al.,032

2024b). To address this limitation, Sinitsin et al.033

(2020) introduces Knowledge Editing to enable034

timely update to the target knowledge in LLMs,035

which has garnered widespread interest.036

Existing knowledge editing methods (Meng037

et al., 2022; Hartvigsen et al., 2023; Mitchell et al.,038

2022a) for LLMs primarily focus on instance-level039

editing (Wang et al., 2024b), which involves modi-040

Figure 1: (a) Illustration of instance-level editing with
case-by-case modification. (b) Illustration of rule-level
editing with a generalized editing process.

fying specific and detailed information (i.e., char- 041

acteristics, attributes.) of individual instances or 042

cases. However, as illustrated in Figure 1(a), nu- 043

merous specific instances (e.g., "Premise: If some- 044

one’s Breath Alcohol Concentration is 0.56% while 045

driving, what is the penalty? → Conclusion: 6- 046

month license suspension and a $1000 fine.") can 047

be derived from the general rule (e.g., "Premise: If 048

driver’s Breath Alcohol Concentration is between 049

0.20% and 0.80%, what is the penalty? → Con- 050

clusion: 6-month license suspension and a $1000 051

fine."). It is redundant to modify case by case in 052

instance-level editing. With inefficient large-scale 053

updates to rule-derived instances, instance-level 054

editing is vulnerable to over-editing risk (Zheng 055

et al., 2023). Specifically, as indicated in Fig- 056

ure 2(a), with increasing editing steps in instance- 057

level editing, LLMs tend to suffer from significant 058

performance deterioration in both knowledge up- 059

dates (success rate drops from 93.33% to 6.44%) 060

and general tasks (reasoning accuracy drops from 061

97.65% to 0.00%). 062

To mitigate the above over-editing risk arising 063
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from redundant modifications to rule-derived in-064

stances in instance-level editing, we explore the065

rule-level editing problem, which involves editing066

rule-level knowledge encompassing abstract un-067

derstandings of principles. As illustrated in Fig-068

ure 1(b), since rule-level knowledge can derive069

numerous relevant instances, it is expected that070

the modifications and generalizations of rule-level071

knowledge in rule-level editing encourage the ef-072

fective updates of numerous rule-derived instances.073

Since existing knowledge editing methods are pri-074

marily designed for instance-specific modifications,075

they struggle to accurately modify rule-level knowl-076

edge and effectively generalize edited knowledge077

to update corresponding rule-derived instances. As078

observed in Figure 2(b), these methods exhibit sub-079

optimal (F1 scores are below 15.0% in ROME,080

MEND, and LoRA) or imbalanced performance081

(GRACE achieves 94.0% in reliability, but drops082

significantly to 4.4% in generalization ability and083

2.2% in portability) in rule-level editing task.084

Moreover, existing knowledge editing datasets085

(e.g., zsRE (De Cao et al., 2021) and CounterFact086

(Meng et al., 2022)) are primarily designed to eval-087

uate instance-level editing, leaving the potential088

of LLMs in rule-level editing underexplored. Be-089

sides, although ConceptEdit (Wang et al., 2024b)090

is introduced for editing concept definitions, it is091

confined to evaluating affiliation influence on asso-092

ciated instances (e.g., "whether FrancoAngeli be-093

longs to category publisher?"), and is incapable of094

measuring the impact of rule changes in real-world095

scenarios (e.g., the effects of modifying drunk driv-096

ing penalty provisions in legal texts on real-world097

cases). Consequently, to bridge these gaps, we con-098

struct a new benchmark RuleEdit for the rule-level099

editing task, covering three distinct domains (i.e.,100

historical, medical, and legal) which respectively101

necessitate capabilities of numerical reasoning, hi-102

erarchical knowledge inheritance, and semantic rea-103

soning in real-world scenarios.104

In our work, we propose the Rule-Transfer Edit-105

ing (RTE) method, which mitigates over-editing106

risk caused by redundant instance-specific modi-107

fications through effective knowledge generaliza-108

tion. Specifically, RTE efficiently updates rule-109

level knowledge by modularly compressing it into110

semantic-centralized representations using a T5-111

based amortization network (Raffel et al., 2020).112

To facilitate effective generalization of rule-level113

knowledge, RTE further aggregates and propagates114

query-relevant rule-level knowledge to the query115

Figure 2: (a) Over-editing risk in LLaMA-2-7B after
editing with ROME in instance-level. The editing suc-
cess rate is evaluated on RULEmix. The reasoning per-
formance is evaluated on GSM8K. (Cobbe et al., 2021).
(b) Rule-level editing performance of existing methods
on LLaMA-2-7B with 100 editing steps in RULEmix.

for informative knowledge inference in LLMs, 116

leveraging the prefix tuning technique (Li and 117

Liang, 2021). Moreover, RTE effectively pre- 118

vents the deterioration of general ability in base 119

LLMs owing to the preservation of original param- 120

eters. Experimental results demonstrate that RTE 121

achieves robust rule-level editing performance and 122

strikes a good balance among reliability, general- 123

ization ability, and portability. 124

Our contributions are summarized as follows: 125

• We explore the rule-level editing problem, 126

aiming to achieve effective knowledge up- 127

dates in LLMs through rule-level knowledge 128

generalization. 129

• We construct RuleEdit benchmark for com- 130

prehensive rule-level editing evaluation, cov- 131

ering three domains necessitating abilities of 132

numerical reasoning, hierarchical knowledge 133

inheritance, and semantic reasoning in real- 134

world rule-level knowledge generalization. 135

• We propose the RTE method to propagate 136

edited rule-level knowledge during inference 137

for effective updates of relevant rule-derived 138

instances, which avoids redundant instance- 139

specific modifications and thereby mitigates 140

over-editing risk. Our experimental results 141

highlight that RTE achieves significant im- 142

provements in overall editing performance. 143
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2 Related Work144

Current knowledge editing methods can be broadly145

divided into three lines, including locate-and-edit,146

meta-learning, and memory-based editing methods,147

which are briefly reviewed in this section.148

Locate-and-edit. Recently, several studies man-149

age to localize and modify specific knowledge150

within transformers, guided by the "key-value neu-151

ral memory" theory (Geva et al., 2021), while152

retraining- or fine-tuning-based editing methods153

(Hu et al., 2022; Kirkpatrick et al., 2017) are com-154

putationally expensive. Rather than individually155

altering parameters of located knowledge neurons156

or feedforward layers (Dai et al., 2022; Meng157

et al., 2022, 2023) through causal tracing, Li et al.158

(2024) simultaneously optimizes the hidden states159

of multi-head self-attention and feedforward net-160

works to update target knowledge. Additionally,161

Wang et al. (2024a) attempts to locate the toxic162

region by measuring distribution separation across163

layers. However, causal tracing does not always164

pinpoint the actual effective model layers for edit-165

ing, despite being a reasonable localization method166

(Hase et al., 2023). Furthermore, in sequential edit-167

ing scenario, existing locate-and-edit methods are168

prone to overediting risk (Hartvigsen et al., 2023),169

leading to knowledge degradation issues.170

Meta-learning. Considering the overfitting is-171

sue associated with fine-tuning on a single example,172

existing meta-learning-based editing methods em-173

ploy the hypernetwork to better initialize model174

parameters and encourage faster training on the175

model. Specifically, Mitchell et al. (2022a) pro-176

pose an editor network with a low-rank decom-177

position of the gradient, facilitating scalable and178

fast editing for large pre-trained language models.179

Furthermore, Tan et al. (2024) formulates param-180

eter shift aggregation as a least-squares problem181

to encourage massive scale editing. Despite fast182

editing adaptation to new knowledge, current meta-183

learning-based methods still face the risk of catas-184

trophic forgetting, which deteriorates the editing185

reliability and generalization ability during large-186

scale edits.187

Memory-based Editing. Memory-based edit-188

ing methods achieve knowledge preservation by189

incorporating external working memory. These190

methods can be briefly classified into two cate-191

gories: (1) Weight-preserved methods (Zheng et al.,192

2023; Hartvigsen et al., 2023; Madaan et al., 2022;193

Dong et al., 2022), which perform knowledge edit-194

ing through in-context learning and knowledge re- 195

trieval. Nevertheless, they mostly struggle with 196

the challenge of processing unaffordable massive 197

inputs in sequential editing or exhibit poor edit- 198

ing generalization ability. (2) Optimization-based 199

method. Mitchell et al. (2022b) introduces a semi- 200

parametric editor that stores model edits in external 201

memory. However, its performance is limited by 202

the scope classifier which relies on the training 203

of the editing dataset. Although current memory- 204

based editing methods achieve reliable editing for 205

target knowledge, they encounter a generalization 206

bottleneck due to the limitation of knowledge re- 207

trieval. 208

To sum up, existing knowledge editing methods 209

are primarily designed for instance-specific modi- 210

fications and struggle to balance the performance 211

of reliability, generalization ability, and portabil- 212

ity in knowledge editing. Therefore, in this work, 213

we explore efficient knowledge updates through 214

generalization in rule-level editing. 215

3 Rule-Level Editing 216

3.1 Task Definition 217

Rule-level editing aims to modify general rule-level 218

knowledge and propagate updates to rule-derived 219

instances within LLMs. Specifically, given i-th new 220

input-output rule-level knowledge pair (Rx
i ,R

y
i ), 221

which is accompanied by k relevant input-output 222

rule-derived instance pairs {(Ix
i,j , I

y
i,j)}kj=1 ∈ 223

(Ix
i , I

y
i ), the LLMs need to be edited on rule-level 224

knowledge to obtain a new model F∗. After edit- 225

ing on (Rx
i ,R

y
i ), it is expected that the relevant 226

input-output rule-derived instances can be correctly 227

updated as: F∗(Ix
i,j) = Iy

i,j . 228

3.2 Rule-Level Editing Evaluation 229

In this work, we conduct comprehensive evalu- 230

ations of knowledge editing across three dimen- 231

sions and three metrics described as follows. For 232

rule-level knowledge updates, we measure in both 233

Reliability (Rel.) and Generalization (Gen.) di- 234

mensions (Zhang et al., 2024b; Yao et al., 2023) 235

to reveal whether rule-level knowledge can be ro- 236

bustly edited. For relevant rule-derived instance 237

knowledge, we measure in Portability (Port.) di- 238

mension to reflect whether relevant instances can 239

be successfully updated through inference. 240

(1) Reliability. The success rate of editing rule- 241

level knowledge: 242

Exe,ye∼Rx,RyScore(F∗(xe), ye) (1) 243
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(2) Generalization. The success rate of edit-244

ing rule-level knowledge with rephrased rule input245

within the editing scope:246

Exe,ye∼Rx′ ,Ry′Score(F∗(xe), ye) (2)247

where (Rx′
,Ry′) set represents the rephrased rule-248

level knowledge.249

(3) Portability. The success rate of updating the250

relevant rule-derived instance knowledge, which251

provides a superior reflection of the model’s gener-252

alization ability (Zhang et al., 2024a):253

Exe,ye∼Ix,IyScore(F∗(xe), ye) (3)254

To ensure the robustness of the evaluation, we255

simultaneously calculate the score using three met-256

rics: (1) Accuracy (ACC). The proportion of match-257

ing tokens between the target and edited result, cal-258

culated based on exact position alignment in the259

sequence. (2) Exact Match (EM). If the edit result260

fully matches the target, it is considered correct.261

(3) F1. It is obtained by calculating the overlap of262

tokens between the target and prediction.263

4 Rule-Transfer Editing Method264

Inspired by Tack et al. (2024) that addresses online265

adaptation problem with the key idea of document266

feature extraction and memory-augmentation, we267

introduce a Rule-Transfer Editing method (RTE)268

for effective modifications and generalizations of269

rule-level knowledge in the rule-level editing task,270

as depicted in Figure 3.271

In RTE, the rule-level knowledge are modu-272

larly compressed into semantic-centralized repre-273

sentations using a T5-based amortization network274

(Phang et al., 2023), while preserving original out-275

of-scope knowledge by freezing parameters of base276

LLMs. To update rule-derived instances by rule-277

level knowledge generalization, relevant rule-level278

knowledge are aggregated into virtual prefix to-279

kens according to the semantic relevancy with the280

query measured by aggregration network, and sub-281

sequently prepended to the query in LLMs by prefix282

tuning technique (Li and Liang, 2021) for infor-283

mative knowledge inference. Moreover, the meta-284

learning paradigm encourages faster adaption to285

new knowledge updates in RTE during meta-testing286

phase.287

4.1 Meta-Training Phase288

In meta-training phase, the key idea is to better289

initialize the amortization network and the aggre-290

gation network in an end-to-end training manner,291

consequently encouraging faster editing adaptation 292

in meta-testing phase. 293

Given a training edit set Dtr
edit, for each input- 294

output rule-level knowledge pair (Rx
i ,R

y
i ) ∈ 295

Dtr
edit, we concatenate it and modularly encode it 296

into a compact representation ϕi by a learnable 297

T5-based hyper-amortization network H with pa- 298

rameter ξamort (Raffel et al., 2020): 299

ϕi = H(ξamort; [Rx
i ;R

y
i ]) (4) 300

such that we obtain a compact rule-level knowl- 301

edge representation with the shape of [L, 2, 2,P,H], 302

where L represents the number of layers, the first 303

2 corresponds to the dimensions of encoder and 304

decoder, the latter 2 corresponds the key and value 305

prefixs, P denotes the number of virtual prefix to- 306

kens, and H is the hidden size. 307

In order to generalize edited rule-level knowl- 308

edge to the probing query xq (which belongs to 309

Rx during training), unlike existing memory-based 310

editing methods (e.g., IKE (Zheng et al., 2023) 311

and GRACE (Hartvigsen et al., 2023)) which re- 312

quire massive prompts in sequential edit or directly 313

replace the layer’s hidden states, we consider aggre- 314

gating the relevant rule-level knowledge representa- 315

tions within query scope as soft prefix ϕ∗
r , which en- 316

compasses prefixed model-internal key-value pair 317

for each layer in LLMs. Thus, we utilize cross- 318

attention block (Kim et al., 2019) as a learnable 319

knowledge aggregation network G to measure the 320

semantic relevancy between the encoded query and 321

the compressed rule-level knowledge set {ϕi}ni=1, 322

and subsequently obtain the aggregated soft prefix 323

as: 324

ϕ∗
r = G(H(ξinput;xq); {ϕi}ni=1) (5) 325

where the query is encoded by the T5-based en- 326

coder with parameter ξinput and same architecture 327

as the above amortization network, and n denotes 328

the number of edited knowledge. Other than specif- 329

ically choosing a knowledge modulation, the ag- 330

gregation network expands the utilization of the 331

knowledge set and avoids the wrong choice of rele- 332

vant knowledge. 333

LLMs are built on the Transformer architecture, 334

which mainly consists of a self-attention module 335

and a feed-forward module. Assuming the frozen 336

LLMs (F ) consist of L layers, to propagate ag- 337

gregated relevant knowledge to the query, in each 338

attention module Attnl of layer l, we prepend the 339

learned model-internal key and value representa- 340

tion K l
r and V l

r derived from soft prefix ϕ∗
r to the 341
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Figure 3: Overview of RTE. In meta-training phase, the T5-based amortization network modularly compresses the
updated rule-level knowledge into semantic-centralized representations. For each query, the aggregation network
aggregates the representations of relevant knowledge into soft prefix, which encompasses model-internal key-value
representations for all layers in LLM. Subsequently, leveraging the prefix tuning technique, each learned key-value
pair derived from soft prefix is prepended to the original key-value pairs layer-wise during inference, thus facilitating
the propagation of edited rule-level knowledge in RuleBank to update rule-derived instances in meta-testing phase.

original key and value representations K l
q and V l

q342

of query calculated from the former layer l − 1.343

Throughout the above simple yet effective deep344

prefix tuning process utilizing P-Tuning v2 (Liu345

et al., 2022), we have informative knowledge in346

inference:347

K l
e = [K l

r;K
l
q], V l

e = [V l
r ;V

l
q ],

Attnl(Ql
q,K

l
e, V

l
e ) = softmax(Ql

q(K
l
e)

T )V l
e ,

Z l = LN(Attnl(Ql
q,K

l
e,V

l
e ) +X l−1),

hl = LN(FFN(Z l) + Z l)

(6)348

where X l−1 denotes the output of former layer l−1,349

LN represents the layer normalization operation,350

FFN represents the feed-forward network, and hl351

denotes the output of layer l with query matrix Ql
q.352

To efficiently optimize the T5-based amortiza-353

tion network and aggregation network over the354

frozen LLMs, we train the model F∗ in an end-355

to-end manner with the objective of:356

Ledit =Lr(F∗(Rx
i ,R

y
i )

+ cg ∗ Lg(F∗(Rx′
i ,Ry′

i ))

+ cp ∗ Lp(F∗(Ix
i , I

y
i ))

(7)357

where Lr, Lg and Lp are negative log-likelihood358

functions used to compute the loss, and both cg and359

cp are hyperparameters that govern the loss weight.360

4.2 Meta-Testing Phase 361

Associating with the meta-learned hyper-model ini- 362

tialized in the meta-training phase, we manage 363

to compress the rule-level knowledge of testing 364

edit set Dtest
edit into a set of modularized representa- 365

tions, which is called the RuleBank. For each query, 366

we aggregate and propagate the relevant rule-level 367

knowledge from the RuleBank, thereby facilitating 368

generalizing the rule-level knowledge to update the 369

rule-derived instances during the inference phase 370

of LLMs. 371

5 Experiments 372

In this section, we provide construction details of 373

our benchmark RuleEdit. Moreover, we conduct 374

extensive experiments to explore the potential of 375

LLMs in mitigating over-editing risk through rule- 376

level editing and comprehensively evaluate the ef- 377

fectiveness of RTE. 378

5.1 Datasets 379

For comprehensive evaluations of rule-level editing 380

performance in real-world scenarios, we construct 381

RuleEdit benchmark, which is composed of both 382

specific instances and the corresponding general 383

rule-level knowledge covering three domains, in- 384

cluding legal, medical, and historical domains. 385
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We separately introduce the dataset generation386

processes for three domains: (1) For legal domain387

RULElegal, we collect a set of legal judgments388

with 16,000 laws from DISC-Law-SFT (Yue et al.,389

2023) dataset. Sequentially, we prompt the LLMs390

(e.g., GPT-4o-mini (OpenAI, 2024)) to generate 3391

statutory rules for each law, accompanied by cor-392

responding rephrased rules and 10 legal instances.393

(2) For medical domain RULEmedical, we collect394

480 medicine classes categorized by NLM 1. For395

each, we obtain 10 associated medicinal substances396

by LLM, based on the hierarchical relationship of397

pharmacological effect, therapeutic usage, action398

mechanism, and chemical structure. (3) For his-399

torical domain RULEhistorical, we collect 3441400

historical events from ATOKE dataset (Yin et al.,401

2024) and construct corresponding historical in-402

stances within the timeline. More detailed exam-403

ples and the construction process are provided in404

Appendix A.405

Dataset legal medical historical mix
rule-level 16,482 3,186 3,441 9,450

instance-level 164,672 17,539 46,018 90,675
instance:rule 10.0:1 5.5:1 13.4:1 9.6:1

Table 1: Statistics of RuleEdit across legal, medical,
historical and mixed domains.

Moreover, Table 1 demonstrates the statistics of406

collected rule-level knowledge and relevant rule-407

derived instances for each domain after quality con-408

trol. To encourage balanced and comprehensive409

evaluations of rule-level editing across three do-410

mains, we further randomly sample 3,150 input-411

output rule-level knowledge pairs and correspond-412

ing accompanied instances for each domain. Sub-413

sequently, the samples are mixed and shuffled to-414

gether to obtain the composed dataset RULEmix.415

We compute the ratio of instances to rules in each416

domain. It is noticed that the mere difference417

among ratios is due to the motivation of ensuring418

generation quality while cascading unqualified data419

through quality control. In quality control, we mod-420

ify or cascade unqualified cases according to the421

following guidelines (Details in Appendix A.2.1):422

(1) Clarity and completeness of knowledge. (2)423

Logical relevance between rules and instances. (3)424

Distinguishability among instances. (4) Factual re-425

liability of the rules. (5) Inner-annotator agreement426

and expert review.427

1https://www.ncbi.nlm.nih.gov/mesh/68008511

5.2 Experimental Settings 428

In our experiments, we compare against four 429

representative distinct baselines, including (1) 430

Parameter-efficient tuning method: LoRA (Hu 431

et al., 2022); (2) Locate-and-edit method: ROME 432

(Meng et al., 2022); (3) Meta-learning method: 433

MEND (Mitchell et al., 2022a); (4) Memory- 434

based method: GRACE (Hartvigsen et al., 2023). 435

Besides, we utilize prevalent open-source LLMs 436

LLaMA-2-7B (Touvron et al., 2023) and GPT2-XL 437

(1.5B) (Radford et al., 2019) as base models and 438

conduct experiments on our constructed RuleEdit 439

covering legal, medical, historical, and mixed do- 440

mains for comprehensive evaluation. For RuleEdit 441

we use the same train/test split (9:1) as Mitchell 442

et al. (2022a). More details are provided in Ap- 443

pendix B. 444

5.3 Experimental Results 445

Rule-level editing is challenging to existing edit- 446

ing methods. The experimental result of rule- 447

level editing shown in Table 2 indicates that ex- 448

isting editing methods struggle to balance the per- 449

formance of reliability, generalization ability, and 450

portability. Specifically, it can be observed that 451

ROME suffers from overall performance collapse 452

for three aspects in sequential editing, since multi- 453

ple biased adjustments for parameters of predefined 454

layers significantly deteriorate the overall knowl- 455

edge in large-scale edits. Although GRACE ex- 456

hibits prominent reliability in editing rule-level 457

knowledge, it has trouble generalizing edited rule- 458

level knowledge to relevant rule-derived instances 459

(e.g., poor portability score of 1.9% in the final edit- 460

ing step on RULEmix). It is speculated that the 461

update strategy of codebook in GRACE is insuffi- 462

cient to support precise measurement of semantic 463

similarity, thereby limiting the retrieval of relevant 464

knowledge. With competitive generalization abil- 465

ity and portability to the other baselines, MEND 466

and LoRA are prone to overfitting on training data 467

and struggle with the adaptation of new knowledge, 468

thereby resulting in poor reliability of edits (e.g., 469

reliability scores of 10.1% in MEND and 10.2% 470

in LoRA in the final editing step on RULEmix). 471

Additional experimental results for ACC and EM 472

metrics and analysis are provided in Appendix B.4. 473

Effective knowledge updates through our RTE 474

method. As shown in Table 2, our RTE method 475

exhibits remarkable average performance within 476

most domains in sequential rule-level editing, re- 477

6
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Edit Method RULEmix RULEhistorical RULEmedical RULElegal

Step Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg.
LLaMA-2-7B

3

ROME 85.9 93.3 95.3 91.5 93.3 100.0 72.6 88.6 85.0 60.0 54.8 66.6 12.9 15.2 5.9 11.3
MEND 29.2 18.0 24.4 23.9 11.1 13.3 11.1 11.9 9.5 0.0 5.3 4.9 22.2 14.7 20.6 19.2
GRACE 93.3 3.9 3.9 33.7 93.3 11.1 0.0 34.8 93.3 7.4 8.3 36.3 100.0 31.7 6.5 46.1
LoRA 50.9 37.5 8.1 32.2 42.9 16.7 27.8 29.1 33.3 13.3 45.5 30.7 37.3 37.3 37.4 37.3
Ours 83.0 54.6 68.7 68.8 50.0 50.0 36.3 45.4 77.8 45.7 50.8 58.1 47.7 54.2 66.7 56.2

10

ROME 37.7 27.7 45.4 36.9 46.2 44.9 35.2 42.1 0.0 0.0 0.0 0.0 12.9 12.1 12.8 12.6
MEND 15.1 14.1 17.0 15.4 6.7 12.3 0.0 6.3 2.9 4.4 4.4 3.9 14.8 15.1 18.5 16.1
GRACE 88.2 3.2 0.6 30.7 88.6 3.3 0.0 30.6 98.0 2.2 3.8 34.7 98.6 9.5 3.6 37.2
LoRA 30.0 8.6 11.0 16.5 40.0 19.7 9.2 23.0 10.0 0.0 0.0 3.3 23.2 26.4 20.7 23.4
Ours 53.4 38.3 57.7 49.8 59.0 44.5 52.8 52.1 51.1 27.0 34.8 37.7 47.0 43.4 46.0 45.5

100

ROME 6.1 2.7 5.8 4.9 0.5 0.0 0.1 0.2 2.8 2.4 2.5 2.6 18.5 18.3 18.1 18.3
MEND 11.7 11.5 12.5 11.9 5.3 9.0 2.8 5.7 7.0 8.8 8.7 8.2 18.2 17.2 17.5 17.6
GRACE 94.0 4.4 2.2 33.5 90.3 6.8 0.1 32.4 81.0 6.4 2.8 30.1 91.8 2.5 3.9 32.7
LoRA 1.5 5.5 8.3 5.1 2.7 4.3 1.3 2.8 6.6 3.6 3.3 4.5 36.0 36.7 35.8 36.2
Ours 44.7 40.7 44.3 43.2 47.7 39.2 42.6 43.2 36.2 22.5 20.8 26.5 53.2 53.5 48.6 51.8

final

ROME 0.5 0.5 0.1 0.4 0.0 0.0 0.0 0.0 1.4 1.3 1.7 1.5 10.7 10.8 11.5 11.0
MEND 10.1 9.2 10.5 10.0 5.6 6.7 3.2 5.2 8.1 8.9 8.4 8.5 17.8 17.4 16.7 17.3
GRACE 85.8 4.3 1.9 30.6 88.7 5.4 0.2 31.5 74.1 5.8 2.6 27.5 93.9 2.3 3.2 33.1
LoRA 10.2 10.4 11.2 10.6 7.0 0.7 4.6 4.1 1.0 2.0 2.8 1.9 0.2 0.2 0.2 0.2
Ours 38.8 38.0 39.3 38.7 53.1 40.8 50.5 48.2 31.6 22.9 22.4 25.6 53.9 53.3 47.7 51.6

Ours(w/o SP) 5.11 4.75 3.95 4.60 1.96 1.88 2.07 1.97 7.93 6.65 5.26 6.61 5.07 4.86 4.88 4.94

Table 2: Main Results of Rule-Level Editing on LLaMA-2-7B with Multiple Edit Steps Measured by F1 Metric. We
evaluate all the methods in three aspects under RuleEdit, which consists of three domain-specific sets and a mixed
domain set. Avg. indicates the average score of three aspects. SP indicates soft prefix. The final edit step indicates
that all the rule-level knowledge of corresponding set are edited. Best and suboptimal results of each edit step are
marked in bold and underline respectively.

vealing the effective updates of both rule-level478

knowledge and corresponding rule-derived in-479

stance knowledge in RTE through rule-level edit-480

ing. Although GRACE achieves higher scores in481

reliability, it makes huge sacrifices in generaliza-482

tion ability and portability. Instead, RTE leads the483

best performances in both aspects, achieving the484

enhancement of 27.6% in generalization score and485

28.1% in portability score over the best baseline for486

LLaMA-2-7B in final editing step on RULEmix.487

Moreover, the experiment highlights the adaptabil-488

ity of RTE across multiple domains, which necessi-489

tates capabilities in numerical reasoning, hierarchi-490

cal knowledge inheritance, and semantic reasoning,491

as analyzed in Appendix A. This confirms that RTE492

achieves reliable rule-level editing through efficient493

knowledge amortization and robust knowledge gen-494

eralization in inference.495

Forward passing aggregated soft prefixes facil-496

itates knowledge generalization. As shown in497

Table 2, the comparative experiment reveals sig-498

nificant performance gaps (e.g., a discrepancy of499

34.11% in the average score on RULEmix in final500

step) in LLMs depending on whether relevant ag-501

gregated soft prefix knowledge is injected (Ours502

and Ours(w/o SP)). In comparison to GRACE,503

which directly replaces the activated state with the 504

retrieved value and thus limits the generalization 505

ability, our RTE demonstrates robust portability 506

in inference, as indicated by the comparative ex- 507

periment in Appendix B.3. Leveraging the prefix 508

tuning technique, the prepended informative key- 509

value representations derived from aggregated soft 510

prefixes are forward passed to each attention layer 511

in LLMs, thus facilitating thorough inference over 512

edited rule-level knowledge to update correspond- 513

ing rule-derived instances. 514

RuleBank serves as a safeguard against knowl- 515

edge degradation. In Figure 4, as edit steps in- 516

crease, it is worth noting that methods involved 517

in multiple adjustments to parameters (including 518

MEND, LoRA, and ROME) suffer from catas- 519

trophic performance collapse in all dimensions. 520

GRACE retains stable reliability performance ow- 521

ing to the memory codebook, but fails in general- 522

ization due to the limitation of knowledge retrieval 523

ability. Contrarily, RTE achieves stable and excel- 524

lent performance, owing to the preservation and 525

propagation of rule-level knowledge from Rule- 526

Bank. Furthermore, RTE achieves a leading porta- 527

bility score in GPT2-XL, indicating the superior 528

generalization ability in rule-level editing. 529
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Method RULEmix RULEhistorical RULEmedical RULElegal

Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg.
GPT2-XL (1.5B)

ROME 0.63 0.68 0.63 0.65 13.72 16.90 18.70 16.44 7.27 6.71 7.18 7.06 15.59 14.92 14.97 15.16
MEND 17.56 12.76 4.66 11.66 3.41 4.96 0.44 2.94 12.82 8.71 2.70 8.07 30.96 24.48 5.42 20.29
GRACE 90.17 3.00 0.00 31.06 98.06 1.36 0.00 33.14 71.21 3.26 0.01 24.83 100.00 6.88 0.00 35.63
LoRA 8.96 4.42 6.79 6.72 20.41 5.85 4.17 10.14 4.15 4.42 3.98 4.18 5.83 5.30 6.27 5.80
Ours 43.40 39.86 34.91 39.39 54.88 49.13 50.71 51.57 29.25 20.39 20.33 23.32 57.46 55.54 50.07 54.36

Table 3: Comparative Results of Rule-Level Editing on GPT2-XL in Final Edit Steps Measured by F1 Metric. We
evaluate all the methods under RuleEdit, which consists of three domain-specific sets and a mixed domain set. Best
and suboptimal results are marked in bold and underline respectively.

Figure 4: Comparisons of rule-level editing results with
multiple editing steps over different methods, which are
evaluated on RULEmix with F1 metric across three
dimensions using LLaMA-2-7B and GPT2-XL.

Robust adaptability and pluggability in various530

backbones. In addition, Table 3 presents the ex-531

perimental rule-level editing results conducted on532

GPT2-XL (1.5B). The prominent results reveal the533

robust adaptability of RTE to various LLMs back-534

bones with distinct scales and indicate the promis-535

ing potential of rule-level editing. Since the base536

LLMs is frozen and the edited rule-level knowl-537

edge is integrated flexibly through prefix tuning,538

our framework exhibits pluggability among LLMs.539

Moreover, comprehensive comparisons among edit-540

ing methods in both LLaMA-2-7B and GPT2-XL541

are demonstrated in Appendix B.4.542

5.3.1 Case Study543

As illustrated in Figure 5, we perform a compara-544

tive case study over existing methods. It can be ob-545

served from the results that both ROME and LoRA546

produce unreliable and hasty generations, featuring547

typical over-editing results of repeated or mean-548

Figure 5: Examples of knowledge editing results for
different methods. Evaluated on the final edit step of
RULEmix using LLaMA-2-7B.

ingless tokens. It is indicated that an overfitting 549

phenomenon occurs due to multiple biased modifi- 550

cations to the parameters. Mend produces incorrect 551

answers due to erroneous generalization, revealing 552

the limited generalization ability. As analyzed in 553

the above experiments, the generalization ability 554

of GRACE is constrained by retrieval performance, 555

resulting in inaccurate generation with missing in- 556

formation. In contrast, our method delivers satisfac- 557

tory results, demonstrating the promising potential 558

to effectively generalize rule-level knowledge to 559

update relevant rule-derived instances, thereby mit- 560

igating the over-editing risk. 561

6 Conclusion 562

In this work, we explore the rule-level editing prob- 563

lem to achieve effective knowledge updates and 564

mitigate over-editing risk in LLMs, and construct 565

a new benchmark RuleEdit across three domains 566

for comprehensive evaluations. Additionally, we 567

further propose RTE method to facilitate effective 568

modifications and propagations of rule-level knowl- 569

edge. Our experimental results demonstrate exces- 570

sive rule-level editing performance of RTE with 571

prevalent portability for effective knowledge gener- 572

alization. 573

8



7 Limitations574

Similar to most memory-based methods, our RTE575

method faces the challenge that RuleBank grows in576

scale as rule-level knowledge accumulates, leading577

to increased memory consumption. Future work578

may consider neighborhood knowledge fusion to579

reduce memory scale while maintaining editing580

performance, especially since RTE exhibits com-581

petitive performance in GPT2-XL compared with582

other baselines in LLAMA-2-7B. Additionally, a583

possible improvement involves designing a gate584

mechanism to selectively determine whether to in-585

tegrate knowledge from RuleBank, thereby enhanc-586

ing flexibility in knowledge integration.587
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A Dataset 754

A.1 Data Samples 755

Table 4 presents data samples from our constructed 756

benchmark RuleEdit. Specifically, RuleEdit is 757

collected from three domains, including the legal 758

domain, the medical domain, and the historical 759

domain. Each dataset unit consists of rule-level 760

knowledge for editing, rephrased rule-level knowl- 761

edge for generalization evaluation, and relevant 762

instances derived from the rule for portability eval- 763

uation. 764

As observed from the samples, dataset in the le- 765

gal domain aims to enable proper judgment for spe- 766

cific cases after editing the corresponding statute, 767

which requires robust semantic reasoning ability 768

over edited legal rules for LLMs. Dataset in the 769

medical domain aims to enable hierarchical knowl- 770

edge inheritance from the edited universal medical 771

knowledge. Moreover, dataset in the historical do- 772

main involves knowledge inference with specific 773

time constraints, which requires solid numerical 774

reasoning ability for LLMs. 775

A.2 Dataset Construction 776

Figure 6 outlines the detailed construction process 777

of RuleEdit. Firstly, we collect knowledge from 778

different corpuses across three domains. Based 779

on the collected knowledge, we manage to extract 780

and generate rule-level knowledge for editing, and 781

rephrase the expression for generalization evalua- 782

tion. Subsequently, we generate relevant instances 783
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Domain Rule-level knowledge Rephrased knowledge Relevant knowledge
Legal If an individual intention-

ally destroys property with
significant value, what is the
criminal prosecution? Im-
prisonment of up to three
years, detention, or a fine.

If an individual willfully
damages property that is of
considerable worth, what
is the criminal prosecution?
Imprisonment of up to three
years, detention, or a fine.

If Tom destroys property
valued at $10,000 or more,
what is the criminal prose-
cution? Imprisonment of up
to three years, detention, or
a fine.

Medical If a medicine is a type of
anticoagulant, what is the
pharmacological effect of
it? Blood clot prevention.

What is the pharmacologi-
cal effect of a medicine that
belongs to the class of anti-
coagulants? Blood clot pre-
vention.

Warfarin is a type of antico-
agulant. What is the phar-
macological effect of war-
farin? Blood clot preven-
tion.

Historical Which club does Giorgio
Morini affiliate with from
1976 to 1981? A.C. Milan.

From 1976 to 1981, Giorgio
Morini played for? A.C. Mi-
lan.

Which club does Giorgio
Morini affiliate with from
1979 to 1980? A.C. Milan.

Table 4: Examples of RuleEdit.

Figure 6: Construction process of RuleEdit.

that can be derived from the edited rule-level knowl-784

edge. As shown in Figure 7 and Figure 8, we785

prompt GPT-4o-mini to assist in the generation786

of rule-level knowledge and relevant instances in787

both legal and medical domains. Under quality con-788

trol and random sampling, the dataset RuleEdit is789

obtained, which consists of separate data in three790

domains and a mixture set.791

A.2.1 Dataset Quality Control Guidelines792

To ensure high-quality annotations, we employ793

three well-educated annotators during the construc-794

tion of the RuleBank and adhere to the following795

quality control guidelines: (1) Clarity and com-796

pleteness of knowledge. Each input-output knowl-797

edge pair of rule-level knowledge and relevant rule-798

derived instances must be clearly described, leav-799

ing no ambiguity in interpretation or application.800

(2) Logical relevance between rules and instances.801

Rule-derived instances should be logically infer-802

able from the corresponding rule-level knowledge803

without additional information. (3) Distinguisha- 804

bility among instances. Instances should be distinct 805

and non-redundant, ensuring the diversity and cov- 806

erage within the scope of the corresponding rule. 807

(4) Factual reliability of the rules. Rules must be ac- 808

curately derived from knowledge sources and free 809

from contradictions. (5) Inner-annotator agree- 810

ment and expert review. Annotators independently 811

assess the quality of each input-output knowledge 812

pair by assigning a score within the range of zero 813

to five. Discrepancies are resolved through collab- 814

orative discussions, with final decisions made by a 815

senior expert to refine the dataset. 816

B Experiments Details 817

B.1 Baselines 818

Here we provide a detailed introduction and im- 819

plementation information for all baselines in the 820

experiments. 821
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Figure 7: Sample prompt in the legal domain to assist generations of rule-level knowledge and relevant instances.

Figure 8: Sample prompt in the medical domain to assist generations of rule-level knowledge and relevant instances.

Figure 9: Portability comparison of rule-level editing
with EM, ACC, and F1 metrics under different methods,
which are evaluated on RULEmix using LLaMA-2-7B.

ROME ROME (Meng et al., 2022) uses causal 822

tracing to investigate the decisive feedforward 823

MLPS associated with knowledge, and alters corre- 824

sponding parameters by rank-one model with least 825

squares approximation. For the experiments, the 826

learning rate is set to 5e-1, the kl factor is set to 827

0.0625. For LLaMA-2-7B, ROME is executed in 828

layer 5 with 25 optimization steps. For GPT2-XL, 829

ROME is executed in layer 17 with 20 optimization 830

steps. 831

MEND MEND (Mitchell et al., 2022a) designs a 832

hypernetwork to decompose standard fine-tuning 833

gradient of knowledge editing into corresponding 834

rank-1 outer product form, and further adopts a 835

meta-learning objective comprising the autoregres- 836

sive loss and KL divergence loss. For the experi- 837

ments, MEND edits in the last 3 transformer blocks, 838

and the learning rate is set to 1e-6, while the scale 839
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of autoregressive loss and KL divergence loss are840

set to 0.1 and 1, respectively.841

GRACE GRACE (Hartvigsen et al., 2023) main-842

tains a discrete key-value codebook for a chosen843

layer to cache embedding for updated knowledge,844

and selectively replaces the activation of hidden845

state output with the retrieved value from the code-846

book during inference. For the experiments, the847

learning rate is set to 1. and the codebook is exe-848

cuted in layer 27 for LLaMA-2-7B and layer 35 for849

GPT2-XL.850

LoRA LoRA (Hu et al., 2022) performs direct851

optimization for rank decomposition matrices of852

each layers, while keeping the pre-trained weight853

frozen. For the experiments, the learning rate is set854

to 5e-3, the rank is set to 8, and the dropout rate is855

set to 0.1.856

B.2 Implementation Details857

We conduct all the experiments on two NVIDIA858

A800 GPUs, and follow the default hyperparameter859

settings of the baselines. In our method, we utilize860

Adam optimizer (Kingma, 2014) with a learning861

rate of 1e-5 and train for 20 epochs for all datasets.862

We set the virtual output token number of T5-based863

amortization network to 24 and the training batch864

size to 16. Besides, following Tack et al. (2024),865

we utilize T5-large model and an individual two-866

layered MLP for each output virtual token for the867

amortization network, and T5-based model (Raffel868

et al., 2020) for the input encoder. For the aggrega-869

tion network, we utilize four cross-attention blocks,870

which each consist of a cross-attention and a feed-871

forward network. According to the comparative872

results of different settings shown in Figure 10, we873

configure both the generalization loss weight cg874

and the portability loss weight cp to 0.1.875

B.3 Solid Portability for Knowledge876

Generalization877

As shown in Figure 9, we conduct rule-level editing878

experiments evaluated on EM, ACC, and F1 met-879

rics, aiming to sufficiently compare the portability880

of current knowledge editing methods. It can be881

observed that RTE surpasses the other baseline in882

all metrics, indicating efficient generalization of883

rule-level knowledge. Compared with redundant884

case-by-case edits brought by instance-level edit-885

ing, rule-level editing effectively avoids massive886

editing scale by solid portability to achieve efficient887

updates on rule-derived instances.888

B.4 Comprehensive Evaluation on RuleEdit 889

As shown in Table 5, 6, 7, 8, and 9, we conduct 890

complementary experiments to comprehensively 891

evaluate the performance of representative knowl- 892

edge editing methods on both LLaMA-2-7B and 893

GPT2-XL using ACC, EM, and F1 metrics. It can 894

be observed from the results that RTE leads a favor- 895

able overall performance in both LLaMA-2-7B and 896

GPT2-XL with ACC and F1 metrics, and exhibits 897

superior generalization ability and portability com- 898

pared with other baselines in EM metrics for both 899

LLaMA-2-7B and GPT2-XL, which highlights the 900

robustness and effectiveness of our method. 901

(a) Results on different set-
ting of learning rate.

(b) Results on different setting
of loss weight.

Figure 10: Comparisons of avg. score on F1 metric
among different parameter settings over LLaMA-2-7B
on RULEmix.
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Edit Method RULEmix RULEhistorical RULEmedical RULElegal

Step Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg.
LLaMA-2-7B

3

ROME 52.78 61.67 72.40 62.28 41.67 41.67 20.71 34.68 93.33 100.00 72.59 88.64 3.33 1.23 0.25 1.60
MEND 16.73 6.08 5.88 9.57 12.50 9.72 0.00 7.41 11.11 13.33 11.11 11.85 9.14 9.14 13.10 10.46
GRACE 61.67 0.00 0.26 20.64 41.67 0.00 0.00 13.89 93.33 11.11 0.00 34.81 88.77 1.23 1.67 30.56
LoRA 46.11 30.56 4.22 26.96 16.67 16.67 26.19 19.84 42.86 16.67 27.78 29.10 26.67 26.67 27.00 26.78
Ours 40.66 14.42 15.65 23.58 56.19 50.00 42.61 49.60 50.00 50.00 36.25 45.42 33.10 35.67 50.66 39.81

10

ROME 12.38 5.71 16.75 11.62 2.00 2.00 3.18 2.39 1.25 0.00 0.74 0.66 3.17 7.30 5.90 5.46
MEND 11.84 2.73 6.05 6.87 2.50 5.42 1.74 3.22 8.75 5.21 1.77 5.25 17.17 11.95 12.34 13.82
GRACE 44.99 0.00 0.23 15.07 28.00 0.00 0.00 9.33 66.37 1.25 0.31 22.64 78.63 0.37 0.78 26.59
LoRA 8.93 2.93 1.51 4.46 6.00 9.93 0.00 5.31 13.19 0.00 0.00 4.40 16.68 13.70 11.22 13.87
Ours 43.06 16.40 21.81 27.09 63.94 59.00 43.21 55.38 65.87 43.83 30.99 46.89 33.07 38.22 42.69 38.00

100

ROME 2.63 1.69 3.78 2.70 1.85 1.05 1.87 1.59 0.98 0.50 1.09 0.85 5.35 4.32 5.52 5.06
MEND 9.91 6.82 6.14 7.62 7.43 5.82 2.48 5.24 8.80 7.60 3.75 6.72 11.37 11.39 8.62 10.46
GRACE 59.11 0.88 0.29 20.09 36.98 2.02 0.20 13.07 47.09 0.31 0.14 15.85 73.35 0.95 0.69 25.00
LoRA 0.50 0.00 0.00 0.17 8.54 9.71 3.95 7.40 13.19 0.00 0.00 4.40 15.00 14.64 14.87 14.83
Ours 45.20 30.39 24.65 33.41 55.01 47.67 39.88 47.52 65.87 43.83 30.99 46.89 38.37 39.90 39.26 39.18

final

ROME 0.34 0.42 0.35 0.37 4.68 2.05 6.89 4.54 0.19 0.03 0.20 0.14 4.36 4.56 4.68 4.54
MEND 11.41 8.01 6.26 8.56 7.95 5.07 0.17 4.40 10.05 6.35 2.95 6.45 12.87 11.80 10.03 11.57
GRACE 51.29 1.01 0.43 17.58 32.14 1.26 0.13 11.18 46.95 0.46 0.15 15.86 73.85 0.67 0.86 25.12
LoRA 5.14 2.69 4.31 4.05 9.65 9.62 2.59 7.28 0.43 0.52 0.89 0.61 0.66 0.94 0.30 0.63
Ours 45.13 29.35 23.40 32.63 59.64 53.15 51.90 36.35 47.53 41.39 35.54 41.49 42.27 42.07 38.68 41.01

Table 5: Comparative Results of Rule-Level Editing on LLaMA-2-7B with Multiple Edit Steps Measured by ACC
Metric.

Edit Method RULEmix RULEhistorical RULEmedical RULElegal

Step Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg.
LLaMA-2-7B

3

ROME 66.67 100.00 84.38 83.68 100.00 100.00 36.51 78.84 66.67 66.67 54.55 62.63 0.00 0.00 0.00 0.00
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRACE 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33
LoRA 33.33 33.33 0.00 22.22 33.33 0.00 3.17 12.17 33.33 0.00 45.45 26.26 33.33 33.33 33.33 33.33
Ours 33.33 0.00 37.50 23.61 33.33 33.33 21.43 29.37 66.67 0.00 45.45 37.37 0.00 0.00 0.00 0.00

10

ROME 30.00 20.00 42.11 30.70 40.00 40.00 27.55 35.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRACE 90.00 0.00 0.00 30.00 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33
LoRA 30.00 0.00 0.00 10.00 50.00 0.00 0.00 16.67 10.00 0.00 0.00 3.33 10.00 10.00 2.00 7.33
Ours 20.00 0.00 33.33 17.78 50.00 40.00 41.45 43.82 40.00 20.00 16.18 25.39 0.00 10.00 9.00 6.33

100

ROME 1.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MEND 1.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRACE 94.00 0.00 0.00 31.33 99.00 1.00 0.00 33.33 83.00 0.00 0.00 27.67 83.00 0.00 0.00 27.67
LoRA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.33 1.00 1.00 0.60 0.87
Ours 21.00 13.00 26.13 20.04 34.00 28.00 33.17 31.72 24.00 16.00 16.70 18.90 5.00 7.00 14.37 8.79

final

ROME 0.00 0.00 0.00 0.00 1.56 0.00 0.00 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MEND 0.11 0.00 0.50 0.20 0.00 0.58 0.00 0.19 0.31 0.00 0.11 0.14 0.00 0.00 0.00 0.00
GRACE 86.02 0.32 0.03 28.79 98.55 0.29 0.00 32.95 73.98 0.00 0.31 24.76 86.66 0.00 0.00 28.89
LoRA 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ours 17.25 14.81 25.46 19.17 40.87 27.25 41.75 36.62 19.12 14.73 18.05 17.30 8.85 8.25 15.20 10.77

Table 6: Comparative Results of Rule-Level Editing on LLaMA-2-7B with Multiple Edit Steps Measured by EM
Metric.
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Edit Method RULEmix RULEhistorical RULEmedical RULElegal

Step Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg.
GPT2-XL

3

ROME 73.64 57.92 2.69 44.75 75.56 22.22 0.56 32.78 55.30 55.30 53.18 54.60 3.33 3.33 1.97 2.88
MEND 0.00 13.81 12.24 8.68 0.00 0.00 6.00 2.00 0.00 16.67 0.41 5.69 1.28 10.00 2.00 4.43
GRACE 87.92 6.67 0.00 31.53 75.56 6.67 0.07 27.43 55.30 15.15 0.00 23.49 88.72 0.00 0.00 29.57
LoRA 46.97 46.97 51.53 48.49 30.30 30.30 41.32 33.98 30.30 30.30 41.32 33.98 26.67 26.67 26.79 26.71
Ours 33.33 33.33 37.50 34.72 33.33 33.33 21.43 29.37 25.51 17.17 0.00 14.23 20.00 20.00 34.90 24.97

10

ROME 48.10 18.38 11.56 26.01 55.00 14.67 19.63 29.77 35.89 28.78 28.70 31.12 34.88 31.54 9.96 25.46
MEND 13.08 13.48 9.91 12.16 2.00 9.25 4.73 5.33 5.33 11.36 0.50 5.73 7.92 9.11 1.29 6.11
GRACE 72.36 7.43 0.00 26.60 71.00 6.00 0.02 25.67 66.56 4.55 0.00 23.70 78.62 0.00 0.00 26.21
LoRA 26.34 12.34 19.24 19.31 13.19 13.19 7.62 11.34 13.19 13.19 7.62 11.34 16.20 16.20 16.20 16.20
Ours 32.86 38.75 30.87 34.16 41.67 31.67 21.27 31.54 51.12 20.15 0.77 24.02 34.33 33.34 29.98 32.55

100

ROME 13.85 13.04 13.77 13.55 32.22 22.56 21.71 25.50 2.00 5.61 4.07 3.89 8.09 7.89 8.03 8.00
MEND 10.41 14.70 5.84 10.32 1.15 6.73 2.77 3.55 8.23 12.48 0.01 6.91 5.43 6.25 1.68 4.46
GRACE 73.35 2.45 0.00 25.27 65.71 7.12 0.01 24.28 54.65 0.88 0.00 18.51 82.45 0.08 0.00 27.51
LoRA 0.25 0.25 0.32 0.27 0.65 0.65 0.41 0.57 0.65 0.65 0.41 0.57 6.06 5.71 6.53 6.10
Ours 30.41 28.50 22.55 27.16 40.52 39.52 34.73 38.25 34.86 21.29 4.54 20.23 31.79 30.73 27.78 30.10

final

ROME 1.46 1.22 0.48 1.05 16.10 16.53 21.02 17.88 3.41 2.79 2.77 2.99 5.53 5.57 4.69 5.27
MEND 11.08 14.19 6.03 10.43 1.28 7.34 3.10 3.91 8.56 9.17 0.60 6.11 6.78 6.18 1.74 4.90
GRACE 65.07 2.33 0.00 22.47 66.85 7.62 0.00 24.82 46.58 0.45 0.00 15.68 79.54 0.39 0.00 26.64
LoRA 1.94 2.00 2.22 2.06 0.55 0.92 1.24 0.90 0.55 0.92 1.24 0.90 6.33 5.72 7.75 6.60
Ours 34.17 30.63 20.58 28.46 46.51 40.99 42.71 43.40 29.70 18.13 5.50 17.78 35.21 34.02 28.60 32.61

Table 7: Comparative Results of Rule-Level Editing on GPT2-XL with Multiple Edit Steps Measured by ACC
Metric.

Edit Method RULEmix RULEhistorical RULEmedical RULElegal

Step Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg.
GPT2-XL

3

ROME 66.67 33.33 57.22 52.41 100.00 33.33 19.44 50.92 66.67 66.67 66.67 66.67 0.00 0.00 0.00 0.00
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRACE 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33
LoRA 33.33 33.33 31.25 32.64 33.33 33.33 45.45 37.37 33.33 33.33 45.45 37.37 33.33 33.33 33.33 33.33
Ours 33.33 33.33 37.50 34.72 33.33 33.33 21.43 29.37 0.00 0.00 0.00 0.00 0.00 0.00 33.33 11.11

10

ROME 60.00 30.00 27.71 39.24 80.00 30.00 36.92 48.97 40.00 20.00 49.00 36.33 30.00 20.00 10.00 20.00
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRACE 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33
LoRA 30.00 0.00 0.00 10.00 10.00 10.00 10.29 10.10 10.00 10.00 10.29 10.10 10.00 10.00 10.00 10.00
Ours 30.00 30.00 37.72 32.57 40.00 30.00 20.39 30.13 30.00 10.00 2.94 14.31 10.00 10.00 20.00 13.33

100

ROME 7.00 6.00 2.30 5.10 36.00 28.00 21.55 28.52 2.00 6.00 4.27 4.09 1.00 1.00 0.30 0.77
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.33 0.00 0.00 0.00 0.00
GRACE 100.00 0.00 0.00 33.33 98.00 1.00 0.00 33.00 85.00 0.00 0.00 28.33 100.00 0.00 0.00 33.33
LoRA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ours 21.00 19.00 23.65 21.22 37.00 34.00 31.50 34.17 19.00 13.00 12.90 14.97 7.00 7.00 10.55 8.18

final

ROME 0.00 0.00 0.00 0.00 10.14 8.99 10.06 9.73 0.63 0.31 0.31 0.42 0.06 0.00 0.05 0.04
MEND 0.32 0.11 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.63 0.00 0.21 0.06 0.00 0.00 0.02
GRACE 91.31 0.00 0.00 30.44 99.13 0.29 0.00 33.14 72.73 0.00 0.00 24.24 99.94 0.00 0.00 33.31
LoRA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ours 20.74 18.10 17.93 18.92 42.90 35.65 39.46 39.34 16.61 10.03 11.83 12.83 11.22 10.67 13.98 11.96

Table 8: Comparative Results of Rule-Level Editing on GPT2-XL with Multiple Edit Steps Measured by EM Metric.

15



Edit Method RULEmix RULEhistorical RULEmedical RULElegal

Step Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg.
GPT2-XL

3

ROME 88.89 52.94 65.64 69.16 100.00 82.22 52.71 78.31 93.33 93.33 68.86 85.18 11.94 13.46 6.01 10.47
MEND 31.36 29.44 2.01 20.94 0.00 16.67 0.00 5.56 0.00 9.52 0.00 3.17 40.92 22.54 7.28 23.58
GRACE 100.00 5.13 0.00 35.04 100.00 0.00 0.00 33.33 100.00 11.11 0.06 37.06 99.28 3.22 0.00 34.17
LoRA 50.88 50.88 47.70 49.82 44.44 44.44 58.73 49.21 33.33 33.33 45.45 37.37 37.78 37.78 37.78 37.78
Ours 87.97 84.05 86.45 86.16 50.00 50.00 41.96 47.32 22.86 22.86 26.48 24.06 50.17 50.17 58.57 52.97

10

ROME 83.11 64.42 43.47 63.67 80.00 37.78 56.38 58.05 50.55 34.86 56.89 47.43 50.59 53.47 18.38 40.81
MEND 20.91 11.33 3.05 11.77 4.00 5.00 0.44 3.15 6.94 5.36 2.91 5.07 27.21 25.93 5.50 19.55
GRACE 98.89 4.40 0.00 34.43 98.57 0.00 0.00 32.86 99.09 8.69 0.02 35.93 99.58 3.04 0.00 34.21
LoRA 30.00 15.00 19.30 21.43 50.00 50.00 32.14 44.05 10.00 10.00 10.29 10.10 27.14 27.14 27.14 27.14
Ours 59.80 60.63 51.09 57.17 49.00 39.00 32.83 40.28 45.75 27.94 16.70 30.13 44.78 49.65 50.20 48.21

100

ROME 21.75 18.24 17.77 19.26 46.60 40.14 33.38 40.04 12.92 14.14 10.96 12.67 21.42 19.66 22.44 21.17
MEND 18.24 13.33 4.74 12.11 3.40 7.84 0.90 4.05 10.67 8.21 0.03 6.30 30.95 26.89 5.38 21.07
GRACE 99.04 2.58 0.00 33.87 98.02 1.73 0.01 33.25 85.00 4.35 0.01 29.79 100.00 2.06 0.00 34.02
LoRA 1.34 1.58 1.38 1.43 1.17 0.00 0.00 0.39 1.14 1.14 0.62 0.96 17.12 18.10 17.71 17.64
Ours 48.48 43.93 41.25 44.55 49.90 46.47 41.25 45.87 36.54 25.97 20.06 27.52 57.63 53.34 51.63 54.20

final

ROME 0.63 0.68 0.63 0.65 13.72 16.90 18.70 16.44 7.27 6.71 7.18 7.06 15.59 14.92 14.97 15.16
MEND 17.56 12.76 4.66 11.66 3.41 4.96 0.44 2.94 12.82 8.71 2.70 8.07 30.96 24.48 5.42 20.29
GRACE 90.17 3.00 0.00 31.06 98.06 1.36 0.00 33.14 71.21 3.26 0.01 24.83 100.00 6.88 0.00 35.63
LoRA 8.96 4.42 6.79 6.72 20.41 5.85 4.17 10.14 4.15 4.42 3.98 4.18 5.83 5.30 6.27 5.80
Ours 43.40 39.86 34.91 39.39 54.88 49.13 50.71 51.57 29.25 20.39 20.33 23.32 57.46 55.54 50.07 54.36

Table 9: Comparative Results of Rule-Level Editing on GPT2-XL with Multiple Edit Steps Measured by F1 Metric.
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