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Abstract

Learned classifiers should often possess certain invariance properties meant to en-1

courage fairness, robustness, or out-of-distribution generalization. Multiple recent2

works empirically demonstrate that common invariance-inducing regularizers are3

ineffective in the over-parameterized regime, in which classifiers perfectly fit (i.e.4

interpolate) the training data. In this work we provide a theoretical justification for5

these observations. We prove that - even in the simplest of settings - any interpo-6

lating classifier (with nonzero margin) will not satisfy these invariance properties.7

We then propose and analyze an algorithm that - in the same setting - successfully8

learns a non-interpolating classifier that is provably invariant. Validation of our9

theoretical observations is performed on simulated data and the Waterbirds dataset.10

1 Introduction11

Modern machine learning applications often call for models which are not only accurate, but are also12

robust to distribution shifts and satisfy fairness constraints. For example, we may wish to avoid using13

hospital specific traces in X-ray images [12, 46], as they rely on spurious correlations that will fail14

when deployed in a new hospital, or we might seek models with similar error rates across protected15

demographic groups in the context of loan applications [7]. A developing paradigm for fulfilling such16

requirements is learning models that satisfy some notion of invariance [27, 28] across environments17

or sub-populations. Many techniques for learning invariant models have been proposed including18

penalties that encourage notions of invariance [e.g. 3, 40, 43, 30], data re-weighting [34, 44, 17],19

causal graph analysis [38], and more [1].20

While this is a promising approach, many current invariance-inducing methods often fail to improve21

over naive approaches. This is especially noticeable when these methods are used with overparam-22

eterized deep models capable of interpolating [13, 14, 25, 41, 10]. Two parallel lines of research23

address this problem. The first attempts to come up with alternative learning rules that are capable of24

interpolating while still endowing meaningful invariance properties to the solutions [18, 44]. These25

works are motivated in part by the phenomenon of “benign overfitting” [6, 5], whereby interpolating26

overparameterized models achieve excellent generalization performance on an identically-distributed27

test set [8, 37]. The second line of research forgoes interpolation, and instead applies invariance28

inducing techniques with small models on top of representations learned by some other means29

[32, 41, 19, 25, 21], as well as by subsampling techniques [17, 9]. As both lines of research report30

encouraging empirical results, it is not clear which one is the preferred way forward. In this work we31

give theoretical arguments to address this question, showing that interpolating models are fundamen-32

tally less invariant than non-interpolating ones. In other words, beyond identically-distributed test33

sets, overfitting is no longer benign. This will be demonstrated on a simple overparaeterized model,34

similar to those used in [36, 31, 35], as we now turn to describe.35

2 Overview of Setting and Results36

Our analysis focuses on learning linear models over data collected from a mixture of two Gaussians.37

Definition 1. An environment is a distribution parameterized by (µc,µs, d, σ, θ) where θ ∈ [−1, 1]38

and µc,µs ∈ Rd satisfy µc ⊥ µs and with samples generated according to: Pθ(y) = Unif{−1, 1},39

and Pθ(x|y) = N (yµc + yθµs, σ
2I).40
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We focus on problems with two “training environments" [3, 27] Pθe for e ∈ {1, 2}, that share all41

their parameters other than θ.42

Definition 2 (Linear Two Environment Problem and Robust Error). In a Linear Two Environment43

Problem we have datasets S1, S2 of sizes N1, N2 drawn from Pθ1 ,Pθ2 respectively, where µc and µs44

satisfy ∥µc∥ = rc and ∥µs∥ = rs and N := N1+N2. S1∪S2 is the pooled dataset S = {xi, yi}Ni=145

and a learning algorithm is a (possibly randomized) mapping from the tuple (S1, S2) to w ∈ Rd,46

whose robust error is: maxθ∈[−1,1] ϵθ(w), where ϵθ(w) := Ex,y∼Pθ
[sign(⟨w,x⟩) ̸= y].47

We study settings where θ1, θ2 are fixed and d is large compared to N , i.e. the overparameterized48

regime. The power of this simple model is that many common invariance criteria boil down to49

the same mathematical constraint:1 learning a classifier that is orthogonal to µs, which induces a50

spurious correlation between the environment and the label. In terms of predictive accuracy, the51

goal of learning a linear model that aligns with µc and is orthogonal to µs coincides with providing52

guarantees on the robust error, i.e. the error when data is generated with values of θ ̸= θ1, θ253

Statement of Main Result. The question we study is whether algorithms that perfectly fit, i.e.54

interpolate, their training data can learn models with low robust error. To give a meaningful answer,55

we use the notion of normalized margin. Ideally we would like to give a result on all classifiers that56

attain training error zero in terms of the 0-1 loss. However, the inherent discontinuity of this loss57

would make any such statement sensitive to instabilities and pathologies.2 Hence the margin serves58

as a surrogate for this notion.59

Definition 3 (Normalized margin). Let γ > 0, we say a classifier w ∈ Rd separates the set S =60

{xi, yi}Ni=1 with normalized margin γ if it satisfies for each point in S: yi⟨w,xi⟩/∥w∥ > γ
√
σ2d.61

The
√
σ2d scaling of γ is roughly proportional to ∥x∥ under our data model in Definition 1, and62

keeps the value of γ comparable across growing values of d. Our main result is as follows.63

Theorem 1. For any sample sizes N1, N2 > 65, margin lower bound γ < 1
4
√
N1+N2

and target64

robust error ϵ > 0, there exist parameters rc, rs > 0, d > N1 +N2, σ, θ1, θ2 such that the following65

holds for the Linear Two Environment Problem (Definition 2) with these parameters.66

1. Invariance is attainable. Algorithm 1 maps (S1, S2) to a linear classifier w such that with67

probability at least 99/100 (over the draw S), the robust error of w is less than ϵ.68

2. Interpolation is attainable. With probability at least 99/100, the signed-sample-mean estimator69

wmean = N−1
∑
i∈[N ] yixi separates S with normalized margin greater than 1

4 (N1 +N2)
−1/2.70

3. Interpolation is at odds with invariance. Given µc uniformly distributed on the sphere of radius71

rc and µs uniformly distributed on a sphere of radius rs in the subspace orthogonal to µc, let72

w be any classifier learned from (S1, S2) as per Definition 2. If w separates S with normalized73

margin γ, then with probability at least 99/100 (over the draw of µc,µs, and the sample), the74

robust error of w is at least 1/2.75

Essentially, Theorem 1 shows that if a learning algorithm for overparameterized linear classifiers76

always separates its training data, then there exist natural settings for which the algorithm completely77

fails to learn a robust classifier. It holds arbitrarily small margins γ, where the maximum achievable78

margin is at least of the order of 1/
√
N . Therefore, we believe that Theorem 1 essentially precludes79

any learning that always fits the data from being consistently invariant. It also shows that failure can80

be avoided, as there is an algorithm (that necessarily does not always separate its training data) which81

successfully learns an invariant classifier. Appendix A further elaborates on the regimes where failure82

occurs and how the theorem relates to known results. We establish Theorem 1 with three propositions83

in Section 4, Appendix E and in Section 3, which we put together by choosing the free parameters in84

Appendix G so that all the claims hold simultaneously.85

3 Interpolating Models Cannot Be Invariant86

In this section we prove the third claim in Theorem 1. We set σ2d = 1 and θ1 = 1, θ2 = 0, meaning87

the spurious correlation is prevalent in the first environment and absent from the second. Our claim88

1These include Equalized Odds [15], distribution matching [23], multi-domain calibration [16, 43], Risk
Extrapolation [20]. See discussion in Appendix H.

2For instance, if we do not limit the capacity of our models, we can turn any classifier into an interpolating
one by adding “special cases" for the training points, yet intuitively this is not the type of interpolation that we
would like to study.

2



is that, for essentially any nonzero value of γ, there are instances of the Linear Two Environment89

Problem where with high probability, linear classifiers attaining normalized margin at least γ incur a90

large robust error. The proof of the following proposition can be found in Appendix D.3.91

Proposition 1. There are universal constants cn ∈ (0, 1) and Cd, Cr ∈ (1,∞), such that, for any92

target normalized γ and failure probability δ ∈ (0, 1), if93

max{r2s , r2c} ≤ cn
N

,
r2s
r2c

≥ Cr

(
1 +

√
N2

N1γ

)
and d ≥ Cd

N

γ2N2
1 r

2
c

log
1

δ
, (1)

then with probability at least 1− δ over the drawing of µc,µs and (S1, S2) as described in Theorem94

1, any ŵ ∈ Rd that is a measurable function of (S1, S2) and separates the data with normalized95

margin larger than γ has robust error at least 0.5.96

Proof sketch. The main part of the proof draws a lower bound on the ratio ⟨w,µs⟩/⟨w,µc⟩ (with97

high probability) that is approximately
(
∥µs∥2N1γ

)
/
(
∥µc∥2

√
N2

)
. Therefore, for a classifier that98

attains margin γ satisfying Equation (1), this ratio is likely to be larger than 1. The ratio directly99

relates to the robust error: for linear classifiers and Gaussian data, the error ϵθ(w) is100

ϵθ(w) = Q

(
⟨w,µc⟩+ θ⟨w,µs⟩

σ∥w∥

)
= Q

(
⟨w,µc⟩
σ∥w∥

(
1 + θ

⟨w,µs⟩
⟨w,µc⟩

))
, (2)

where Q(t) := P(N (0; 1) > t) is the Gaussian tail function. Whenever ⟨w,µs⟩/⟨w,µc⟩ > 1, it is101

easy to see that ϵθ(w) = 1/2 for some θ ∈ [−1, 1] and therefore the robust error is at least 1
2 .102

To obtain the aforementioned lower bound, we first claim that if we fix a training set {xi, yi}Ni=1,103

then the component of w that is orthogonal to the training set has a negligible contribution to the104

performance of the classifier (see Corollary 1 in the appendix). This is due to the random generation105

of µc,µs in our data generating process. Consequently we may write w ≈
∑
i xiβi for some vector106

β ∈ RN , and inner products with w (e.g. ⟨w,µs⟩, ⟨w,xi⟩) can be expressed as linear functions of107

β. This lets us draw bounds on ⟨w,µs⟩ and ⟨w,µc⟩ under margin constraints via convex duals of108

the suitable constrained quadratic programs (see Lemma 4 in appendix). These components are put109

together in Appendix D.3 of the appendix to obtain the bound of interest.110

Implication for invariance-inducing algorithms. Our simulations in Section 5 will show that111

several popular invariance inducing algorithms interpolate their data in the overparameterized regime.112

Hence our result predicts that they, as well as any other interpolating algorithm, should fail at learning113

overparameterized invariant classifiers. It is then natural to ask what type of methods can provably114

learn such models, which leads to our next section and the first part of Theorem 1.115

4 A Provably Invariant Overparameterized Estimator116

Our approach is a two-staged learning procedure that is conceptually similar to some recently117

proposed methods [32, 41, 19, 25, 21, 48]. In Section 5 we validate our algorithm on simulations118

and on the Waterbirds dataset [34], but we leave a thorough empirical evaluation of the techniques119

described here to future work.120

Algorithm 1 (see Appendix F for pseudocode) first evenly3 splits the data from each environment121

into the sets Strn
e , Sfine

e , for e ∈ {1, 2}. The “Training" stage uses Strn
e to fit an overparameterized,122

interpolating classifier we separately for each environment e ∈ {1, 2}. We then use the second portion123

of the data Sfine = {Sfine
1 , Sfine

2 } to learn an invariant linear classifier over a new representation,124

which concatenates the outputs of classifiers from the first stage. This classifier is learned by125

maximizing a score (i.e., minimizing an empirical loss), subject to an empirical version of an126

invariance constraint. Our analysis uses Equalized Opportunity [15] for convenience (see appendix127

Appendix F.1 for definition), though any other invariance inducing method can be applied at this128

stage. Crucially, the invariance penalty is only used in the second stage, in which we are no longer in129

the overparamterized regime since we are only fitting a two-dimensional classifier. In this way, we130

overcome the negative result from Section 3.131

The guarantees we derive for Algorithm 1 are given in the proposition below, and its full proof is at132

section F.2 of the appendix.133

3The even split is used here for simplicity of exposition, and our full proof does not assume it. In practice,
allocating more data to the first-stage split would likely perform better.
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Proposition 2. Consider the Linear Two Environment Problem (Definition 2), and further suppose134

that |θ1 − θ2| > 0.1.4 Let ϵ > 0, δ ∈ (0, 1) denote the target robust error of the model and failure135

probability of the algorithm, respectively. Let Nmin = min{N1, N2} ≥ Copp log(1/δ) for some136

Copp ∈ (1,∞)5 and assume that for some constants Cc, Cs ∈ (1,∞) , the following holds:137

r2s ≥ Cs

√
log

1

δ

σ2
√
d

Nmin
, and r2c ≥ Ccσ

2

√
log

1

δ
max

{
Q−1(ϵ)

√
d

Nmin
,

√
d

Nmin
,

r2s
Nminr2c

}
. (3)

Then, with probability at least 1− δ over the choice of the training data, the robust error of the model138

returned by Algorithm 1 does not exceed ϵ.139

5 Empirical Validation140
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Figure 1: Results for Linear Two En-
vironment Problem simulations. Ro-
bust accuracy (top) and training accuracy
(bottom) for the different methods.

The empirical observations that motivated this work can141

be found across the literature. We thus focus our simula-142

tions on validating the theoretical results in our simplified143

model and on the popular Waterbirds dataset. Due to space144

limitations, we defer details on the setup of these exper-145

iments to section B and focus this section on evaluation146

and the results, which are summarized in Figures 3 and 4.147

Linear Two Environment Problem We generate data148

according to the settings for which we derive our theoret-149

ical results, with growing values of d. Robust accuracy150

and train set accuracy are compared between the learned151

classifiers, where we use several training meethods imple-152

mented in the Domainbed package [13]. First, we observe153

that all methods except for Algorithm 1 attain perfect accu-154

racy for large enough d, i.e. they interpolate. We further note that while invariance inducing methods155

give a desirable effect in low dimensions (the non-interpolating regime) – significantly improving156

the robust error over ERM – they become aligned with ERM in terms of robust accuracy as they go157

deeper into the interpolation regime (indeed, IRM essentially coincides with ERM for larger d). This158

is an expected outcome considering our findings in section 3.159
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Figure 2: Results for the Waterbirds dataset [34].
Top row: Train error (left) and test error (right).
Bottom row: Comparing the FNR gap on the test
set (left), with zoomed-in versions on the right.

Waterbirds. We use the image background160

type (water or land) as the sensitive feature, de-161

noted by A, and consider the fairness desiderata162

of Equal Opportunity [15], i.e., similar false neg-163

ative rate (FNR) for both groups. Towards this,164

we use the MinDiff penalty [29] with two meth-165

ods, both learn a linear model over random fea-166

tures extracted from a ResNet-18 representation167

of the raw image. The baseline trains a regular-168

ized logistic regressor with the MinDiff penalty169

term. Algorithm 1 first learns two logistic re-170

gression models, one over data where A = 0171

and the other where A = 1, and then applies172

regularized risk minimization with MinDiff on a173

two-dimensional representation obtained as the174

output of the two logistic regressors. Figure 4175

summarizes the results where we run each method with (λ = 5) and without (λ = 0) regularization.176

For the baseline approach, the fairness penalty successfully reduces the FNR gap when the classifier177

is not interpolating. However, as our negative result predicts and as previously reported in [41], the178

fairness penalty becomes ineffective in the interpolating regime (d ≥ 1000). On the other hand, for179

our two-phased algorithm, the addition of the fairness penalty does reduce the FNR gap with an180

average relative improvement of 20%); crucially, this improvement is independent of d.181

4Intuitively, if |θ1 − θ2| should have a quantifiable effect on our ability to generalize robustly (e.g. when it is
0 robust learning is impossible). the full result in the Appendix takes this item into account

5This assumption makes sure we have some positive labels in each environment.
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A Discussion and Additional Related Work325

In terms of formal results, most of the guarantees about invariant learning algorithms rely on the326

assumption that infinite training data is available [3, 43, 40, 30, 31]. Some exceptions are the works327

of Ahuja et al. [2] and Parulekar et al. [26] that characterize the sample complexity of methods that328

learn invariant classifiers, yet they do not analyze the overparameterized cases we are concerned with.329

Negative results about learning overparameterized robust classifiers have been shown for methods330

based on importance weighting [47], and negative results on learning with group-robust classifiers331

have been shown for max-margin classifiers [35]. Our result is thus more general and applies to332

any learning algorithm that separates the data with arbitrarily small margins, instead of focusing on333

max-margin classifiers or specific algorithms.334

A notable aspect of our result is that it holds for essentially all values of N2 and N1. This stands in335

contrast to prior work such as Sagawa et al. [35], which typically relies on one of the environments336

being under-represented, i.e., N2 ≪ N1. We are able to sidestep such requirements by making the337

invariant signal component (rc) much weaker than the spurious component (rs), while still allowing338

for low test error by taking the problem dimension to be sufficiently high. However, when one339

environment is sufficiently rare (namely N2 ≤ N2
1 γ

2), we can show that interpolation precludes340

invariance even when rs and rc are of the same order.341

Finally, we note that our results hold for classifiers with arbitrarily small margin γ, for settings342

where the maximum achievable margin is always at least of the order of 1/
√
N1 +N2. Therefore,343

we believe that Theorem 1 essentially precludes any learning that always fits the data from being344

consistently invariant. While we focus on the linear case, we believe it is instructive, as any reasonable345

method is expected to succeed in that case. Nonetheless, we believe our results can be extended to346

non-linear margins, and we leave this to future work.347

One take-away from our result is that while low training loss is not something to avoid, overfitting348

to the point of interpolation creates a significant difficulty. This means one cannot assume a typical349

deep learning model with an added invariance penalty will indeed achieve any form of invariance;350

this fact also motivates using held-out data for imposing invariance, as in our Algorithm 1 as well as351

several other two-stage approaches mentioned above.352

While our focus in this work was on theory underlying a wide array of algorithms, there are many353

closely related topics that we did not touch upon. For instance, an empirical comparison of two-stage354

methods along with other methods that avoid interpolation, e.g. by subsampling data [17, 9]. We355

also note that our focus in this paper was not on types of invariance that are satisfiable by using356

clever data augmentation techniques (e.g. invariance to image translation), or the design of special357

architectures (e.g. [11, 22, 24]). These methods cleverly incorporate a-priori known invariances, and358

their empirical success when applied to large models may suggest that there are lessons to be learned359

for the type of invariant learning considered in our paper. These connections seem like an exciting360

avenue for future research.361
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B Further Details on Empirical Evaluation362

Here we provide an extended version of the empirical evaluation section, with more details on the363

experimental setup and further discussion of the results.364

B.1 Simluations365
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Figure 3: Numerical validation of our theoretical
claims. Invariance inducing methods improve ro-
bust accuracy compared to ERM in low values
of d, but their ability to do so is diminished as d
grows (top plot) and they enter the interpolation
regime, as seen on the bottom plot for d > 102.
Algorithm 1 learns robust predictors as d grows
and does not interpolate.

Setup. Our simulation generates data as de-366

scribed in Theorem 1 with two environments367

where θ1 = 1, θ2 = 0. We further fix rc = 1368

and rc = 2, while N1 = 800 and N2 = 100.369

We then take growing values of d, while ad-370

justing σ so that (rc/σ)
2 ∝

√
d/N .6 For371

each value of d we train linear models with372

IRMv1 [3], VREx [20], MMD [23], CORAL373

[39], GroupDRO [34], implemented in the Do-374

mainbed package [13]. We also train a classifier375

with the logistic loss to minimize empirical er-376

ror (ERM), and apply Algorithm 1 where the377

“fine-tuning" stage trains a linear model over the378

two-dimensional representation using the VREx379

penalty to induce invariance. We repeat this for380

15 random seeds to set µc, µs and to draw the381

training set.382

Evaluation and results. We compare the ro-383

bust accuracy and the train set accuracy of the384

learned classifiers as d grows. First, we observe385

that all methods except for Algorithm 1 attain386

perfect accuracy for large enough d, i.e. they interpolate. We further note that while invariance induc-387

ing methods give a desirable effect in low dimensions (the non-interpolating regime) – significantly388

improving the robust error over ERM – they become aligned with ERM in terms of robust accuracy389

as they go deeper into the interpolation regime (indeed, IRM essentially coincides with ERM for390

larger d). This is an expected outcome considering our findings in section 3, as we set here N1 to be391

considerably larger than N2.392

B.2 Waterbirds Dataset393

We evaluate Algorithm 1 on the Waterbirds dataset [34], which has been previously used to evaluate394

the fairness and robustness of deep learning models.395

Setup. Waterbirds is a synthetically created dataset containing images of water- and land-birds396

overlaid on water and land background. Most of the waterbirds (landbirds) appear in water (land)397

backgrounds, with a smaller minority of waterbirds (landbirds) appearing on land (water) backgrounds.398

The dataset is split into training, validation and test sets with 4795, 1199 and 5794 images in each set,399

respectively. We follow previous work [35, 41] in defining a binary task in which waterbirds is the400

positive class and landbirds are the negative class, and using the following random features setup:401

for every image, a fixed pre-trained ResNet-18 model is used to extract a drep-dimensional feature402

vector x′ (drep = 512). This feature vector is then converted into an d-dimensional feature vector403

x = ReLU(Ux′), where U ∈ Rd×drep is a random matrix with Gaussian entries. Finally, a logistic404

regression classifier is trained on x. The extent of over-parameterization in this setup is controlled by405

varying d, the dimensionality of x. In our experiments we vary d from 50 to 2500, with interpolation406

empirically observed at d = 1000 (which we refer to as the interpolation threshold).407

Fairness. We use the image background type (water or land) as the sensitive feature, denoted A, and408

consider the fairness desiderata of Equal Opportunity [15], i.e., the false negative rate (FNR) should409

be similar for both groups. Towards this, we use the MinDiff penalty term [29]. It uses the maximum410

6This is to keep our parameters within the regime where benign overfitting occurs.
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Figure 4: Results for the Waterbirds dataset [34]. Top row: Train error (left) and test error (right).
The train error is used to identify the interpolation threshold for the baseline method (approximately
d = 1000). Bottom row: Comparing the FNR gap on the test set (left), with zoomed-in versions on
the right. For the baseline approach, the fairness penalty successfully reduces the FNR gap when the
classifier is not interpolating, but is ineffective in the interpolating regime (d ≥ 1000). On the other
hand, for our two-phased algorithm, the addition of the fairness penalty reduces the FNR gap in a
way that is independent of d (average relative improvement 20%).

mean discrepancy (MMD) distance between the model’s output for the two sensitive groups when411

Y = 1 as a differentiable proxy to the FNR gap:412

LM (w) = MMD (⟨w, X⟩|A = 0, Y = 1; ⟨w, X⟩|A = 1, Y = 1) .

Evaluation. We compare the following methods: (1) Baseline: Learning a linear classifier w by413

minimizing Lp + λ · LM , where Lp is the standard binary cross entropy loss and LM is the MinDiff414

penalty; (2) Algorithm 1: In the first stage, we learn group-specific linear classifiers w0,w1 by415

minimizing Lp on the examples from A = 0 and A = 1, respectively. In the second stage we learn416

v ∈ R2 by minimizing Lp + λ · LM on examples the entire dataset, where the new representation of417

the data is X̃ = [⟨w1, X⟩, ⟨w2, X⟩] ∈ R2.7418

For all the experiments we use the Adam optimizer, a batch size of 128 and a learning rate schedule419

with initial rate of 0.01 and a decay factor of 10 for every 10,000 gradient steps. Every experiment is420

repeated 25 times and results are reported over all runs. For the baseline model we train for a total of421

30,000 gradient steps whereas for our two-phased algorithm we use 15,000 gradient steps for each422

model in Phase A and an additional 250 steps for Phase B.423

Results. Our main objective is to understand the effect of the fairness penalty. Towards this,424

for each method we compare both the test error and the test FNR gap when using either λ = 0425

(no regularization) or λ = 5. The results are summarized in Figure 4. We can see that for the426

baseline approach, the fairness penalty successfully reduces the FNR gap when the classifier is not427

interpolating. However, as our negative result predicts and as previously reported in [41], the fairness428

penalty becomes ineffective in the interpolating regime (d ≥ 1000). On the other hand, for our429

two-phased algorithm, the addition of the fairness penalty reduces does reduce the FNR gap with an430

average relative improvement of 20%); crucially, this improvement is independent of d.431

7This is basically Algorithm 1 with the following minor modifications: (1) The we’s are computed via ERM,
rather than simply taken to be the mean estimators; (2) Since the FNR gap penalty is already computed w.r.t
a small number of samples, we avoid splitting the data and use the entire training set for both phases; (3) we
convert the constrained optimization problem into an unconstrained problem with a penalty term.
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C Setting and Helper Lemmas432

Notation. Let U(O(d)) be the uniform distribution over d × d orthogonal matrices, Rad(α) the433

Rademacher distribution with parameter α, and N (µ,Σ) the Gaussian and multivariate normal434

distribution with mean µ and covariance Σ (the dimension will be clear from context) and W (Σ, d)435

the Wishart distribution with scale matrix Σ and d degrees of freedom. The set S = [N ] will denote436

indices of training examples, S1, S2 ⊆ S are the indices of examples in environments 1, 2 respectively.437

Our generative process is then:438

U ∼ U(O(d))

µc = U1 · rc,µs = U2 · rs

yi = Rad(
1

2
), ni ∼ N (0, σ2Id) ∀i ∈ [N ]

xi = yiµc + yiθeµs + ni ∀e, i ∈ Se.

The vectors E1, E2 ∈ {0, 1}N are binary vectors where [Ee]i = 1 for i ∈ Se and e ∈ {1, 2},439

while 1 is the vector of length N whose entries equal 1. We also denote zi = xiyi for i ∈ S and440

Z = [z1, . . . , zN ]⊤ ∈ RN×d the matrix that stacks all these vectors. The i-th column of a matrix441

M is denoted by Mi, smin(M), smax(M) are its smallest and largest singular values accordingly.442

The unit matrix of size n is denoted by In and for convenience we denote the direction of any443

vector v as v̂ := v
∥v∥ . Finally, for some vector of coefficients β ∈ RN , we will use the form444

ŵ =
∑
i∈S βiyixi +w⊥ where w⊥ is in the orthogonal complement of span({xi}i∈S), to write445

any linear model (here normalized to unit norm).446

For convenience we will write our proofs for the case where θ1 = 1, θ2 = 0 and σ2 = d−1, extensions447

to different settings of these parameters are straightforward but result in a more cumbersome notation.448

C.1 Operator Norms of Wishart Matrices449

We begin with stating the required events for our results and their occurrence with high-probability:450

Lemma 1. Consider the matrix G = Z− 1µ⊤
c − E1µ

⊤
s . For any t > 0, with probability at least451

1− 6 exp(−t2/2) the following hold simultaneously:452

1−
√

N

d
− t√

d
≤ smin(G

⊤) ≤ smax(G
⊤) ≤ 1 +

√
N

d
+

t√
d

(4)

∥Gµc∥ ≤ t

√
N

d
∥µc∥ (5)

∥Gµs∥ ≤ t

√
N

d
∥µs∥ (6)

Proof. G is a random Gaussian matrix with Gi,j ∼ N (0, d−1IN ). By concentration results for453

random Gaussian matrices [42, Cor. 5.35] we obtain that with probability at least 1− 2 exp(−t2/2)454

Equation (4) holds.455

Next we note that Gµc ∼ N (0, d−1∥µc∥2IN ) and similarly for Gµs. The norm of a Gaussian456

random vector can be bounded for any t2 > 0:457

P [∥Gµc∥ ≥ t2] ≤ 2 exp

(
− dt22
2N∥µc∥2

)
Setting t2 = t

√
N
d ∥µc∥ we get that with probability at least 1− 2 exp(−t2/2) Equation (5) holds.458

Repeating the analogous derivation for Equation (6) and taking a union bound over the 3 events, we459

arrive at the desired result.460

Lemma 2. Conditioned on the events in Lemma 1 with parameter t ≥ 0, if461

√
N + t√
d

+
√
N(∥µc∥+ ∥µs∥) ≤

1

2
, (7)
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then462

∥ZZ⊤ − E[ZZ⊤]∥op ≤ 3

√
N + t√
d

and
1

2
IN ⪯ ZZ⊤ ⪯ 2IN .

We note that we already assume d ≫ N and ∥µc∥ ≪ N−1/2, hence the additional assumption463

introduced in the conditions of this lemma is regarding the size of ∥µs∥
√
N1.464

Proof. Since GG⊤ ∼ W (d−1IN , d) we have that E[GG⊤] = IN . Then from Equation (4) we can465

also obtain (1−
√

N
d − t√

d
)2 In ⪯ GG⊤ ⪯ (1 +

√
N
d + t√

d
)2 In, which leads to:466

∥∥GG⊤ − E[GG⊤]
∥∥
op

≤

(
1 +

√
N

d
+

t√
d

)2

− 1.

Combining this with Equation (5) and Equation (6)467

∥ZZ⊤ − E
[
ZZ⊤] ∥op ≤ ∥GG⊤ − E

[
GG⊤] ∥op + ∥Gµc1

⊤∥op + ∥GµsE
⊤
1 ∥op

≤
√

N

d

(
2

√
N + t√
N

+
(
√
N + t)2√
Nd

+ t
√
N(∥µc∥+ ∥µs∥)

)

≤
√
N + t√
d

(
2 +

√
N + t√
d

+
t√

N + t

√
N(∥µc∥+ ∥µs∥)

)

≤
√
N + t√
d

· 2.5,

where the last transition follows from substituting Equation (7). To obtain the spectral bound on ZZ⊤468

we have that Z = G+ 1µ⊤
c + E1µ

⊤
s . From Weyl’s inequality for singular values:469

|smin(G
⊤ + µc1

⊤ + µsE
⊤
1 )− smin(G

⊤)| ≤ smax(µc1
⊤ + µsE

⊤
1 ) ≤ ∥µc∥

√
N + ∥µs∥

√
N1.

Taken together with Equation (4) and the assumption in Equation (7) we get:470

smin(Z
⊤) ≥ smin(G

⊤)− ∥µc∥
√
N − ∥µs∥

√
N1

≥ 1− 1√
d

(√
N + t

)
− ∥µc∥

√
N − ∥µs∥

√
N1

≥ 1

2
.

To prove that ZZ⊤ ⪯ 2 we simply need to follow the same steps while taking notice that Weyl’s471

inequality also holds for smax(G
⊤). This will give us smax(Z

⊤) ≤ 3/2 ≤ 2 from which the upper472

bound follows.473

C.2 Sufficiency of Linear Classifiers Spanned by Data Points474

Note that w is fixed given {xi}i∈S since we assume it is the output of a deterministic learning475

algorithm. Now we wish to bound ⟨ŵ⊥,µc⟩ = rc⟨ŵ⊥, U1⟩. To this end let us take an orthonormal476

basis {v1, . . . ,vN} and let these vectors form the columns of the orthogonal matrix V ∈ Rd×N .477

Let PV be the orthogonal projection matrix on the columns of V . We first claim that conditioned on478

the data, the component of the mean vectors that is not spanned by the data is distributed uniformly.479

Lemma 3. Let µ⊥
c := (I − PV )µc and µ⊥

s := (I − PV )µc. Conditional on the training set480

{xi, yi}i∈S , the vectors µ⊥
s

∥µ⊥
s ∥ and µ⊥

c

∥µ⊥
c ∥ are uniformly distributed on unit spheres a subspace of481

dimension d−N .482

Proof. Recalling the notation zi = yixi, note that {zi}i∈S are sufficient statistics for µs,µc given483

the training data, i.e., P(µs,µc | {zi}i∈S) = P(µs,µc | {xi, yi}i∈S). Furthermore, since the joint484

distribution of µs,µc, {zi}i∈S is rotationally invariant, we have485

P(µs,µc | {zi}i∈S) = P(Rµs,Rµc | {Rzi}i∈S)
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for any orthogonal matrix R ∈ Rd×d. Focusing on matrices R that presereve that data, i.e., satisfying486

Rzi = zi for all i ∈ [N ], we have487

P(µs,µc | {zi}i∈S) = P(Rµs,Rµc | {zi}i∈S).

We may also write this equality as488

P(PV µs, PV µc, (I − PV )µs, (I − PV )µc | {zi}i∈S)
= P(PVRµs, PVRµc, (I − PV )Rµs, (I − PV )Rµc | {zi}i∈S).

The fact that R preserves {zi}i∈S implies that PVR = PV = RPV and therefore489

P(PV µs, PV µc,µ⊥
s ,µ

⊥
c | {zi}i∈S) = P(PV µs, PV µc,Rµ⊥

s ,Rµ⊥
c | {zi}i∈S).

Marginalizing PV µs, PV µc, we obtain that, conditional on the training data, the distribution of490

µ⊥
s ,µ

⊥
c , is invariant to rotations that preserve the training data. Therefore, the unit vectors in the491

directions of µ⊥
s and µ⊥

c must each be uniformly distributed on the sphere orthogonal to the training492

data, which has dimension d−N .493

Now we simply need to derive a bound on ⟨w⊥,µs⟩:494

Corollary 1. For any t > 0 as in Lemma 1, with with probability at least 1− 10 exp(−t2/2), all the495

events in Lemma 1 hold and additionally496

|⟨w⊥,µs⟩| <
∥µs∥√
d−N

t and |⟨w⊥,µc⟩| <
∥µc∥√
d−N

t. (8)

Proof. Note that497

|⟨w⊥,µs⟩| =
∣∣⟨w⊥,µ

⊥
s ⟩
∣∣ = ∥µ⊥

s ∥∥w⊥∥
∣∣∣∣〈 w⊥

∥w⊥∥
,

µ⊥
s

∥µ⊥
s ∥

〉∣∣∣∣ ≤ ∥µs∥
∣∣∣∣〈 w⊥

∥w⊥∥
,

µ⊥
s

∥µ⊥
s ∥

〉∣∣∣∣ .
Conditional on the training data and the algorithm’s randomness, w⊥

∥w⊥∥ is a fixed unit vector in the498

subspace orthogonal to the training data (of dimension d−N ), while µ⊥
s

∥µ⊥
s ∥ is a spherically uniform499

unit vector in that subspace. Therefore, standard concentration bounds [4, Lemma 2.2] imply that, for500

any t2 > 0501

P
(∣∣∣∣〈 w⊥

∥w⊥∥
,

µ⊥
s

∥µ⊥
s ∥

〉∣∣∣∣ ≥ t2

)
≤ 2 exp(−(d−N)t22/2).

The claimed result follows by taking t2 = t/
√
d−N , applying the same argument for µc, taking a502

union bound.503

D Proofs of Main Result504

In this section, we provide the proof of Proposition 1, our main theoretical finding highlighting a505

fundamental limitation to the robustness of any interpolating classifier. Following the notation of506

Appendix C, we write a general unit-vector classifier as ŵ =
∑
i∈S βizi +w⊥, where zi = yixi.507

As explained in the proof sketch at Section 3, in order to show a lower bound on robust accuracy, we508

show a lower bound on the spurious-to-core ratio ⟨w,µs⟩
⟨w,µc⟩ or equivalently upper bound ⟨w,µs⟩

⟨w,µc⟩ , which509

we can write as510

⟨w,µc⟩
⟨w,µs⟩

=
⟨ŵ,µc⟩
⟨ŵ,µs⟩

=
∥µc∥2

∥µs∥2
·
1⊤β + 1

∥µc∥2

[∑
i∈S βi⟨ni,µc⟩+ ⟨w⊥,µc⟩

]
E⊤

1 β + 1
∥µs∥2

[∑
i∈S βi⟨ni,µs⟩+ ⟨w⊥,µs⟩

] . (9)

We develop the lower bound - and prove Proposition 1 - in three steps, each corresponsding to511

a subsection below. First, we give a lower bound on E⊤
1 β using Lagrange duality (Lemma 4).512

Second, in Lemma 5, we bound the residual terms of the form 1
∥µ∥2

∣∣∑
i∈S βi⟨ni,µ⟩+ ⟨w⊥,µ⟩

∣∣513

(for µ ∈ {µc,µs}) using concentration of measure arguments from Appendix C. Finally, we combine514

these two results with the conditions of Proposition 1 to conclude its proof.515
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D.1 Lower bounding E⊤
1 β516

The crux of our proof is showing that the term E⊤
1 β, i.e., the sum of the contributions of elements517

from the first environment to w, must grow roughly as N1γ for any interpolating classifier. This will518

in turn imply a large spurious component in the classifier via manipulation of Equation (9).519

Lemma 4. Conditional on the events in Corollary 1 (with parameter t > 0), if Equation (7) holds520

and w has normalized margin at least γ, we have that521

E⊤
1 β ≥ 1

2

(
N1γ −

√
2N2N1∥µc∥2 −

√
18N1 ·

√
N + t√
d

)
. (10)

Proof of Lemma 4. Our strategy for bounding E⊤
1 β begins with writing down the smallest value522

it can reach for any unit-norm classifier ŵ with normalized margin at least γ. Recalling that523

ŵ = Z⊤β +w⊥ (for w⊥ such that Zw⊥ = 0), the smallest possible value of E⊤
1 β is the solution to524

the following optimization problem:525

min
β∈RN ,w⊥∈ker(Z)

E⊤
1 β (11)

subject to ⟨Z⊤β +w⊥, yixi⟩ ≥ γ ∀i ∈ [N ]

∥Z⊤β +w⊥∥ = 1.

Since zi = yixi and Zw⊥ = 0, the first constraint is equivalent to the vector inequality ZZ⊤β ≥ γ1,526

and the second constraint is equivalent to β⊤ZZ⊤β = 1− ∥w⊥∥2. Relaxing the second constraint,527

the smallest value of E⊤
1 β is bounded from below by the solution to:528

min
β∈RN

β⊤E1

subject to ZZ⊤β ≥ γ1

β⊤ZZ⊤ β ≤ 1.

Take Lagrange multipliers λ ∈ RN+ and ν ≥ 0, from strong duality the above equals:529

max
λ∈RN

+ ,ν≥0
min
β∈RN

β⊤E1 + λ⊤(1γ − ZZ⊤β) +
1

2
ν(β⊤ZZ⊤β − 1)

Optimizing the quadratic form over β, the above becomes:530

max
λ∈RN

+ ,ν≥0
λ⊤1γ − 1

2
ν − 1

2

(
E1 − ZZ⊤λ

)⊤ (
νZZ⊤)−1 (

E1 − ZZ⊤λ
)

Maximizing over ν this becomes:531

max
λ∈RN

+

λ⊤1γ −
√
(E1 − ZZ⊤λ)

⊤
(ZZ⊤)

−1
(E1 − ZZ⊤λ) := max

λ∈RN
+

L(λ)

Thus, E⊤
1 β is lower bounded by L(λ), for any λ ∈ RN+ . Taking λ = αE1 for α =532 (

1 +
(
∥µc∥2 + ∥µs∥2

)
N1

)−1
, we obtain:533

L(λ) = N1γα−
√
E⊤

1 (IN − αZZ⊤) (ZZ⊤)
−1

(IN − αZZ⊤)E1

≥ N1γα−
√
2∥
(
IN − αZZ⊤)E1∥

= N1γα−
√
2∥
(
IN − α

(
E
[
ZZ⊤]+ ZZ⊤ − E

[
ZZ⊤]))E1∥

≥ N1γα−
√
2∥
(
IN − αE

[
ZZ⊤])E1∥ −

√
2∥α

(
ZZ⊤ − E

[
ZZ⊤])E1∥
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Here, the first inequality is from our assumption that Equation (7) holds and hence ZZ⊤ ⪰ 1
2IN and534

the second is a triangle inequality. Recall the bound ∥ZZ⊤−E
[
ZZ⊤] ∥op ≤ 3

√
N+t√
d

from Lemma 2535

and apply it to obtain:536

L(λ) ≥ N1γα−
√
2∥
(
IN − αE

[
ZZ⊤])E1∥ − α−

√
18N1 ·

√
N + t√
d

.

Let us calculate the second term in the bound above:537

∥
(
IN − αE

[
ZZ⊤])E1∥ = ∥

(
1− α− αN1∥µs∥2

)
E1 − αN1∥µc∥21∥

= ∥
(
1− α− αN1∥µs∥2

)
E1 − αN1∥µc∥2 (E1 + E2) ∥

=

√
(1− α (1 +N1(∥µs∥2 + ∥µc∥2))2 N1 + α2N2

1 ∥µc∥4N2

= αN1∥µc∥2
√
N2,

where the final equality used α
(
1 +N1(∥µs∥2 + ∥µc∥2

)
= 1. Overall, we get:538

β⊤E1 ≥ L(λ) ≥ α

(
N1γ −

√
2N2N1∥µc∥2 −

√
18N1 ·

√
N + t√
d

)
.

The proof is complete by noting that α ≥ 1/2 due to Equation (7),539

D.2 Controlling residual terms540

We now provide a bound on the terms in Equation (9) associated with quantities that vanish a the541

problem dimension grows.542

Lemma 5. Conditioned on all the events in Corollary 1 with parameter t > 0 (which happen543

with probability at least 1− 10 exp(−t2/2)) and the additional condition of Lemma 2, we have for544

µ ∈ {µc,µs}:545

1

∥µ∥2

∣∣∣∣∣∑
i∈S

βi⟨ni,µ⟩+ ⟨w⊥,µ⟩

∣∣∣∣∣ ≤ 3t

∥µ∥

√
N

d−N
(12)

Proof. We prove the claim for µs; the proof for µc is analogous. Recall the random matrix G =546

Z− 1µ⊤
c − E1µ

⊤
s ∈ RN×d from Lemma 1. From Equation (6) we get that ∥Gµs∥ ≤ t

√
N
d ∥µs∥547

and then:548 ∑
i∈S

βi⟨ni,µs⟩ = β⊤Gµs ≤ ∥β∥∥Gµs∥ ≤ t∥β∥
√

N

d
∥µs∥.

To eliminate ∥β∥ from this bound, we use ZZ⊤ ⪯ 1
2IN due to Lemma 2 to write549

1√
2
∥β∥ ≤

√
β⊤ZZ⊤β ≤

√
β⊤Z⊤Zβ + ∥w⊥∥2 = ∥ŵ∥ = 1.

Finally, we use Equation (8) from Corollary 1 to bound |⟨w⊥,µ⟩|.550

D.3 Proof of Proposition 1551

Proof of Proposition 1. Let t
√

10 log 10
δ ≥

√
2 log 10

δ , so that the events described in the previous552

lemmas and corollaries all hold with probability at least 1− δ. Note that for cr ≤ 1/64 we have553

√
N(∥µc∥+ ∥µs∥) ≤

1

4
(13)

and (since γ ≤ 1
4
√
N

)554

d ≥ Cd
10

1

γ2

Nt2

N2
1 ∥µc∥2

≥ Cd
10cr

Nt2

N1γ2
≥ 16Cd

10cr

N2t2

N1
N ≥ 6

4
CdNt2.
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Consequently, for Cd ≥ 1555 √
N + t√
d

≤ 2

√
1

64Cd
≤ 1

4
. (14)

Combining Equations (13) and (14), we see that the condition in Equation (7) holds.556

Therefore, we may apply Lemma 4; we now argue that the assumptions of Proposition 1 the lower557

bound on E⊤
1 β simplifies to a constant multiple of N1γ. First, taking cn ≤ 1/8 and Cr ≥ 1, we have558 √
2N2N1∥µc∥2 ≤

√
2N2N1∥µs∥2

Cr

(
1 +

√
N2

N1γ

) ≤ N1γ

√
2N1∥µs∥2

Cr
≤ N1γ

√
2cn
Cr

≤ 1

4
N1γ.

Second, using again cr ≤ 1/64 and taking Cd ≥ 180,559 √
18N1

√
N + t√
d

≤ N1γ

√
18√

Cd/10

√
N + t

t
√
N

√
N1∥µc∥ ≤ 1

4
N1γ.

Substituting into Equation (10), we conclude that under our assumptions E⊤
1 β ≥ 1

4N1γ.560

Next, we combine the lower bound on E⊤
1 β with Lemma 5 to handle the denominator and numerator561

in the RHS of Equation (9). Beginning with the numerator, we have562

1⊤β +
1

∥µc∥2

[∑
i∈S

βi⟨ni,µc⟩+ ⟨w⊥,µc⟩

]
≤ E⊤

1 β + ∥E2∥∥β∥+
3t

∥µc∥

√
N

d−N
.

As argued in the proof pf Lemma 5, we have ∥β∥ ≤
√
2 and therefore ∥E2∥∥β∥ ≤

√
2N2. Sub-563

stituting again our assumptions d (which imply d > 2N ), using and taking Cd ≥ 64 · 180, we564

have565

3t

∥µc∥

√
N

d−N
≤

√
18t

∥µc∥
√
d ≤ N1γ

√
180

Cd
≤ 1

8
N1γ.

For the denominator, noting ∥µc∥ ≤ ∥µs∥ by our assumption, we may similarly write566

E⊤
1 β +

1

∥µs∥2

[∑
i∈S

βi⟨ni,µs⟩+ ⟨w⊥,µs⟩

]
≥ E⊤

1 β − 1

8
N1γ.

Consequently (since E⊤
1 β ≥ 1

4N1γ), we have that the denominator is nonnegative. (If the numerator567

is not positive, w will have error greater than 1/2 for θ = 0). Substituting back to Equation (9) and568

using the lower bound E⊤
1 β ≥ 1

4N1γ, we get569

⟨w,µc⟩
⟨w,µs⟩

∥µs∥2

∥µc∥2
≤

E⊤
1 β +

√
2N2 +

1
8N1γ

E⊤
1 β − 1

8N1γ
≤

1
4N1γ +

√
2N2 +

1
8N1γ

1
4N1γ − 1

8N1γ
≤ 3 +

√
128N2

N1γ
.

Therefore, for Cr ≥ 16 we have ⟨w,µs⟩
⟨w,µc⟩ ≥ 1 as required. Since the error of classifier w in environment570

with parameter θ is571

Q

(
⟨w,µc⟩
σ∥w∥

(
1 + θ

⟨w,µs⟩
⟨w,µc⟩

))
,

(where Q(t) := P(N (0; 1) > t) is the Gaussian tail function), the fact that ⟨w,µs⟩
⟨w,µc⟩ ≥ 1 implies that572

there exists θ ∈ [−1, 1] for which the error is Q(0) = 0.5, implying the stated bound on the robust573

error.574

E Lower Bound On the Achievable Margin575

We now argue that, in our model, a simple signed-sample-mean estimator interpolates the data with576

normalized margin scaling as 1/
√
N . This fact establishes the first part of Theorem 1.577
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Proposition 3. There exist universal constants c′n, C
′
d > 0 such that, in the DGP with parameters578

N1, N2, d > 0, µc,µs ∈ Rd, θ1 = 1, θ2 = 0 and σ2 = 1/d, for any δ ∈ (0, 1/2) if579

max{∥µc∥, ∥µs∥} ≤ c′n
N

and d ≥ C ′
dN

2 log

(
1

δ

)
then with probability at least 1 − δ, the signed-sample-mean estimator wmean = 1

N

∑N
i=1 yixi580

obtains normalized margin of at least 1√
8N

.581

Proof. Using the notation defined in the beginning of Appendix C, we note that wmean = 1
NZ⊤1582

and (for σ2d = 1) its normalized margin is583

min
i∈[N ]

yi⟨xi,wmean⟩
∥wmean∥

= min
i∈[N ]

[Zwmean]i
∥wmean∥

= min
i∈[N ]

[ZZ⊤1]i
∥Z⊤1∥

.

Substituting the assumed bounds on d and ∥µc∥, ∥µs∥ into Lemma 2 (with t =
√
8 log 1

δ ≥584 √
2 log 6

δ ), it is easy to verify that for sufficiently small c′n and sufficiently large C ′
d, the condition in585

Equation (7) holds, and therefore586

∥ZZ⊤ − EZZ⊤∥op ≤ 3

√
N + t√
d

≤ 1√
4N

,

with the final inequality following by choosing C ′
d sufficiently large. Lemma 2 then also implies that587

ZZ⊤ ⪯ 2IN .588

Noting that EZZ⊤ = IN + ∥µc∥211⊤ + ∥µs∥2E1E
⊤
1 , we have that, for all i ∈ [N ],589

[ZZ⊤1]i ≥ [EZZ⊤1]i − ∥ZZ⊤ − EZZ⊤∥op∥1∥ ≥ 1− 1√
4N

∥1∥ =
1

2
.

Moreover, ZZ⊤ ⪯ 2IN implies that590

∥Z⊤1∥ =
√
1⊤ZZ⊤1 ≤ 2∥1∥ = 2

√
N.

Combining the above two displays yields the claimed margin bound.591

F Two-Stage Algorithm and its Analysis592

In this section we give the pseudocode for the algorithm that provably learns an invariant model in593

our setting (see Algorithm 1) and analyze its performance. For generality, we denote the empirical594

invariance constraint by membership in some family F(Sfine), though our analysis will concentrate595

on Equalized Opportunity as described in the next section.

Algorithm 1 Two Phase Learning of Overparameterized Invariant Classifiers

Input: Dataset {(xi, yi)}Ni=1 and a partition S1, S2 into environments. Invariance constraint function
family F(·)

Output: A classifier fv(x)
Draw subsets of data Strn = ∪e∈{1,2}S

trn
e , where Strn

e ⊂ Se for e ∈ {1, 2} and |Strn
e | = Ne/2

Stage 1: Calculate we = N−1
e

∑
i∈Strn

e
xiyi for each e ∈ {1, 2}

Define Sfine = S \ Strn

Stage 2: Return the solution fv(x;Strn) = ⟨v1 ·w1 + v2 ·w2,x⟩ that solves

maximize
∑

i∈Sfine

fv(xi)yi subject to ∥v∥∞ = 1 and fv ∈ F(Sfine) (15)

596
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F.1 Analysis of Algorithm 1597

The proof that Algorithm 1 indeed achieves a non-trivial robust error will require some definitions598

and more mild assumptions which we now turn to describe.599

Definitions. Denote the first-stage training set indices by S, where |S| = N and second stage600

“fine-tuning" set by |D| = M . Let us denote:601

n̄e =
1

Ne

∑
i∈Se

ni, m̄e =
1

Me

∑
i∈De

ni, m̄e,1 =
1

Me,1

∑
i∈De,1

ni.

Models will be defined by:602

we :=
1

Ne

∑
i∈Se

yixi = µc + θeµs + n̄e, e ∈ {1, 2},

fv(x;S) = ⟨v1 ·w1 + v2 ·w2,x⟩.

The Equalized Opportunity (EOpp) constraint is:603

T̂1(fv;D,S) = T̂2(fv;D)

T̂e(fv;D,S) =
1

Me,1

∑
i∈De,1

fv(xi)

Additional Assumptions We assume w.l.o.g θ2 > θ1, define ∆ := θ2 − θ1 > 0 and rµ = ∥µs∥
∥µc∥ > 1.604

We consider rµ,∆ as fixed numbers. That is, they do not depend on N, d and other parameters of605

the problem. Also define r := ∆θmax

∆+4θmax
, where θmax := argmax{|θ1|, |θ2|} ≤ 1. The following606

additional assumptions will be required for our concentration bounds.607

Assumption 1. Let t > 0 be a fixed user specified value, which we define later and will control the608

success probability of the algorithm. We will assume that for each e ∈ {1, 2} and some universal609

constants cc, cs > 0:610

∥µs∥2 ≥ tσ2csmax

{
1

r2Ne
,

1

(r∆)2Me,1
,

√
d

Me,1r∆

}

∥µc∥2 ≥ tσ2ccmax

{
1

∆2Ne
,

r2µ
(∆2Me,1)

,
r2µ

∆2Me
,

√
d

Me,1∆2
,

√
d

Me∆

}

Analyzing the EOpp constraint. Writing the terms defined above in more detailed form gives:611

ϵe(v) =⟨m̄e,1, v1 (µc + θ1µs + n̄1) + v2 (µc + θ2µs + n̄2)⟩
δe(v) =⟨m̄e, v1 (µc + θ1µs + n̄1) + v2 (µc + θ2µs + n̄2)⟩

T̂e(fv;D,S) =(v1 + v2)∥µc∥2 + (v1θ1 + v2θ2)θe∥µs∥2+
⟨µc + θeµs, v1n̄1 + v2n̄2⟩+ ϵe(v)

So the EOpp constraint is:612

v1
[
θ1∥µs∥2 + ⟨n̄1, µs⟩

]
θ1 + v2

[
θ2∥µs∥2 + ⟨n̄2, µs⟩

]
θ1 + ϵ1(v) =

v1
[
θ1∥µs∥2 + ⟨n̄1, µs⟩

]
θ2 + v2

[
θ2∥µs∥2 + ⟨n̄2, µs⟩

]
θ2 + ϵ2(v) (16)

Lemma 6. Consider all the solutions v = (v1, v2) that satisfy EOpp and have ∥v∥∞ = 1. With613

probability 1 there are exactly two such solutions vpos,vneg, where vpos = −vneg.614

We will consider vpos as the solution that satisfies vpos,1 + vpos,2 > 0.615

Proof. Is it easy to see that the EOpp constraint is a linear equation in v1, v2 and with probability 1616

the coefficients in this linear equations are nonzero. Therefore the solutions to this equation form a617

line in R2 that passes through the origin. Consequently, this line intersects the l∞ unit ball at two618

points, that we denote vpos,vneg, which are negations of one another.619
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The proposed algorithm. Now we can restate our algorithm in terms of vpos and vneg and analyze620

its retrieved solution.621

• Calculate w1 and w2 according to their definitions.622

• Consider the solutions {vpos,vneg} that satisfy EOpp and also ∥v∥∞ = 1.623

• Return the solution: v ∈ {vpos,vneg} which has the higher score, where the score is:624

v∗ ∈ arg max
v∈{vpos,vneg}

∑
i∈D

⟨v1w1 + v2w2, yixi⟩

We first analyze the two possible solution vpos and vneg and show that their coordinates cannot be625

negations of each other. Intuitively, in an ideal scenario with infinite data, the EOpp constraint will626

enforce v1θ1 = −v2θ2. Then v1 = −v2 is only possible if θ1 = θ2, which we assume is not the case627

(if it is, we cannot identify the spurious correlation from data). The assumption of a fixed ∆ > 0,628

will let us show that indeed with high probability v1 = −v2 does not occur.629

Lemma 7. Let t > 0 and consider the solutions vneg, vpos that the algorithm may return. With630

probability at least 1− 34 exp(−t2/2) , the solutions satisfy |v1 + v2| ≥ ∆
2 .631

Proof. Assume that for e ∈ {1, 2} the following events occur:632

|⟨n̄e, µs⟩| ≤ r∥µs∥2 (17)

|⟨m̄1,1 − m̄2,1, µc + θeµs + n̄e⟩| ≤ r∆∥µs∥2 (18)

Corollary 3 will show that they occur with the desired probability in our statement. Let us incorporate633

these events into the EOpp constraint. We group the items multiplied by v1 and those multiplied by634

v2:635

−v∗1
[
θ1∥µs∥2∆+ ⟨n̄1, µs⟩∆+ ⟨m̄1,1 − m̄2,1, µc + θ1µs + n̄1⟩

]
=

v∗2
[
θ2∥µs∥2∆+ ⟨n̄2, µs⟩∆+ ⟨m̄2,1 − m̄1,1, µc + θ2µs + n̄2⟩

]
Let us denote for convenience (where we drop the dependence on parameters in the notation):636

a = ∥µs∥−2∆
(
⟨n̄1, µs⟩+∆−1⟨m̄1,1 − m̄2,1, µc + θ1µs + n̄1⟩

)
b = ∥µs∥−2∆

(
⟨n̄2, µs⟩+∆−1⟨m̄2,1 − m̄1,1, µc + θ2µs + n̄2⟩

)
Now the EOpp constraint can be written as −v∗1∥µs∥2∆(θ1 + a) = v∗2∥µs∥2∆(θ2 + b). Plugging637

in Equation (17) and Equation (18), we see that max{|a|, |b|} ≤ r.638

Assume that |θ1 + b| ≥ |θ2 + a|, and note that since ∥v∗∥∞ = 1 we have that |v∗1 | = 1 (the proof639

for the other case is analogous). 8 We note that by definition ∆ ≤ 2θmax, hence if v∗2 = 0 we have640

|v∗1 + v∗2 | = 1 ≥ ∆
2θmax

and our claim holds. Otherwise, we can write:641

|v∗1 + v∗2 | =
∣∣∣∣1− θ2 + b

θ1 + a

∣∣∣∣ = ∣∣∣∣∆+ a− b

θ1 + a

∣∣∣∣ ≥ ∆− 2r

θmax + r
=

∆− 2 ∆θmax

∆+4θmax

θmax +
∆θmax

∆+4θmax

=
∆(∆+ 4θmax − 2θmax)

θmax (∆ + 4θmax +∆)
=

∆

2θmax
≥ ∆

2

642

The result above will be useful for proving the rest of our claims towards the performance guarantees643

of the algorithm. We first show that the retrieved solution is the one that is positively aligned with µc.644

Lemma 8. With probability at least 1− 34 exp(−t2/2) , between the two solutions considered at645

the second stage of our algorithm, the one with v1 + v2 ≥ 0 achieves a higher score.646

8In the case where |θ2 + a| ≥ |θ1 + b| then |v∗2 | = 1 would hold.
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Proof. Let’s write down the score on environment e ∈ {1, 2} in detail:647 ∑
i∈De

w⊤xiyi =(v1 + v2)∥µc∥2 + ⟨µc, v1n̄1 + v2n̄2⟩+ (19)

(v1θ1 + v2θ2)θe∥µs∥2 + ⟨µs, θe (v1n̄1 + v2n̄2)⟩+
⟨m̄e, (v1 + v2)µc + (θ1v1 + θ2v2)µs + v1n̄1 + v2n̄2⟩

We will bound all the items other than (v1 + v2)∥µs∥2 with concentration inequalities, and for the648

second line also use the EOpp constraint. Regrouping items in Equation (16) we have:649 ∣∣(v1θ1 + v2θ2) ∥µs∥2 + ⟨µs, v1n̄1 + v2n̄2⟩
∣∣ ·∆ = |ϵ2(v)− ϵ1(v)|

In Corollary 3 we will prove that with probability at least 1− 34 exp(−t2/2) , it holds that |ϵ2(v)−650

ϵ1(v)| ≤ ∆
6 |v1 + v2| · ∥µc∥2. Combined with |θe| < 1, we get that the magnitude of the terms in the651

second line of Equation (19) is bounded by 1
6 |v1 + v2| · ∥µc∥2. We will also show in Corollary 3652

that the other two terms in Equation (19) besides (v1 + v2)∥µc∥2, are bounded by 1
6 |v1 + v2| · ∥µc∥2.653

Hence we have for some b such that |b| ≤ 1
2 |(v1 + v2)| · ∥µc∥2 that:654 ∑

i∈De

w⊤xiyi = (v1 + v2)∥µc∥2 + b

We note that the score in the algorithm is a weighted average of the scores over the training environ-655

ments, yet the derivation above holds regardless of e. That is, θe did not play a role in the derivation656

other than the assumption that its magnitude is smaller than 1. Hence it is clear that the solution657

v∗ = vpos will be chosen over vneg.658

Once we have characterized our returned solution, it is left to show its guaranteed performance over659

all environments θ ∈ [−1, 1]. We can draw a similar argument to Lemma 8 to reason about the660

expected score obtained in each environment.661

Lemma 9. Let t > 0 and consider the retrieved solution v∗. With probability at least662

1− 34 exp(−t2/2) , the expected score of v∗ over any environment corresponding to θ ∈ [−1, 1] is663

larger than ∆
3 ∥µc∥

2.664

Proof. The expected score can be written same as in Equation (19), except we can drop the last item665

since it has expected value 0. We let θ ∈ [−1, 1] and write:666

Ex,y∼Pθ

[
w⊤xy

]
=(v∗1 + v∗2)∥µc∥2 + ⟨µc, v∗1 n̄1 + v∗2 n̄2⟩+

(v∗1θ1 + v∗2θ2)θ∥µs∥2 + ⟨µs, θ (v∗1 n̄1 + v∗2 n̄2)⟩ ≥
2

3
(v∗1 + v∗2)∥µc∥2.

The inequality follows from the arguments already stated in Lemma 8, where the second and third667

items in the above expression have magnitude at most 1
6 (v

∗
1 + v∗2)∥µc∥2. Now it is left to conclude668

that (v∗1 + v∗2) ≥ ∆
2 , which is a direct consequence of Lemma 7 and Lemma 8.669

F.2 Proof of Proposition 2670

Now we are in place to prove the guarantee given in the main paper on the robust error of the model671

returned by the algorithm. We will restate it here with compatible notation to the earlier parts of this672

section which slightly differ from those in the main paper (e.g. by incorporating ∆). We also note673

that to obtain the statement in the main paper we should eliminate the dependence of Assumption674

1 on Me,1. We do this by assuming that our algorithm draws Me as half of the original dataset for675

environment e. Then we have that P(Me,1 ≤ Nmin/8) is bounded by the cumulative probability676

of a Binomial variable with k = Nmin/8 successes and at least Nmin trials. This may be bounded677

with a Hoeffding bound by 1− 2 exp( 12Nmin) and with a union bound over the two environments.678

To absorb this into our failure probability we require Nmin > ceo log(1/δ), leading to this added679

constraint in the main paper.680

Proposition 4. Under Assumption 1, let ϵ > 0 be the target maximum error of the model and t > 0. If681

∥µc∥2 ≥ tQ−1(ϵ) 15∆ σ2
√

d
Nmin

, then with probability at least 1−34 exp(−t2/2) the robust accuracy682

error of the model is at most ϵ.683
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Proof. The error of the model in the environment defined by θ ∈ [−1, 1] is given by the Gaussian tail684

function:685

Q

(
⟨w, µc + θµs⟩

σ∥w∥

)
The nominator of this expression is simply the expected score from Lemma 9, which we already686

proved is at least ∆
3 ∥µc∥

2. Then we need to bound ∥w∥ from above to get a bound on the robust687

accuracy. According to Corollary 3, if we denote Nmin = min{N1, N2}, this upper bound can be688

taken as 5t
√
σ2d/Nmin. We plug this in to get:689

⟨w, µc + θµs⟩
σ∥w∥

≥ ∆

15t
∥µc∥2

1

σ2

√
Nmin

d

Since Q is a monotonically decreasing function, if ∥µc∥2 ≥ tQ−1(ϵ) 15∆ σ2
√

d
Nmin

our model achieves690

the desired performance.691

F.3 Required Concentration Bounds692

To conclude the proof we now show all the concentration results used in the above derivation. Note693

that v∗ is determined by all the other random factors in the problem, hence we should be careful694

when using them in our bounds. We will only use the fact that ∥v∗∥∞ = 1 and hence ∥v∗∥1 ≤ 2.695

To bound the inner product of noise vectors, we use [33, Theorem 1.1]:696

Theorem 2. (Hanson-Wright inequality). Let X = (X1, . . . , Xn) ∈ Rn be a random vector with
independent components Xi which satisfy EXi = 0 and ∥Xi∥ψ2

≤ K. Let A be an n × n matrix.
Then, for every t ≥ 0,

P
{∣∣X⊤AX − E[X⊤AX

]
| > t

}
≤ 2 exp

[
−cmin

(
t2

K4∥A∥2HS

,
t

K2∥A∥

)]

We can apply this theorem to get the following result.697

Corollary 2. for some universal constant c > 0 (when we assume w.l.o.g that Me′ ≤ Ne):698

P {|⟨n̄e, m̄e′⟩| > t} ≤ 2 exp

[
−cmin

(
M2
e′t

2

σ4d
,
Me′t

σ2
√
d

)]
(20)

Proof. We take X as the concatenation of n̄e and m̄e′ , then A is set such that X⊤AX = ⟨n̄e, m̄e′⟩699

(e.g. Ai,i+d = 1 for 1 ≤ i ≤ d and 0 elsewhere). Then ∥A∥2HS = d and ∥A∥ =
√
d. Since entries700

in n̄e, m̄e′ are distributed as N (0, σ
2

Ne
),N (0, σ

2

Me
) respectively, we have K ≤ C σ√

min {Ne,Me′}
701

(assume w.l.o.g that Me′ < Ne) for some universal constant C which we can incorporate into the702

constant c in the theorem. This gives:703

P {|⟨n̄e, m̄e′⟩| > t} ≤ 2 exp

[
−cmin

(
M2
e′t

2

σ4d
,
Me′t

σ2
√
d

)]
704

The next statement collects all of the concentration results we require for the other parts of the proof.705

Lemma 10. Define r := ∆θmax

∆+4θmax
where θmax := argmaxe∈{1,2}{|θe|}, denote by v∗ the solution706

retrieved by the algorithm, and let t > 0. When Assumption 1 holds, then with probability at least707
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1− 34 exp(−t2/2) we have that all the following events occur simultaneously (for all e, e′ ∈ {1, 2}):708

|⟨n̄e, µs⟩| ≤r∥µs∥2 (21)

|⟨n̄e, µc⟩| ≤
∆

24
∥µc∥2 (22)

|⟨m̄e,1, µc + θe′µs⟩| ≤min

{
1

4
r∆∥µs∥2,

∆

36
∥µc∥2

}
(23)

|⟨m̄e,1, µs⟩| ≤
∆

64
∥µc∥2 (24)

|⟨n̄e, m̄e′,1⟩| ≤min

{
1

4
r∆∥µs∥2,

∆2

288
∥µc∥2

}
(25)

|⟨m̄e, (µc + θe′µs)⟩| ≤
1

48
∆ · ∥µc∥2 (26)

|⟨n̄e, m̄e′⟩| ≤
1

48
∆ · ∥µc∥2 (27)

∥n̄e∥ ≤t

√
2σ2d

Ne
(28)

Proof. We first treat Equation (21) with a tail bound for Gaussian variables:709

⟨n̄e, µs⟩ ∼ N (0,
σ2∥µs∥2

Ne
) ⇒ P (|⟨n̄e, µs⟩| > t2) ≤ 2 exp

(
− t22Ne

2σ2∥µs∥2

)
Hence as long as ∥µs∥2 ≥ t 2σ2

r2Ne
, Equation (21) holds with probability at least 1−4 exp{−t2} (since710

we take a union bound on the two environments). Following the same inequality and taking a union711

bound, Equation (22) also hold with probability at least 1− 8 exp{−t2} if ∥µc∥2 ≥ t 1152σ
2

∆2Ne
.712

We use the same bound for Equation (23), Equation (24) and Equation (26) while using |θe| ≤ 1.713

Hence for t2 = 1
4r∆∥µs∥2 and t2 = ∆

36∥µc∥
2:714

P (|⟨m̄e,1, µc + θe′µs⟩| > t2) ≤ 2 exp

(
− t22Me,1

2σ2∥µc + θe′µs∥2

)
= 2 exp

(
− (r∆)2∥µs∥4Me,1

32σ2∥µc + θe′µs∥2

)
≤ 2 exp

(
− (r∆)2∥µs∥2Me,1

128σ2

)
P (|⟨m̄e,1, µc + θe′µs⟩| > t2) ≤ 2 exp

(
− ∆2∥µc∥4Me,1

2592σ2∥µc + θe′µs∥2

)
= 2 exp

(
−∆2∥µc∥2Me,1

10368σ2r2µ

)
Similarly with t2 = 1

48∆ · ∥µc∥2:715

P (|⟨m̄e, (µc + θe′µs)⟩| > t2) ≤ 2 exp

(
− ∆2∥µc∥4Me

(48σ∥µc + θe′µs∥)2

)
Taking the required union bounds we get that with probability at least 1 − 24 exp

(
−t2/2

)
Equa-716

tion (23), Equation (24) and Equation (26) hold, as long as ∥µs∥2 ≥ t · 128σ2((r∆)2Me,1)
−1 and717

∥µc∥2 ≥ t ·max
{
10368σ2r2µ

(
∆2Me,1

)−1
, (96σrµ)

2(∆2Me)
−1
}

.718

For Equation (25) and Equation (27) we use Corollary 2: 9719

P {|⟨n̄e, m̄e′,1⟩| ≥ t2} ≤ 2 exp

[
−c

M2
e′,1t

2
2

σ4d

]

9For simplicity, assume we have
√

M−2
1,1 +M−2

2,1 ≤ N−1
1 and that we set t large enough such that(

M−1
1,1 +M−1

2,1

)−2
t2/(σ4d) ≥

(
M−1

1,1 +M−1
2,1

)−1
t/(σ2

√
d)
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Setting t2 = r∆
4 ∥µs∥2 or t2 = ∆2

288∥µc∥
2 we will get that:720

P
(
|⟨n̄e, m̄e′,1⟩| ≥ min

{
r∆

4
∥µs∥2,

∆2

288
∥µc∥2

})
≤

2 exp

(
−c

M2
e′,1

σ4d
min

{
(r∆)2

16
∥µs∥4,

∆4

2882
∥µc∥4

})

Hence we require ∥µc∥2 ≥ t·c·(Me′,1∆
2)−1 ·(288σ2

√
d) and ∥µs∥2 ≥ t·c·(Me′,1r∆)−1 ·(4σ2

√
d)721

for Equation (25) to hold. For Equation (27) we can get in a similar manner that it holds in case that722

∥µc∥2 ≥ t · c · (Me′∆)−1(48σ2
√
d). The probability for all the events listed so far to occur is at723

last 1− 32 exp
(
−t2/2

)
. Finally, for Equation (28) we simply use the bound on a norm of Gaussian724

vector:725

P (∥n̄e∥ ≥ t2) ≤ 2 exp

(
− t22Ne

2σ2d

)
Plugging in t

√
2σ2d
Ne

we arrive at the desired result with a final union bound that give the overall726

probability of at least 1− 34 exp
(
−t2/2

)
.727

We now use the bounds above to write down the specific bounds on expressions that we used during728

proof.729

Corollary 3. Conditioned on all the events in Lemma 10, we have for e ∈ {1, 2} that:730

∆

6
|v1 + v2| · ∥µc∥2 ≥ |ϵ2(v)− ϵ1(v)| (29)

1

6
|v1 + v2| · ∥µc∥2 ≥ |⟨µc, v1n̄1 + v2n̄2⟩| (30)

1

6
|v1 + v2| · ∥µc∥2 ≥ |⟨m̄e, (v1 + v2)µc + (θ1v1 + θ2v2)µs + v1n̄1 + v2n̄2⟩| (31)

r∆∥µs∥2 ≥ |⟨m̄1,1 − m̄2,1, µc + θeµs + n̄e⟩| (32)

r∥µs∥2 ≥ |⟨n̄e, µs⟩| (33)

5t

√
σ2d

mineNe
≥ ∥w∥ (34)

Proof. Equation (33) is just Equation (21) restated for convenience. Equation (32) is a combination731

of Equation (23) and Equation (25):732

|⟨m̄1,1 − m̄2,1, µc + θeµs + n̄e⟩| ≤
∑
e′

|⟨m̄e′,1, µc + θeµs⟩|+ |⟨m̄e′,1, n̄e⟩| ≤ r∆∥µs∥2

These are the events required for Lemma 7, hence from now on we can now assume that:733

|v1 + v2| ≥
∆

2
=

∆

4
· 2 ≥ ∆

4
∥v∥1

Now we can combine with Equation (22) to prove Equation (30):734

⟨µc, v1n̄1 + v2n̄2⟩ ≤
∑
e

|ve| · |⟨µc, n̄e⟩| ≤ ∥v∥1
∆

24
∥µc∥2 ≤ 1

6
|v1 + v2| · ∥µc∥2

Next we prove Equation (31) in a similar manner using Equation (26) and Equation (27):735

|⟨m̄e,(v1 + v2)µc + (θ1v1 + θ2v2)µs + v1n̄1 + v2n̄2⟩| ≤∑
e′

|ve′ | · (|⟨m̄e, µc + θe′µs⟩|+ |⟨m̄e, n̄e′⟩|) ≤ ∥v∥1 · 2 ·
1

48
∆∥µc∥2 ≤ 1

6
|v1 + v2| · ∥µc∥2
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For Equation (29), let us write the right hand side:736

|ϵ2(v)− ϵ1(v)| = |⟨m̄2,1 − m̄1,1, v1(µc + θ1µs + n̄1) + v2(µc + θ2µs + n̄2)⟩|

= |(v1 + v2) · ⟨m̄2,1 − m̄1,1, µc +
1

2
(θ1 + θ2)µs⟩

+ ⟨m̄2,1 − m̄1,1, v1n̄1 + v2n̄2⟩+
1

2
(v1 − v2)⟨m̄2,1 − m̄1,1,∆µs⟩|

≤ |v1 + v2| ·
∑
e

|⟨m̄e,1, µc +
1

2
(θ1 + θ2µs)⟩|+ ∥v∥1

∑
e,e′

|⟨m̄e,1, n̄e′⟩|

+
1

2
∆∥v∥1

∑
e

|⟨m̄e,1, µs⟩|

≤ |v1 + v2| ·
∑
e

|⟨m̄e,1, µc +
1

2
(θ1 + θ2µs)⟩|+

4

∆
|v1 + v2|

∑
e,e′

|⟨m̄e,1, n̄e′⟩|

+ 2|v1 + v2|
∑
e

|⟨m̄e,1, µs⟩|

≤ 1

6
∆|v1 + v2|

The first inequality is simply a triangle inequality, the second plugs in the bound we obtained for737

∥v∥1 and the last uses the relevant inequalities from Lemma 10.738

For Equation (34), we write the weights of the returned linear classifier as:739

w = v∗1(µc + θ1µs + n̄1) + v∗2(µc + θ2µs + n̄2)

Hence we can bound:740

∥w∥−(v∗1 + v∗2)∥µc∥ ≤ ∥(v∗1θ1 + v∗2θ2)µs + v∗1 n̄1 + v∗2 n̄2∥

=
√
(v∗1θ1 + v∗2θ2)

2∥µs∥2 + 2⟨v∗1 n̄1 + v∗2 n̄2, (v∗1θ1 + v∗2θ2)µs⟩+ ∥v∗1 n̄1 + v∗2 n̄2∥2

=
√
(v∗1θ1 + v∗2θ2) ((v

∗
1θ1 + v∗2θ2)∥µs∥2 + 2⟨v∗1 n̄1 + v∗2 n̄1, µs⟩) + ∥v∗1 n̄1 + v∗2 n̄2∥2

We also proved in Lemma 8, that under the events we assumed and the EOpp constraint:741

(v∗1θ1 + v∗2θ2)∥µs∥2 + 2⟨v∗1 n̄1 + v∗2 n̄2, µs⟩ ≤ 2
(
(v∗1θ1 + v∗2θ2)∥µs∥2 + |⟨v∗1 n̄1 + v∗2 n̄2, µs⟩|)

)
≤ 1

3
(v∗1 + v∗2)∥µc∥2

Incorporating with v∗1θ1 + v∗2θ2 ≤ 2(v∗1 + v∗2), the concavity of the square root and Equation (28),742

we get:743

∥w∥ ≤
(
1 +

√
2/3
)
(v∗1 + v∗2)∥µc∥+ ∥v∗1 n̄1 + v∗2 n̄2∥

≤
(
1 +

√
2/3
)
(v∗1 + v∗2)∥µc∥+ ∥n̄1∥+ ∥n̄2∥

≤
(
1 +

√
2/3
)
(v∗1 + v∗2)∥µc∥+ t ·

√
σ2d

mineNe

≤ 4∥µc∥+ t ·

√
σ2d

mineNe

≤ 5t ·

√
σ2d

mineNe

744
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G Proof of Theorem 1745

Proof of Theorem 1. Our proof simply consists of choosing the free parameters in Theorem 1746

(rc, rs, d, σ, θ1 and θ2) based on Propositions 1, 2 and 3 such that all the claims in the theorem747

hold simultaneously. Keeping in line with the setting of Propositions 1 and 3, we take σ2 = 1/d,748

θ1 = 1 and θ2 = 0. Next, our strategy is to pick rs and rc so as to satisfy the requirements of749

Propositions 1 and 3, and then pick a sufficiently large d so that the requirements of Proposition 2750

hold as well. Throughout, we set δ = 99/100 so as to meet the failure probability requirement stated751

in the theorem; it is straightforward to adjust the proof to guarantee lower error probabilities.752

Starting with the value of rs, we let753

r2s =
min{cn, c′n}

N

where the parameters cn, cm and c′n are as given by Propositions 1 and 3, respectively. Next, we pick754

rc to be755

r2c =
r2s

Cr

(
1 +

√
N2

N1γ

) =
min{cn, c′n}

CrN
(
1 +

√
N2

N1γ

)
with Cr from Proposition 1 (this setting guarantees rc ≤ rs as Cr ≥ 1). Thus, we have satisfied756

the requirements in Equation (1) in Proposition 1, as well as the requirement max{rc, rs} ≤ c′n
N in757

Proposition 3; it remains to choose d so that the remaining requirements hold.758

Proposition 1 requires the dimension to satisfy d ≥ Cd
N

γ2N2
1 r

2
c
log 1

δ and Proposition 3 requires759

d ≥ C ′
dN

2 log 1
δ . Substituting our choices of σ2 = 1/d, rs and rc above, let us rewrite the760

requirements of Proposition 2 as lower bounds on d. The requirement in Equation (G) reads761

d ≥ C2
s

log 1
δ

N2
minr

4
s

,

while the requirement in (with minor simplifications) reads762

d ≥
C2
c log

1
δ

Nminr4c
max

{
(Q−1(ϵ))2,

1

Nmin
, r2s

}
.

Using rs ≥ rc and r2s ≤ 1
Nmin

, the above two displays simplify to763

d ≥
max{Cc, Cs}2 log 1

δ

Nminr4c
max

{
(Q−1(ϵ))2,

1

Nmin

}
.

Therefore, taking764

d = max{Cd, C ′
d, C

2
s , C

2
c }max

{
N2,

N

γ2N2
1 r

2
c

,
(Q−1(ϵ))2

Nminr4c
,

1

N2
minr

4
c

}
log

1

δ

fulfills all the requirements and completes the proof.765

H Definitions of Invariance and Their Manifestation In Our Model766

In section 4 we show that the Equalized Odds principle in our setting reduces to the demand that767

⟨w,µs⟩ = 0. Here we provide short derivations that show this is also the case for some other768

invariance principles from the literature. We will show this in the population setting, that is in769

expectation over the training data. We also assume that θ1 ̸= θ2.770

Calibration over environments [43] Assume σ(⟨w,x⟩) is a probabilistic classifier with some771

invertible function σ : R → [0, 1] such as a sigmoid, that maps the output of the linear function to a772

probability that y = 1. Calibration can be written as the condition that:773

Pθ(y = 1 | σ(⟨w,x⟩ − b) = p̂) = p̂ ∀p̂ ∈ [0, 1].
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Calibration on training environments in our setting then requires that this holds simultaneously for774

Pθ1 and Pθ2 . We can write the conditional probability of y on the prediction (when the prior over y is775

uniform) as:776

Pθe(y = 1 | ⟨w,x⟩ − b = α) =
exp

(
(α−⟨w,µc+θ1µs⟩+b)2

2σ2∥w∥2

)
exp

(
(α−⟨w,µc+θ1µs⟩+b)2

2σ2∥w∥2

)
+ exp

(
(α+⟨w,µc+θ1µs⟩+b)2

2σ2∥w∥2

)
Now it is easy to see that if the classifier is calibrated across environments, we must have equality in777

the log-odds ratio for the above with e = 1 and e = 2 and all α ∈ R:778

(α− ⟨w,µc + θ1µs⟩+ b)
2

2σ2∥w∥2
− (α+ ⟨w,µc + θ1µs⟩+ b)

2

2σ2∥w∥2
=

(α− ⟨w,µc + θ2µs⟩+ b)
2

2σ2∥w∥2
− (α+ ⟨w,µc + θ2µs⟩+ b)

2

2σ2∥w∥2
.

After dropping all the terms that cancel out in the subtractions we arrive at:779

⟨w,µc + θ1µs⟩ = ⟨w,µc + θ2µs⟩.

Clearly this holds if and only if ⟨w,µs⟩ = 0, hence calibration on both environments entails780

invariance in the context of the data generating process of Definition 2.781

Conditional Feature Matching [23, 40] Treating the environment index as a random variable, the782

conditional independence relation ⟨w,x⟩ ⊥⊥ e | y is a popular invariance criterion in the literature.783

Other works besides the ones mentioned in the title of this paragraph have used this, like the Equalized784

Odds criterion [15]. This independence is usually enforced w.r.t available training distributions, hence785

in our case w.r.t Pθ1 ,Pθ2 . Writing this down we can see that:786

Pθe(⟨w,x⟩ | y = 1) = N (⟨w, µc + θeµs⟩, ∥w∥2σ2I).

Hence requiring conditional independence in the sense of Pθ1(⟨w,x⟩ | y = 1) = Pθ2(⟨w,x⟩ | y = 1)787

means we need to have equality of the expectations, i.e. ⟨w, µc + θ1µs⟩ = ⟨w, µc + θ2µs⟩ which788

happens only if ⟨w, µs⟩ = 0.789

Other notions of invariance. It is easy to see that even without conditioning on y, the independence790

relation ⟨w,x⟩ ⊥⊥ e used in Veitch et al. [40] among many others will also require that ⟨w,µs⟩ = 0.791

For the last invariance principle we discuss here, we note that VREx and CVaR Fairness essentially792

require equality in distribution of losses [45, 20] under both environments. Examining the expression793

for the error of w under our setting (Equation (2)) reveals immediately that these conditions will also794

impose ⟨w,µs⟩ = 0.795
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