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Abstract

Motivated by collaborative reinforcement learning (RL) and optimization with time-correlated
data, we study a generic federated stochastic approximation problem involving M agents,
where each agent is characterized by an agent-specific (potentially nonlinear) local operator.
The goal is for the agents to communicate intermittently via a server to find the root of the
average of the agents’ local operators. The generality of our setting stems from allowing for (i)
Markovian data at each agent and (ii) heterogeneity in the roots of the agents’ local operators.
The limited recent work that has accounted for both these features in a federated setting
fails to guarantee convergence to the desired point or to show any benefit of collaboration;
furthermore, they rely on projection steps in their algorithms to guarantee bounded iterates.
Our work overcomes each of these limitations. We develop a novel algorithm called FedHSA,
and prove that it guarantees convergence to the correct point, while enjoying an M -fold
linear speedup in sample-complexity due to collaboration. To our knowledge, this is the
first finite-time result of its kind, and establishing it (without relying on a projection step)
entails a fairly intricate argument that accounts for the interplay between complex temporal
correlations due to Markovian sampling, multiple local steps to save communication, and
the drift-effects induced by heterogeneous local operators. Our results have implications for
a broad class of heterogeneous federated RL problems (e.g., policy evaluation and control)
with function approximation, where the agents’ Markov decision processes can differ in their
probability transition kernels and reward functions.

1 Introduction

In the classical stochastic approximation (SA) formulation (Robbins & Monro, 1951; Borkar, 2009; Borkar
& Meyn, 2000; Meyn, 2023), the goal is to solve for a parameter θ⋆ ∈ Rd such that Ḡ(θ⋆) = 0, where
Ḡ : Rd → Rd is a potentially nonlinear operator satisfying Ḡ(·) = Eo∼µ [G(·, o)]. Here, G : Rd ×X → Rd is
the noisy version of the true operator Ḡ, and o is an observation random variable drawn with some unknown
distribution µ from a sample space X . The agent (learner) tasked with finding θ⋆ only has access to the
operator Ḡ via noisy samples {G(·, ot)}, where {ot} is a stochastic observation process that is typically
assumed to converge in distribution to µ (Borkar, 2009). Interestingly, the SA formulation described above
captures a large class of problems arising in stochastic optimization, control, and reinforcement learning
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(RL). For instance, popular iterative algorithms like stochastic gradient descent (SGD) in optimization, and
temporal difference (TD) learning, Q-learning in RL turn out to be specific instances of SA.

Federated learning (FL) has also made extensive use of SA. The general idea of FL is to leverage data
collected from multiple agents to train accurate statistical models for downstream prediction (Konečnỳ
et al., 2016; Bonawitz et al., 2019; McMahan et al., 2017). SA has primarily been used in FL to solve
stochastic optimization problems that arise in the context of empirical risk minimization (ERM), under
assumptions like offline data collection and i.i.d. (independent and identically distributed) data at each
agent. In contrast, when the data arrives sequentially and exhibits strong temporal correlations - as is the
case in multi-agent/federated RL - very little is understood about non-asymptotic/finite-time performance.
This is particularly the case when the agents’ data-generating processes are potentially non-identical. In
our paper, we develop convergence and sample-complexity results for a general class of federated SA methods
that significantly improve upon existing bounds, and provide a deeper understanding of the interplay between
data-heterogeneity and temporal correlations in FL.

Our Federated SA Setup. We aim to develop a unified framework that can accommodate a broad class of
distributed SA problems. To that end, we consider a setup involving M agents that can exchange information
via a central server, as is typical in an FL setting. Each agent i ∈ [M ] has its own true and noisy operators
Ḡi : Rd → Rd and Gi : Rd × Xi → Rd, respectively, where Ḡi(·) = Eo∼µi

[Gi(·, o)]. Here, Xi is the sample
space of agent i, and the observation random variable o is drawn from an agent-specific unknown distribution
µi. The information available locally at an agent i comprises a sequence of noisy samples {Gi(·, oi,t)}. To
capture temporal correlations, we assume that the observation sequence {oi,t} is generated from an ergodic
Markov chain Mi with stationary distribution µi. Given this setup, the collective objective is to find the
root θ⋆ ∈ Rd of the “average” operator Ḡ; this objective can be succinctly stated as

Find θ⋆ s.t. Ḡ(θ⋆) = 0, where Ḡ := 1
M

M∑
i=1

Ḡi. (1)

Note that to achieve the above objective, communication via the server is necessary. In a typical FL scenario,
communication takes place over low-bandwidth channels, and can hence be costly and slow. To mitigate
the communication bottleneck, we will adhere to the standard intermittent communication protocol in FL,
where an exchange of information with the server takes places only once in every H > 1 time-steps, where
H is some predefined synchronization time-period. To summarize, there are three main features in our
formulation: (1) Heterogeneity: The local operators {Ḡi} at the agents can be non-identical and, as
such, have different roots; (2) Markovian Sampling: The agents’ observation sequences are generated in
a Markovian manner; and (3) Sparse Communication: Agents need to perform local computations in
isolation between communication rounds. Additionally, complying with the FL paradigm, the agents are
required to solve the problem in (1) without ever exchanging their raw observations.

1.1 Motivation and Related Work

When one considers the challenging setting that involves all of the above features, there are significant gaps
in the understanding of the problem in (1). We now explain these gaps by considering several motivating
applications of (1). Along the way, we also review relevant literature.

1. Motivation 1: Federated Optimization in Dynamic Environments.

• I.I.D. Data. When Ḡi is the gradient of a local loss function at agent i, and Gi a noisy
stochastic version thereof, the problem in (1) reduces to the standard FL setting that has been
extensively studied under the assumption that the observation process {oi,t} at each agent i is
generated in an i.i.d. manner from µi (McMahan et al., 2017). Under this i.i.d. data regime,
a large body of work has studied the heterogeneous federated optimization problem (Li et al.,
2019; Khaled et al., 2020; Karimireddy et al., 2020; Mitra et al., 2021; Gorbunov et al., 2021;
Mishchenko et al., 2022).
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• Markovian Data. Our formulation substantially generalizes the standard FL setting by allowing
the observation process at each agent i to be generated from an ergodic Markov chain that
converges in distribution to µi. As explained in detail in Sun et al. (2018) and Duchi et al. (2012),
there is ample reason to consider such Markovian data streams. Moreover, temporally correlated
Markovian data arises naturally in several real-world applications: dynamic environments such
as non-stationary wireless systems where the channel statistics drift over time following Gauss-
Markovian processes, linear dynamical systems in control with input noise, and distributed
sensor networks with correlated measurements. With these reasons in mind, considerable
recent attention has been given to the study of Markovian gradient descent in the single-agent
setting (Sun et al., 2018; Doan, 2022; Even, 2023; Beznosikov et al., 2024).

Research Gap: Counterparts of the results in the above papers remain open in FL, i.e., we are
unaware of any finite-time results for federated optimization under Markov data.

2. Motivation 2: Heterogeneous Fixed Point Problems. Our work is particularly inspired by
that of Malinovskiy et al. (2020), where the general problem of finding the fixed point of an average
of local operators is considered, exactly like we do in (1). As detailed in Malinovskiy et al. (2020), in
addition to optimization, heterogeneous fixed-point problems find applications in many other settings
such as alternating minimization methods, nonlinear inverse problems, variational inequalities, and
Nash equilibria computation.

Research Gap: The main gap, however, is that Malinovskiy et al. (2020) consider a “noise-
less” setting, where each agent can access their true local operator directly, i.e., there is no aspect of
i.i.d. or Markovian sampling in their work.

3. Motivation 3: Collaborative Multi-Agent RL. In RL, an agent interacts sequentially with an
environment modeled as a Markov decision process (MDP). At each time-step, the agent plays an
action according to some policy, observes a reward, and transitions to a new state. The goal is for the
agent to play a sequence of actions that maximizes some long-term cumulative utility referred to as
the value-function, without a priori knowledge of the reward functions and the probability transition
kernels of the MDP. It turns out that the problem of estimating the value-function corresponding to
a given policy (policy evaluation), and that of finding the optimal policy (control), can be both cast
as instances of SA (Meyn, 2023). In this context, the sample-complexities of SA-based RL algorithms
like TD learning and Q-learning have been studied recently by Bhandari et al. (2018); Srikant & Ying
(2019); Khamaru et al. (2020); Wainwright (2019); Guannan Qu (2020); Li et al. (2024); Mitra (2024).
This line of work has collectively revealed that for contemporary RL problems with large state and
action-spaces, several samples are typically needed to achieve a desired performance accuracy. A
natural way to overcome the sample-complexity barrier is via parallel data collection from multiple
environments. This has led to a new paradigm called federated reinforcement learning (FRL) (Qi
et al., 2021), where the idea is to use information from multiple environments (MDPs) to learn a
policy that performs “well” on average in all MDPs. Compared to FL, the theoretical aspects of FRL
remain poorly understood. To explain the gaps in this context, we broadly categorize SA problems
in FRL into two main groups as follows; for a quick comparative summary, see Table 1.

• Homogeneous Environments. In this case, agents share identical MDPs and local operators.
The works of Doan et al. (2019) and Liu & Olshevsky (2023) both examine federated TD
algorithms under a restrictive i.i.d. sampling assumption. While Shen et al. (2023) analyze
federated actor-critic algorithms under both i.i.d. and Markov data, they establish a linear
speedup in sample-complexity (w.r.t. the number of agents) only under i.i.d. data. To our
knowledge, the first paper to establish a linear speedup in sample-complexity under Markovian
sampling for contractive SA problems was (Khodadadian et al., 2022), followed by (Woo
et al., 2023) for tabular Q-learning. Follow-up works have focused on the minimum amount
of communication needed to achieve linear speedups (Tian et al., 2024; Salgia & Chi, 2024) in
sample-complexity, and also the effect of imperfect communication channels (Dal Fabbro et al.,
2023; Mitra et al., 2024; Beikmohammadi et al., 2024; Dal Fabbro et al., 2025).
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Table 1: Comparison of finite-time analysis for FRL papers that study stochastic approximation problems.

Work Heterogeneity No heterogeneity bias Linear speedup Markovian sampling
(Doan et al., 2019) % - % %

(Liu & Olshevsky, 2023; Shen et al., 2023) % - " %

(Khodadadian et al., 2022; Woo et al., 2023; Salgia & Chi, 2024; Tian et al., 2024) % - " "

(Jin et al., 2022) " % % %

(Wang et al., 2024b; Zhang et al., 2024) " % " "

This work " " " "

• Heterogeneous Environments. In practice, it is unreasonable to expect that the agents’
environments are exactly the same. Thus, it makes more sense to consider a setting where agents
interact with potentially distinct MDPs, leading to distinct local operators. This setting has
received much less attention. The convergence of federated Q-learning algorithms is analyzed
in Jin et al. (2022), but no linear speedup is established. The results in Wang et al. (2024b) for
federated TD learning, and Zhang et al. (2024) for federated SARSA, do exhibit a linear speedup
in the noise variance term, but their bounds also feature an additive heterogeneity-induced bias
term that grows with the discrepancy in the agents’ environments; such a bias term also appears
in Jin et al. (2022), and its presence precludes possible gains from collaboration.

Research Gap: To sum up, in the context of general heterogeneous stochastic approximation problems
in FRL under Markov noise, it remains an open problem to establish a linear collaborative speedup
that is not affected by any heterogeneity-induced bias term.

Now that we have elaborated on the motivation for our work and the research gaps in the literature, let us
turn our attention to the main questions investigated in this paper.

Key Questions. Having motivated the rationale behind studying the problem in (1), we can now state more
precisely the key questions of interest to us. To do so, we start by presenting the convergence rates of SA in
the single-agent case as a benchmark. Accordingly, consider the SA scheme of Robbins & Monro (1951):

θ(t+1) = θ(t) + αtG(θ(t), ot), (2)

for t = 0, ..., T − 1. Here, T denotes the total number of iterations, θ(t) ∈ Rd is the parameter estimate at
time-step t, and {αt} is the step-size sequence. Asymptotic convergence results for the SA rule in (2) were
derived in the seminal works of Tsitsiklis & Van Roy (1997) and Borkar & Meyn (2000). Finite-time rates
under Markovian observations were more recently established in Bhandari et al. (2018); Srikant & Ying
(2019); Chen et al. (2022); Mitra (2024), where it was shown that under certain mild technical assumptions
(which will be detailed later in Section 2), running T iterations of the rule in (2) with the same step-size
αt = α leads to the following error bound:

dT ≤ C1 exp (−αC2T )︸ ︷︷ ︸
bias

+ αC3σ2︸ ︷︷ ︸
variance

, (3)

where dt := E
[∥∥θ(t) − θ⋆

∥∥2
2

]
denotes the MSE at time-step t, C1, C2, C3 are problem-specific constants,

and σ2 characterizes the variance of the noise model. The MSE bound consists of two components: (i) a
bias term that decays exponentially fast and (ii) a variance term that captures the effect of noise. Thus,
the rule in (2) ensures linear convergence to a ball of radius O

(
ασ2) centered around θ⋆. By choosing

an α on the order of O (log(T )/T ), one can then achieve exact convergence to θ⋆. Now consider the fed-
erated SA setup with heterogeneous local operators, Markovian data, and intermittent communication. We ask:

Is it possible to converge exactly (i.e., without any bias) in the mean-square sense to the root θ⋆ of
the average operator Ḡ? Moreover, can one achieve a linear M -fold reduction in the variance term, capturing
the benefit of collaboration?

Contributions. As far as we are aware, no prior work has been able to establish both exact con-
vergence and linear sample-complexity speedups in FL under Markovian sampling and heterogeneity of local
operators. We close this significant gap via the following contributions.
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•Motivation for New Algorithm. In Section 2.2, we study the performance of existing FRL algorithms (Jin
et al., 2022; Khodadadian et al., 2022; Wang et al., 2024b; Zhang et al., 2024), where each agent performs
multiple local parameter updates using just its own operator. Proposition 1 reveals that in a heterogeneous
setting, such algorithms fail to match the single-agent SA convergence rate in (3). In particular, when run
with a constant non-diminishing step size α, such algorithms do not converge exactly to the root θ⋆, even in
the absence of noise.

• Novel Algorithm. Motivated by the findings from Section 2.2, we develop a new local SA procedure
called FedHSA in Section 3. The core idea in FedHSA is to modify the local update rule to ensure convergence
to the correct point θ⋆. We emphasize that while drift-mitigation techniques to combat heterogeneity have
been studied before in federated optimization (Karimireddy et al., 2020; Gorbunov et al., 2021; Mitra et al.,
2021), FedHSA is not limited to optimization. Instead, FedHSA applies much more broadly to general nonlinear
SA problems, including those in RL.

• Matching Centralized Rates and Linear Speedup. In Theorem 2 of Section 4, we prove that FedHSA
matches the centralized rate in (3), and, unlike the results in Jin et al. (2022); Wang et al. (2024b); Zhang
et al. (2024), there is no heterogeneity-induced bias in our final bound. Furthermore, with a linearly decaying
step-size, we prove that FedHSA achieves an optimal sample-complexity bound of Õ(1/(MHT )) after T
communication rounds, with H local steps in each round (Corollary 1). This result is significant because it
is the first to establish a collaborative M -fold linear speedup for heterogeneous federated SA problems under
Markovian sampling, with no additional bias term to negate the benefit of collaboration.

• Analysis Technique. Even in the single-agent SA setting, a finite-time analysis under Markovian data is
quite non-trivial. Our FL setting is further complicated by complex statistical correlations that arise from
combining data generated by distinct Markov chains, drift effects due to heterogeneous local operators, and
multiple local steps. The only other recent papers (Wang et al., 2024b; Zhang et al., 2024) that consider similar
settings rely on a projection step in the algorithm to ensure uniform boundedness of iterates. Furthermore,
they build on a “virtual MDP framework” for their analysis. Our proof neither requires a projection step
nor a virtual MDP. In particular, the lack of a projection step entails a much more involved analysis. We
elaborate on the main technical challenges in Section 5.

Although our work is primarily theoretical, we corroborate our main theoretical findings via numerical
simulations, covering both optimization and RL, in Section D.

More Related Work. Since the focus of this paper is on federated stochastic approximation, we have only
reviewed SA-based approaches in FRL. We note that policy gradient-based approaches for FRL have also
recently been explored in Xie & Song (2023); Fan et al. (2021); Lan et al. (2023); Wang et al. (2024a); Zhu
et al. (2024). In particular, the approaches developed in Wang et al. (2024a) and Zhu et al. (2024) manage to
achieve collaborative speedups without incurring additive bias terms due to heterogeneity. That said, even in
the single-agent setting, the dynamics of policy gradient methods and SA schemes in RL are considerably
different, and entail separate treatments. For instance, the aspect of Markovian sampling does not show up
at all in policy-gradient methods.

At the time of preparing this paper, we became aware of a very recent piece of work by Mangold et al. (2024)
that looks at federated linear stochastic approximation (LSA). In this work, the authors provide a detailed
and refined analysis of local update rules - of the form of FedAvg - under both i.i.d. and Markov sampling.
Furthermore, they develop a bias-corrected algorithm for federated LSA, and show that it simultaneously
achieves a linear speedup and no heterogeneity-induced bias. Although the flavor of the results in Mangold
et al. (2024) is similar to that of our work, there are significant differences in scope, algorithms, and proof
techniques that we outline below. First, the results in Mangold et al. (2024) are limited to linear stochastic
approximation (LSA). In contrast, we consider general nonlinear operators throughout this work. An
inspection of the refined analysis in Mangold et al. (2024) seems to suggest that the recurrence relations
exploited in Mangold et al. (2024) rely heavily on the linearity of the underlying operator. More precisely,
the approach in Mangold et al. (2024) is based on the framework in Durmus et al. (2025) which relies on
expressing the error dynamics as a linear time-varying system that involves a product of random matrices.
Such an error recursion does not arise in our analysis which involves non-linear operators, thereby requiring a
different proof approach right from the first step. Second, the results under Markov sampling in Mangold et al.
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(2024) are provided only for the vanilla federated LSA schemes, not for the bias-corrected one. Thus, even in
light of the contributions made in Mangold et al. (2024), our work is the first to establish a linear speedup
result without heterogeneity bias for general (nonlinear) contractive SA under Markov sampling. Third,
the authors in Mangold et al. (2024) use the “blocking technique” to handle temporal correlations under
Markov sampling. This requires modifying the original algorithm so that it only operates on a sub-sampled
data sequence, where the sub-sampling gap is informed by the mixing time of the underlying Markov chain.
In contrast, our proof technique is more direct, does not go through the blocking apparatus, and, as such,
requires no modification to the algorithm for Markov data.

2 Setting and Motivation
2.1 Setting
We consider a multi-agent heterogeneous SA problem involving M agents, where each agent i ∈ [M ] has its
own local true operator Ḡi. Since the true operators are generally hard to evaluate exactly, each agent i can
access Ḡi only through a sequence of noisy samples {Gi(·, oi,t)}. The observation oi,t made at time-step t
by agent i is sequentially sampled from an underlying agent-specific time-homogeneous Markov chain Mi

with stationary distribution µi. We further have Ḡi(·) = Eo∼µi
[Gi(·, o)]. We consider the case where the

agents’ Markov chains {Mi} share a common finite state space S, but have potentially different probability
transition matrices. The collaborative goal is to solve the root-finding problem described in (1) within a
federated framework, where the agents communicate intermittently via a central server only once in every H
time-steps, while keeping their raw observation sequences {oi,t} private.

Working Assumptions. We now make certain standard assumptions on the agents’ operators and stochastic
observation processes for our subsequent analysis.
Assumption 1 (Lipschitzness). The local noisy operator Gi for each agent i ∈ [M ] is L-Lipschitz, i.e., there
exists a constant L ≥ 1 such that given any observation o, for all θ1, θ2 ∈ Rd, we have

∥Gi(θ1, o)−Gi(θ2, o)∥2 ≤ L ∥θ1 − θ2∥2 . (4)

Furthermore, there exists σi ≥ 1 for each i ∈ [M ] such that for any given θ, o, the following holds

∥Gi(θ, o)∥2 ≤ L(∥θ∥2 + σi). (5)

Assumption 2 (1-point strong monotonicity). The average true operator Ḡ is 1-point strongly monotone
w.r.t. θ⋆, i.e., there exists some constant µ ∈ (0, 1] such that for any θ ∈ Rd, we have〈

θ − θ⋆, Ḡ(θ)− Ḡ(θ⋆)
〉
≤ −µ ∥θ − θ⋆∥2

2 . (6)

In the context of optimization, Assumption 1 corresponds to a smoothness assumption typical in the analysis
of Markovian gradient descent (Doan, 2022), and Assumption 2 corresponds to strong-convexity. As for RL,
Assumptions 1 and 2 both hold for TD learning with linear function approximation (LFA) (Bhandari et al.,
2018; Srikant & Ying, 2019; Khamaru et al., 2020; Tsitsiklis & Van Roy, 1997; Doan et al., 2019; Liu &
Olshevsky, 2023; Khodadadian et al., 2022; Tian et al., 2024; Wang et al., 2024b), and certain variants of
Q-learning with LFA (Chen et al., 2022; Zeng et al., 2022), where Ḡi and Gi correspond to the non-noisy and
noisy versions, respectively, of the TD/Q-learning update rules. Assumptions 1 and 2 suffice to guarantee the
MSE bound in (3) in the centralized case, i.e., when M = 1. Since our objective is to obtain such a bound for
the multi-agent heterogeneous setting, it is natural for us to work under the same assumptions.

The next assumption on the agents’ Markov chains helps control the effect of temporal correlations in the
data, and appears in almost all finite-time analysis papers for both single-agent (Bhandari et al., 2018; Srikant
& Ying, 2019; Chen et al., 2022; Adibi et al., 2024; Guannan Qu, 2020; Li et al., 2024) and multi-agent
RL (Khodadadian et al., 2022; Zeng et al., 2022; Wang et al., 2024b; Woo et al., 2023; Tian et al., 2024;
Zhang et al., 2024; Dal Fabbro et al., 2023).
Assumption 3. For each agent i ∈ [M ], the state space of the underlying Markov chain Mi is finite, and
the Markov chain Mi is aperiodic and irreducible.
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A key implication of Assumption 3 is that it implies geometric mixing of each of the agents’ Markov
chains (Levin & Peres, 2017). More precisely, for each i ∈ [M ], there exists some ci ≥ 1 and some ρi ∈ (0, 1),
such that the following is true for any state s ∈ S:

dT V (P(oi,t = · |oi,0 = s), µi) ≤ ciρ
t
i, ∀t > 0, (7)

where dT V (P, Q) is the total variation distance between two probability measures P and Q, oi,t denotes the
state of agent i at the t-th time-step, and µi is the stationary distribution of Mi. In words, Assumption 3
implies that each agent i’s Markov chain converges to its stationary distribution µi exponentially fast.

We now define the concept of a mixing time that plays a key role in our analysis. Intuitively, the mixing
time of a Markov chain measures how long it takes for the chain to “forget" its starting state and become
close to its stationary distribution. For any ε > 0, we define the mixing time of the Markov chain Mi (at
precision level ε) as τi(ε) := min{t ∈ N0 : ciρ

t
i ≤ ε}. We define τ(ε) := maxi∈[M ] τi(ε) as the mixing time

corresponding to the slowest-mixing Markov chain.

Our final assumption concerns statistical independence between the data across different agents. Such
an assumption is needed to establish “linear speedups” in performance, and has appeared in prior FRL
work (Khodadadian et al., 2022; Woo et al., 2023; Wang et al., 2024b; Zhang et al., 2024).
Assumption 4. For every pair of agents i ≠ j ∈ [M ], the observation processes {oi,t} and {oj,t} are
statistically independent.

With the above assumptions in place, we are in a position to describe and analyze our proposed algorithm.
Before doing so, however, it is natural to ask: What is the need for a new federated SA algorithm? We provide
a concrete answer in the next section.

2.2 Motivation for a new Federated SA Algorithm
To explain the motivation for developing our algorithm, it suffices to focus on the class of linear stochastic
approximation (LSA) problems, where for each agent i ∈ [M ], Ḡi(θ) = Āiθ − b̄i, and Gi(θ, oi,t) = Ai(oi,t)θ −
bi(oi,t), i.e., the operators are affine in the parameter θ. Furthermore, to isolate the effect of heterogeneity,
we will consider a simplified “noiseless” setting where each agent i can directly access its true operator Ḡi(θ).
Our goal is to formally establish that even for this simplified scenario, if one employs the existing algorithms
in Jin et al. (2022); Khodadadian et al. (2022); Wang et al. (2024b); Zhang et al. (2024), then it might be
impossible to match the convergence rates in the single-agent setting. To see this, we first note that the
algorithms in these papers operate in rounds t = 0, 1, . . . , T − 1, where within each round t, each agent i
performs H ≥ 1 local model-update steps of the following form:

θ
(t)
i,ℓ+1 = θ

(t)
i,ℓ + ηḠi(θ(t)

i,ℓ ), ℓ = 0, 1, . . . , H − 1, (8)

where θ
(t)
i,ℓ is agent i’s parameter estimate in local step ℓ of communication round t, and η ∈ (0, 1) is a

step-size. For each i ∈ [M ], θ
(t)
i,0 is initialized from a common global parameter θ̄(t). At the end of the

t-th round, each agent i transmits θ
(t)
i,H to the server; the server then broadcasts the next global parameter

θ̄(t+1) = (1/M)
∑

i∈[M ] θ
(t)
i,H to all the agents. We will analyze local SA rules of the form in (8) under the

standard assumptions made to derive finite-time rates for linear SA in the single-agent case (Srikant & Ying,
2019): for all i ∈ [M ], (i) (Lipschitzness) the 2-norms of Ai and bi are bounded, and (ii) (strong-monotonicity)
all the eigenvalues of Ai have strictly negative real parts, i.e., Ai is Hurwitz. When M = 1, i.e., there is only
one agent, and H = 1, i.e., communication occurs every time-step, the rule in (8) ensures exponentially fast
convergence to the root of the underlying operator (Srikant & Ying, 2019). Our next result reveals that
this is no longer the case when M > 1 and H > 1. To state this result, we define Ā := (1/M)

∑
i∈[M ] Āi,

b̄ := (1/M)
∑

i∈[M ] b̄i, and Ā′ := (1/M)
∑

i∈[M ] Ā2
i .

Proposition 1. Suppose M > 1 and H = 2. Consider the local SA update rule in (8), and suppose the step-
size η is chosen such that the matrix (I +2ηĀ+η2Ā′) is Schur-stable1. Then, we have: limt→∞ θ̄(t)−θ⋆ = ηv,

1A square matrix is Schur-stable if its eigenvalues all lie within the open unit disk in the complex plane, i.e., if the magnitude
of each of its eigenvalues is strictly smaller than one.
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Algorithm 1 FedHSA

1: Input: Local step-size η, global step-size αg, initial parameter θ̄(0), initial noisy operator G(θ̄(0)).
2: for t = 0, . . . , T − 1 do
3: for i = 1, . . . , M do
4: Agent i initializes its local parameter θ

(t)
i,0 = θ̄(t).

5: for ℓ = 0, . . . , H − 1 do
6: Agent i observes o

(t)
i,ℓ generated from its Markov chain Mi, and updates θ

(t)
i,ℓ as per (10).

7: end for
8: Agent i transmits ∆(t)

i,H = θ
(t)
i,H − θ̄(t) to server.

9: end for
10: Server broadcasts θ̄(t+1) computed as in (11).
11: for i = 1, . . . , M do
12: Agent i transmits Gi(θ̄(t+1), o

(t+1)
i,0 ) to server.

13: end for
14: Server broadcasts average operator G(θ̄(t+1)).
15: end for

where v = (1/M)(2Ā + ηĀ′)−1∑
i∈[M ] Ā2

i (θ⋆
i − θ⋆), θ⋆

i = Ā−1
i b̄i is the root of the local operator Ḡi, and

θ⋆ = Ā−1b̄ is the root of the global operator Ḡ.

The main takeaway from Proposition 1 is that even with just 2 local steps (i.e., H = 2) and no noise, in the
limit, there is a non-vanishing error ηv that depends on how much each local root θ⋆

i differs from the global
root θ⋆. To eliminate this error, the step-size η must be diminished with time, i.e., one cannot afford to
use a constant step-size like in the single-agent case. Note, however, if a diminishing step-size sequence is
used, although convergence to the desired point θ⋆ is guaranteed, this will come at the cost of a slower,
sublinear convergence rate. A few crucial comments are in order about this result.

1. The phenomenon observed in Proposition 1 has nothing to do with noise at all, i.e., whether the
noise is i.i.d. or Markovian is immaterial as far as the main message of Proposition 1 is concerned.

2. The key issue at play in Proposition 1 is that the agents’ operators have distinct roots, creating the
“client-drift” effect under intermittent communication.

3. Heterogeneous federated optimization is a special case of Proposition 1 In particular, Proposition 1
is stated for linear stochastic approximation (LSA) algorithms, and quadratic optimization is a
special case of LSA. An immediate corollary of this point is that even in federated optimization
(without noise), if one uses a vanilla local update algorithm (with no bias-correction), then a constant
step-size will lead to convergence to an incorrect fixed point, i.e., the client-drift effect cannot be
eliminated. For optimization, this message has already been conveyed by Charles & Konečnỳ (2021).
Proposition 1 simply generalizes this observation to more general SA schemes.

Thus, there is a gap between the bounds in the single-agent case and those achievable with algorithms of the
form in (8) in the heterogeneous federated SA setting. We now proceed to develop FedHSA that will not only
close this gap, but also achieve an optimal M -fold sample-complexity reduction due to collaboration.

3 Proposed Algorithm: FedHSA

In this section, we will develop our proposed algorithm titled Federated Heterogeneous Stochastic
Approximation (FedHSA), designed carefully to account for heterogeneous local operators and intermittent
communication. We now elaborate on the steps of FedHSA, outlined in Algorithm 1. FedHSA adheres
to the standard intermittent communication model in FL, where communication takes place in rounds
t = 0, 1, . . . , T − 1. At the beginning of each round t, a central server broadcasts the global parameter θ̄(t) to
all the agents, who then perform H steps of local updates; we will describe the local update process shortly.
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We denote the local parameter of agent i at the ℓ-th local step of the t-th communication round as θ
(t)
i,ℓ ,

with θ
(t)
i,0 initialized from θ̄(t). In each local step ℓ of round t, agent i interacts with its own environment

and observes o
(t)
i,ℓ from its Markov chain Mi. Using this observation, agent i computes the noisy operator

Gi(θ(t)
i,ℓ , o

(t)
i,ℓ ). Note here that we define each local step as a time-step, and thus o

(t)
i,ℓ can be equivalently

denoted as oi,tH+ℓ.

The Core Idea. The core technique involves the local update rule at each agent. As revealed in Section 2.2,
if each agent makes local updates by simply taking steps along its own operator, then it can be impossible to
converge to θ⋆, while maintaining the same convergence rates as in the centralized setting. However, this is
precisely what is done in the existing FRL literature (Jin et al., 2022; Khodadadian et al., 2022; Woo et al.,
2023; Wang et al., 2024b; Zhang et al., 2024), where the local update rule takes the form

θ
(t)
i,ℓ+1 = θ

(t)
i,ℓ + ηGi(θ(t)

i,ℓ , o
(t)
i,ℓ ), (9)

with η > 0 being the local step-size. When each agent i follows the update rule in (9) for several local steps,
it tends to naturally drift towards the root θ⋆

i of its own local operator Ḡi. As such, the reason why update
rules of the form in (9) fail to achieve the desired MSE bound in (3) can be attributed to the following simple
observation: in the heterogeneous setting, the root θ⋆ of the global operator Ḡ may not coincide with the
average (1/M)

∑
i∈[M ] θ⋆

i of the roots of the agents’ local operators.

We now develop a drift-mitigation technique that overcomes this issue. To start with, we observe that if
each agent had the luxury of talking to the server at every time-step, the ideal update rule of the global
parameter would be θ̄(t+1) = θ̄(t) + αgηG(θ̄(t)), where G(θ̄(t)) := (1/M)

∑
i∈[M ] Gi(θ̄(t), oi,t). Under the

intermittent communication model, however, this is not feasible since an agent i does not have access to the
information from the other agents in [M ] \ {i} during each local step. Accordingly, our algorithm exploits
the memory of the global operator G(θ̄(t)) from the beginning of communication round t to guide the local
updates of each agent during round t. Here, G(θ̄(t)) := (1/M)

∑
i∈[M ] Gi(θ̄(t), o

(t)
i,0), and the initial global

parameter θ̄(0) can be arbitrary. To be concrete, at each local step ℓ of round t, agent i adds the correction
term G(θ̄(t))−Gi(θ̄(t), o

(t)
i,0) to its local update direction Gi(θ(t)

i,ℓ , o
(t)
i,ℓ ) to account for drift-effects, leading to

the update rule for FedHSA:

θ
(t)
i,ℓ+1 = θ

(t)
i,ℓ + η

(
Gi(θ(t)

i,ℓ , o
(t)
i,ℓ ) + G(θ̄(t))−Gi(θ̄(t), o

(t)
i,0)
)

. (10)

To gain further intuition about the above rule, suppose for a moment that every agent can access the
noiseless versions of their local operators. In this case, the noiseless version of FedHSA would take the form:
θ

(t)
i,ℓ+1 = θ

(t)
i,ℓ +η

(
Ḡi(θ(t)

i,ℓ ) + Ḡ(θ̄(t))− Ḡi(θ̄(t))
)

. Now suppose the global parameter θ̄(t) is θ⋆. Since θ
(t)
i,0 = θ̄(t)

and Ḡ(θ⋆) = 0 by definition, observe that all subsequent iterates of the agents remain at θ⋆. Said differently,
if one initializes FedHSA at θ⋆, the iterates never evolve any further, exactly as desired, i.e., the root θ⋆ of
the operator Ḡ is a stable equilibrium point of FedHSA. After H local steps, each agent i transmits their
local parameter change ∆(t)

i,H := θ
(t)
i,H − θ̄(t) to the central server, and the global parameter θ̄(t) is updated as

follows with global step-size αg:
θ̄(t+1) = θ̄(t) + αg

M

∑
i∈[M ]

∆(t)
i,H . (11)

This completes the description of FedHSA.
Remark 1. We note that in the federated optimization literature, a variety of techniques have been proposed
to account for heterogeneity, e.g., proximal methods in Sahu et al. (2018); Pathak & Wainwright (2020);
Mishchenko et al. (2022), and gradient-tracking/variance-reduction in Karimireddy et al. (2020); Mitra et al.
(2021); Gorbunov et al. (2021). While the update rule of FedHSA might bear a cosmetic similarity with
those in these papers, we note that if one considers SA problems other than optimization, such a similarity
ceases to exist. For instance, if one considers TD or Q-learning with linear function approximation, then the
corresponding FedHSA rule would be one that has not been analyzed before in FL or FRL.
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4 Main Results and Discussion

As a warm-up to our main convergence result for FedHSA, we first consider a simpler setting where the
observation o

(t)
i,ℓ made by each agent i ∈ [M ] at local iteration ℓ and round t is drawn i.i.d. from the stationary

distribution µi of its underlying Markov chain Mi. With dt := E
[∥∥θ̄(t) − θ⋆

∥∥2
2

]
, we have the following result

for this setting.
Theorem 1. Suppose Assumptions 1 to 4 hold, and consider the i.i.d. sampling model described above.
Define α = Hηαg as the effective stepsize, and σ := max{{σi}i∈[M ], ∥θ⋆∥2 , 1}. Then, there exists a universal
constant C, such that with αg = 1 and η ≤ µ/(2CL2H), FedHSA guarantees the following ∀T ≥ 0:

dT ≤ exp
(
−µ

2 αT
)∥∥∥θ̄(0) − θ⋆

∥∥∥2

2
+O

(
αL2

µMH
+ α2L4

µ2

)
σ2.

Next, we present our main convergence result under Markovian sampling.
Theorem 2 (Main Result). Suppose Assumptions 1 to 4 hold. Define τ̄ = τ(α2) and ρ = maxi∈[M ] ρi.
Then, there exists a universal constant C ′ ≥ 1, such that by selecting αg = 1, η ≤ µ/(C ′τ̄L2H), the following
holds for FedHSA for any T ≥ 2τ̄ :

dT ≤ exp
(
−µ

4 αT
)
O
(
d0 + σ2)+O

(
τ̄αL2

µMH(1− ρ) + α2L4

µ2

)
σ2. (12)

The next result is an immediate corollary of Theorem 2.
Corollary 1 (Linear Speedup). Suppose all the conditions in Theorem 2 hold. Then, by choosing
η = 4 log(MHT )/(µHT ), and T ≥ (4L2 log(MHT )/µ2) max{C ′τ̄ , MH(1 − ρ)/τ̄}, FedHSA guarantees the
following for any T ≥ 2τ̄ :

dT ≤ Õ
((

d0 + τ̄L2σ2

µ2(1− ρ)

)
1

MHT

)
. (13)

We provide detailed convergence proofs of Theorems 1 and 2 in Appendices B and C, respectively. We will
provide a proof sketch for Theorem 2 shortly in Section 5. Before doing so, several comments are in order.

Discussion. Comparing our bounds for the i.i.d. (Theorem 1) and Markov settings (Theorem 2), we
note that the only difference comes from the fact that the noise variance term σ2 in the Markov case gets
inflated by an additional factor τ̄ /(1 − ρ) capturing the rate at which the slowest mixing Markov chain
approaches its stationary distribution. Such an inflation by the mixing time is typical for problems with
Markov data (Nagaraj et al., 2020).

• Matching Centralized Rates of Convergence. Theorem 2 reveals that FedHSA guarantees exponentially fast
convergence to a ball around θ⋆. In particular, comparing (12) with (3), we conclude that FedHSA recovers
the known finite-time bounds for single-agent SA in Bhandari et al. (2018); Srikant & Ying (2019); Chen
et al. (2019; 2022); Mitra (2024).

• Linear Speedup Effect. From (12), notice that the radius of the ball of convergence around θ⋆ is the sum of
two terms: an O(ατ̄σ2/(MH)) term that gets scaled down by the number of agents M , and a higher-order
O
(
α2σ2) term that can be made much smaller relative to the first term by making α sufficiently small, i.e.,

the dominant noise term exhibits a “variance-reduction” effect. To further highlight this effect, Corollary 1
reveals that with a decaying step-size, the sample-complexity of FedHSA is Õ(σ2/(MHT )); this is essentially
the best rate one can hope for since after H local steps in T communication rounds, the total number of
data samples collected across M agents is precisely MHT . The M -fold reduction in sample-complexity
makes it explicit that even in a heterogeneous federated SA setting with time-correlated data, one can achieve
linear speedups by collaborating using our proposed algorithm FedHSA. This is the first result of its kind and
significantly generalizes similar bounds for homogeneous FRL (Khodadadian et al., 2022; Woo et al., 2023).

• Communication Complexity. First, it should be clear that the notion of communication complexity makes
no sense unless we associate it with a desired performance. For instance, our algorithm can involve zero
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communication, but then the performance guarantees would be vacuous. Keeping this in mind, recall that
for the single-agent centralized setting, given R samples, the standard SA scheme achieves a mean-square
error (MSE) on the order of Õ(1/R). Now, say each of the M agents in our setup has access to precisely R
samples. A natural question then is: How much communication is needed to achieve an MSE rate on the
order of Õ(1/(MR)), exhibiting the desired linear speedup effect? We answer this question below.

In our notation, recall that T is the number of communication rounds, and H is the gap between communication
rounds. As such, we have R = TH. Now note that Theorem 2 of our paper presents the following result:

dT ≤ exp
(
−µ

4 αT
)
O(d0 + σ2)︸ ︷︷ ︸

(∗)

+O

 τ̄αL2

µMH(1− ρ)︸ ︷︷ ︸
(∗∗)

+ α2L4

µ2︸ ︷︷ ︸
(∗∗∗)

σ2.

This is essentially saying that the MSE after T communication rounds is upper-bounded by an exponentially
decaying term (∗) plus a term (∗∗) scaled down by the number of agents M , and another term (∗ ∗ ∗) that is
higher-order in α, but not scaled down by M . In order to achieve linear speedup, it is then straightforward
that the term (∗ ∗ ∗) should be dominated by (∗∗), imposing the following requirement on the maximum
allowable gap H between communication rounds (to preserve the linear speedup effect):

H ≤ µτ̄/(αL2M(1− ρ)).

Substituting the choice of α = Hαgη = 4 log(MHT )/(µT ) in Corollary 1, we then have

H ≤ µ2τ̄T

4L2M(1− ρ) log(MHT ) .

Finally, using T = R/H in the above display yields the requirement:

H ≤ µ

2L

√
τ̄R

M(1− ρ) log(MR) , (14)

which is essentially Õ(
√

R/M). Concretely, given M and R, one can then set H to be

H =
⌊

µ

2L

√
τ̄R

M(1− ρ) log(MR)

⌋
.

With H as above, the communication overhead is T = R/H, which is on the order of
√

MR. A key message
conveyed by the above discussion is as follows: to achieve the desired linear speedup, the gap H between
communication rounds cannot be arbitrarily large; instead, it needs to satisfy the constraint imposed in (14).

• No Heterogeneity Bias. In Proposition 1, we saw that if one employs the algorithms in Jin et al. (2022);
Wang et al. (2024b); Zhang et al. (2024) in the heterogeneous setting, then there is a heterogeneity-induced
bias term in the final bound that can potentially negate the benefits of collaboration. FedHSA effectively
eliminates such a bias term without making any assumptions whatsoever on the level of heterogeneity. To see
this, it suffices to note from (12) that in the noiseless case when σ2 = 0, FedHSA guarantees exponentially
fast convergence to θ⋆, as opposed to a ball of radius O(η) around θ⋆ like in Proposition 1.

Remark on Constant/Diminishing Step-sizes. As one might expect, a constant step-size (adopted in
this paper) admits a much cleaner analysis than a diminishing step-size, which is exactly why we adopt it,
to avoid distraction from the main message that we are trying to convey, i.e., we are able to fill the gap of
achieving linear speedup with no heterogeneity bias under Markovian data.

Next, we note that non-diminishing constant step-sizes are used readily in the literature on SA/RL even in
simpler single-agent settings, precisely with the same motivation (as us) of providing a simple, clean analysis;
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see, for instance, Bhandari et al. (2018); Srikant & Ying (2019). In fact, note that in Theorem 2 (part (a))
of Bhandari et al. (2018), the constant step-size requires knowledge of the horizon R = HT , much like us.
Other than picking up some additional log factors, this causes no degradation in the overall learning rate.

Having explained why we chose constant step-sizes, and the fact that such a choice is common in SA/RL, we
now mention two pathways for getting rid of the knowledge of R. One direct option is to use a diminishing
step-size schedule. For this setting, we can borrow well understood proof techniques: for instance, the one used
to prove item (c) in Theorem 2 of Bhandari et al. (2018). The other—perhaps easier to adapt technique—is
the “doubling trick” in the online learning literature. The basic idea is as follows. We first set the horizon
length to say R′, decide the step-size as per R′ (like in our paper), and run the algorithm for R′− 1 iterations.
Then, we set R′ ← 2R′, reset the step-size, and repeat. This degrades the performance of the algorithm by at
most a constant factor. To see why, note that due to doubling, the k-th epoch is of duration 2k, if R′ = 1.
Suppose the true unknown horizon length is R. Let J be the last epoch before the horizon length is exceeded,
i.e., 2J+1 > R, implying 2J > R/2. But since the duration of the last epoch is precisely 2J , we conclude that
the last epoch contains at least half the total number of samples R. Consequently, long story short, the price
of not knowing R a priori is a degradation by a constant factor that is no worse than 2.

To corroborate our developed theory, we provide various simulations in Appendix D.

5 Challenges and Proof Sketch

Although the analysis of Markovian sampling has appeared in prior SA/RL work, arriving at our main result
in Theorem 2 is highly non-trivial, and requires overcoming several technical challenges arising from the
interplay between complex statistical correlations, drift effects due to heterogeneity, and multiple local update
steps. In what follows, we elaborate on these challenges by explaining why existing proof techniques are
inadequate for our specific setting.

• Comparison with homogeneous federated RL/SA papers. The first paper to analyze the effects of Markov
sampling in FRL was Khodadadian et al. (2022), followed by Woo et al. (2023). In Khodadadian et al. (2022),
the authors consider a homogeneous setting, where all agents’ operators have the same root, and as a result,
a standard FedAvg-style local update rule suffices. Even so, the analysis in this paper is quite involved and
proceeds by using the concept of Generalized Moreau Envelopes. It is not at all apparent whether such a
proof technique could be extended to handle the bias-corrected local update scheme in our paper, subject to
additional drift effects introduced by heterogeneity in agents’ operators. Our proof, in contrast, does not
require going through the framework of Generalized Moreau Envelopes, and analyzes a different local update
scheme altogether (relative to that in Khodadadian et al. (2022) and Woo et al. (2023)).

While the analysis in Woo et al. (2023) sharpens some of the bounds in Khodadadian et al. (2022), the
results are derived only for tabular Q-learning without any function approximation. Even in a single-agent
setting, it is well understood that an extension from the tabular setting to the function-approximation setting
is highly non-trivial, and several papers have focused precisely on this extension. In particular, for the
tabular setting, a relatively straightforward argument (requiring no more than a couple of lines) suffices to
establish that the Q-table iterates remain uniformly bounded throughout the course of the algorithm; see, for
instance, Guannan Qu (2020). This fact is leveraged throughout the analysis. Unfortunately, under function
approximation, it is no longer the case (in general) that the iterates are uniformly bounded deterministically
(with a non-vacuous upper bound). This complicates the analysis significantly since each of the terms in the
R.H.S. of our main recursion in Lemma 4 are iterate-dependent and cannot just be replaced by uniformly
bounded perturbations (as is possible in a tabular setting).

• Comparison with heterogeneous federated RL/SA papers. The only two papers we know of that consider
finite-time analysis of heterogeneous FRL algorithms under function approximation are Zhang et al. (2024)
and Wang et al. (2024b). Our analysis departs from both these papers in two main ways. First, as we
explained earlier in our paper, Zhang et al. (2024) and Wang et al. (2024b) study FedAvg-style algorithms
where each agent uses just its own local operator to update model parameters between communication rounds.
As we show in Proposition 1, such algorithms converge to incorrect fixed points. In contrast, we study a
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Figure 1: Illustration of the different statistical correlations in our heterogeneous federated SA setting.

different algorithm altogether, the dynamics of which are not the same as the ones in Zhang et al. (2024)
and Wang et al. (2024b).

On a more technical note, both Zhang et al. (2024) and Wang et al. (2024b) consider a projection step in their
algorithm to ensure that the iterates remain uniformly bounded. This considerably simplifies the analysis
since the Markovian bias term is iterate-dependent, and projection ensures that such a term is essentially a
uniformly bounded perturbation. In sharp contrast, we make no such assumption of a projection step, and, as
such, we do not have the luxury of a uniformly bounded Markovian bias. Thus, a much finer analysis relative
to Zhang et al. (2024) and Wang et al. (2024b) is needed to control each of the iterate-dependent “error”
terms on the R.H.S. of our main one-step recursion in Lemma 4 (established in Appendix C). In addition, our
proof also requires establishing that no heterogeneity-induced bias shows up in our final bound (unlike Zhang
et al. (2024) and Wang et al. (2024b)).

• Comparison with single-agent RL/SA papers. Although Markovian sampling has been studied in single-agent
RL/SA, there are considerable challenges in extending such results to our specific setting. As illustrated in
Figure 1, our analysis has to account for two types of data correlations: (i) temporal correlations in the data
for any given agent, and (ii) correlations induced by exchanging data across agents. For each agent i, the
observation o

(t)
i,ℓ is statistically dependent on all prior observations for itself since they are all part of a single

Markovian trajectory. Such an issue does not arise in the standard FL setting where one assumes i.i.d. data
over time. Additionally, the local parameter θ

(t)
i,ℓ is jointly influenced by all the parameters of all agents up to

the beginning of round t, due to communication. Finally, all such parameters inherit randomness from prior
Markovian observations. In short, combining information generated by heterogeneous Markov chains creates
complex spatial and temporal correlations.

Moreover, relative to single-agent RL papers, we need to establish a finer result involving the linear speedup
effect. To achieve this, we need to show that the Markovian bias term can be upper-bounded by terms that
are either higher-order in the step-size or scaled down by the number of agents. This is the hardest part
of our analysis, and to our knowledge, no other paper in FRL has been able to establish such a
result without making simplifying assumptions of projection steps.

• Comparison with Mangold et al. (2024). In our discussion on more related work in Section 1, we have
already explained why the nonlinearity of operators in our setting precludes the approach pursued in the
work of Mangold et al. (2024). There is one other crucial difference with this work. In Mangold et al. (2024),
the bias-corrected algorithm used for linear SA is studied only under i.i.d. sampling; thus, our work is
the first to analyze the effects of control variates under Markov sampling. For vanilla SA, the
approach in Mangold et al. (2024) to control Markov sampling is the “blocking technique”, where one simply
discards several data points by sub-sampling. By a coupling argument, the analysis then boils down to that
for i.i.d. sampling. In sharp contrast, our approach does not discard any data points, making the Markovian
analysis significantly more challenging since the samples used to generate iterates are temporally correlated.

Summary. To sum up, our discussion above highlights that no prior analysis is enough to subsume the
specific challenges that arise in our setting from a combination of function approximation, nonlinear
operators with heterogeneous roots, the lack of projection steps, and the need to establish a linear speedup
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effect despite complex correlations. As such, we believe that the analysis framework developed in our paper
can serve as a template for reasoning about more involved complex SA/RL schemes in the future.

Note. For notational simplicity, we omit the observation variable in the operator in subsequent analysis
when the time-index of the observation matches with that of the parameter, i.e., we use the shorthand
Gi(θ(t)

i,ℓ , o
(t)
i,ℓ ) := Gi(θ(t)

i,ℓ ). The observation variable is made explicit only when its time-index differs from that
of the associated parameter.

Proof Sketch. We now provide a high-level technical overview of our analysis; the details are deferred to
Appendix C. Our first step is to establish a one-step recursion that captures the progress made by FedHSA in
each communication round (Lemma 4 in Appendix C). Up to a higher order term in α, the R.H.S. of this
recursion comprises four terms: a “good” term that leads to a contraction in the mean-square error, a “noise
variance” term that gets scaled down by M , a “drift” term due to heterogeneity, and a bias term due to
Markov sampling. The challenging part of this result is showing the variance-reduction effect under Markov
sampling; to do so, we carefully exploit the geometric mixing properties of the agents’ Markov chains and
Assumption 4.

Next, to control the drift effect due to heterogeneity, we show in Lemma 1 (in Appendix A) that if η ≤ 1/(LH),
then the following is true deterministically:∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2
≤ O(η2L2H2)

(∥∥∥θ̄(t) − θ⋆
∥∥∥2

2
+ σ2

)
.

To build intuition, notice that when there is no noise, i.e., σ = 0, if θ̄(t) = θ⋆, meaning the iterate at the
start of the round is at the desired value, there would be no client-drift at all, precisely as desired. The most
challenging part of our analysis pertains to controlling a Markovian bias term of the following form:

Tbias =: E
[〈

θ̄(t) − θ⋆,
2α

MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ )− Ḡi(θ(t)
i,ℓ )
)〉]

,

that arises due to temporal correlations in data. Such a term vanishes in the standard FL setting where one
assumes i.i.d. data. In the heterogeneous FRL setting in Wang et al. (2024b) and Zhang et al. (2024), such a
term is simplified by assuming a projection step. Since we do not assume a projection step in FedHSA, we
cannot benefit from such simplifications. Nonetheless, we establish the following key result.

Claim (Informal). (Markovian Bias Control). Under the conditions of Theorem 2, we have:

Tbias ≤
(

αµ

2 +O
(

τ̄L2α2 + L4α3

µ

))
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L4σ2α3

µ
+ τ̄L2σ2α2

MH(1− ρ)

)
.

A formal version of this claim appears as Lemma 6 in Appendix C. For the Markovian sampling result to
closely resemble the i.i.d. case, we need to crucially ensure that (i) the iterate-dependent term in the bias
can be dominated by the contractive “good” term, and (ii) the noise terms are either O(α3), or O(α2/M),
i.e., the noise terms need to be either higher-order in α or exhibit an inverse scaling with M , to preserve the
linear speedup effect. In the single-agent case (Bhandari et al., 2018; Srikant & Ying, 2019), one need not
worry about linear speedups, and, as such, the corresponding analysis is much less involved. In summary, to
arrive at our desired bounds, we need to significantly generalize known analysis techniques for both single-
and multi-agent SA under Markov sampling.

6 Conclusion

We studied a general federated stochastic approximation problem subject to heterogeneity in the agents’ local
operators, and temporally correlated Markovian data at each agent. For this setting, we first showed that
standard local SA algorithms may fail to converge to the right point. Based on this observation, we developed
a new class of heterogeneity-aware federated SA algorithms that simultaneously (i) guarantee convergence to
the right point while matching centralized rates, and (ii) enjoy linear speedups in sample-complexity that
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are not degraded by the presence of an additive heterogeneity-induced bias term. Our results subsume the
standard federated optimization setting and have implications for a broad class of SA-based RL algorithms.
There are various interesting questions that we plan to explore in the future:

1. One natural question is to ask how much communication is necessarily needed to achieve optimal
speedups in sample-complexity?

2. At the moment, our bounds scale with the mixing time of the slowest mixing Markov chain among
the agents. Can this bound be further refined?

3. Can the techniques developed in this paper be employed for more complex SA-based RL algorithms
with nonlinear function approximators? The extension to two-time-scale algorithms is also of interest.

4. In our analysis, we leveraged the “strong-monotonicity" condition in Assumption 2 to obtain con-
tractive terms that led to overall progress towards the desired point in each iteration. However,
in the context of say stochastic non-convex optimization, such an assumption may not hold. It is
an interesting direction (even in the single-agent) case to explore the relaxation of Assumption 2
under Markov sampling, without making further simplifying assumptions such as a PL condition or
projection steps or bounded gradients.
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A Basic Results

In this section, we will compile some known facts and derive certain preliminary results that will play a key
role in our subsequent analysis of FedHSA. Before we proceed, for the reader’s convenience, we assemble all
relevant notation in Table 2.

Table 2: Notation

Notation Definition

[N ] The set of N numbers from 1 to N

Mi Markov chain of agent i

S,Rd Common finite state space of agents’ Markov chains, and d-dimensional real space
s Instance of state

oi,t, o
(t)
i,ℓ Observation of agent i at time-step t, and observation of agent i in local iteration ℓ of round t

µi stationary distribution of Mi

dT V Total variation distance
θ̄(t), θ

(t)
i,ℓ Global parameter at round t and local parameter of agent i in local iteration ℓ of round t

Gi, Ḡi Noisy and true local operators of agent i

G, Ḡ Noisy and true global operators
θ⋆, θ⋆

i Root of global operator Ḡ(θ), and root of local operator Ḡi(θ) of agent i

σi, σ Parameters capturing the effect of noise, with σ := max{σ1, · · · , σM}
ρi, ρ Parameters capturing the mixing-time property, with ρ := max{ρ1, · · · , ρM}
L, µ Lipschitz constant and strong-monotonicity constant

η, αg, α Local step-size, global step-size, and effective step-size
O, Õ Big-O notation hiding universal constants, and big-O notation hiding poly-logarithmic terms
τ, τ̄ Functions capturing the mixing time and the slowest mixing time defined as τ̄ := τ(α2)
F (t)

ℓ Filtration containing all randomness prior to round t and local iteration ℓ across all agents

• Given m vectors (x1, · · · , xm) ∈ Rd × · · · × Rd, the following holds true by a simple application of
Jensen’s inequality: ∥∥∥∥∥

m∑
i=1

xi

∥∥∥∥∥
2

2

≤ m

m∑
i=1
∥xi∥2

2 . (15)

• Given m vectors (x1, · · · , xm) ∈ Rd × · · · × Rd, the following is a generalization of the triangle
inequality: ∥∥∥∥∥

m∑
i=1

xi

∥∥∥∥∥
2

≤
m∑

i=1
∥xi∥2 . (16)

• Given any two vectors (x, y) ∈ Rd × Rd, the following holds for any ξ > 0:

⟨x, y⟩ ≤ ξ

2 ∥x∥
2
2 + 1

2ξ
∥y∥2

2 . (17)

Proof of Proposition 1 We first provide the proof of Proposition 1. Before we start, recall from Section 2
that the local update formula is

θ
(t)
i,ℓ+1 = θ

(t)
i,ℓ + ηḠi(θ(t)

i,ℓ ), ℓ = 0, 1, . . . , H − 1, (18)
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where Ḡi(θ) = Āiθ − b̄i and H = 2. Also recall that the aggregation formula at the server is

θ̄(t+1) = 1
M

∑
i∈[M ]

θ
(t)
i,H . (19)

Proof. By definition of Ḡi, we can write

θ
(t)
i,ℓ+1 = θ

(t)
i,ℓ + η

(
Āiθ

(t)
i,ℓ − b̄i

)
=
(
I + ηĀi

)
θ

(t)
i,ℓ − ηb̄i

=
(
I + ηĀi

) (
θ

(t)
i,ℓ − θ⋆

)
+ θ⋆ + η

(
Āiθ

⋆ − b̄i

)
,

(20)

which yields
θ

(t)
i,ℓ+1 − θ⋆ =

(
I + ηĀi

) (
θ

(t)
i,ℓ − θ⋆

)
+ η

(
Āiθ

⋆ − b̄i

)
. (21)

Iterating Eq. (21) for H = 2 steps, we obtain

θ
(t)
i,2 − θ⋆ =

(
I + ηĀi

)2 (
θ

(t)
i,0 − θ⋆

)
+ η

(
I +

(
I + ηĀi

)) (
Āiθ

⋆ − b̄i

)
. (22)

Therefore, by Eq. (19) and the fact that θ
(t)
i,0 = θ̄(t) we have

θ̄(t+1) − θ⋆ =
(

1
M

M∑
i=1

(
I + ηĀi

)2
)(

θ̄(t) − θ⋆
)

+ η

(
1

M

M∑
i=1

(
2I + ηĀi

) (
Āiθ

⋆ − b̄i

))
. (23)

Using the fact that Āθ⋆ − b̄ = 0 and b̄i = Āiθ
⋆
i , we have

1
M

M∑
i=1

(
2I + ηĀi

) (
Āiθ

⋆ − b̄i

)
= η

M

M∑
i=1

(
Ā2

i (θ⋆ − θ⋆
i )
)

. (24)

Also, we have
1

M

M∑
i=1

(
I + ηĀi

)2 = 1
M

M∑
i=1

(
I + 2ηĀi + η2Ā2

i

)
= I + 2ηĀ + η2Ā′,

(25)

where recall that Ā = (1/M)
∑

i∈[M ] Āi and Ā′ = (1/M)
∑

i∈[M ] Ā2
i .

Now, defining et := θ̄(t) − θ⋆, and combining Eq. (23) - Eq. (25), we obtain

et+1 = Fet + v̄, ∀t ≥ 0, (26)

where F = I + 2ηĀ + η2Ā′ and v̄ = (η2/M)
∑M

i=1
(
Ā2

i (θ⋆ − θ⋆
i )
)
. We then conclude that Eq. (26) represents

a linear dynamical system in discrete time with state transition matrix F .

For stability, we need F to be Schur-stable. Suppose η is chosen to ensure that F is Schur-stable. Now,
applying Eq.(26) iteratively yields

et = F te0 +
(

t−1∑
k=0

F k

)
v̄. (27)

Taking limits on both sides and using the fact that F is Schur-stable, we obtain

lim
t→∞

F te0 = 0, lim
t→∞

(
t−1∑
k=0

F k

)
= (I − F )−1 = −1

η

(
2Ā + ηĀ′)−1

. (28)
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Therefore,

lim
t→∞

et = η

M

(
2Ā + ηĀ′)−1

M∑
i=1

(
Ā2

i (θ⋆
i − θ⋆)

)
. (29)

We have thus proved that the error et is non-vanishing.

The following corollary will come in handy at several points in our analysis.
Corollary 2. Given Assumption 1, for any given θ, o, the following holds for all i ∈ [M ]:∥∥Gi(θ, o)− Ḡi(θ)

∥∥
2 ≤ O (L) (∥θ − θ⋆∥2 + σ)

∥Gi(θ, o)∥2 ≤ O (L) (∥θ − θ⋆∥2 + σ)∥∥Ḡi(θ)
∥∥

2 ≤ O (L) (∥θ − θ⋆∥2 + σ)
(30)

Proof. ∥∥Gi(θ, o)− Ḡi(θ)
∥∥

2 ≤ ∥Gi(θ, o)∥2 +
∥∥Ḡi(θ)

∥∥
2

≤ 2L (∥θ∥2 + σ)
= 2L (∥θ − θ⋆∥2 + ∥θ⋆∥2 + σ)
≤ 2L (∥θ − θ⋆∥2 + 2σ) .

(31)

Here, the second inequality follows from (5), and the last inequality uses the definition of σ. The rest two
bounds can be obtained similarly.

We also state upfront the following lemma that bounds the drift term
∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2
. Notably, this result

holds deterministically, i.e., it applies to both i.i.d. and Markovian sampling.
Lemma 1. Suppose Assumptions 1 and 3 hold. By selecting η ≤ 1/(LH), the following is true for FedHSA:∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2
≤ O(η2L2H2)

(∥∥∥θ̄(t) − θ⋆
∥∥∥2

2
+ σ2

)
. (32)

Proof of Lemma 1.

Proof. A high-level intuition for proving this lemma is to use the update rule of FedHSA in tandem with
Corollary 2 to obtain a recursion for the term

∥∥∥θ
(t)
i,ℓ − θ̄(t)

∥∥∥
2
. With that aim in mind, from (10) we can write∥∥∥θ

(t)
i,ℓ+1 − θ̄(t)

∥∥∥
2

=
∥∥∥θ

(t)
i,ℓ − θ̄(t) + η

(
Gi(θ(t)

i,ℓ ) + G(θ̄(t))−Gi(θ̄(t))
)∥∥∥

2

=
∥∥∥θ

(t)
i,ℓ − θ̄(t) + η

(
Gi(θ(t)

i,ℓ , o
(t)
i,ℓ )−Gi(θ̄(t), o

(t)
i,ℓ )
)

+ ηG(θ̄(t)) + ηGi(θ̄(t), o
(t)
i,ℓ )− ηGi(θ̄(t), o

(t)
i,0)
∥∥∥

2

≤
∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥
2

+
∥∥∥η
(

Gi(θ(t)
i,ℓ , o

(t)
i,ℓ )−Gi(θ̄(t), o

(t)
i,ℓ )
)∥∥∥

2
+
∥∥∥ηG(θ̄(t)) + ηGi(θ̄(t), o

(t)
i,ℓ )− ηGi(θ̄(t), o

(t)
i,0)
∥∥∥

2

≤
∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥
2

+ ηL
∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥
2

+
∥∥∥ηG(θ̄(t))

∥∥∥
2

+
∥∥∥ηGi(θ̄(t), o

(t)
i,ℓ )
∥∥∥

2
+
∥∥∥ηGi(θ̄(t), o

(t)
i,0)
∥∥∥

2

≤ (1 + ηL)
∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥
2

+O(ηL)
(∥∥∥θ̄(t) − θ⋆

∥∥∥
2

+ σ
)

,

(33)
where the in the second last inequality we used Assumption 1, and the last inequality follows from Corollary 2.

Applying (33) iteratively, we obtain∥∥∥θ
(t)
i,ℓ − θ̄(t)

∥∥∥
2
≤ (1 + ηL)ℓ

∥∥∥θ
(t)
i,0 − θ̄(t)

∥∥∥
2

+
ℓ−1∑
j=0

(1 + ηL)jO(ηL)
(∥∥∥θ̄(t) − θ⋆

∥∥∥
2

+ σ
)

≤ H(1 + ηL)HO(ηL)
(∥∥∥θ̄(t) − θ⋆

∥∥∥
2

+ σ
)

≤ O(ηLH)
(∥∥∥θ̄(t) − θ⋆

∥∥∥
2

+ σ
)

.

(34)
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Here, the second inequality holds because θ
(t)
i,0 = θ̄(t) and ℓ ≤ H. The last one follows by choosing η ≤ 1/(LH),

and thus H(1 + ηL)HO(ηL) ≤ (1 + 1/H)HO (ηLH) ≤ O (ηLH), where in the last inequality we used
(1 + 1/x)x ≤ e,∀x > 0. Squaring both sides of (34) yields the final form of Lemma 1.

Lemma 1 states that if we select αg = 1 and α = Hαgη, we can then bound the drift term
∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2
in

the form of the squared norm of the distance of the global iterate to the global root plus the effect of noise,
damped by the factor α2.
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B Analysis of FedHSA under I.I.D. Sampling

We begin our analysis of the FedHSA algorithm’s convergence by examining its performance in a simplified
i.i.d. scenario. Specifically, we assume that for each agent i ∈ [M ], its observation oi,t at time step t is
drawn in an i.i.d. manner from its stationary distribution µi. Our analysis of the i.i.d. setting will provide a
foundational understanding of the finite-time behavior of FedHSA. In turn, it will offer a smoother transition
to the more complex case of Markovian sampling.

For our subsequent analysis, we remind the reader again of the shorthand Gi(θ(t)
i,ℓ , o

(t)
i,ℓ ) := Gi(θ(t)

i,ℓ ) used
whenever the observation variable and the parameter share the same time-index.

We start by introducing the following lemma, which provides a recursion for the progress towards θ⋆ made by
FedHSA in each communication round.

Lemma 2. Suppose Assumption 1 - 3 and 4 hold. Also, suppose the data samples of each agent i ∈ [M ] are
drawn i.i.d. from the stationary distribution µi of its underlying Markov chain Mi. Then, the following holds
for FedHSA ∀t ≥ 0:

E
[∥∥∥θ̄(t+1) − θ⋆

∥∥∥2

2

]
≤
(
1− αµ +O

(
α2L2))E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
α2L2σ2

MH

)
+O

(
αL2

µMH
+ α2L2

MH

) M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]
.

(35)

Proof. From the update rule of FedHSA in Eq. (11) and the definition of G(θ̄(t)), we obtain

θ̄(t+1) − θ̄(t) = αgη

M

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ )−Gi(θ̄(t), o
(t)
i,0) + G(θ̄(t))

)
= αgη

M

M∑
i=1

H−1∑
ℓ=0

Gi(θ(t)
i,ℓ ).

(36)

Using the definition of the effective step-size α = Hηαg, we can then write the squared norm of the distance
of the global iterate to the optimum θ∗ as

∥∥∥θ̄(t+1) − θ⋆
∥∥∥2

2
=
∥∥∥∥∥θ̄(t) − θ⋆ + α

MH

M∑
i=1

H−1∑
ℓ=0

Gi(θ(t)
i,ℓ )
∥∥∥∥∥

2

2

=
∥∥∥θ̄(t) − θ⋆

∥∥∥2

2
+

T1︷ ︸︸ ︷〈
θ̄(t) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

Gi(θ(t)
i,ℓ )
〉

+

T2︷ ︸︸ ︷∥∥∥∥∥ α

MH

M∑
i=1

H−1∑
ℓ=0

Gi(θ(t)
i,ℓ )
∥∥∥∥∥

2

2

.

(37)
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To bound this equation in expectation, it then boils down to bounding the expectations of the terms T1 and
T2 separately. We proceed to do this next.

E[T1] (a)= 2αE

[〈
θ̄(t) − θ⋆,

1
MH

M∑
i=1

H−1∑
ℓ=0

Ḡi(θ(t)
i,ℓ )
〉]

= 2αE

[〈
θ̄(t) − θ⋆,

1
MH

M∑
i=1

H−1∑
ℓ=0

(
Ḡi(θ(t)

i,ℓ )− Ḡi(θ̄(t))
)〉]

+ 2αE

[〈
θ̄(t) − θ⋆,

1
MH

M∑
i=1

H−1∑
ℓ=0

Ḡi(θ̄(t))
〉]

= 2αE

[〈
θ̄(t) − θ⋆,

1
MH

M∑
i=1

H−1∑
ℓ=0

(
Ḡi(θ(t)

i,ℓ )− Ḡi(θ̄(t))
)〉]

+ 2αE
[〈

θ̄(t) − θ⋆, Ḡ(θ̄(t))
〉]

(b)
≤ 2α

MH

M∑
i=1

H−1∑
ℓ=0

E
[〈

θ̄(t) − θ⋆, Ḡi(θ(t)
i,ℓ )− Ḡi(θ̄(t))

〉]
− 2αµE

[∥∥∥θ̄(t) − θ⋆
∥∥∥2

2

]

≤ α

MH

M∑
i=1

H−1∑
ℓ=0

E
[
µ
∥∥∥θ̄(t) − θ⋆

∥∥∥2

2
+ 1

µ

∥∥∥Ḡi(θ(t)
i,ℓ )− Ḡi(θ̄(t))

∥∥∥2

2

]
− 2αµE

[∥∥∥θ̄(t) − θ⋆
∥∥∥2

2

]
(c)
≤ α

MH

M∑
i=1

H−1∑
ℓ=0

E
[
µ
∥∥∥θ̄(t) − θ⋆

∥∥∥2

2
+ L2

µ

∥∥∥θ
(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]
− 2αµE

[∥∥∥θ̄(t) − θ⋆
∥∥∥2

2

]

= −αµE
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+ αL2

µMH

M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]
,

(38)
where (b) follows from Assumption 2; (c) is a result of Assumption 1. Before we proceed, we define F (t)

ℓ

as the σ-algebra capturing all the randomness up to the ℓ-th local iteration of round t. Building on this
definition, we reason about (a) separately as follows:

E[T1] = 2αE

[〈
θ̄(t) − θ⋆,

1
MH

M∑
i=1

H−1∑
ℓ=0

Gi(θ(t)
i,ℓ )
〉]

= 2αE

[〈
θ̄(t) − θ⋆,

1
MH

M∑
i=1

H−2∑
ℓ=0

Gi(θ(t)
i,ℓ )
〉]

+ 2αE

[〈
θ̄(t) − θ⋆,

1
MH

M∑
i=1

Gi(θ(t)
i,H−1)

〉]
(a1)= 2αE

[〈
θ̄(t) − θ⋆,

1
MH

M∑
i=1

H−2∑
ℓ=0

Gi(θ(t)
i,ℓ )
〉]

+ 2αE

[
E

[〈
θ̄(t) − θ⋆,

1
MH

M∑
i=1

Gi(θ(t)
i,H−1)

〉∣∣∣∣∣F (t)
H−2

]]
(a2)= 2αE

[〈
θ̄(t) − θ⋆,

1
MH

M∑
i=1

H−2∑
ℓ=0

Gi(θ(t)
i,ℓ )
〉]

+ 2αE

[〈
θ̄(t) − θ⋆,

1
MH

M∑
i=1

E
[
Gi(θ(t)

i,H−1)
∣∣∣F (t)

H−2

]〉]
(a3)= 2αE

[〈
θ̄(t) − θ⋆,

1
MH

M∑
i=1

H−2∑
ℓ=0

Gi(θ(t)
i,ℓ )
〉]

+ 2αE

[〈
θ̄(t) − θ⋆,

1
MH

M∑
i=1

Ḡi(θ(t)
i,H−1)

〉]
.

(39)
Here, (a1) follows from the tower property of expectations; (a2) holds from the fact that θ̄(t) is deterministic
conditioned on F (t)

H−2, and (a3) is a result of the i.i.d. assumption in tandem with the fact that θ
(t)
i,H−1 is

deterministic conditioned on F (t)
H−2. We can repeat this process by iteratively conditioning on F (t)

H−3, ...,F (t)
−1

and arrive at (a), where F (t)
−1 is all the randomness up to round t before any local steps are taken.
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We now move on to bound the expectation of T2.

E[T2] = α2E

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ )− Ḡi(θ(t)
i,ℓ )
)

+ 1
MH

M∑
i=1

H−1∑
ℓ=0

Ḡi(θ(t)
i,ℓ )
∥∥∥∥∥

2

2


≤ 2α2E

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ )− Ḡi(θ(t)
i,ℓ )
)∥∥∥∥∥

2

2

+ 2α2E

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

Ḡi(θ(t)
i,ℓ )
∥∥∥∥∥

2

2


(a)
≤ 2α2E

[
1

M2H2

M∑
i=1

H−1∑
ℓ=0

∥∥∥Gi(θ(t)
i,ℓ )− Ḡi(θ(t)

i,ℓ )
∥∥∥2

2

]

+ 2α2E

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

(
Ḡi(θ(t)

i,ℓ )− Ḡi(θ̄(t))
)

+ 1
MH

M∑
i=1

H−1∑
ℓ=0

Ḡi(θ̄(t))
∥∥∥∥∥

2

2


(b)
≤ 2α2E

[
1

M2H2

M∑
i=1

H−1∑
ℓ=0
O
(
L2)(∥∥∥θ

(t)
i,ℓ − θ⋆

∥∥∥2

2
+ σ2

)]
+ 4α2E

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

(
Ḡi(θ(t)

i,ℓ )− Ḡi(θ̄(t))
)∥∥∥∥∥

2

2


+ 4α2E

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

Ḡi(θ̄(t))
∥∥∥∥∥

2

2


≤ 2α2E

[
1

M2H2

M∑
i=1

H−1∑
ℓ=0
O(L2)

(∥∥∥θ
(t)
i,ℓ − θ̄(t)

∥∥∥2

2
+
∥∥∥θ̄(t) − θ⋆

∥∥∥2

2
+ σ2

)]

+ 4α2

MH

M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥Ḡi(θ(t)

i,ℓ )− Ḡi(θ̄(t))
∥∥∥2

2

]
+ 4α2E

[∥∥∥Ḡ(θ̄(t))
∥∥∥2

2

]
(c)
≤ 2α2

M2H2

M∑
i=1

H−1∑
ℓ=0
O(L2)E

[(∥∥∥θ
(t)
i,ℓ − θ̄(t)

∥∥∥2

2
+
∥∥∥θ̄(t) − θ⋆

∥∥∥2

2
+ σ2

)]
+ 4α2L2

MH

M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]
+ 4α2L2E

[∥∥∥θ̄(t) − θ⋆
∥∥∥2

2

]
≤ O

(
α2L2

M2H2 + α2L2

MH

) M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]
+O

(
α2L2 + α2L2

MH

)
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
α2L2σ2

MH

)

≤ O
(

α2L2

MH

) M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]
+O

(
α2L2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
α2L2σ2

MH

)
,

(40)
where (b) uses Corollary 2, and (c) is a result of Assumption 1. We provide the rationale behind (a) as follows.
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The second term in inequality (a) is a direct result of add-and-subtract. To inspect the first term, note that

E

∥∥∥∥∥
M∑

i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ )− Ḡi(θ(t)
i,ℓ )
)∥∥∥∥∥

2

2


= E

[
M∑

i=1

H−1∑
ℓ=0

∥∥∥Gi(θ(t)
i,ℓ )− Ḡi(θ(t)

i,ℓ )
∥∥∥2

2

]
+ 2

M∑
j=1

∑
m<n

E
[〈

Gj(θ(t)
j,m)− Ḡj(θ(t)

j,m), Gj(θ(t)
j,n)− Ḡj(θ(t)

j,n)
〉]

+ 2
∑
j<k

H−1∑
m=0

E
[〈

Gj(θ(t)
j,m)− Ḡj(θ(t)

j,m), Gk(θ(t)
k,m)− Ḡk(θ(t)

k,m)
〉]

+ 2
∑
j<k

∑
m<n

E
[〈

Gj(θ(t)
j,m)− Ḡj(θ(t)

j,m), Gk(θ(t)
k,n)− Ḡk(θ(t)

k,n)
〉]

= E

[
M∑

i=1

H−1∑
ℓ=0

∥∥∥Gi(θ(t)
i,ℓ )− Ḡi(θ(t)

i,ℓ )
∥∥∥2

2

]
+ 2

M∑
j=1

∑
m<n

E
[
E
[〈

Gj(θ(t)
j,m)− Ḡj(θ(t)

j,m), Gj(θ(t)
j,n)− Ḡj(θ(t)

j,n)
〉 ∣∣∣F (t)

n−1

]]

+ 2
∑
j<k

H−1∑
m=0

E
[
E
[〈

Gj(θ(t)
j,m)− Ḡj(θ(t)

j,m), Gk(θ(t)
k,m)− Ḡk(θ(t)

k,m)
〉 ∣∣∣F (t)

m−1

]]
+ 2

∑
j<k

∑
m<n

E
[
E
[〈

Gj(θ(t)
j,m)− Ḡj(θ(t)

j,m), Gk(θ(t)
k,n)− Ḡk(θ(t)

k,n)
〉 ∣∣∣F (t)

n−1

]]

= E

[
M∑

i=1

H−1∑
ℓ=0

∥∥∥Gi(θ(t)
i,ℓ )− Ḡi(θ(t)

i,ℓ )
∥∥∥2

2

]
,

(41)
where the first equality holds from unrolling the squared norm, and the second equality follows from the
tower property of expectation. We analyze the terms separately in the last equality.

For the first cross-term, we can write

2
M∑

j=1

∑
m<n

E
[
E
[〈

Gj(θ(t)
j,m)− Ḡj(θ(t)

j,m), Gj(θ(t)
j,n)− Ḡj(θ(t)

j,n)
〉 ∣∣∣F (t)

n−1

]]

= 2
M∑

j=1

∑
m<n

E
[〈

Gj(θ(t)
j,m)− Ḡj(θ(t)

j,m),E
[
Gj(θ(t)

j,n)− Ḡj(θ(t)
j,n)
∣∣∣F (t)

n−1

]〉]
= 0.

(42)

The first inequality holds from the definition of F (t)
n−1. The second one holds because θ

(t)
j,n is deterministic

conditioned on F (t)
n−1, and the only randomness comes from o

(t)
j,n in Gj(θ(t)

j,n). Due to the i.i.d. sampling
assumption, we readily know that E

[
Gj(θ(t)

j,n)
]

= Ḡj(θ(t)
j,n) for a fixed θ

(t)
j,n, and the cross-term then equals 0.

For the second cross-term, we can write

2
∑
j<k

H−1∑
m=0

E
[
E
[〈

Gj(θ(t)
j,m)− Ḡj(θ(t)

j,m), Gk(θ(t)
k,m)− Ḡk(θ(t)

k,m)
〉 ∣∣∣F (t)

m−1

]]
(i)= 2

∑
j<k

H−1∑
m=0

E
[〈

E
[
e

(t)
j,m

∣∣F (t)
m−1

]
,E
[
e

(t)
k,m

∣∣F (t)]
m−1

]〉]
(ii)= 0,

(43)

where we define e
(t)
i,ℓ := Gi(θ(t)

i,ℓ ) − Ḡi(θ(t)
i,ℓ ). For (i), we used the fact that θ

(t)
j,m and θ

(t)
k,m are deterministic

conditioned on F (t)
m−1. So, due to Assumption 4, e

(t)
j,m and e

(t)
k,m are conditionally independent. For (ii), we

used the i.i.d. sampling assumption.
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The third cross-term can be proved to be 0 similarly as for the second one.

Taking expectation on both sides of (37), and plugging in the bounds from (38) and (40), we obtain:

E
[∥∥∥θ̄(t+1) − θ⋆

∥∥∥2

2

]
≤
(
1− αµ +O

(
α2L2))E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]

+

DRIF T︷ ︸︸ ︷(
αL2

µMH
+ α2L2

MH

) M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]
+O

(
α2L2σ2

MH

)
.

(44)

The proof of Lemma 2 is then complete.

Lemma 2 breaks the bounding of the recursion E
[∥∥θ̄(t+1) − θ⋆

∥∥2
2

]
into three parts: (i) the “good term”(

1− αµ +O
(
α2L2))E [∥∥θ̄(t) − θ⋆

∥∥2
2

]
, where we can select α small enough such that O

(
α2L2) can be

absorbed by the negative term −αµ, ensuring that the distance to the optimum θ⋆ decreases; (ii) the effect of
noise O

(
α2L2σ2/(MH)

)
which demonstrates the benefit of collaboration (since it gets scaled down by M),

and (iii) the drift term DRIFT that accounts for the client drift caused by environmental heterogeneity and
local steps. We can further bound this term by plugging in Lemma 1, and arrive at the following result of
Theorem 1.

Proof of Theorem 1.

Proof. Plugging the bound from Lemma 1 into the bound from Lemma 2, we obtain:

E
[∥∥∥θ̄(t+1) − θ⋆

∥∥∥2

2

]
≤
(
1− αµ +O

(
α2L2))E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
α2L2σ2

MH

)
+O

(
αL2

µMH
+ α2L2

MH

)
MHα2L2

(
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+ σ2

)
≤
(

1− αµ +O
(
α2L2)+O

(
α4L4)+O

(
α3L4

µ

))
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
α2L2σ2

MH
+ α3L4σ2

µ
+ α4L4σ2

)
≤
(
1− αµ +O

(
α2L2))E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
α2L2

MH
+ α3L4

µ

)
σ2.

(45)

Here, the first inequality follows from the definition of α = Hηαg. The last one is a result of the fact that
α ≤ µ/L2, L ≥ 1, µ ≤ 1, such that α4L4 ≤ α2L2, α3L4/µ ≤ α2L2, and α4L4σ2 ≤ α3L4σ2/µ.

Applying Eq. (45) iteratively T times yields

E
[∥∥∥θ̄(T ) − θ⋆

∥∥∥2

2

]
≤
(

1− αµ

2

)T ∥∥∥θ̄(0) − θ⋆
∥∥∥2

2
+O

(
α2L2

MH
+ α3L4

µ

)
σ2

T −1∑
t=0

(
1− αµ

2

)t

≤ exp
(
−αµ

2 T
)∥∥∥θ̄(0) − θ⋆

∥∥∥2

2
+O

(
α2L2

MH
+ α3L4

µ

)
2σ2

αµ

≤ exp
(
−µ

2 αT
)∥∥∥θ̄(0) − θ⋆

∥∥∥2

2
+O

(
αL2

µMH
+ α2L4

µ2

)
σ2.

(46)

Here, the first inequality holds since α ≤ µ/(2CL2) where C is the dominant constant in O
(
α2L2), and

thus Cα2L2 ≤ αµ/2. The second inequality holds from the fact that 1− x ≤ exp (−x). The proof is then
complete.

Thus far, we have demonstrated that by selecting α small enough so that the term α2L4/µ2 is subsumed
by αL2/(µMH), Theorem 1 mirrors the result of the single-agent case as seen in Eq. (3) under i.i.d.
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sampling. Additionally, it is important to highlight that a linear speedup is achieved, i.e., the variance term,
αL2σ2/(µMH), is reduced in proportion to the number of agents M , further underscoring the benefits of
collaboration in a multi-agent setting.
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C Analysis of FedHSA under Markovian Sampling

Now, we shift our focus to the central result of our analysis: the convergence of the FedHSA algorithm under
Markovian sampling. In this scenario, the observations {oi,t}t≥1 for each agent i ∈ [M ] are temporally
correlated, as opposed to being statistically independent. This introduces additional complexity to the
analysis, as we must account for the intricate interactions between observations across different time steps
and among various agents.

Building upon the geometric mixing time property, we present the following corollary to deal with time-
correlation in observations.
Corollary 3. For each agent i ∈ [M ], any given θ ∈ Rd, and any non-negative integers τ, k satisfying τ ≤ k,
the following holds: ∥∥E [Gi(θ, oi,k)|oi,k−τ ]− Ḡi(θ)

∥∥
2 ≤ O (Lρτ ) (∥θ − θ⋆∥2 + σ) , (47)

where oi,k is the observation made by agent i at the k-th time-step.

We refer the reader to Lemma 3.1 of (Chen et al., 2019) for a proof.

Corollary 3 states that given a fixed parameter θ, the difference in the Euclidean norm ∥·∥2 between the true
operator and the expectation of the noisy operator, conditioned on the observation from τ time-steps before,
decays exponentially fast, where the ∥θ − θ⋆∥2 term captures the influence of θ. Corollary 3 is particularly
useful for addressing the temporal correlation between observations. Specifically, when observations are
sampled i.i.d. from the distribution µi, the left-hand side of (47) equals zero, recovering the relationship
between Gi and Ḡi.

Before delving into the details of the proofs, we first introduce the following lemma that bounds the variance
reduction term in the Markovian sampling scenario.
Lemma 3. Suppose Assumptions 1 to 4 hold. Then the following holds for FedHSA ∀t ≥ τ̄ , where τ̄ = τ(α2).

V RMarkov︷ ︸︸ ︷
2α2E

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ )− Ḡi(θ(t)
i,ℓ )
)∥∥∥∥∥

2

2

 ≤ O(L2α2

MH

) M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]

+O
(
L2α2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L2α6σ2)

+O
(

L2α2σ2

MH(1− ρ)

)
.

(48)

Proof. Note here that we can no longer bound it as we did in the i.i.d. case due to the presence of Markovian
sampling, where data samples for each agent are temporally correlated rather than independent. To handle
this, we take advantage of Corollary 3 to address the time correlation. We thus bound V RMarkov as follows.

V RMarkov = 2α2E

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ⋆, o

(t)
i,ℓ )− Ḡi(θ⋆) + Ḡi(θ⋆)− Ḡi(θ(t)

i,ℓ ) + Gi(θ(t)
i,ℓ , o

(t)
i,ℓ )−Gi(θ⋆, o

(t)
i,ℓ )
)∥∥∥∥∥

2

2



≤

A1︷ ︸︸ ︷
6α2E

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ⋆, o

(t)
i,ℓ )− Ḡi(θ⋆)

)∥∥∥∥∥
2

2

+

A2︷ ︸︸ ︷
6α2E

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

(
Ḡi(θ(t)

i,ℓ )− Ḡi(θ⋆)
)∥∥∥∥∥

2

2



+

A3︷ ︸︸ ︷
6α2E

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ , o
(t)
i,ℓ )−Gi(θ⋆, o

(t)
i,ℓ )
)∥∥∥∥∥

2

2

 .

(49)

29



Published in Transactions on Machine Learning Research (01/2026)

We proceed to bound A2 as:

A2 ≤ O
(

L2α2

MH

) M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ⋆

∥∥∥2

2

]

≤ O
(

L2α2

MH

) M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]
+O

(
L2α2

MH

) M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]

= O
(

L2α2

MH

) M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]
+O

(
L2α2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
,

(50)

where we used Assumption 1. We can obtain the same bound for A3 with the same reasoning.

Now we continue to bound the term A1. With a slight overload of notation, denote ei,ℓ = Gi(θ⋆, o
(t)
i,ℓ )− Ḡi(θ⋆),

and we obtain

A1 = O
(

α2

M2H2

)
E

∥∥∥∥∥
M∑

i=1

H−1∑
ℓ=0

ei,ℓ

∥∥∥∥∥
2

2



=

B1︷ ︸︸ ︷
O
(

α2

M2H2

) M∑
i=1

H−1∑
ℓ=0

E
[
∥ei,ℓ∥2

2

]
+

B2︷ ︸︸ ︷
O
(

α2

M2H2

) M∑
i=1

∑
ℓ1 ̸=ℓ2

E [⟨ei,ℓ1 , ei,ℓ2⟩]

+

B3︷ ︸︸ ︷
O
(

α2

M2H2

)∑
i̸=j

H−1∑
ℓ=0

E [⟨ei,ℓ, ej,ℓ⟩] +

B4︷ ︸︸ ︷
O
(

α2

M2H2

)∑
i̸=j

∑
ℓ1 ̸=ℓ2

E [⟨ei,ℓ1 , ej,ℓ2⟩] .

(51)

We then bound the four terms separately.

For the term B1, we have

B1 ≤ O
(

α2

M2H2

) M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥Gi(θ⋆, o

(t)
i,ℓ )
∥∥∥2

2
+
∥∥Ḡi(θ⋆)

∥∥2
2

]
≤ O

(
L2α2σ2

MH

)
,

(52)

where we used Corollary 2.
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For the term B2, we have

B2
(a)= O

(
α2

M2H2

) M∑
i=1

∑
ℓ1 ̸=ℓ2

E
[
E
[
⟨ei,ℓ1 , ei,ℓ2⟩ |o

(t)
i,ℓ1

]]

= O
(

α2

M2H2

) M∑
i=1

∑
ℓ1 ̸=ℓ2

E
[〈

ei,ℓ1 , E
[
ei,ℓ2 |o

(t)
i,ℓ1

]〉]

≤ O
(

α2

M2H2

) M∑
i=1

∑
ℓ1 ̸=ℓ2

E
[
∥ei,ℓ1∥2

∥∥∥E [ei,ℓ2 |o
(t)
i,ℓ1

]∥∥∥
2

]
(b)
≤ O

(
Lα2

M2H2

) M∑
i=1

H−1∑
ℓ1=0

∑
ℓ2>ℓ1

ρℓ2−ℓ1σE
[
∥ei,ℓ1∥2

]
≤ O

(
Lα2

M2H2

) M∑
i=1

H−1∑
ℓ1=0

∑
ℓ2>ℓ1

ρℓ2−ℓ1σE
[∥∥∥Gi(θ⋆, o

(t)
i,ℓ1

)
∥∥∥

2
+
∥∥Ḡi(θ⋆)

∥∥
2

]
(c)
≤ O

(
L2α2

M2H2

) M∑
i=1

H−1∑
ℓ1=0

∑
ℓ2>ℓ1

ρℓ2−ℓ1σ2

≤ O
(

L2α2σ2

M2H2

) M∑
i=1

H−1∑
ℓ1=0

(1 + ρ + ρ2 + · · · )

≤ O
(

L2α2σ2

MH(1− ρ)

)
,

(53)

where we used the tower property of expectation in (a), Corollary 3 in (b), and Corollary 2 in (c).

For the term B3, we have

B3
(a)= O

(
α2

M2H2

)∑
i̸=j

H−1∑
ℓ=0
⟨E [ei,ℓ] , E [ej,ℓ]⟩

≤ O
(

α2

M2H2

)∑
i̸=j

H−1∑
ℓ=0
∥E [ei,ℓ]∥2 ∥E [ej,ℓ]∥2

(b)= O
(

α2

M2H2

)∑
i̸=j

H−1∑
ℓ=0
∥E [E [ei,ℓ|oi,tH+ℓ−τ̄ ]]∥2 ∥E [E [ej,ℓ|oj,tH+ℓ−τ̄ ]]∥2

(c)
≤ O

(
α2

M2H2

)∑
i̸=j

H−1∑
ℓ=0

E
[
∥E [ei,ℓ|oi,tH+ℓ−τ̄ ]∥2

]
E
[
∥E [ej,ℓ|oj,tH+ℓ−τ̄ ]∥2

]
(d)
≤ O

(
L2α2

M2H2

)∑
i̸=j

H−1∑
ℓ=0

ρ2τ̄ σ2

(e)
≤ O

(
L2α6σ2

H

)
,

(54)

where (a) is a result of Assumption 4, (b) uses the tower property of expectation, (c) uses the fact that
∥E [x]∥2 ≤ E [∥x∥2], (d) is the application of Corollary 3, and (e) uses the definition that ρτ̄ ≤ α2. Note here
that we are allowed to condition on τ̄ time-steps before because t ≥ τ̄ .

Similarly, we can achieve the bound for B4 as

B4 ≤ O
(
L2α6σ2) . (55)
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Further plugging the bounds for B1 to B4 into (51) yields

A1 ≤ O
(

L2α2σ2

MH

)
+O

(
L2α2σ2

MH(1− ρ)

)
+O

(
L2α6σ2

H

)
+O

(
L2α6σ2)

≤ O
(
L2α6σ2)+O

(
L2α2σ2

MH(1− ρ)

)
.

(56)

Finally, plugging the bounds for A1 to A3 into (49) yields

V RMarkov ≤ O
(

L2α2

MH

) M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]
+O

(
L2α2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L2α6σ2)+O( L2α2σ2

MH(1− ρ)

)
.

(57)
The proof is then complete.

With the upper-bound for the variance reduction term under Markovian sampling, we now introduce the
following lemma, which bounds the one-step recursion of the distance to the optimal parameter θ⋆ in the
Markovian sampling setting. This lemma lays the foundation for understanding the impact of time correlations
on the convergence behavior of FedHSA.
Lemma 4. Suppose Assumptions 1 to 4 hold. Then the following holds for FedHSA ∀t ≥ τ̄ :

E
[∥∥∥θ̄(t+1) − θ⋆

∥∥∥2

2

]
≤
(
1− αµ +O

(
L2α2))E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L2α2

MH
+ L2α

µMH

) M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]

+O
(
L2α6σ2)+O

(
L2α2σ2

MH(1− ρ)

)
+ E

[〈
θ̄(t) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ )− Ḡi(θ(t)
i,ℓ )
)〉]

.

(58)

Proof. As in the i.i.d. case, we first write the error update rule as follows:

∥∥∥θ̄(t+1) − θ⋆
∥∥∥2

2
=
∥∥∥θ̄(t) − θ⋆

∥∥∥2

2
+

U1︷ ︸︸ ︷〈
θ̄(t) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

Gi(θ(t)
i,ℓ )
〉

+

U2︷ ︸︸ ︷
α2

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

Gi(θ(t)
i,ℓ )
∥∥∥∥∥

2

2

. (59)

We proceed to bound the term U2 using Jensen’s inequality. By taking expectation, we obtain:

E[U2] ≤

U21︷ ︸︸ ︷
2α2E

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ )− Ḡi(θ(t)
i,ℓ )
)∥∥∥∥∥

2

2

+

U22︷ ︸︸ ︷
2α2E

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

Ḡi(θ(t)
i,ℓ )
∥∥∥∥∥

2

2

 . (60)

Note here that the term U22 only involves the true operators, and thus we do not need to consider the effect
of Markovian sampling. Therefore, it can be upper-bounded exactly as the term T2 in the i.i.d. case, i.e.:

U22 ≤ O
(

L2α2

MH

) M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]
+O

(
L2α2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
. (61)

The term U21 is exactly the variance reduction term we bounded in Lemma 3. Plugging the bounds for U21
and U22 into (60) yields

E[U2] ≤ O
(

L2α2

MH

) M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]
+O

(
L2α2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L2α6σ2)+O( L2α2σ2

MH(1− ρ)

)
.

(62)
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For the term E[U1], we can decompose it into two parts:

E[U1] =

C1︷ ︸︸ ︷
E

[〈
θ̄(t) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ )− Ḡi(θ(t)
i,ℓ )
)〉]

+

C2︷ ︸︸ ︷
E

[〈
θ̄(t) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

Ḡi(θ(t)
i,ℓ )
〉]

.

(63)
Note that the second part C2 can be bounded similarly as the term T1 in the i.i.d. case:

C2 ≤ −αµE
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+ αL2

µMH

M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]
. (64)

Plugging (64) into (63), together with (62) into (59) and taking expectation on both sides, we obtain

E
[∥∥∥θ̄(t+1) − θ⋆

∥∥∥2

2

]
≤
(
1− αµ +O

(
L2α2))E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L2α2

MH
+ L2α

µMH

) M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]

+

Tbias︷ ︸︸ ︷
E

[〈
θ̄(t) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ )− Ḡi(θ(t)
i,ℓ )
)〉]

+O
(
L2α6σ2)+O

(
L2α2σ2

MH(1− ρ)

)
.

(65)

Comparing Lemma 4 with Lemma 2, we observe that the one-step bound for the i.i.d. case can be recovered
in Lemma 4 if data are i.i.d., i.e., ρ = 0. The only term that impedes further bounding in Lemma 4 is the
one Tbias capturing the bias caused by Markovian sampling, which equals zero in the i.i.d. case as proved in
Eq. (39). The next lemma then focuses on bounding this distinct bias term in the Markovian case.

C.1 Bounding of the Markovian Bias

It is worth noting that the goal of bounding the bias term is to ensure that the term E
[∥∥θ̄(t) − θ⋆

∥∥2
2

]
on

the R.H.S. has a scaling factor no larger than αµ, along with a constant term scaled by an order of α that
is either higher than or equal to 3, or an order of 2 but scaled down by the number of agents M , thus
demonstrating the benefits of collaboration. Unfortunately, directly applying Eq. (17) cannot yield the desired
result. Instead, by applying Corollary 3 to account for the time correlation in data samples, we condition on
a parameter at least τ̄ time-steps earlier in time. Specifically, since in the bias term, the parameter θ

(t)
i,ℓ is

from the t-th round and ℓ-th local step with t ≥ τ̄ , we condition on θ̄(t−τ̄), which is at least τ̄ time-steps
earlier. For this reason, we first provide an upper-bound for the term E

[∥∥θ̄(t) − θ̄(t−τ)
∥∥2

2

]
, which comes in

handy in subsequent proofs.

Lemma 5. Suppose all the conditions in Lemma 4 hold. Then there exist a universal constant C̄ ≥ 1 such
that by selecting η ≤ 1/(τ̄ C̃HL2) and αg = 1, the following is true for FedHSA for all t ≥ 2τ̄ :

E
[∥∥∥θ̄(t) − θ̄(t−τ̄)

∥∥∥2

2

]
≤ O

(
τ̄2L2α2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄2L4α4σ2 + τ̄2L2α2σ2

MH(1− ρ)

)
. (66)
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Proof. Observe that

∥∥∥θ̄(t+1) − θ⋆
∥∥∥2

2
=
∥∥∥θ̄(t) − θ⋆

∥∥∥2

2
+ 2α

〈
θ̄(t) − θ⋆,

1
MH

M∑
i=1

H−1∑
ℓ=0

Gi(θ(t)
i,ℓ )
〉

+ α2

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

Gi(θ(t)
i,ℓ )
∥∥∥∥∥

2

2

≤
∥∥∥θ̄(t) − θ⋆

∥∥∥2

2
+ α

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

Gi(θ(t)
i,ℓ )
∥∥∥∥∥

2

2

+ α
∥∥∥θ̄(t) − θ⋆

∥∥∥2

2
+ α2

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

Gi(θ(t)
i,ℓ )
∥∥∥∥∥

2

2

≤ (1 + α)
∥∥∥θ̄(t) − θ⋆

∥∥∥2

2
+ 2α

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

Gi(θ(t)
i,ℓ )
∥∥∥∥∥

2

2

,

(67)
where we used the fact that α ≤ 1, and 2 ⟨a, b⟩ ≤ ∥a∥2

2 + ∥b∥2
2, for all (a, b) ∈ Rd ×Rd. Taking expectation of

both sides and plugging in the bound for 2E[U2]/α in Eq. (62) yields

E
[∥∥∥θ̄(t+1) − θ̄⋆

∥∥∥2

2

]
≤ (1 + α)E

[∥∥∥θ̄(t) − θ⋆
∥∥∥2

2

]
+O

(
L2α

MH

) M∑
i=1

H−1∑
ℓ=0

E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]
+O

(
L2α

)
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L2α5σ2)+O

(
L2ασ2

MH(1− ρ)

)
≤ (1 + α)E

[∥∥∥θ̄(t) − θ⋆
∥∥∥2

2

]
+O

(
L4α3)(E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+ σ2

)
+O

(
L2α

)
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L2α5σ2)+O

(
L2ασ2

MH(1− ρ)

)
≤
(
1 + α +O

(
L4α3 + L2α

))
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L2α5σ2)+O

(
L2ασ2

MH(1− ρ)

)
+O

(
L4α3σ2)

≤
(
1 +O

(
L2α

))
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L4α3σ2)+O

(
L2ασ2

MH(1− ρ)

)
,

(68)
where in the second inequality we used Lemma 1 and we selected τ̄ large enough such that ρτ̄ ≤ α2, and in
the last inequlaity we used the fact that αL ≤ 1.

Therefore, for any t′ ∈ [t− τ̄ , t], we can write

E
[∥∥∥θ̄(t′) − θ⋆

∥∥∥2

2

]
≤
(
1 +O

(
L2α

))τ̄ E
[∥∥∥θ̄(t−τ) − θ⋆

∥∥∥2

2

]
+

τ−1∑
ℓ=0

(
1 +O

(
L2α

))ℓO
(

L4α3σ2 + L2ασ2

MH(1− ρ)

)
≤ O

(
E
[∥∥∥θ̄(t−τ) − θ⋆

∥∥∥2

2

])
+ τO

(
L4α3σ2 + L2ασ2

MH(1− ρ)

)
,

(69)
where we selected α ≤ 1/(C̃L2τ̄), where C̃ ≥ 1 is the dominant constant in O

(
L2α

)
, such that(

1 +O
(
L2α

))τ̄ ≤ (1 + 1/τ̄)τ̄ ≤ e.
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Next, observe that

E
[∥∥∥θ̄(t) − θ̄(t−τ̄)

∥∥∥2

2

]
≤ τ̄

t−1∑
m=t−τ̄

E
[∥∥∥θ̄(m+1) − θ̄(m)

∥∥∥2

2

]

= τ̄

t−1∑
m=t−τ̄

E

α2

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

Gi(θ(m)
i,ℓ )

∥∥∥∥∥
2

2


(a)
≤ τ̄

t−1∑
m=t−τ̄

O
(

L2α2E
[∥∥∥θ̄(m) − θ⋆

∥∥∥2

2

]
+ L4α4σ2 + L2α2σ2

MH(1− ρ)

)
(b)
≤ τ̄

t−1∑
m=t−τ̄

O
(

L2α2E
[∥∥∥θ̄(t−τ̄) − θ⋆

∥∥∥2

2

]
+ τ̄L6α5σ2 + τ̄L4α3σ2

MH(1− ρ) + L4α4σ2 + L2α2σ2

MH(1− ρ)

)
(c)
≤ τ̄

t−1∑
m=t−τ̄

O
(

L2α2E
[∥∥∥θ̄(t−τ̄) − θ⋆

∥∥∥2

2

]
+ L4α4σ2 + L2α2σ2

MH(1− ρ)

)
≤ O

(
τ̄2L2α2)E [∥∥∥θ̄(t−τ̄) − θ⋆

∥∥∥2

2

]
+O

(
τ̄2L4α4σ2 + τ̄2L2α2σ2

MH(1− ρ)

)
≤ O

(
τ̄2L2α2)E [∥∥∥θ̄(t−τ̄) − θ̄(t)

∥∥∥2

2

]
+O

(
τ̄2L2α2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄2L4α4σ2 + τ̄2L2α2σ2

MH(1− ρ)

)
,

(70)
where in (a) we used the bound for E[U2] and plugged in Lemma 1, i.e.,

E[U2] ≤ O
(
L2α2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L4α4σ2)+O

(
L2α2σ2

MH(1− ρ)

)
. (71)

Note here that we are allowed to use the bound for E[U2] because we require t ≥ 2τ̄ , and thus m ≥ t− τ̄ ≥ τ̄ ;
in (b) we used the result in Eq. (69), and in (c) we selected α ≤ 1/(L2τ̄) such that τ̄L6α5σ2 ≤ L4α4σ2 and
τ̄L4α3σ2 ≤ L2α2σ2.

Suppose that the dominating constant in O
(
τ̄2L2α2)E [∥∥θ̄(t−1) − θ̄(t)

∥∥2
2

]
is C̄ ≥ 1. We can then write

(1− C̄τ̄2L2α2)E
[∥∥∥θ̄(t) − θ̄(t−1)

∥∥∥2

2

]
≤ O

(
τ̄2L2α2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄2L4α4σ2 + τ̄2L2α2σ2

MH(1− ρ)

)
. (72)

By selecting α such that C̄τ̄2L2α2 ≤ 1/2, i.e., α ≤ 1/(
√

2C̄τ̄L) we obtain

E
[∥∥∥θ̄(t) − θ̄(t−τ̄)

∥∥∥2

2

]
≤ O

(
τ̄2L2α2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄2L4α4σ2 + τ̄2L2α2σ2

MH(1− ρ)

)
. (73)

The proof is then complete.

With Lemma 5 at hand, we can arrive at the following lemma that bounds the Markovian bias:
Lemma 6. Suppose all the conditions in Lemma 5 hold. Then the following is true for FedHSA for all t ≥ 2τ̄ :

C1︷ ︸︸ ︷
E

[〈
θ̄(t) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ )− Ḡi(θ(t)
i,ℓ )
)〉]

≤
(

αµ

2 +O
(

τ̄L2α2 + L4α3

µ

))
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L4σ2α3

µ
+ τL2σ2α2

MH(1− ρ)

)
.

(74)
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Proof. Observe that

C1︷ ︸︸ ︷
E

[〈
θ̄(t) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ )− Ḡi(θ(t)
i,ℓ )
)〉]

=

D1︷ ︸︸ ︷
E

[〈
θ̄(t) − θ̄(t−τ̄),

2α

MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ )− Ḡi(θ(t)
i,ℓ )
)〉]

+

D2︷ ︸︸ ︷
E

[〈
θ̄(t−τ̄) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ )− Ḡi(θ(t)
i,ℓ )
)〉]

.

(75)
We then continue to bound the terms D1 and D2 separately. For the term D1, we have

D1 ≤
1
τ̄
E
[∥∥∥θ̄(t) − θ̄(t−τ̄)

∥∥∥2

2

]
+ τ̄α2E

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ )− Ḡi(θ(t)
i,ℓ )
)∥∥∥∥∥

2

2


≤ O

(
τ̄L2α2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄L4α4σ2 + τ̄L2α2σ2

MH(1− ρ)

)
+O

(
τ̄L2α2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄L4α4σ2)+O

(
τ̄L2α2σ2

MH(1− ρ)

)
≤ O

(
τ̄L2α2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄L4α4σ2 + τ̄L2α2σ2

MH(1− ρ)

)
,

(76)

where we use Lemma 5 and Lemma 3 with the bound from Lemma 1 plugged in. Clearly the bound for D1 is
eligible for our goal.

For the term D2, again, directly bounding will not suffice. Therefore, we introduce intermediate terms Ḡi(θ̄(t))
and Gi(θ̄(t), o

(t)
i,ℓ ).

D2 =

E1︷ ︸︸ ︷
E

[〈
θ̄(t−τ̄) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ̄(t), o

(t)
i,ℓ )− Ḡi(θ̄(t))

)〉]

+

E2︷ ︸︸ ︷
E

[〈
θ̄(t−τ̄) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ , o
(t)
i,ℓ )−Gi(θ̄(t), o

(t)
i,ℓ )
)〉]

+

E3︷ ︸︸ ︷
E

[〈
θ̄(t−τ̄) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

(
Ḡi(θ̄(t))− Ḡi(θ(t)

i,ℓ )
)〉]

.

(77)

We then bound these three terms separately.
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For the term E2, we have

E2 ≤
α

β
E
[∥∥∥θ̄(t−τ̄) − θ⋆

∥∥∥2

2

]
+ αβE

∥∥∥∥∥ 1
MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ(t)

i,ℓ , o
(t)
i,ℓ )−Gi(θ̄(t), o

(t)
i,ℓ )
)∥∥∥∥∥

2

2


(a)
≤ 2α

β
E
[∥∥∥θ̄(t−τ̄) − θ̄(t)

∥∥∥2

2

]
+ 2α

β
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+ αβ

1
MH

M∑
i=1

H−1∑
ℓ=0

L2E
[∥∥∥θ

(t)
i,ℓ − θ̄(t)

∥∥∥2

2

]
(b)
≤ O

(
τ̄2L2α3) 1

β
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+ 1

β
O
(

τ̄2L4α5σ2 + τ̄2L2α3σ2

MH(1− ρ)

)
+ 2α

β
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
βL4α3)(E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+ σ2

)
≤
(

2α

β
+O

(
τ̄2L2α3

β
+ βL4α3

))
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄2L4σ2α5

β
+ τ̄2L2σ2α3

MHβ(1− ρ) + βL4σ2α3
)

,

(78)
where we use Assumption 1 in (a), Corollary 2 and the bound from Lemma 5 in (b). We can achieve identical
bound for E3 with the same reasoning. With a proper choice of the parameter β (which will be made later),
the bounds for E2 and E3 also comply with the requirement.

For the term E1, we further decompose it into three terms:

E1 =

F1︷ ︸︸ ︷
E

[〈
θ̄(t−τ̄) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ̄(t−τ̄), o

(t)
i,ℓ )− Ḡi(θ̄(t−τ̄))

)〉]

+

F2︷ ︸︸ ︷
E

[〈
θ̄(t−τ̄) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ̄(t), o

(t)
i,ℓ )−Gi(θ̄(t−τ̄), o

(t)
i,ℓ )
)〉]

+

F3︷ ︸︸ ︷
E

[〈
θ̄(t−τ̄) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

(
Ḡi(θ̄(t−τ̄))− Ḡi(θ̄(t))

)〉]
.

(79)

For the term F2, we have

F2 ≤ E
[
2αL

∥∥∥θ̄(t−τ̄) − θ⋆
∥∥∥

2

∥∥∥θ̄(t−τ̄) − θ̄(t)
∥∥∥

2

]
≤ αLE

[
τ̄Lα

∥∥∥θ̄(t−τ̄) − θ⋆
∥∥∥2

2
+ 1

τ̄Lα

∥∥∥θ̄(t−τ̄) − θ̄(t)
∥∥∥2

2

]
≤ αLO

(
E
[
τ̄Lα

∥∥∥θ̄(t−τ̄) − θ̄(t)
∥∥∥2

2
+ τ̄Lα

∥∥∥θ̄(t) − θ⋆
∥∥∥2

2
+ 1

τ̄Lα

∥∥∥θ̄(t−τ̄) − θ̄(t)
∥∥∥2

2

])
≤ αLO

(
E
[
τ̄Lα

∥∥∥θ̄(t) − θ⋆
∥∥∥2

2
+ 1

τ̄Lα

∥∥∥θ̄(t−τ̄) − θ̄(t)
∥∥∥2

2

])
≤ O

(
τ̄L2α2)(E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

])
+O

(
τ̄L4α4σ2 + τ̄L2α2σ2

MH(1− ρ)

)
,

(80)

where we use Assumption 1, the fact that ατ̄L ≤ 1, and the bound from Lemma 3. Similarly, we can obtain
the same bound for F3. The bounds for F2, F3 satisfy the requirement as well.
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Finally, for the term F1, we have

F1 = E

[
E

[〈
θ̄(t−τ̄) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

(
Gi(θ̄(t−τ̄), o

(t)
i,ℓ )− Ḡi(θ̄(t−τ̄))

)〉 ∣∣∣∣∣F (t−τ̄)
−1

]]
(a)= E

[〈
θ̄(t−τ̄) − θ⋆,

2α

MH

M∑
i=1

H−1∑
ℓ=0

(
E

[
Gi(θ̄(t−τ̄), o

(t)
i,ℓ )
∣∣∣∣∣F (t−τ̄)

−1

]
− Ḡi(θ̄(t−τ̄))

)〉]

≤ E

[
2α

MH

M∑
i=1

H−1∑
ℓ=0

∥∥∥θ̄(t−τ̄) − θ⋆
∥∥∥

2

∥∥∥∥∥E
[

Gi(θ̄(t−τ̄), o
(t)
i,ℓ )
∣∣∣∣∣F (t−τ̄)

−1

]
− Ḡi(θ̄(t−τ̄))

∥∥∥∥∥
2

]
(b)
≤ O

(
Lρτ̄ α

)
E
[∥∥∥θ̄(t−τ̄) − θ⋆

∥∥∥
2

(∥∥∥θ̄(t−τ̄) − θ⋆
∥∥∥

2
+ σ

)]
= O

(
Lρτ̄ α

)
E
[∥∥∥θ̄(t−τ̄) − θ⋆

∥∥∥2

2

]
+O

(
Lρτ̄ ασ

)
E
[∥∥∥θ̄(t−τ̄) − θ⋆

∥∥∥
2

]
≤ O

(
Lρτ̄ α

)
E
[

1
α

∥∥∥θ̄(t−τ̄) − θ⋆
∥∥∥2

2
+ 2σ

∥∥∥θ̄(t−τ̄) − θ⋆
∥∥∥

2
+ ασ2

]
(c)
≤ O

(
Lα3)E[( 1√

α

∥∥∥θ̄(t−τ̄) − θ⋆
∥∥∥

2
+
√

ασ

)2
]

≤ O
(
Lα3)E [ 1

α

∥∥∥θ̄(t−τ̄) − θ⋆
∥∥∥2

2
+ ασ2

]
= O

(
Lα2E

[∥∥∥θ̄(t−τ̄) − θ⋆
∥∥∥2

2

]
+ Lα4σ2

)
≤ O

(
Lα2E

[∥∥∥θ̄(t−τ̄) − θ(t)
∥∥∥2

2

]
+ Lα2E

[∥∥∥θ̄(t) − θ⋆
∥∥∥2

2

]
+ Lα4σ2

)
(d)
≤ O

(
τ̄2L3α4E

[∥∥∥θ̄(t) − θ⋆
∥∥∥2

2

]
+ τ̄2L5α6σ2 + τ̄2L3α4σ2

MH(1− ρ) + Lα2E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+ Lα4σ2

)
(e)
≤ O

(
Lα2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
Lα4σ2 + τ̄2L3α4σ2

MH(1− ρ)

)
.

(81)

Here, in (a) we used the fact that θ̄(t−τ̄) is deterministic conditioned on F (t−τ̄)
−1 , (b) is a result of Corollary 3

and Assumption 4, (c) used the fact that ρτ̄ ≤ α2, (d) used previous bounds for E
[∥∥θ̄(t) − θ̄(t−τ̄)

∥∥2
2

]
, and (e)

used the fact that α ≤ 1/(τ̄L2), and hence τ̄2L5α6 ≤ Lα4.

We now plug in the bounds recursively to arrive at the final bound for the Markovian bias term. First,
plugging in the bounds for E1 with E1 = F1 + F2 + F3 yields

E1 ≤ O
(
Lα2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
Lα4σ2)+O

(
τ̄2L3α4σ2

MH(1− ρ)

)
+O

(
τ̄L2α2)(E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

])
+O

(
τ̄L4α4σ2 + τ̄L2α2σ2

MH(1− ρ)

)
≤ O

(
τ̄L2α2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄L4σ2α4)+O

(
τ̄L2α2σ2

MH(1− ρ)

)
,

(82)

where we use the fact that L ≥ 1, τ̄ ≥ 1 and α2 ≤ 1/(τ̄L).
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Second, with D2 = E1 + E2 + E3, we obtain

D2 ≤ O
(
τ̄L2α2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄L4σ2α4)+O

(
τ̄L2α2σ2

MH(1− ρ)

)
+
(

4α

β
+O

(
τ̄2L2α3

β
+ βL4α3

))
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄2L4σ2α5

β
+ τ̄2L2σ2α3

MHβ(1− ρ) + βL4σ2α3
)

≤
(

4α

β
+O

(
τ̄L2α2 + τ̄2L2α3

β
+ βL4α3

))
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄2L4σ2α5

β
+ τ̄2L2σ2α3

MHβ(1− ρ) + βL4σ2α3 + τ̄L4σ2α4 + τ̄L2σ2α2

MH(1− ρ)

)
.

(83)

Finally, using C1 = D1 + D2 yields

C1 ≤ O
(
τ̄L2α2)E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄L4α4σ2 + τ̄L2α2σ2

MH(1− ρ)

)
+
(

4α

β
+O

(
τ̄L2α2 + τ̄2L2α3

β
+ βL4α3

))
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄2L4σ2α5

β
+ τ̄2L2σ2α3

MHβ(1− ρ) + βL4σ2α3 + τ̄L4σ2α4 + τ̄L2σ2α2

MH(1− ρ)

)
≤
(

4α

β
+O

(
τ̄L2α2 + τ̄2L2α3

β
+ βL4α3

))
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄2L4σ2α5

β
+ τ̄2L4σ2α3

MHβ(1− ρ) + βL4σ2α3 + τ̄L4σ2α4 + τ̄L2σ2α2

MH(1− ρ)

)
.

(84)

By selecting 4α/β = αµ/2, i.e., β = 8/µ, we obtain

C1 ≤
(

αµ

2 +O
(

τ̄L2α2 + τ̄2L2µα3 + L4α3

µ

))
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄2L4µσ2α5 + τ̄2L4µσ2α3

MH(1− ρ) + L4σ2α3

µ
+ τ̄L4σ2α4 + τ̄L2σ2α2

MH(1− ρ)

)
≤
(

αµ

2 +O
(

τ̄L2α2 + L4α3

µ

))
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L4σ2α3

µ
+ τ̄L2σ2α2

MH(1− ρ)

)
,

(85)

where we use the fact that µ ≤ 1 and α ≤ 1/τ̄ .

Lemma 7. Suppose all the conditions in Lemma 5 hold. Then the following holds for FedHSA for any t ≥ 2τ̄ :

E
[∥∥∥θ̄(t+1) − θ⋆

∥∥∥2

2

]
≤
(

1− αµ

2 +O
(
τ̄L2α2))E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
τ̄α2L2

MH(1− ρ) + α3L4

µ

)
σ2. (86)
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Proof of Lemma 7.

Proof. Plugging Lemma 6 and Lemma 1 into Lemma 4, we obtain

E
[∥∥∥θ̄(t+1) − θ⋆

∥∥∥2

2

]
≤
(

1− αµ +O
(
L2α2)+O

(
L4

µ
α3
))

E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L4σ2α3

µ

)
+O

(
L2α2σ2

MH(1− ρ)

)
+
(

αµ

2 +O
(

τ̄L2α2 + L4α3

µ

))
E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L4σ2α3

µ
+ τ̄L2σ2α2

MH(1− ρ)

)
+O

(
L2α6σ2)

≤
(

1− αµ

2 +O
(

τ̄L2α2 + L4

µ
α3
))

E
[∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L4σ2α3

µ
+ τ̄L2α2σ2

MH(1− ρ)

)
≤
(

1− αµ

2 +O
(
τ̄L2α2))E [∥∥∥θ̄(t) − θ⋆

∥∥∥2

2

]
+O

(
L4σ2α3

µ
+ τ̄L2α2σ2

MH(1− ρ)

)
,

(87)
where we used the fact that α ≤ τ̄µ/L2.

Proof of Theorem 2.

Proof. Applying Lemma 7 recursively, we obtain

E
[∥∥∥θ̄(T ) − θ⋆

∥∥∥2

2

]
≤
(

1− αµ

4

)T −2τ̄

E
[∥∥∥θ̄(2τ̄) − θ⋆

∥∥∥2

2

]
+O

(
τ̄α2L2

MH(1− ρ) + α3L4

µ

)
σ2

T −2τ̄−1∑
t=0

(
1− αµ

4

)t

≤
(

1− αµ

4

)T −2τ̄

E
[∥∥∥θ̄(2τ̄) − θ⋆

∥∥∥2

2

]
+O

(
τ̄αL2

µMH(1− ρ) + α2L4

µ2

)
σ2,

(88)
where the first inequality holds because we select α ≤ µ/(4τ̄L2C ′), where C ′ is greater than or equal to the
dominant constant in O

(
τ̄L2α2) such that O

(
τ̄L2α2) ≤ αµ/4.

We proceed to bound the term E
[∥∥θ̄(2τ̄) − θ⋆

∥∥2
2

]
. From the update rule of FedHSA in Eq. (10) and Eq. (11),

we obtain

θ̄(t+1) − θ⋆ = θ̄(t) − θ⋆ + α

MH

M∑
i=1

H−1∑
ℓ=0

Gi(θ(t)
i,ℓ ), (89)
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where we subtracted θ⋆ on both sides. Taking norm on both sides and applying triangle inequality yields

∥∥∥θ̄(t+1) − θ⋆
∥∥∥

2
≤
∥∥∥θ̄(t) − θ⋆

∥∥∥
2

+
∥∥∥∥∥ α

MH

M∑
i=1

H−1∑
ℓ=0

Gi(θ(t)
i,ℓ )
∥∥∥∥∥

2

≤
∥∥∥θ̄(t) − θ⋆

∥∥∥
2

+ α

MH

M∑
i=1

H−1∑
ℓ=0

∥∥∥Gi(θ(t)
i,ℓ )
∥∥∥

2

(a)
≤
∥∥∥θ̄(t) − θ⋆

∥∥∥
2

+ αL

MH

M∑
i=1

H−1∑
ℓ=0

(∥∥∥θ
(t)
i,ℓ

∥∥∥
2

+ σ
)

=
∥∥∥θ̄(t) − θ⋆

∥∥∥
2

+ αL

MH

M∑
i=1

H−1∑
ℓ=0

(∥∥∥θ
(t)
i,ℓ − θ̄(t) + θ̄(t) − θ⋆ + θ⋆

∥∥∥
2

+ σ
)

≤
∥∥∥θ̄(t) − θ⋆

∥∥∥
2

+ αL

MH

M∑
i=1

H−1∑
ℓ=0

(∥∥∥θ
(t)
i,ℓ − θ̄(t)

∥∥∥
2

+
∥∥∥θ̄(t) − θ⋆

∥∥∥
2

+ ∥θ⋆∥2 + σ
)

(b)
≤
∥∥∥θ̄(t) − θ⋆

∥∥∥
2

+ αL

MH

M∑
i=1

H−1∑
ℓ=0

(
Lα
∥∥∥θ̄(t) − θ⋆

∥∥∥
2

+ Lασ +
∥∥∥θ̄(t) − θ⋆

∥∥∥
2

+ 2σ
)

≤
∥∥∥θ̄(t) − θ⋆

∥∥∥
2

+ αL
(

2
∥∥∥θ̄(t) − θ⋆

∥∥∥
2

+ 3σ
)

= (1 + 2αL)
∥∥∥θ̄(t) − θ⋆

∥∥∥
2

+ 3αLσ,

(90)

where (a) holds due to Assumption 1, and (b) is a result of Lemma 1. Therefore, applying Eq. (90) recursively
yields ∥∥∥θ̄(2τ̄) − θ⋆

∥∥∥
2
≤ (1 + 2αL)2τ̄

∥∥∥θ̄(0) − θ⋆
∥∥∥

2
+ 3αLσ

2τ̄−1∑
t=0

(1 + 2αL)t

≤
(

1 + 1
2τ̄

)2τ̄ ∥∥∥θ̄(0) − θ⋆
∥∥∥

2
+ 3αLσ

2τ̄−1∑
t=0

(
1 + 1

2τ̄

)2τ̄

≤ e
∥∥∥θ̄(0) − θ⋆

∥∥∥
2

+ 2eσ

= O
(∥∥∥θ̄(0) − θ⋆

∥∥∥
2

+ σ
)

,

(91)

where we selected α ≤ 1/(4τ̄L), and used the fact that (1+1/x)x ≤ e,∀x > 0. Plugging Eq. (91) into Eq. (88)
yields

E
[∥∥∥θ̄(T ) − θ⋆

∥∥∥2

2

]
≤
(

1− αµ

4

)T −2τ̄

O
(∥∥∥θ̄(0) − θ⋆

∥∥∥2

2
+ σ

)
+O

(
τ̄αL2

µMH(1− ρ) + α2L4

µ2

)
σ2

≤ exp
(
−µ

4 α(T − 2τ̄)
)
O
(∥∥∥θ̄(0) − θ⋆

∥∥∥2

2
+ σ

)
+O

(
τ̄αL2

µMH(1− ρ) + α2L4

µ2

)
σ2

= exp
(
−µ

4 αT
)

exp
(

µτ̄α

2

)
O
(∥∥∥θ̄(0) − θ⋆

∥∥∥2

2
+ σ

)
+O

(
τ̄αL2

µMH(1− ρ) + α2L4

µ2

)
σ2

≤ exp
(
−µ

4 αT
)
O
(∥∥∥θ̄(0) − θ⋆

∥∥∥2

2
+ σ

)
+O

(
τ̄αL2

µMH(1− ρ) + α2L4

µ2

)
σ2

(92)

where we used the fact that 1− x ≤ exp (−x), α ≤ 1/τ̄ , and µ ≤ 1 such that exp(µτα/2) ≤ O (1).
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D Experimental Results

In this section, we present numerical results for three heterogeneous federated SA tasks subject to Markovian
noise, which provide empirical support for our theoretical framework. In our experiments, we aim to convey
two key messages: (i) Our FedHSA algorithm eliminates the heterogeneity bias and (ii) FedHSA achieves
linear speedup w.r.t. the number of agents. The experimental setups are described in detail in the sequel.

D.1 Federated Quadratic Loss Minimization Problem

Consider the classical FL framework involving M agents:

min
θ∈Rd

f(θ) = 1
M

M∑
i=1

fi(θ). (93)

Here,
fi(θ) = 1

2θT Aiθ − bT
i θ + ci, ∀i ∈ [M ] (94)

where Ai ∈ Rd×d is a positive definite matrix, bi ∈ Rd is a d-dimensional vector, and ci ∈ R is a scalar for
i = 1, · · · , M . Since {fi}M

i=1 are quadratic functions with positive definite Ai’s, the gradients are given by
∇fi(θ) = Aiθ − bi, for i = 1, · · · , M .

Problem (93) is a good fit for our federated SA framework. Specifically, the true local operator Ḡi(·)
corresponds to the true negative gradient −∇fi(·) for each i ∈ [M ]. At time step t, each agent i ∈ [M ] has
access only to an estimator Gi(·) of the true operator, which is corrupted by additive Markovian noise:

Gi(θ(t)) = Ḡi(θ(t)) + ξ
(t)
i , ∀i ∈ [M ] (95)

where the noise samples {ξ(t)
i }t≥0 are drawn from a discrete-time continous-state Markov chain.

We now explain how the Markovian noise is generated. For each agent i, we maintain a state vector zi ∈ Rd,
initialized to zero, which evolves as

z
(t+1)
i = Qiz

(t)
i + ϵ

(t)
i . (96)

Here, Qi ∈ Rd×d is a Schur-stable matrix, ensuring that all eigenvalues of Qi lie within the unit ball. This
guarantees that z

(t)
i does not diverge. The noise ϵ

(t)
i is a zero-mean Gaussian noise with variance σ2

ϵ and
covariance matrix given by σ2

ϵ I, i.e., ϵ
(t)
i ∼ N (0, σ2

ϵ I). The Markovian noise ξ
(t)
i is directly taken from the

state vector:
ξ

(t)
i = z

(t)
i . (97)

It can be shown that this noise is Markovian (Tu & Recht, 2018), and mixes geometrically fast (as needed by
our theory).

To validate (i), we consider Problem (93) and solve it using the conventional FL framework, where each
agent performs local steps. We compare FedHSA with the existing local SGD approach, which does not
include a correction term during local updates as shown in (9) (referred to as the “Local SA approach” in
what follows). These two approaches are evaluated under both noiseless conditions and with the presence
of additive Markovian noise. The experimental configurations are as follows: M = 20 agents, each agent
performs H = 10 local steps, the learning rate is η = 0.001, the parameter dimension is d = 10, and the
performance is measured by Et :=

∥∥θ̄(t) − θ⋆
∥∥2

2.

As shown in Figure 2(a), even in the noiseless case where each agent has access to the true operator Ḡi, the
Local SA approach fails to converge to the optimal point θ⋆ due to the heterogeneity bias, as explained in
Proposition 1. In contrast, FedHSA demonstrates linear convergence towards θ⋆. This result aligns with the
theoretical prediction in (12), where the algorithm converges exponentially fast to θ⋆ in expectation when
σ2 = 0 (noiseless case).

In Figure 2(b), we introduce additive Markovian noise with σ2
ϵ = 0.01 into the local operators Gi’s. In this

noisy setting, we observe that the FedHSA method exhibits a lower error floor compared to Local SA. This is
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Figure 2: Comparison between Local SA and FedHSA
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Figure 3: Comparison between different numbers of agents for the FedHSA algorithm.

because FedHSA effectively eliminates the heterogeneity bias, with the resulting error being solely attributed
to the Markovian noise. Additionally, the impact of this noise is mitigated by a factor of M , owing to the
linear speedup of the FedHSA algorithm.

To further verify the linear speedup effect in (ii), we compare the results of FedHSA with different numbers of
agents. We consider the same problem (93) equipped with the FedHSA algorithm for M = 1, 5, 20, 100. The
other configurations remain the same.

Figure 3 demonstrates a lower error floor with an increasing number of agents for our FedHSA algorithm.
This is exactly what we expect, since Corollary 1 clearly states that with a proper choice of the step-size
η, the expected error floor dT is upper-bounded by Õ(1/(MHT )), which is inversely proportional to the
number of agents M .

We also present results in scenarios where Assumption 2 does not hold, meaning each Ai for i ∈ [M ] is
symmetric but not necessarily positive definite. Consequently, the objective function fi becomes nonconvex.
Removing this assumption significantly expands the applicability of our algorithms. As demonstrated in
Figures 4 and 5, the observed results remain consistent with those obtained under strongly convex objectives.

D.2 Federated TD Learning with Linear Function Approximation

We proceed to explore the application of FedHSA to FRL via focusing on the setting of federated TD learning
with LFA. We begin by providing a detailed explanation of the problem formulation.

Consider a total of M agents, each agent i interacting with its individual environment equipped with a
fixed policy µi, which can be modeled as a Markov reward process (MRP). Suppose that all the MRPs have
identical finite state and action spaces, though not necessarily the same transition matrices, reward functions,
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Figure 4: Comparison between Local SA and FedHSA with nonconvex objectives
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Figure 5: Comparison between different numbers of agents for the FedHSA algorithm with nonconvex objectives.

or discount factors. Specifically, the MRP of the i-th agent is denoted as Mi = (S,A,Pi, Ri, γi), where S
is the state space with cardinality S; A is the action space with cardinality A; Pi is the transition kernel
dictated by the local policy µi; Ri is the reward function; and γi is the discount factor with 0 < γi < 1. We
denote r

(t)
i as the reward observed by agent i at time-step t.

For self-containedness, we reiterate some basic concepts. For agent i and the underlying MRP Mi, the
associated policy is µi, and the value-function Vi is defined as:

Vi(s) = E

[ ∞∑
t=0

γt
i r

(t)
i | s

(t)
i = s, µi

]
, (98)

where s
(t)
i is the state of agent i at time-step t.

In many RL applications, the state and action spaces can be extremely large, making it impractical to store
the value-function for each state s. To address this, feature matrices are often used to approximate the
value-function. One common approach is the LFA framework:

Ṽi = Φiθ, (99)

where Ṽi is the approximated value-function for agent i in vector form, Φi ∈ RS×d is the feature matrix
specific to agent i, consisting of d linearly independent feature vectors {ϕi,k}d

k=1, and θ ∈ Rd is the nominal
parameter. Here, we make the general assumption that all M agents do not necessarily use the same set of
feature vectors (Doan, 2023).
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The goal in this problem is for the agents to collectively find a parameter θ⋆ such that it best approximates
the value-functions across all agents, i.e.,

Φ̄θ⋆ ≈ 1
M

M∑
i=1

Vi, (100)

where Φ̄ = 1
M

∑M
i=1 Φi.

To this end, each agent updates its parameters by taking the direction of the negative gradient of the sample
Bellman error BEi at observation oi,t := {s(t)

i , r
(t)
i , s

(t+1)
i } w.r.t. parameter θ(t) at time-step t, obtained via

interacting with its own environment Mi:

BEi(θ(t), oi,t) := 1
2

(
r

(t)
i + γϕT

i (s(t+1)
i )θ(t) − ϕT

i (s(t)
i )θ(t)

)2
, (101)

where ϕi(s(t)
i ) is the feature vector of agent i for state s

(t)
i . The server then collects the local parameters for

aggregation, exactly as in the FL framework.

The negative gradient step of (101) is given by:

gi(θ(t), oi,t) =
(

r
(t)
i + γϕT

i (s(t+1)
i )θ(t) − ϕT

i (s(t)
i )θ(t)

)
ϕi(s(t)

i ). (102)

Note that in (102), the gradient gi(θ(t), oi,t) is implicitly integrated with Markovian noise since the states are
sampled from the underlying Markov chain.
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Figure 6: Comparison between Local SA and FedHSA

We also provide the expression for the expected negative gradient step, which one can interpret as the
noiseless gradient:

ḡi(θ(t)) = ΦT
i Di(TiΦiθ

(t) − Φiθ
(t)), (103)

where Di = Diag(πi), πi is the stationary distribution of Pi, and Ti is the Bellman operator for agent i. We
refer the reader to (Bhandari et al., 2018) for more details.

Our federated SA setup (1) precisely captures this setting. Specifically, Ḡi corresponds to the noiseless
gradient operator ḡi for agent i ∈ [M ], and Gi corresponds to the noisy operator gi incorporated with
Markovian noise.

To validate message (i), we compare our FedHSA algorithm with Local SA where there is no correction term
in the local update of each agent. We consider a federated TD learning setting with LFA involving M = 200
agents, with each agent performing H = 10 local steps. Each MRP Mi has S = 100 states, and the rank of
each feature matrix Φi is d = 50.
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Figure 7: Comparison between different numbers of agents for the FedHSA algorithm with the federated TD
setting

Figure 6 clearly demonstrates that FedHSA converges exponentially fast to θ⋆ in the noiseless case and
consistently outperforms Local SA both in the noiseless case and the one with Markovian noise.

We validate message (ii) by comparing FedHSA for different numbers of agents M = 1, 5, 20, 100. Figure 7
shows improved error bounds with an increase in the number of agents, substantiating the linear speedup
effect.

D.3 Federated Finite-Sum Minimization Problem with Quadratic Loss
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Figure 8: Comparison between Local SA and FedHSA
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Figure 9: Comparison between different numbers of agents for the FedHSA algorithm with the finite-sum
setting
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In section D.1, Markovian noise was introduced by directly adding noise to the true local operator. Here, we
adopt an alternative approach to incorporating Markovian noise: sampling data points from a Markov chain
in a finite-sum setting. The detailed problem formulation is presented as follows.

We consider the same federated minimization problem as in (93), but with a different structure for the local
loss functions fi’s. Specifically, for each i ∈ [M ], we have

fi(θ) = 1
N

N∑
j=1

fi,j(θ) = 1
N

N∑
j=1

(
1
2θT Ai,jθ − bT

i,jθ + ci,j

)
. (104)

Here, Ai,j ∈ Rd×d is a positive definite matrix, bi,j ∈ Rd is a d-dimensional vector, and ci,j ∈ R is a scalar for
j = 1, · · · , N . In essence, each local loss function is the average of N quadratic loss functions, giving rise to
the name “finite-sum setting."

We now describe the incorporation of Markovian noise. For intuition, consider the case where the noise is
i.i.d., meaning each agent i ∈ [M ] selects one quadratic loss function fi,j uniformly at random and computes
its gradient to determine the descent direction. Under Markovian noise, however, instead of selecting data
samples uniformly at random, agent i selects fi,j based on a discrete Markov chain Mi. The states of the
Markov chainMi correspond to the indices [N ] of the loss functions {fi,j}N

j=1, and its stationary distribution
µi is the uniform distribution over [N ]. This ensures that in the limit, Gi is an unbiased estimator of the
true operator Ḡi, as Ḡi(·) = Eo∼µi

[Gi(·, o)] holds only when µi is uniform over [N ].

We set up the experiment with M = 200, N = 2, d = 200 and η = 0.01. Figure 8 validates message (i)
exactly as in the previous experiments. Figure 9 compares the performance of FedHSA under varying numbers
of agents, specifically M = 1, 5, 20, 100, with N = 10. Consistent with the observations from the previous
experiments, the error floor decreases as the number of participating agents increases. This empirically
validates our theoretical result that dT ≤ Õ(1/(MHT )), demonstrating the benefits of collaborative speedup
in reducing error.
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