
Adaptive LoRA Merging for Efficient Domain
Incremental Learning

Eric Nuertey Coleman∗

Department of Computer Science
University of Pisa

eric.coleman@phd.unipi.it

Luigi Quarantiello∗
Department of Computer Science

University of Pisa
luigi.quarantiello@phd.unipi.it

Julio Hurtado
Centre for Applications of Mathematical & Computing Sciences

University of Warwick
julio.hurtado@warwick.ac.uk

Vincenzo Lomonaco
Department of Computer Science

University of Pisa
vincenzo.lomonaco@unipi.it

Abstract

Merging Low-Rank Adaptation (LoRA) has become an essential centre for research
and development. However, it is unclear how these methods behave in dynamic
scenarios like Domain Incremental Learning (DIL). Here, we address a key lim-
itation of current merging algorithms: their overreliance on fixed weights that
usually assume equal importance across tasks. Our method dynamically computes
the coefficient for merging, allowing for continuous adaptation to new domains
while adjusting the influence of previous ones. We evaluated our approach against
some current state-of-the-art merging algorithms on two DIL benchmarks: PACS
and OfficeHome. Our results show that the adaptive merging technique achieves
performance comparable to or superior to fixed-weight methods while eliminating
the need for manual weight selection. In particular, our method maintains high
accuracy with minimal memory requirements, using as little as one sample per class
for coefficient learning. This work showcases a promising use of LoRA adapters
and merging algorithms in continual learning, providing a valuable direction for
future research.

1 Introduction

Large pre-trained models have become the default solutions for several applications that require
Machine Learning, mainly given the great diversity of problems in which these models can perform
effectively. However, these models need to be adapted to perform well in most downstream tasks,
due to the fixed and limited training distribution. In classical fine-tuning, all network weights are
modified to adapt to the new task, which is highly time-consuming and computationally expensive,
considering the massive size of these models. Additionally, the large number of weights that need to
be adjusted could easily lead to overfitting.

*Equal contribution

Latinx in AI @ NeurIPS-24 (LXAI 2024).



One alternative to classical fine-tuning are Parameter-Efficient Fine-Tuning (PEFT) methods. PEFT
techniques aim to adapt large models to specific tasks by updating a tiny portion of the network’s
weights, generally obtaining comparable performance to the fine-tuning approach but much more
efficiently [2]. As traditional learning methods, PEFT works under the strong IID assumption,
meaning that the training distribution must be kept constant throughout the training process, supposing
that the whole set of samples is available from the beginning. This limitation makes it difficult for
current models to be used in dynamic contexts, where future distributions can change.

To tackle such constraint, Continual Learning (CL) [5] focuses on continuously training a model as
the training distribution changes. The goal is to make machine learning models capable of absorbing
new knowledge while reducing the catastrophic forgetting of the previous tasks. Although some
papers relate CL to PEFT, they mainly focus on Prompts, leaving out other methods such as LoRA
[3].

In this work, we focus on a Domain-Incremental Learning (DIL) scenario and how to use adapters
merging techniques. While different methods have been proposed for merging models, it still
needs to be determined which method is most effective in CL settings. This study examines and
compares several approaches for merging these continually trained adapters. We also propose a
new method to dynamically find the importance of the task when merging the models that adapt
to dynamic environments. Our results show that we can achieve comparable or even better results
than state-of-the-art methods but with less hyperparameter selection and more robustness in terms of
performance.

2 Background

Low Rank Adaptation (LoRA): LoRA [3] is a PEFT technique that allows large pretrained models
to adapt to downstream tasks by modifying only a small subset of the model’s original parameters.
LoRA introduces trainable matrices A ∈ Rr×d and B ∈ Rd×r to model weight updates:

W = W0 +BA (1)

where W0 is the pre-trained weight and r ≪ min(d, k) is the adapter rank. By training these low-
rank matrices, LoRA significantly reduces the number of trainable parameters while maintaining
comparable performance to full fine-tuning.

Merging Algorithms: Several algorithms have been developed for merging specialized models:

• DARE (Drop And REscale) [12]: This technique addresses parameter redundancy by sparsifying
and merging fine-tuned models. It focuses on delta parameters (δ = Wfine−tuned−Wpre−trained),
randomly dropping a high percentage (e.g., 90% or 99%) and rescaling the remaining ones by
1/(1− p), where p is the drop ratio. DARE enables the merging of multiple task-specific models,
potentially outperforming individual source models.

• TIES-MERGE [11]: This algorithm addresses interference when combining multiple fine-tuned
models through a three-step process: 1) Trimming insignificant parameter changes, 2) Electing signs
to resolve conflicts, and 3) Merging parameters aligned with the agreed-upon sign. This approach
minimizes interference between task-specific adaptations while maintaining model coherence.

• Task Arithmetic [4]: This method introduces Task Vectors, defined as ∆W = Wft −Wpt, where
Wft and Wpt are fine-tuned and pre-trained weights, respectively. These vectors enable operations
like negation (−∆W ), addition (∆WA+∆WB), and analogy ((∆WB−∆WA)+∆WC ≈ ∆WD),
allowing for flexible model behavior modification and knowledge transfer between related tasks
without direct training.

Continual Learning CL addresses the challenge of adapting models to a dynamic data distribution
arriving in a sequence, mitigating forgetting previously acquired knowledge. CL provides context for
how models should learn and adapt to a continuous data stream over time.

This paper focuses on the DIL scenario [8], where a model learns to adapt to a sequence of domains
over time. Each domain represents a variation of the same task, such as recognizing objects in
different lighting conditions or weather scenarios. DIL is particularly relevant in applications where
the same set of classes needs to be recognized across varying domains or conditions, making it crucial
for real-world adaptive systems.

2



3 Merging LoRAs

We propose an adaptive LoRA merging approach for DIL tasks. Specifically, we want to address a
limitation of current merging algorithms, i.e. the fact that they require fixed weights that are often
difficult to select by hand and mostly assume that each task has equal importance, which significantly
impacts the network performance.

Given a pre-trained model M and a sequence of domains D = {D1, D2, ..., DN}, our goal is to
learn a set of LoRA adapters A = {A1, A2, ..., AN} and merging coefficients α = {α1, α2, ..., αN}
that optimize performance across all seen domains. The core of our approach is the dynamical
computation of the merging coefficients. For a set of n adapters, our method learns coefficients
α ∈ Rn is computed as:

αi = σ(ci) · b (2)

Algorithm 1 Adaptive LoRA Merging
1: for Dk ∈ {D1, . . . , Dn} do
2: Train a LoRA adapter Ak on Dk

3: Update the merging coefficients to include Ak

4: Construct balanced dataset Dbal from { D1, . . . , Dk }
5: Learn new coefficients α = {α1, . . . , αk} by minimizing:

Lcoeff = E(x,y)∼Dbal [LCE(M(x;

k∑
i=1

αiAi)︸ ︷︷ ︸
model + merged adapters

, y)]

6: Merge adapters: Amerged =
∑k

i=1 αiAi

7: Evaluate Amerged on all seen domains D1, ..., Dk

8: end for

Domain 1 LoRA Domain 2 LoRA Domain 3 LoRA

Task 
Arithmetic

 / Ties 
/ Dare Ties

Merged Final Model

Test 

Coefficient Learner

LC2 LC3
LC1

Figure 1: Workflow of the approach

where σ(·) denotes the sigmoid function and ci are learnable parameters. The bias term b is con-
strained to be positive and bounded:

b = 1 + (bmax − 1) · σ(braw) (3)

where braw is a learnable parameter and bmax is a hyperparameter defining the maximum possible
bias. This formulation ensures that 0 < αi < bmax, allowing for adaptive scaling while preventing
excessive growth of coefficient values. Such weights are learned via standard backpropagation, using
a balanced subset across all seen domains.

Our incremental learning process is described formally in Algorithm 1, while a graphical overview of
the workflow can be seen in Figure 1. This process allows for continuous adaptation to new domains
while dynamically adjusting the influence of previous ones. Unlike batch learning approaches, our
method doesn’t require retraining on data from all domains and maintains a compact model size by
merging adapters.

In summary, our adaptive merging can be seen as a generalization of existing methods:

Aadaptive =

k∑
i=1

αi(θ)Ai (4)

where αi(θ) are learned, domain-specific coefficients parameterized by θ. In contrast, linear merging
uses fixed weights, while TIES and DARE-TIES use binary or random masks with pruning operators.
This adaptive nature allows our method to better capture the relationships between domains and
adjust the merging strategy as new domains are encountered, leading to improved performance in
domain incremental learning scenarios.

3



Table 1: Average accuracies (%, ↑) on PACS and OfficeHome. W indicates the value of the fixed coefficient for
each adapter, while bmax is the maximum possible bias. We used 1 sample per class (SPC) to learn the adaptive
coefficients. The results are obtained by averaging the accuracies across 3 different runs.

SPC = 1 Fixed Coefficients Adaptive Coefficients

Merging Algorithm W = 1 W = 3 W = 5 bmax = 1.0 bmax = 3.0 bmax = 5.0
PA

C
S Task Arithmetic 29.19 ± 9.99 11.38 ± 4.76 13.34 ± 6.57 76.48 ± 14.65 29.72 ± 10.15 17.84 ± 4.44

TIES 82.42 ± 11.76 25.19 ± 9.86 16.14 ± 4.90 62.62 ± 10.10 82.62 ± 11.39 80.44 ± 12.38
DARE TIES 20.37 ± 5.02 42.58 ± 8.88 63.25 ± 14.10 16.42 ± 4.93 20.41 ± 5.27 25.02 ± 5.69

O
ffi

ce
H

om
e Task Arithmetic 1.83 ± 0.63 1.50 ± 0.29 1.77 ± 0.34 42.09 ± 5.95 2.17 ± 0.58 1.58 ± 0.53

TIES 66.83 ± 6.92 2.17 ± 0.42 2.16 ± 0.65 24.88 ± 3.51 62.95 ± 5.17 62.74 ± 5.83
DARE TIES 2.65 ± 0.30 13.50 ± 2.32 34.12 ± 4.85 1.68 ± 0.20 2.72 ± 0.21 3.18 ± 0.21

4 Results and Experimental Setup

4.1 Implementation Details

In our experiments, we use a pretrained on ImageNet Vision Transformer (ViT-B/16) [1], obtained
through the timm library [10]. As baselines, we select three state-of-the-art methods: Linear, TIES
and DARE+TIES, using the implementation available in the peft library from HuggingFace [7]. We
assessed existing merging algorithms and our approach in two benchmarks designed explicitly for
DIL, PACS [6] and OfficeHome [9] two real-world datasets with four distinct domains related to
the same classification task. Each baseline was evaluated using fixed coefficients (W) for merging,
where W represents the weight assigned to each adapter’s contribution. We tested W ∈ {1, 3, 5} to
demonstrate the sensitivity to this hyperparameter.

4.2 Experimental Results

Firstly, by examining the experiments with fixed coefficients, we can observe in Table 1 that, in both
cases, TIES achieves the best overall result, with the value for the weights equal to 1. It is important
to note that different coefficient values significantly impact accuracy, and if picked wrongly, this can
lead to poor results when working in a DIL scenario. Such lack of robustness requires an extensive
manual selection of the hyperparameters, which can be even worse when it is necessary to identify
different coefficients for each single task.
To overcome this limitation, our approach learns the importance of each task using a small buffer.
Like the fixed coefficients of the baselines, we experimented with different values of bmax. The
right-hand side of Table 1 shows that TIES achieves the best accuracy, improving the results of the
fixed coefficient algorithm in the case of PACS. These results are obtained by saving only 1 example
per class in the buffer, showing the efficiency of the proposed method.

To thoroughly analyze our approach, we tested it also with a bigger memory buffer, using 5 samples
per class (SPC). The results are reported in Table 2. These results show a slight improvement in most
cases, though it comes at a higher computational cost. Nonetheless, such findings suggest that our
method does not require large buffers and can perform nearly optimally even with a limited number
of samples.

One of the benefits of our method is its dynamic adaptability to different scenarios, identifying the
most relevant tasks within the buffer distribution through its learned coefficients. Table 3 shows an
example of the evolution of the coefficients value when training our proposed approach with TIES.
Our experimental results consistently demonstrate that the cartoon and sketch domains present
the most significant challenges in adapter merging, requiring an higher attention from the model,
hence higher coefficients (typically W > 1.0). Such phenomenon can be primarily attributed to the
substantial distribution shift between these testing domains and the natural images used in pre-training.
Unlike photos or paintings, which preserve color information and texture details, cartoon images
depict objects in a highly abstract fashion, while sketches represent concepts through minimal line
drawings. In both cases, most low-level visual features that deep networks rely on are absent, resulting
in higher merging coefficients and slightly lower accuracies.

Additionally, standard merging methods have a large hyperparameter space, significantly increasing
the computational cost of manually selecting them. Our approach removes the need to select by hand
the values of the weights by introducing bmax as a single new value. Looking at the results, we argue

4



Table 2: Average accuracies (%, ↑) for the PACS dataset. We used 5 samples per class (SPC) to learn the
adaptive coefficients. The results are obtained by averaging the accuracies across 3 different runs.

SPC = 5 PACS OfficeHome
Merging Algorithm bmax = 1.0 bmax = 3.0 bmax = 5.0 bmax = 1.0 bmax = 3.0 bmax = 5.0

Task Arithmetic 77.88 ± 14.08 30.64 ± 9.86 18.01 ± 4.14 58.91 ± 4.87 42.61 ± 5.13 13.25 ± 2.33
TIES 61.61 ± 8.35 82.84 ± 10.53 81.63 ± 11.54 18.29 ± 2.29 25.26 ± 2.83 40.29 ± 3.74
DARE TIES 16.35 ± 4.92 20.18 ± 5.20 24.51 ± 5.52 1.61 ± 0.22 1.69 ± 0.20 1.83 ± 0.21

Table 3: Results when merging with TIES and our proposal. Results were obtained using 5 samples per class
and bmax = 3. Experiences represent the sequential addition of domains. Dashes (–) indicate the domain has
not yet been added.

Experience Adapter Weights (bmax = 3.0 ) Domain Accuracy (%)
Photo Cartoon Sketch Art Photo Cartoon Sketch Art

1 1.09 – – – 100.00 – – –
2 0.94 1.08 – – 98.98 90.36 – –
3 0.88 1.05 1.01 – 96.05 86.60 85.19 –
4 0.85 1.07 1.02 0.86 97.72 80.72 76.23 87.40

that bmax makes the model more robust to the hyperparameter selection compared to W, leading to
smaller performance variations and higher accuracy in the worst-case scenario. Additionally, our
method reduces the complexity of hyperparameter selection by replacing adapter-specific weights
with a single bmax, significantly decreasing the number of hyperparameters.

5 Conclusion and Future Work

In this study, we explored applying PEFT techniques to DIL tasks. In particular, this work represents
the first attempt at applying LoRA adapters and merging algorithms to CL scenarios.
We first analyzed the behavior of existing state-of-the-art merging methods when applied to dynamic
contexts, finding that TIES achieves the highest accuracy over the other two algorithms. Nonetheless,
we observed that such approaches require fixed coefficients, which are challenging to select manually
and do not adapt well to evolving environments.
To address this problem, we proposed a end-to-end learning algorithm, which learns to select the
values of the coefficients based on the relevance of each adapter. We showed that our method
performs similarly or even better to the fixed merging approach without needing complex and tedious
hyperparameter selection.

This study marks a preliminary step in applying LoRA adapters to CL tasks. In future work, we
intend to extend our method to other CL scenarios, such as Class-Incremental Learning, and more
complex benchmarks featuring more classes and domains.

6 Ackwoledgements

Work supported by Leonardo Labs, EU EIC project EMERGE (Grant No. 101070918) and PNRR
- M4C2 - Investimento 1.3, Partenariato Esteso PE00000013 - "FAIR - Future Artificial Intelli-
gence Research" - Spoke 1 "Human-centered AI", funded by the European Commission under the
NextGeneration EU programme.

References

[1] Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

5



[2] Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier. On
the effectiveness of parameter-efficient fine-tuning. In Proceedings of the AAAI conference on
artificial intelligence, volume 37, pages 12799–12807, 2023.

[3] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[4] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023.

[5] Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat, and
Natalia Díaz-Rodríguez. Continual learning for robotics: Definition, framework, learning
strategies, opportunities and challenges. Information fusion, 58:52–68, 2020.

[6] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier
domain generalization. In Proceedings of the IEEE international conference on computer vision,
pages 5542–5550, 2017.

[7] Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and
Benjamin Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https:
//github.com/huggingface/peft, 2022.

[8] Haizhou Shi and Hao Wang. A unified approach to domain incremental learning with memory:
Theory and algorithm, 2023.

[9] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan.
Deep hashing network for unsupervised domain adaptation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 5018–5027, 2017.

[10] Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

[11] Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models, 2023.

[12] Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch, 2024.

6

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	Introduction
	Background
	Merging LoRAs
	Results and Experimental Setup
	Implementation Details
	Experimental Results

	Conclusion and Future Work
	Ackwoledgements

