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ABSTRACT

Decision makers are increasingly relying on machine learning in sensitive situ-
ations. In such settings, algorithmic recourse aims to provide individuals with
actionable and minimally costly steps to reverse unfavorable AI-driven decisions.
While existing research predominantly focuses on single-individual (i.e., seeker)
and single-model (i.e., provider) scenarios, real-world applications often involve
multiple interacting stakeholders. Optimizing outcomes for seekers under an indi-
vidual welfare approach overlooks the inherently multi-agent nature of real-world
systems, where individuals interact and compete for limited resources. To ad-
dress this, we introduce a novel framework for multi-agent algorithmic recourse
that accounts for multiple recourse seekers and recourse providers. We model
this many-to-many interaction as a capacitated weighted bipartite matching prob-
lem, where matches are guided by both recourse cost and provider capacity. Edge
weights, reflecting recourse costs, are optimized for social welfare while quan-
tifying the welfare gap between individual welfare and this collectively feasible
outcome. We propose a three-layer optimization framework: (1) basic capacitated
matching, (2) optimal capacity redistribution to minimize the welfare gap, and
(3) cost-aware optimization balancing welfare maximization with capacity adjust-
ment costs. Experimental validation on synthetic and real-world datasets demon-
strates that our framework enables the many-to-many algorithmic recourse to
achieve near-optimal welfare with minimum modification in system settings. This
work extends algorithmic recourse from individual recommendations to system-
level design, providing a tractable path toward higher social welfare while main-
taining individual actionability.

1 INTRODUCTION

AI decision-making systems rapidly apply predictive models to support individuals in various con-
texts, e.g., loan approvals, medical treatments, or bail decisions (Voigt & Von Dem Bussche, 2017).
The increasing reliance of humans on these algorithmic decision-making systems and their signifi-
cant impact on areas such as finance, healthcare, and criminal justice have raised concerns regarding
the transparency and fairness of these automated systems. Driven by AI policy regulations and the
idea of a ”right to explanation,” algorithmic recourse is an emerging field that aims to provide in-
dividuals affected by negative, high-stakes algorithmic decisions with recommendations on how to
reverse those outcomes (GDPR, 2016; Verma et al., 2024). Therefore, algorithmic recourse refers to
the systematic process of reversing unfavorable decisions made by algorithms across various coun-
terfactual scenarios (Wachter et al., 2018). It encompasses the necessary actions individuals must
take to achieve a favorable outcome, serving as a foundation for temporally extended agency and
trust in automated decision-making systems (Karimi et al., 2021). This concept is essential to ensure
automated decisions are understandable and to enable individuals to engage with and contest these
decisions (Doshi-Velez & Kim, 2017; Gunning, 2019). Existing studies on algorithmic recourse
predominantly address how the individual would need to change their attributes to achieve the de-
sired outcome (Karimi et al., 2022). Such settings generally assume a single individual impacted
by a single decision-making model as shown in Figure 1a. In real-world scenarios, however, AI
decision-making systems (i.e., providers) often interact with multiple individuals whose actions can
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(a) One-to-one Recourse Matching (b) Many-to-one Setting (c) Many-to-many Recourse
Matching

Figure 1: Various algorithmic recourse setups: (a) the classical one-to-one setting, where an individ-
ual s seeks recourse recommendations from a provider p with minimal cost required to reverse the
output; (b) the many-to-one setting, where multiple individuals are seeking recourse from a single
recourse provider. (c) Our proposed many-to-many framework generalizes prior settings by simul-
taneously optimizing for multiple recourse seekers and providers.

influence outcomes and, consequently, recourse recommendations for others (Many-to-one setting).
Furthermore, individuals seeking recourse (i.e., seekers) may engage with multiple providers (Fig-
ure 1c) to choose the most suitable among given recommendations. The driving insight of this paper
is that the effects of other stakeholders should not be ignored.

Recent studies have explored recourse frameworks that consider more than one seeker. For instance,
O’Brien & Kim (2022) modified the recourse optimization problem, introducing Social-Welfare-
Efficient Recourse and Pareto-Efficient Recourse. Drawing upon game-theoretic principles, their
illustrative use of the prisoner’s dilemma highlights potential misaligned benefits in conventional re-
course recommendations and provides a compelling ethical rationale for reconsidering algorithmic
interventions in a many-to-one setting. In similar vein, Fonseca et al. (2023) propose an agent-based
simulation framework modeling multi-seeker-single-provider dynamic competition among recourse
seekers over time, studying whether negatively classified instances will ever attain recourse in light
of new individuals entering the seeker pool. Their work reveals that initially promising recourse rec-
ommendations may lose effectiveness due to continuous environmental changes. This emphasizes
the importance of accounting for both competition and temporal shifts when formulating interven-
tions. While these studies have extended the literature to settings with multiple recourse seekers,
they continue to assume a single provider (Figure 1b). There remains a gap regarding algorithmic
recourse in situations involving multiple recourse providers each potentially impacting outcomes
with their own decision models. Existing approaches typically overlook how providing recourse
recommendations simultaneously to multiple recourse seekers can benefit society and overall re-
course actionability through interactions among individuals.

Our Contributions We extend existing recourse frameworks to move past the unrealistic assump-
tion of infinite provider capacity wherein seekers are able to match with any provider in absence of
other simultaneous matches. Our proposed formulation includes multiple recourse seekers and mul-
tiple recourse providers and examines how individual recommendations in such settings affect the
overall system. We formalize this interaction as a capacitated weighted bipartite matching problem
and determine optimal recourse outcomes using a linear-programming approach, thereby maximiz-
ing social welfare under capacity constraints. Specifically, we evaluate the population cost or social
welfare of recourse, summed over all individuals, under realistic capacity limits and contrast it with
the case of unlimited provider capacity.

Further, we identify a welfare gap between the socially optimal solution, computed by a central plan-
ner, and the unrealistic individually optimal outcome, where each seeker acts in isolation and selects
the provider offering the lowest recourse cost, without coordination or consideration of provider
capacity constraints. To minimize this gap, we introduce a second optimization layer that finds the
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best distribution for a total fixed capacity over providers. We propose a systematic procedure to find
this optimal distribution and minimize the gap.

Finally, since algorithmic recourse methods provide recommendations that minimally change the
initial situation to reach the favourable outcome, we add the third optimization layer that minimizes
the welfare gap while penalizing deviations from the initial capacity values. Solving this problem
yields both the best provider capacities, accounting for the modification penalty, and the correspond-
ing social welfare matching.

2 MANY-TO-MANY RECOURSE OPTIMIZATION

In this section, we formalize the matching problem that serves as the foundation of our optimization
framework. The problem is modeled as a bipartite graph as shown in Figure 1c, with loan seekers
on one set and loan providers (e.g., banks) on the other, as follows:

• Seekers S: {si | si ∈ S, ∀ i ∈ [n]}, each characterized by a feature vector xi.

• Providers P: {pj | pj ∈ P, ∀ j ∈ [m]}, each equipped with a classifier (w.l.o.g. binary
model) hj to accept or reject the seekers and a matching capacity kj . All the seekers are
initially rejected by all providers, i.e., hj(xi) = −1 ∀ i, j, meaning that each seeker will
have a recommendation from all providers.

Furthermore, it is assumed that a central planner will coordinate matches between seekers and
providers (i.e., eq. (1)) and potentially redistribute existing capacity among providers (i.e., eq. (2)
and eq. (3)).

Recourse cost computation The standard algorithmic recourse setting assumes that a seeker (e.g.,
si) seeks to obtain recourse recommendations from a provider (e.g., pj). This minimal change,
as defined by Ustun et al. (2019), is defined as the minimal effort or cost required to change an
individual’s input features such that a predictive model will reverse its output from an undesirable
outcome to a desirable one. Formally, given provider pj’s decision model hj and an input feature
vector xi corresponding to the characteristics of seeker si, such that hj(xi) = −1 (assumed binary
w.l.o.g.), the recourse cost is defined as the solution to the following optimization problem:

cij = min
a∈A(xi)

cost(a;xi) s.t. hj(xi + a) = +1 ∀ i, j

where a is an action vector representing feasible changes to the features of xi, and A(xi) is the set of
allowed actions based on domain constraints (e.g., mutability and bounds on feature changes). The
function cost(a;xi) quantifies the difficulty of applying action a to instance xi. If a feasible action
exists that satisfies the constraint, the minimal value of cost(a;xi) is the recourse cost. Therefore,
cij represents the minimal change required for seeker si to achieve approval from provider pj . Our
proposed framework is agnostic to the choices of recourse method and providers’ model, operating
only on the minimum cost of change required for each pair of seeker si and provider pj .

Bipartite Graph Construction. Once all minimal recourse costs, cij , between seekers and
providers are precomputed, we construct a weighted bipartite graph G = (V,W), where nodes
V = S ∪ P and

W :=
{
wij

∣∣ wij = e−γ·cij , ∀ i, j
}
.

where γ > 0 is a scaling parameter controlling the sensitivity of the transformation. This exponential
transformation converts costs into edge weights, enabling algorithms such as the maximum-weight
bipartite matching (Kuhn, 1955) to prioritize low-cost (i.e., efficient) recourse assignments while
maximizing overall match coverage. Furthermore, the exponential form ensures that differences
among lower costs are emphasized more strongly than among higher ones, effectively prioritizing
assignments that are not only feasible but also efficient.

Optimization Model Next, with consideration for real-world constraints on provider capacity, we
formulate a capacitated weighted bipartite matching problem. If we denote the maximum weight
for seeker i accordingly as w∗

i = maxj(wij) (corresponding to the least costly recommendation
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received), we can then measure the ideal scenario in which each seeker attains its optimal outcome,
independently of other seekers, as:

Individual Welfare :=

n∑
i=1

w∗
i

However, this ideal scenario assumes that providers have unbounded capacity (w.l.o.g., at least the
number of seekers for each provider), meaning that they can freely provide the resources, which is
not realistic. In practice, each provider has a limited capacity kj , meaning they can serve only a finite
number of seekers. Taking a systems-level view and aiming to minimize the overall cost of recourse
across all seekers and providers,1 the optimal matching under capacity constraints is determined as:

Social Welfare := max
zij

n∑
i=1

m∑
j=1

wij zij .

where zij are binary decision variables that indicate whether seeker i is assigned to provider j. To
obtain the optimal matching, we encode the above formulation as a mixed-integer linear program
(MILP) and solve it with the Gurobi Optimizer (Gurobi Optimization, LLC, 2024)2 as follows:

Social Welfare := max
zij

n∑
i=1

m∑
j=1

wij zij

s.t.
m∑
j=1

zij ≤ 1 ∀i,
n∑

i=1

zij ≤ kj ∀j, zij ∈ {0, 1} ∀i, j

︸ ︷︷ ︸
Matching Constraint

︸ ︷︷ ︸
Capacity Constraint

︸ ︷︷ ︸
Edge Constraint

(1)

Under unbounded provider capacity, the optimal matching over zij is achieved when each seeker
is matched with the provider that minimizes its individual recourse cost. The capacity constraints,
however, may result in some seekers matching to a more costly match (lower weight wij). This
discrepancy is quantified by the gap between the ideal individual welfare and the realized social
welfare:

Welfare Gap :=

(
n∑

i=1

w∗
i

)
−

 n∑
i=1

m∑
j=1

wij zij

 .

This gap highlights a critical design challenge: given a fixed total amount of provider capacity,
how should these limited resources be distributed across providers to minimize the welfare gap? A
naive uniform distribution of provider capacities may lead to significant welfare losses. In contrast,
allocating more capacity to providers most preferred by seekers, i.e., those associated with lower
recourse costs, can substantially reduce the welfare gap, even when the total capacity remains fixed.
In the following section, we introduce a systematic approach that not only identifies distinct alloca-
tion scenarios based on varying resource availability but also provides an optimization approach to
allocate capacity effectively and minimize the welfare gap.

3 MINIMIZE WELFARE GAP

Under a fixed total provider capacity K =
∑m

j=1 kj , the welfare gap can vary depending on how
capacity is distributed among providers. In fact, for any given K, there is an optimal allocation of
provider capacities kj that minimizes this welfare gap. This observation leads to a new optimization
problem involving two sets of decision variables namely, the integer variables kj ∀ j, representing
provider capacities in the optimal solution, and the matching variables zij , as previously defined,
indicating the best matching under the system settings.

max
zij , kj

n∑
i=1

m∑
j=1

wij zij s.t.
m∑
j=1

kj = K ∀ j Total Capacity Constraint (2)

1This assumes that providers do not have ulterior preferences affecting the matching process.
2Although the presence of binary decision variables renders the problem NP-hard, Gurobi’s branch-

and-bound engine—augmented with presolve, cutting-plane generation, and heuristic warm-starts–guarantees
global optimality.
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Figure 2: The effect of capacity distribution on social welfare outcomes. The pink dashed plot (with
shaded region) shows the welfare achieved under an arbitrary capacity allocation (Equation (1)),
which may result in a non-zero welfare gap even when sufficient total capacity is available. The dark
red plot represents the optimized distribution obtained by solving Equation (2), which maximizes
social welfare under a total capacity constraint. The blue horizontal line shows the global individual-
optimal welfare, attainable only when total capacity is unconstrained. The gap between the pink and
red curves highlights the inefficiency introduced by uncoordinated capacity allocations.

The matching, capacity, and edge constraints remain the same as before in Equation (1), with the
additional constraint on the total capacity. Figure 2 represents how this welfare gap varies accord-
ing to the total available resources and their distribution across providers. In particular, the figure
highlights two notable cutoffs and three distinct areas. In the first area, where the total available
resources are fewer than the number of seekers, i.e., K =

∑m
j=1 kj < |S|, a welfare gap greater

than zero is inevitable. Under these circumstances, some seekers will remain unmatched, and the
depicted minimum gap represents the best achievable outcome through optimal capacity distribu-
tion. The first critical point is reached once available resources equal the number of seekers, where
the welfare gap can reach zero if the distribution of these resources could be optimized and aligned
with the best choice of each seeker. At the second critical point, where each provider individually
possesses resources equal to the number of seekers, the welfare gap is guaranteed to be zero as
seekers can freely match with their preferred providers. In the area between the two critical points,
while resources are plentiful enough for a zero welfare gap distribution over capacities to exist, any
suboptimal distribution of capacities among providers will result in a welfare gap greater than zero.
Therefore, identifying the optimal capacity distribution becomes an essential challenge, specifically,
determining how capacities can best be allocated to minimize the welfare gap given fixed total re-
sources.

To determine the optimal distribution of provider capacities, Equation (2) could again be solved
using a Mixed-Integer Linear Programming (MILP) method with solvers such as Gurobi (Gurobi
Optimization, LLC, 2024). However, the structure of the matching weights reveals two key pat-
terns, suggesting an approach simpler than solving an MILP directly. In Algorithm 1, we propose
a systematic method that assigns capacities based on each seeker’s top-ranked matching weight,
previously defined in Section 2 as w∗

i . For each seeker i, the value w∗
i represents the maximum

possible contribution of that seeker to the total welfare, as no assignment can surpass this highest-
weight edge. Moreover, since at most K seekers can receive recourse, excluding any of the top
K highest-weight edges directly reduces the achievable welfare. Thus, the welfare of any feasible
solution is bounded above by

∑
i∈SK

w∗
i , where SK denotes the set of seekers corresponding to the

K highest-ranked edges, and j∗i = argmax(w∗
i ) denotes the index of the provider most preferred

by seeker si. Then the capacity vector k∗ is defined by counting how often each provider appears
among the top-K individually preferred matches (e.g. w∗

i ).

k∗j = |{i ∈ SK | j∗i = j}| , j = 1, ...,m

These insights lead to Algorithm 1, which offers a more direct and efficient alternative to MILP.
After computing all w∗

i values in O(nm) time (n seekers and m providers), we sort the resulting
values once in O(n log(n)) time. Capacities are then assigned to providers precisely according to
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Algorithm 1 Optimal Capacity Distribution

1: Input: seekers S, providers P , weights wij , total capacity K
2: Output: provider capacities k = (k1, . . . , k|P|)
3: Initialize empty list L
4: for each seeker i ∈ S do
5: w∗

i = maxj(wij)
6: j∗i ← argmaxj∈P w∗

i {best provider for seeker i}
7: Append triple (i, j∗i , w

∗
i ) to L

8: end for
9: Sort L in descending order of weight

10: Select the first K triples of L {top-K matches}
11: Initialize kj ← 0 for all j ∈ P
12: for each selected triple (i, j, w) do
13: kj ← kj + 1
14: end for
15: return capacity vector k

the top K dominant edges. This approach ensures provider capacities align directly with seeker
preferences, thereby naturally minimizing the welfare gap by emphasizing matches that are both
individually optimal and beneficial for the overall system.

3.1 CAPACITY REDISTRIBUTION WITH PENALIZING MODIFICATIONS

While the previous section addressed how provider capacities can be optimally distributed to min-
imize the welfare gap for a given total system capacity K, additional considerations may be war-
ranted. In practice, recourse methods often operate within established configurations determined by
existing organizational structures, resource availability, and operational constraints. Transitioning
from the current provider capacity configuration to an optimal setup typically involves real-world
adjustment costs. Simply recommending an entirely new capacity distribution may be impractical
or expensive to implement. Therefore, even though optimally reallocating capacities reduces the
welfare gap, the costs of these adjustments must be carefully balanced against minimizing the wel-
fare gap. To address this challenge, we extend our optimization framework by explicitly penalizing
deviations from the initial capacities.

Let k̂j denote the initial capacity of provider j, and k̃j represent the target capacity after configura-
tion. The change in capacity ∆kj = k̃j− k̂j can penalize large changes with βj |∆kj |, where βj ≥ 0
controls the penalty sensitivity for each of the providers accordingly. Integrating this penalty into
our optimization leads to a multi-objective problem, balancing social welfare maximization with
minimization of capacity adjustment penalties. The modified objective function is:

Welfare = max
zij , kj

 n∑
i=1

m∑
j=1

wijzij −
m∑
j=1

βj |∆kj |

 (3)

subject to the same matching, capacity, total capacity, and edge constraints previously defined
in Equation (2). This enhanced formulation constitutes a MILP problem, solvable by recent ver-
sions of solvers like Gurobi (Gurobi Optimization, LLC, 2024). Ultimately, this optimization simul-
taneously identifies the optimal matching zij and optimal provider capacities kj , clearly indicating
how capacities should be adjusted from their initial configuration. The resulting solution provides
a practical recourse recommendation system effectively balancing improvements in social welfare
with realistic operational constraints.

4 EXPERIMENTS

This section demonstrates how the proposed many-to-many recourse framework behaves in practice.
All experiments are fully reproducible from the public Model-Agnostic Counterfactual Explanations
(MACE) code base (Karimi et al., 2020) and the scripts accompanying this paper.
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(a) Two-Moon dataset overlaid with the
decision boundaries of the four provider
models, underscoring that seekers face
genuinely different models.

W =



0.548 0.425 0.611 0.594

0.667 0.413 0.695 0.703
0.539 0.488 0.521 0.949
0.488 0.687 0.666 0.484

0.773 0.354 0.793 0.896
0.576 0.582 0.557 0.834
0.558 0.765 0.545 0.626

0.417 0.557 0.558 0.415


(b) Illustration of Algo-
rithm 1 on the MACE-
generated weight matrix.
For each seeker (row), the
largest edge weight w∗

i is
highlighted; its column in-
dex j∗i designates the pre-
ferred provider.

(c) Social welfare attained by Algorithm
1 (red dashed) as the total capacity K
grows from 0 to n ∗ m, against the
individual-welfare upper-bound.

(d) Optimal seeker-to-provider as-
signments obtained by solving
Equation (1) under the initial ca-
pacity vector.

(e) Provider capacities are dis-
tributed according to the capacity
vector founded by Equation (2),
eliminating the welfare gap.

(f) Final matching produced by
Equation (3), balancing social-
welfare gain against the cost of de-
viating from the initial capacities.

Figure 3: Comprehensive illustration of our proposed framework. (a) model decision boundaries, (b)
weight matrix showing seeker-provider preferences and individually optimal matches, (c) welfare
curve showing how total capacity impacts social welfare and its gap from the individual-welfare
upper bound,(d) and the step-by-step optimization of provider capacities, (e) transitioning from
initial assignments, to welfare-maximizing allocations, and finally (f) balancing welfare gains with
capacity adjustment costs .

Datasets and Models We adopt three datasets, the synthetic Two-Moon benchmark, whose non-
linear geometry yields heterogeneous classifiers with disagreements on decision boundaries, and the
real-world COMPAS (Larson et al., 2016) and Credit (I-Cheng Yeh, 2009), widely used in recourse
research. Four classification models serve as providers’ models, namely, logistic regression, a multi-
layer perceptron (MLP), a decision tree, and a random forest. After training the classification models
on the datasets, those instances that were rejected by all providers are retained and the MACE code
base is used to generate recourse actions for each pair of negatively predicted instance and classifier.
We subsampled 8 seekers for Two-Moon, 12 for Credit, and 15 for COMPAS, forming the pools
{si}8i=1, {si}12i=1, and {si}15i=1, respectively, used in our experiments. All panels in Figure 3 corre-
spond to the Two-Moon dataset. We use this dataset to illustrate the full workflow of our framework
due to its low dimensionality and visual interpretability. For real-world datasets, the overall patterns
are similar, and results are reported in Table 1.

Counterfactual Generation with MACE Model-Agnostic Counterfactual Explanations (MACE)
formulates counterfactual search as a constrained optimization problem, independent of the classi-
fier(Karimi et al., 2020). It returns a minimal-distance counterfactual that flips the output to the
favorable class while respecting feature mutability and domain bounds. In our experiments, we have
used the ℓ∞ norm as a measure of distance to identify the nearest (least costly) counterfactuals (re-
sults with the ℓ1 norm are included in the Appendix A.1). For every pair of seeker si and provider pj ,
MACE outputs a counterfactual instance sCF

i together with its recourse cost cij . These recourse cost
values, 32 for Two-Moon (8 seekers × 4 providers), 48 for Credit (12 × 4), and 60 for COMPASS
(15 × 4), constitute the primitive inputs to our framework. We ran MACE on a multi-CPU sys-
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Table 1: Comparative results of the three optimization formulations. Each cell shows social welfare
(SW), capacity vector k, and the percentage of the individual-welfare upper bound (IW) attained in
each optimization problem.

Two-Moon Credit COMPAS

Capacity SW % IW Capacity SW % IW Capacity SW % IW

Equation (1) (2, 4, 1, 1) 5.59 93.13% (3, 2, 6, 1) 9.56 94.42% (3, 8, 1, 3) 12.03 95.74%
Equation (2) (0, 2, 2, 4) 6.01 100% (2, 0, 7, 3) 10.12 100% (11, 1, 3, 0) 12.57 100%
Equation (3) (1, 3, 1, 3) 5.97 99.38% (3, 1, 6, 2) 10.03 99.10% (5, 4, 3, 3) 12.42 98.85%

tem and will make the generated counterfactuals publicly available in our GitHub repository, which
serves as the input to our framework. Furthermore, following Section 2, each cost is transformed
into an edge weight by the exponential mapping. we have tried several values for gamma to indicate
the differences between cost values well without altering their ordering, ensuring that low-cost rec-
ommendations dominate the subsequent matching and capacity allocation stages. Finally, we have
chosen γ = 10 for the Two-Moon and COMPAS datasets and γ = 600 for the Credit dataset.

Optimization Setup The optimization proceeds in three layers. (i) Given the total capacity K
equal to the number of seekers and an initial arbitrary capacity vector for each dataset, Equation (1)
determines the maximum-weight matching. (ii) For the total capacity K increasing in range of
0, ..., n*m (though unrealistic), illustrating the full welfare curve and validate the theoretical cut-
offs discussed in Section 2, Algorithm 1 finds the best distribution over capacities and the optimal
value of the social welfare for the best matching in that setting. (iii) Finally, the MILP approach
solves Equation (3) and optimizes matching and capacities while penalizing deviations from k̂ with
identical βj = 0.03 for all providers.

Results Figure 3c illustrates the social welfare achieved with the capacity distribution returned by
Algorithm 1 for each total capacity K as it increases. The dashed red curve rises monotonically and
meets the individual-welfare upper bound (solid blue) exactly at the point K = n. Beyond that,
further capacity is non-essential, confirming the welfare gap would be zero in the case of finding the
optimized distribution of capacities.

Figure 3d for Two-Moon dataset fixes K = n (with n = 8) and starts from an arbitrary reference
capacity vector k̂ = (2, 4, 1, 1); the first stage of our framework then computes the best matching
for this initial configuration as shown in the figure. Although every seeker is matched, the allocation
falls short of the global individual welfare. Figure 3b exposes the source of this gap. The next step
of the algorithm finds each seeker’s best edge w∗

i ; distributing capacity according to Algorithm 1
and finds (k∗ = (0, 2, 4, 4)). With this distribution, the system reaches the welfare upper bound,
which closes the gap entirely.

Finally, Figure 3f shows the outcome of the cost-aware optimization that penalizes deviations from
k̂. The solver selects a softer move, k̃ = (1, 3, 1, 3) yet the matching in this setting retains 99.38%
of the global optimum. Hence, almost the full efficiency gain is achievable with limited system
settings changes, demonstrating the practical value of our proposed framework.

To extend our evaluation, we summarize results for all datasets in Table 1, which highlights social
welfare outcomes for each optimization setting and the corresponding optimal provider capacity
distributions. For the Credit and COMPAS datasets, the best matching from Equation (1) attained
a social welfare which constitutes 94.42% and 95.74% of the individual welfare, respectively. The
cost-aware optimization in Equation (3) selects a softer redistribution that preserved 99.10% and
98.85% of the optimal welfare for Credit and COMPAS datasets while making a more balanced
capacity modification, compared to the sharper concentration found in Equation (2). To the best of
our knowledge, this is the first work that systematically aims to close the social welfare gap by mov-
ing beyond individual recourse recommendations and instead considering coordinated, system-level
optimization across multiple seekers and providers. These results align with the findings from the
synthetic dataset, reinforcing the effectiveness of targeted redistribution and demonstrating that even
for complex, real-world data, high social welfare can be achieved with moderate system changes.
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5 DISCUSSION

Our experiments show that welfare losses arise immediately in multi-agent settings when seekers
apply independently under fixed, random capacities, even in a two-dimensional setting. However,
these losses can be substantially reduced with minimal system-level intervention. When total sys-
tem capacity matches the number of seekers, a single pass of Algorithm 1 restores the full social
welfare. This suggests that most of the efficiency gap stems not from resource scarcity but from
poor allocation. Moreover, introducing a modest penalty for deviating from the initial capacity dis-
tribution (Equation (3)) had little impact on overall performance. This indicates that near-optimal
outcomes are achievable through small, targeted adjustments, supporting the practical feasibility of
implementation in real-world systems.

The results also highlight the importance of model diversity. Providers whose classifiers align well
with the geometry of a particular sub-population accrue many high-weight edges. Directing addi-
tional capacity to such specialists both increases overall welfare and improves individual actionabil-
ity. In contrast, giving every provider the same capacity can waste resources on providers that do
not add much value.

The third optimization Equation (3) introduced in Section 3.1 subsumes the previous two as special
cases through the choice of the penalty coefficient βj . When βj = 0 ∀j, the penalty term disap-
pears, and the optimization reduces to maximizing social welfare without regard for deviations from
the initial capacity vector k̂; this is equivalent to the Equation (2), which computes the matching
under best distribution of capacities. Conversely, when βi → ∞ ∀j, any deviation ∆kj from the
initial capacity incurs an infinite cost, effectively forcing ∆kj = 0 for all providers. This constraint
recovers the Equation (1), which maximizes welfare subject to fixed initial capacities. Thus, the
parameter βj enables interpolation between these two extremes, offering a flexible mechanism to
balance social welfare against capacity adjustments.

While our experimental results demonstrate the effectiveness of the proposed framework across dif-
ferent datasets and settings, it is important to note that several design choices can influence the
specific quantitative outcomes observed in figures and tables. These include the choice of the edge-
weight transformation function, the scaling parameter γ, and the penalty coefficients βj used in
cost-aware optimization. However, the central insight remains robust, extending the recourse frame-
work from a one-to-one setting to a many-to-many setting and studying its effects. Looking for-
ward, this framework can be enriched by considering game-theoretic extensions in which providers
act strategically. Such formulations could capture competitive or decentralized recourse environ-
ments, opening new directions for modeling strategic behavior and fairness in multi-agent recourse
systems.

6 CONCLUSION

We have introduced a many-to-many view of algorithmic recourse in which multiple seekers obtain
recommendations from multiple decision-making models whose resources are limited. Further, we
quantified the welfare gap between the socially optimal solution, computed by a central planner,
and the individually optimal outcome, where each seeker acts in isolation and selects the provider
offering the lowest recourse cost, without coordination. Experiments demonstrated that explicit
capacity management improves social welfare to almost 99% of the theoretical upper bound while
modifying minor capacity units.

Beyond the static setting studied here, several adjustment levers deserve closer attention. On the
seeker side, adding or removing applicants or allowing limited edits to their feature vectors directly
reshapes the social welfare landscape. On the provider side, changing the number of providers,
altering classifier parameters transforms both the attainable optimum and the route toward it. Future
studies can link these adjustment options to policy goals like ensuring diversity, fairness, or profit.
A second line of extension is dynamism. Real recourse ecosystems are not one-shot games; seekers
reapply, models retrain, and resources fluctuate. Embedding the matching layer inside an online
setting would let the system adapt capacities and decision boundaries in real time, continuously
shrinking the welfare gap as new data arrive. overall, the proposed framework bridges the space
between individual prescriptions and system-wide outcomes, offers a tractable path toward higher
social welfare, and opens several promising directions for adaptive and fairness-aware extensions.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTS WITH ℓ1 DISTANCE

To test robustness to the distance function, we repeated all experiments with the ℓ1 norm instead of
the ℓ∞ norm. The datasets, provider models, and optimization procedure were unchanged, except
for minor parameter adjustments. For Two-Moon, we used 10 seekers with γ = 20 and β = 0.02;
for Credit and COMPAS, we kept the setup and γ but increased β to 0.05. As shown in Figure 4, the
framework still achieves near-optimal welfare with minimal adjustments, and quantitative results for
all datasets are summarized in Table 2.

W =



0.256 0.104 0.256 0.353
0.383 0.096 0.366 0.441
0.179 0.148 0.129 0.902
0.415 0.064 0.432 0.800
0.187 0.237 0.168 0.694
0.299 0.499 0.178 0.393

0.165 0.214 0.198 0.171

0.211 0.021 0.230 0.251
0.509 0.049 0.535 0.727
0.368 0.830 0.314 0.395


(a) Illustration of Algorithm 1 on
the MACE-generated weight matrix.
For each seeker (row), the largest
edge weight w∗

i is highlighted; its
column index j∗i designates the pre-
ferred provider.

(b) Social welfare attained by Algo-
rithm 1 (red dashed) as the total capacity
K grows from 0 to n∗m, plotted against
the individual-welfare upper-bound.

(c) Optimal seeker-to-provider
assignments obtained by solving
Equation (1) under the initial ca-
pacity vector.

(d) Provider capacities are dis-
tributed according to the capacity
vector founded by Equation (2),
eliminating the welfare gap.

(e) Final matching produced by
Equation (3), balancing social-
welfare gain against the cost of
deviating from the initial capac-
ities.

Figure 4: Comprehensive illustration of our proposed framework. This figure demonstrates the com-
plete process: weight matrix showing seeker-provider preferences and individually optimal matches
(a), welfare curve showing how total capacity impacts social welfare and its gap from the individual-
welfare upper bound (b), and the step-by-step optimization of provider capacities, transitioning from
initial assignments (c), to welfare-maximizing allocations (d), and finally balancing welfare gains
with capacity adjustment costs (d)

Table 2: Comparative results of the three optimization formulations. Each cell shows social welfare
(SW), capacity vector k, and the percentage of the individual-welfare upper bound (IW) attained in
each optimization problem.

Two-Moon Credit COMPAS

Capacity SW % IW Capacity SW % IW Capacity SW % IW

Equation (1) (3, 2, 1, 4) 5.50 96.32% (3, 2, 6, 1) 7.49 87.04% (3, 8, 1, 3) 12.03 95.74%
Equation (2) (0, 3, 0, 7) 5.71 100% (4, 0, 3, 5) 8.61 100% (11, 1, 3, 0) 12.57 100%
Equation (3) (1, 2, 1, 6) 5.66 99.03% (3, 0, 6, 3) 8.44 98.03% (5, 6, 1, 3) 12.26 97.53%
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THE USE OF LARGE LANGUAGE MODELS

Large Language Models were used in a limited manner to improve grammar and polish the writing
in certain sections of the manuscript. They were also employed to assist with retrieval and discovery,
such as identifying and summarizing related work.
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