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Abstract

Web-scale pre-training datasets are the corner-001
stone of large language models’ success. How-002
ever, text data curated from the internet in-003
evitably contains various types of noise, whose004
impact on language models needs to be under-005
stood. While existing research primarily fo-006
cuses on low-quality or synthetic data, the ran-007
dom noise introduced by unregulated websites008
or crawler decoding errors has been largely009
overlooked. This paper investigates the in-010
fluence of such random noise and proposes011
strategies to mitigate its impact on down-012
stream tasks. Surprisingly, we observed that013
the performance degradation rate was signifi-014
cantly lower than the proportion of noise. We015
provide a theoretical justification for this phe-016
nomenon, which also elucidates the success of017
multilingual models and can be applied to other018
modalities. To address the adverse effects of019
noise, we introduce a novel plug-and-play Lo-020
cal Gradient Matching loss, which explicitly021
enhances the denoising capability of the down-022
stream task head by aligning the gradient of023
normal and perturbed features to improve local024
smoothness without requiring knowledge of the025
model’s parameters. Extensive experiments on026
8 language and 14 vision benchmarks validate027
the effectiveness of our proposed method. 1028

1 Introduction029

Large language models (LLMs), particularly the030

GPT series (Radford et al., 2019; Brown, 2020;031

OpenAI, 2023), have fundamentally transformed032

the research landscape in natural language process-033

ing. The remarkable performance and emergent034

capabilities of these autoregressive models (Ye and035

Gao, 2024; Nanda et al., 2023; Zheng et al., 2024)036

are largely attributed to pre-training on extensive037

datasets, which are gathered by crawling text from038

the whole internet. Given the sheer volume of these039

1Code, data, and model checkpoint weights are available
at https://anonymous.4open.science/r/lmn-acl-E9D3
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Figure 1: Overview of the study and methodology. (a)
The common scenario in which a GPT model, pre-
trained on filtered data P c, demonstrates robust per-
formance. (b) When the pre-training dataset is contam-
inated with random noise Pn, the resultant language
model may exhibit unpredictable behavior. (c) Our ap-
proach focuses on the effective fine-tuning of black-box
noisy models for downstream tasks P d.

datasets, they inevitably encompass a wide variety 040

of noisy data (Longpre et al., 2024; Elazar et al., 041

2024). Consequently, it is imperative to understand 042

the impact of such noise, as the quality of the train- 043

ing data plays a decisive role in the effectiveness of 044

LLMs (Touvron et al., 2023; Bai et al., 2023; Xie 045

et al., 2023a). Significant research has been con- 046

ducted in this area. Allen-Zhu and Li (2024a); Xie 047

et al. (2023b) have highlighted that low-quality data 048

can significantly diminish a model’s knowledge ca- 049

pacity and performance. Furthermore, Shumailov 050

et al. (2024); Seddik et al. (2024); Dohmatob et al. 051

(2024) have provided empirical and theoretical evi- 052

dence demonstrating that recursively training lan- 053

guage models with synthetic data can lead to model 054
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collapse.055

However, little attention has been paid to the056

impact of random noise within datasets. Due057

to anti-crawling mechanisms (Gao et al., 2023),058

mismatched encodings (e.g., UTF-8 and GBK),059

and tremendous amounts of unmaintained web-060

sites (Pletinckx et al., 2021), the raw data obtained061

through web crawling inevitably contains a substan-062

tial amount of unpredictable random noise (Zhou063

et al., 2024; Chen et al., 2022; Kang et al., 2023).064

Although theoretically it may not be challenging to065

remove such noise, practical limitations in compu-066

tational resources often result in incomplete data067

cleaning (Albalak et al., 2024; Soldaini et al., 2024).068

For example, it is observed that the Chinese corpus069

used to train the GPT-4o tokenizer contained a con-070

siderable amount of nonsensical data 2. Therefore,071

it is of great importance to gain a thorough under-072

standing of the potential effects of random noise on073

language models, which will contribute to a deeper074

insight into the robustness of LLMs.075

We conduct extensive experiments based on the076

OpenWebText dataset (Gokaslan et al., 2019) used077

to pre-train GPT-2. Specifically, we generate ran-078

dom noise with proportions of 1%, 5% and 20%,079

and subsequently concatenate these noise to the080

end of the clean data. The next-token prediction081

pre-training process then continues as usual. In-082

terestingly, we observe that the presence of the083

random noise do not lead to a catastrophic failure084

in model training; instead, its effect on the autore-085

gressive loss is disproportionately small, e.g., the086

increase in loss is only about 1% even with 20% of087

the dataset being noisy. We provide a theoretical088

analysis to explain these phenomena, which also089

sheds light on the success of multilingual models090

(where one language may appear as “noise” to an-091

other) and large speech models (Chen et al., 2022),092

indicating the broader implications of studying the093

effects of random noise.094

Beyond the impact of noise on pre-training loss,095

it is also crucial to understand its effects in down-096

stream tasks. Following Chen et al. (2024), we ex-097

plore how to efficiently fine-tune language models098

using extracted features for downstream tasks when099

the pre-training data and model weights are not100

accessible, which reflects real-world application101

scenarios for large language models. To mitigate102

the adverse effects of noise, we propose a novel103

plug-and-play Local Gradient Matching (LGM)104

2https://github.com/jiangyy/gpt-tokens

loss. This method involves artificially adding noise 105

to the output features and minimizing the gradient 106

difference between the noisy and original features. 107

We theoretically prove that the gradient difference 108

can be upper-bounded by local smoothness (Srebro 109

et al., 2010), the value of the loss function and the 110

input flatness. Comprehensive experiments on 22 111

vision and language understanding benchmarks fur- 112

ther corroborate the effectiveness and robustness 113

of our proposed method. 114

In summary, our contributions are as follows: 115

(1) We investigate the underexplored problem of 116

random noise in pre-training datasets for language 117

models. (2) We pre-train multiple GPT-2 models 118

and the empirical results show that the influence 119

of random noise is relatively insignificant. Then 120

we provide a theoretical analysis, extending our 121

findings to other domains and thus highlighting the 122

significance of this research direction. (3) We pro- 123

pose a novel gradient matching loss for downstream 124

tasks, supported by comprehensive experimental 125

and theoretical analysis that confirm its efficacy. 126

The remaining part is arranged as follows. In 127

Section 2, we summarize the related works con- 128

cerning pre-training data for language models. In 129

Section 3, we provide a detailed analysis of the 130

impact of random noise on language models from 131

both experimental and theoretical perspectives. To 132

compensate for this impact, we introduce the LGM 133

loss in Section 4 and demonstrate its effectiveness 134

through extensive experiments and theoretical anal- 135

ysis. Finally, in Section 5, we conclude the paper. 136

2 Related Works 137

Data Selection for Language Model Training. 138

High-quality text corpora are essential for effective 139

language models. Elazar et al. (2024) analyzed 140

open-source datasets like The Pile and C4, uncov- 141

ering significant amounts of low-quality content in 142

these datasets. Allen-Zhu and Li (2024a); Seddik 143

et al. (2024) highlighted the negative impact of such 144

data on training. Thus, data selection is crucial for 145

language models. Longpre et al. (2024) provides 146

guidelines for selecting pre-training data, and Chai 147

et al. (2024) evaluates the influence of individual 148

samples on GPT model training dynamics. Li et al. 149

(2024b) introduces a metric to evaluate instruction- 150

tuning data quality. Other works, including Xie 151

et al. (2023b,a); Lee et al. (2023), focused on opti- 152

mizing data composition. Despite these remarkable 153

contributions, there remains a lack of understand- 154
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Figure 2: Next-token prediction loss on the clean OpenWebText validation set for GPT-2 models pre-trained on
synthetic OpenWebText datasets with varying levels of random noise. (a) Trend of NTP loss as training proceeds.
(b) Difference in NTP loss between the noisy and clean models after the same number of training iterations. (c)
Difference in loss values after undergoing the same number of training iterations on clean OpenWebText data.

ing regarding the specific effects of random noise155

on language model performance. This paper aims156

to address this gap.157

Learning from Noisy Distributions. LLMs are158

trained on noisy datasets but evaluated in practical159

user settings under clean distribution, violating the160

i.i.d. assumption of traditional machine learning.161

Research has explored the impact of noisy labels162

on model performance (Song et al., 2022; Lukasik163

et al., 2020). For input feature noise, adding pertur-164

bations to images enhances model interpretability165

(Smilkov et al., 2017), while incorporating ran-166

domly generated samples into the training set helps167

alleviate class imbalance (Zada et al., 2022). These168

studies, however, mainly focus on vision modality169

and do not fully address the pre-training context of170

LLMs.171

Noisy Model Learning. Our work draws sig-172

nificant inspiration from Noisy Model Learning173

(NML) proposed by Chen et al. (2024). In NML,174

the authors introduce noise into large datasets like175

ImageNet by randomly altering labels, then pre-176

train neural networks on these noisy datasets. The177

study reveals that moderate label noise enhances178

in-distribution (ID) sample classification, while out-179

of-distribution (OOD) performance deteriorates180

with increasing noise. Focused on supervised learn-181

ing in computer vision, NML modifies only the182

labels, leaving the image features intact. This con-183

trasts with self-supervised learning in language184

models, where the text serves both as input and185

output, making it impossible to alter the labels with-186

out changing the corresponding inputs. This paper187

extends the concept of NML, presenting theoreti-188

cal insights and methodologies that are applicable189

across multiple modalities and various problems.190

Due to space limitations, the detailed related191

works are provided in Appendix C.192

3 Revealing the Effect of Random Noise 193

in Language Model Pre-training 194

In this section, we first pre-train multiple GPT-2 195

models on synthetic noisy OpenWebText corpus to 196

investigate the impact of random noise in the pre- 197

training data. We then provide a theoretical anal- 198

ysis of the results and validate our theory through 199

experiments. Finally, we demonstrate that the in- 200

sights gained from our investigation have broader 201

applicability beyond the immediate scope of our 202

study. The frequently used notation and their de- 203

scriptions are shown in Appendix A. 204

3.1 Experimental Design 205

Preliminary. Let L denote the maximum con- 206

text length of the language model, and let W 207

represent the model’s vocabulary with size V = 208

|W|. We define X as the set of all discrete 209

sentences that the model can represent, where 210

X = ∪L
i=1{0, 1, . . . , V − 1}i = ∪L

i=1W i and 211

{0, 1, . . . , V − 1}i represents prefixes of length 212

i. For any discrete set A, let ∆A denote the set of 213

all probability distributions defined on A. Given 214

that next-token prediction (NTP) is actually a clas- 215

sification task given the prefix, we define joint prob- 216

ability distributions P c, Pn, Pm ∈ ∆X×W where 217

P c represents the distribution of clean data, Pn 218

represents the distribution of noise data, and Pm 219

represents the distribution of the mixed pre-training 220

dataset which contains both clean and noise data. 221

Since the noisy dataset can be viewed as the con- 222

catenation of clean data and random noise, it can 223

be formalized by the Huber contamination model 224

(Fang et al., 2022) as follows: 225

Pm = αPn + (1− α)P c (1) 226
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Figure 3: Validation experiments. (a) Loss trends on the random noise in the training set of the model trained on the
dataset with 5% random noise. (b) Comparison of the loss between 5% random noise and Gaussian noise. (c) The
loss difference on the clean OpenWebText validation set compared to the baseline for models trained on datasets
with 5% random noise and 5% Gaussian noise, respectively.

where we use α to represent the noise proportion.227

An explanation of Equation (1) can be found in228

Appendix B.1. For any joint probability distribu-229

tion P ∈ ∆X×W , let PX ∈ ∆X and P·|X ∈ ∆W230

represent the marginal and conditional distribution231

of P over X and W .232

We use H to denote the hypothesis space (e.g.,233

all possible parameter configurations given the234

transformer architecture ). Define h : X → RV ∈235

H as the language model and ph
·|x(w) as the w-th236

component of the probability distribution induced237

by h(x). The next-token prediction loss can be238

expressed as follows:239

Lntp(P, h) = Ex∼PX
Ew∼P·|x

[
− log(ph

·|x(w))
]
.

(2)240

241 Experiment setup. We utilize the OpenWeb-242

Text dataset (Gokaslan et al., 2019) which com-243

prises 8 billion tokens as an alternative to the origi-244

nal WebText dataset used for training GPT-2 124M245

models (Radford et al., 2019). Concretely, to simu-246

late random noise in unfiltered web-crawled data,247

we first generate uniformly-distributed data and248

then increase the number of specific tokens to in-249

troduce variability. Finally, we shuffle the entire250

data to mimic the randomness and unpredictabil-251

ity of real-world web-crawled data. The generated252

noise is then added to the clean dataset such that α253

is 1%, 5%, and 20% respectively. Each synthetic254

noisy dataset is used to pre-train a GPT-2 model.255

We set the context length L to be 1024 and the256

batch size to be 640. All models are trained for257

300,000 iterations. To evaluate the performance,258

the resulting model checkpoints are tested on the259

clean OpenWebText validation set, measuring the260

NTP loss for comparison. Further details regarding261

datasets and experimental parameters can be found262

in Appendix D.263

3.2 Results 264

In Figure 2, we illustrate the evolution of the NTP 265

loss throughout the training process. Although ran- 266

dom noise has a negative effect on the model’s per- 267

formance as expected, experimental results yield 268

two intriguing insights: 269

(1) In contrast to the low-quality or synthetic 270

data, the presence of random noise does not lead 271

to training collapse, even when the noise level 272

reaches 20%. While increasing training time on 273

low quality or synthetic data typically degrades 274

model performance (Allen-Zhu and Li, 2024a; Shu- 275

mailov et al., 2024), extending the training duration 276

continues to drive down the model’s loss in the case 277

of random noise. 278

(2) The impact of random noise on the loss 279

is disproportionately small. For instance, 5% 280

of random noise only results in a 0.2% increase 281

in the NTP loss. This discrepancy becomes even 282

smaller if the noisy models are calibrated to match 283

the number of training iterations with the baselines 284

trained on clean datasets. 285

These positive experimental outcomes further 286

corroborate the robustness of language models and 287

provide insights into why pre-training on large- 288

scale datasets that inevitably contain significant 289

amounts of noise can still yield high-performing 290

models. These somewhat unexpected findings nat- 291

urally prompt us to explore the underlying reasons. 292

3.3 Theoretical Analysis 293

In the analysis below, we focus on the impact of 294

random noise on NTP loss, as pre-training loss is 295

crucial for the performance on downstream tasks 296

(Saunshi et al., 2021; Wei et al., 2021; Liu et al., 297

2023; Zheng et al., 2023a). Specifically, we are 298

interested in the difference of NTP Loss between 299
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Figure 4: Loss and its difference across different types and levels of noise within the ArXiv and Wikipedia corpora.

a model h∗ trained on a noise-free dataset and a300

model h trained with a noisy dataset. We begin301

by noting that sampling from the clean distribution302

should not yield random gibberish and vice versa.303

Mathematically, this implies that for any prefix r304

sampled from Pn
X , the probability under the clean305

distribution P c
X(r) is zero. Thus, we make the306

following assumption:307

Assumption 1. P c and Pn have disjoint support308

sets, i.e., supp(P c) ∩ supp(Pn) = ∅.309

The subsequent proposition demonstrates that the310

error ϵ introduced to the loss due to random noise311

is less than the proportion α of random noise in the312

dataset.313

Proposition 1. Under Assumption 1, let h∗ be314

a model trained on P c, with Lntp(P
c, h∗) =315

− log pc and Lntp(P
n, h∗) = − log pn. When the316

model h is trained on a mixed distribution Pm317

which includes noise, it attempts to fit Pn, leading318

to an increase in the loss on the clean distribu-319

tion P c, such that Lntp(P
c, h) = − log(pc − ϵ)320

and Lntp(P
n, h) = − log(pn + ϵ/k) for some321

ϵ > 0 (k can be shown to be Ω(eLntp(Pn,h))). Let322

η = αpc − (1− α)kpn. We arrive at the following323

conclusions:324

(1) If α ≤ kpn
pc+kpn

, then for any 0 < ϵ < pc, we325

have Lntp(P
m, h) ≥ Lntp(P

m, h∗). This means326

that when α is sufficiently small, the global mini-327

mum on Pm will not be affected by noise.328

(2) If α > kpn
pc+kpn

, then for ϵ < η, it holds329

that Lntp(P
m, h) < Lntp(P

m, h∗). This suggests330

that if α is large enough, the impact on the optimal331

hypothesis is at least as much as αpc− (1−α)kpn.332

(3) When α < 1
3 and k > α(1−3α)pc

(1−α)(2−3α)pn
, for333

ϵ ≥ 3η we get Lntp(P
m, h∗) < Lntp(P

m, h). Sim-334

ilarly, it can be shown that ϵ does not exceed 2η335

when α > max
(

kpn
pc+kpn

, 12

)
and k > (2α−1)pc

2(1−α)pn
.336

This indicates that when k is sufficiently large, the337

effect of noise is at most O(αpc − (1− α)kpn).338

The proof can be found in Appendix B.2. Propo-339

sition 1 primarily investigates the performance gap340

between models trained on Pm and those on P c. 341

It is proved that when α is small enough, the 342

presence of noise has no impact on the optimal 343

model on Pm. Even as α approaches 1
3 or even 344

1
2 , as long as k is large enough (the analysis re- 345

garding k and other parameters is detailed in Ap- 346

pendix B.3), the loss induced by noise, ϵ, does 347

not exceed O(αpc − (1− α)kpn). Given that k is 348

much greater than 1, this implies ϵ is much smaller 349

than αpc. This explains the observed experimental 350

results. 351

With these theoretical results in hand, we then 352

conduct multiple experiments to substantiate their 353

validity. First, we plot the trend of NTP loss on 354

random noise within the training set throughout 355

the learning process, as shown in Figure 3(a). It is 356

evident that the loss on random noise decreases at 357

a very slow rate, indicating that the model strug- 358

gles to efficiently learn the distribution of random 359

noise. This observation contrasts with previous 360

findings that neural networks can easily fit random 361

labels (Zhang et al., 2021a), which needs further in- 362

vestigation. Next, we add 5% Gaussian-distributed 363

noise to the training dataset and compare the results 364

with models trained on 5% random noise. As de- 365

picted in Figure 3(b), the loss on Gaussian noise is 366

lower than that on the random noise. According to 367

Proposition 1, since the Gaussian distribution cor- 368

responds to a high pn, we can predict that a model 369

trained on Gaussian noise will exhibit a lower loss 370

on P c. Figure 3(c) confirms our prediction, thus 371

further validating the proportions. 372

3.4 Experiments on Other Text Corpus 373

To further investigate the impact of random noise 374

on model generalization, we evaluate the next- 375

token prediction loss of the trained models on data 376

crawled from arXiv and Wikipedia. The results are 377

illustrated in Figure 4. Surprisingly, models trained 378

with added noise outperformed those trained on P c. 379

This counterintuitive finding aligns with previous 380

work in visual domains (Zada et al., 2022), suggest- 381
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SST-2 SST-fine 20newsgroup CR Avg
Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP

OpenAI’s GPT-2∗ 87.4 / 49.2 / 63.7 / 86.8 / 71.75 /
0% 86.71 ± 0.85 87.36 ± 0.33 49.19 ± 0.32 49.18 ± 0.02 63.12 ± 0.37 62.70 ± 0.86 85.65 ± 0.88 84.86 ± 0.36 71.16 71.02

0% + Lgm 87.42 ± 0.73 87.86 ± 0.04 49.72 ± 0.27 49.81 ± 0.97 63.69 ± 0.59 62.95 ± 0.13 86.58 ± 0.22 86.45 ± 0.73 71.85 71.76
1% 87.25 ± 0.79 87.53 ± 0.27 49.32 ± 0.72 49.45 ± 0.56 63.71 ± 0.02 64.65 ± 0.06 84.86 ± 0.98 84.59 ± 0.59 71.28 71.55

1% + Lgm 87.64 ± 0.91 87.25 ± 0.44 49.59 ± 0.73 50.01 ± 0.05 63.92 ± 0.65 64.72 ± 0.76 85.12 ± 0.07 85.25 ± 0.29 71.56 71.80
5% 86.92 ± 0.98 87.23 ± 0.41 49.04 ± 0.11 50.09 ± 0.53 63.27 ± 0.79 62.09 ± 0.28 85.30 ± 0.63 84.32 ± 0.78 71.13 70.93

5% + Lgm 87.19 ± 1.02 87.61 ± 0.51 49.82 ± 0.17 48.95 ± 0.89 63.78 ± 0.93 62.37 ± 0.56 85.57 ± 0.43 84.19 ± 0.69 71.59 70.78
20% 86.60 ± 1.28 86.60 ± 0.81 49.45 ± 0.78 49.63 ± 0.01 63.47 ± 0.64 64.16 ± 0.92 85.32 ± 0.60 85.45 ± 0.86 71.26 71.26

20% + Lgm 87.2 ± 0.99 86.87 ± 0.78 49.68 ± 0.55 50.40 ± 0.46 63.58 ± 0.08 64.21 ± 0.78 85.25 ± 0.90 85.52 ± 0.24 71.42 71.75
Gaussian 85.22 ± 0.24 86.82 ± 0.72 46.15 ± 0.51 49.59 ± 0.76 63.72 ± 0.35 64.40 ± 0.76 84.06 ± 0.74 83.53 ± 0.70 69.78 71.08

Gaussian + Lgm 85.94 ± 0.55 87.25 ± 0.36 48.23 ± 0.69 50.29 ± 0.70 64.06 ± 0.73 64.29 ± 0.94 84.46 ± 0.33 83.29 ± 0.47 70.67 71.45

Table 1: Accuracy on 4 text classification benchmark. 0% represents a model trained on P c, 1% and so on denote
the proportion of random noise, and Gaussian refers to Gaussian noise. ∗ cited from Saunshi et al. (2021).

BBC Balanced COPA MRPC WiC Avg
Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP

Llama-3-8B 96.90 ± 0.40 97.50 ± 0.20 69.00 ± 0.20 65.60 ± 0.50 72.00 ± 0.81 67.53 ± 0.93 64.14 ± 0.56 59.07 ± 0.34 75.51 72.42
Llama-3-8B + Lgm 98.00 ± 0.50 98.20 ± 0.40 70.80 ± 1.70 64.80 ± 0.20 74.89 ± 0.40 74.14 ± 1.49 64.71 ± 0.94 64.21 ± 0.83 77.10 75.33

Llama-3-8B-Instruct 96.80 ± 0.70 96.90 ± 0.30 87.80 ± 0.70 88.80 ± 0.60 72.57 ± 0.26 71.42 ± 0.13 65.92 ± 0.53 61.85 ± 0.59 80.77 79.74
Llama-3-8B-Instruct + Lgm 97.70 ± 0.20 97.80 ± 0.40 88.40 ± 0.90 89.60 ± 0.50 77.79 ± 0.58 76.81 ± 0.20 68.64 ± 0.26 67.71 ± 0.51 83.13 82.98

Llama-3.2-3B-Instruct 97.30 ± 0.60 97.20 ± 0.80 80.40 ± 0.90 79.60 ± 0.20 77.79 ± 0.52 72.57 ± 0.31 64.07 ± 0.82 57.50 ± 0.35 79.89 76.71
Llama-3.2-3B-Instruct + Lgm 97.60 ± 0.10 97.80 ± 0.30 81.60 ± 1.00 79.40 ± 0.10 78.43 ± 0.78 76.57 ± 1.12 64.35 ± 0.62 62.64 ± 0.07 80.49 79.10

Qwen2.5-1.5B-Instruct 97.00 ± 0.30 96.60 ± 0.70 80.80 ± 0.70 82.20 ± 0.50 74.49 ± 0.71 73.39 ± 0.90 65.92 ± 0.45 61.64 ± 0.20 79.55 78.45
Qwen2.5-1.5B-Instruct + Lgm 97.40 ± 0.10 97.20 ± 0.80 84.00 ± 0.90 83.40 ± 0.30 79.65 ± 0.62 78.37 ± 0.84 67.71 ± 0.49 66.92 ± 0.55 82.19 81.47

Qwen2.5-7B-Instruct 96.30 ± 0.30 96.70 ± 0.50 94.60 ± 0.90 95.80 ± 0.40 83.71 ± 0.92 76.81 ± 0.51 68.92 ± 0.41 64.92 ± 0.18 85.88 83.55
Qwen2.5-7B-Instruct + Lgm 97.10 ± 0.80 97.40 ± 0.20 95.60 ± 0.50 96.00 ± 0.80 84.98 ± 0.12 83.13 ± 0.49 72.28 ± 0.98 70.14 ± 0.94 87.49 86.66

Table 2: Accuracy of LLMs on 4 natural language understanding benchmark.

ing that incorporating random noise into training382

sets might enhance model robustness. Addition-383

ally, we observe that the performance of models384

subjected to Gaussian noise varies across differ-385

ent datasets. These observations warrant further386

investigation.387

3.5 Broader Impact of the Results388

In addition to providing explanations regarding the389

impact of random noise on pre-training language390

models, we aim to extend our proposed theory to391

other areas, therefore demonstrating the practical392

value of our research findings.393

One immediate direction is the training of multi-394

lingual models (Pires et al., 2019; Chi et al., 2020;395

Yang et al., 2024). Clearly, tokens corresponding to396

different languages are distinct, and their distribu-397

tions naturally satisfy Assumption 1. For example,398

in an English-French bilingual model, let P c repre-399

sent English and Pn represent French. Supposing400

the pre-training corpus consists of an equal distri-401

bution of English and French, and given that the402

two distributions are similar, we can assume that403

pc ≈ pn, leading to ϵ ≈ 0. This provides a theo-404

retical foundation for the success of multilingual405

models. See Appendix D.3 for more details.406

Beyond language modality, random white noise407

has received increased attention in the speech do-408

main (Chen et al., 2022, 2021; Yin et al., 2024).409

Since our theory applies to any cross-entropy-like410

loss, it can also explain why speech models pre-411

trained on very noisy large-scale datasets, such as 412

Gigaspeech (Chen et al., 2021), which contain sig- 413

nificant background noise and prolonged silence 414

at the beginning and end of a few samples, still 415

perform remarkably well. 416

4 Reducing the Noise with Local 417

Gradient Matching 418

In this section, we introduce a novel black-box fine- 419

tuning method termed Local Gradient Matching 420

loss. Extensive experiments across 8 natural lan- 421

guage understanding and 14 image classification 422

benchmark datasets demonstrate that the proposed 423

method consistently enhances performance across 424

different backbones and modalities. Theoretical 425

analysis reveals that LGM is effective because min- 426

imizing it improves the local smoothness of the 427

cross-entropy loss and reduces its value, thereby en- 428

hancing the robustness and efficiency of the model. 429

4.1 Method 430

In the preceding analysis, we demonstrate that the 431

population-level loss function is only marginally 432

affected by random noise. However, during the 433

SGD training process, its presence introduces cer- 434

tain noise into the gradients. Although stochastic 435

gradient noise is crucial for the generalization of 436

deep networks (Barrett and Dherin, 2021; HaoChen 437

et al., 2021), prior studies (Chen et al., 2023; Xie 438

et al., 2021c) have shown that artificially added 439

noise can hurt the model’s generalization. There- 440
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Model EfficientNet-B3 ResNetv2-152x2 Swin-L ConvNext-L ViT-L
Pre-training Data JFT-300M ImageNet-21K ImageNet-21K Laion-2B Laion-2B

Fine-tuning Method Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP
w/o Lgm 73.27 76.62 78.14 79.60 81.43 84.19 82.89 85.71 86.86 89.12
w/ Lgm 74.02 75.90 79.49 79.94 82.70 84.42 84.07 86.27 88.03 89.31

Table 3: Average accuracy of 5 vision backbone models on 14 commonly-used vision datasets.

Blackbox
Encoder

Question: What is 
the sentiment of 

this review? 
Review: ... Answer:

Text Data

Image Data

Add

Noise

Linear/
MLP

Linear/
MLP

Shared Weights

Figure 5: Overview of the proposed Local Gradient
Mathcing scheme.

fore, inspired by Sharpness-Aware Minimization441

(SAM) (Foret et al., 2021; Zhang et al., 2023; Zhao442

et al., 2022; Wen et al., 2023) and noise-robust443

fine-tuning methods (Hua et al., 2023, 2021; Jiang444

et al., 2020), we propose explicitly enhancing the445

denoising capabilities of the downstream task head446

by aligning local gradients.447

Specifically, let C denote the number of classes448

in the downstream task, and let gθ : Rd → RC449

represent the linear or MLP classification head pa-450

rameterized by θ. Let t∗ be the feature extracted451

by h∗, t be the feature extracted by h, and y be the452

corresponding label. Let ℓ(ŷ, y) be the loss func-453

tion(typically cross-entropy), and Lce(D, gθ) =454

E(t,y)∼Dℓ(gθ(t), y) be the population-level loss455

where D represents the joint distribution of down-456

stream features and labels. Due to the additional457

randomness introduced by h as a result of noise,458

t can be viewed as t∗ perturbed by minor distur-459

bances. If both t∗ and t were known, their dis-460

tribution could be aligned to achieve denoising.461

However, in practical applications, it is challenging462

to obtain t∗. To construct contrastive sample pairs463

without t∗, we add Gaussian noise to t to obtain t̂:464

t̂ = t+ γ · δ (3)465

where δ ∼ N (0, In) denotes the standard normal466

distribution noise. Our objective is to minimize the467

discrepancy between the distributions of gθ(t) and468

gθ(t̂). Instead of the conventional regularization469

term ||gθ(t) − gθ(t̂)||2, we propose to align the470

gradient difference:471

Lgm(θ) = ||E(t,y)∼D∇θℓ(gθ(t), y)

− E(t̂,y)∼D̂∇θℓ(gθ(t̂), y)||2
(4)472

Intuitively, if the gradients with respect to t and473

t̂ can be perfectly aligned, then the classification474

RTE MRPC CoLA STS-B
L2-SP∗ 70.58 87.74 60.54 89.38

L2-SP + Lgm 71.25 87.62 61.79 89.62
SMART∗ 72.23 87.86 63.16 90.11

SMART + Lgm 72.94 88.61 63.28 90.42
LNSR∗ 73.31 88.50 63.35 90.23

LNSR + Lgm 73.95 89.42 63.82 90.47

Table 4: Evaluation of our method combined with SOTA
fine-tuning techniques utilizing BERT-Large as the back-
bone model across 4 datasets. ∗ cited from Hua et al.
(2021)

head is insensitive to small perturbations in the in- 475

put, suggesting that it possesses some denoising 476

capability. Consequently, it should be able to miti- 477

gate the noise in t, bringing it closer to t∗. 478

4.2 Theoretical Analysis 479

To theoretically support the proposed method, we 480

investigate the properties of Equation (4) and find 481

that it can be upper bounded by the smoothness, 482

input flatness, and loss function value at θ. Con- 483

cretely, since we set γ in Equation (3) to be small, 484

the perturbation can be considered to distribute 485

within an open ball B(0, ρ). Consequently, we 486

have the following result: 487

Proposition 2. Suppose ℓ(gθ(t), y) is β-smooth 488

with ρ-input flatness Rρ(θ) (c.f. Appendix B.4), for 489

any θ ∈ Θ: 490

Lgm(θ) ≤ 2β + 2Lce(D, gθ) +Rρ(θ). (5) 491

Proposition 2 demonstrates that Lgm is closely 492

associated with the smoothness of the loss function 493

in both the parameter space and the input space. 494

As a flat minima is widely acknowledged to benefit 495

the generalization of neural networks (Xie et al., 496

2021b; Baldassi et al., 2021), it explains the effec- 497

tiveness of Lgm. The final loss function is: 498

L = Lce + λLgm (6) 499

4.3 Experiments 500

To evaluate the performance of the proposed loss 501

function, we conduct extensive experiments on 502

common vision and language tasks using various 503

backbone models. Detailed information about the 504
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(c) With Lgm.
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Figure 6: Visualization of input sensitivity for models trained with (a) no (b) L2 (c) Lgm regularization. We
randomly select a sample and introduce perturbations on a two-dimensional hyperplane, where different colors
represent different labels, and green indicates the correct label.

Method
SST-2

Linear MLP
0% 86.71 87.36

0% + ||∇θℓ(gθ(t), y)||2 87.04 87.24
0% + cos(∇θℓ(gθ(t), y),∇θℓ(gθ(t̂), y)) 86.89 87.52

0% + Lgm 87.42 87.86

Table 5: Ablation Study. To investigate the effects of
reducing Lgm, experiments are conducted to examine
the impact of separately reducing the norm versus in-
creasing the cosine similarity.

models, datasets, hyperparameters, and other ex-505

perimental settings can be found in Appendix E.506

We validate the performance of Lgm on mod-507

els pre-trained with noisy data using four com-508

monly used classification datasets: SST-2, SST-509

fine, 20newsgroup, and CR. The training hyper-510

parameters follow those of Saunshi et al. (2021),511

where γ = 0.01 and λ = 0.15 apply to all four512

experiments. In line with the approach described513

by Chen et al. (2024), we freeze the model param-514

eters and only fine-tune a linear or MLP classifier515

head. As shown in Table 1, our model achieves516

competitive results without reaching the number of517

training iterations of GPT-2, and Lgm consistently518

boosts performance.519

To further test the generalizability of our method,520

we employ large language models, including differ-521

ent versions of Llama-3 (Dubey et al., 2024) and522

Qwen-2.5 (Hui et al., 2024), for experiments on an523

additional four datasets. Results in Table 2 indicate524

that our method provides a 3% improvement across525

multiple datasets.526

In addition, we select five commonly used back-527

bone models in the visual domain and conduct ex-528

periments on fourteen datasets. The results are529

shown in Table 3. It can be seen that our method530

is equally applicable to visual tasks, achieving a531

performance improvement of more than 1% under532

the linear probe setting.533

γ λ
DTD

Linear MLP
0.001 0.001 76.31 78.54
0.05 0.05 76.54 79.51
0.1 0.1 76.43 79.12

Table 6: Hyperparameter sensitivity experiments on
DTD with ConvNext as the backbone.

Furthermore, we visualize the sensitivity of dif- 534

ferent regularization terms to input perturbations, 535

as illustrated in Figure 6. Compared with other 536

regularization methods, our loss function can in- 537

crease the size of the region for correct decisions, 538

thereby enhancing the model’s robustness to input 539

perturbations. We also carry out ablation studies 540

and parameter sensitivity analyses, with results pre- 541

sented in Table 5 and Table 6. These experiments 542

all demonstrate the effectiveness and robustness of 543

our method. 544

5 Conclusion 545

In this paper, we investigate the random noise 546

present in language model pre-training datasets, 547

which is inevitable in real-world scenarios but re- 548

ceives little attention. We pre-train multiple GPT-2 549

models under varying noise levels and find that ran- 550

dom noise has a minor impact on the pre-training 551

loss. We then provide a theoretical explanation 552

for this phenomenon and discover that our the- 553

ory can elucidate the success of multilingual mod- 554

els. Interestingly, we observe that slight noise can 555

sometimes enhance a model’s generalization ability. 556

Then, building on the noisy model learning setup, 557

we propose a novel local gradient matching loss. 558

Extensive experiments across multiple datasets in 559

both language and vision tasks, as well as with var- 560

ious backbone models, validate the effectiveness of 561

our proposed method. We hope this work inspires 562

more researchers to focus on data-centric AI. 563
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Limitations564

In this section, we discuss the limitations of this565

paper.566

Firstly, due to limitations in computational re-567

sources and costs, we pre-train only the GPT-2568

124M model on the OpenWebText dataset and do569

not train models with other architectures on differ-570

ent datasets. Compared to today’s large language571

models, both the scale of OpenWebText and that572

of GPT-2 are relatively small. Additionally, the573

types of noise considered are limited to uniform574

and Gaussian distributions. However, based on575

Proposition 1, we argue that training GPT-2 on576

the Synthetic OpenWebText dataset is sufficient to577

uncover the essence of the issue, as Proposition 1578

makes no assumptions about data distribution or579

model architecture.580

Secondly, on the theoretical front, we consider581

neural networks as black boxes and focus on an-582

alyzing the properties of global minima. Due to583

limited mathematical skills, we do not delve into584

the dynamical aspects to specifically examine how585

random noise within datasets influences model gra-586

dients, nor do we explore the differences between587

global and local minima obtained through stochas-588

tic gradient descent. However, experimental results589

indicate that neural networks trained with stochas-590

tic gradient descent do not suffer from significant591

disturbances.592
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A Notations1264

The commonly used notations and their descriptions are as follows.

Notation Description
L context length
d embedding dimension
W vocabulary of words

V = |W| vocabulary size
X = ∪L

i=1W i model input space
H model space

h : X → RV ∈ H language model
∆A distribution defined on a discrete set A

P c ∈ ∆X×W distribution of clean data
Pn ∈ ∆X×W distribution of pure noise data
Pm ∈ ∆X×W distribution of mixed noisy data

α proportion of noise in training data
PX marginal distribution of the joint distribution P

P·|X conditional distribution of the joint distribution P

ph
·|x(w) the w-th dimension of the probability distribution corresponding to h(x)

supp(P c) support of distribution P c

Lntp(P, h) next-token prediction loss of model h on the distribution P

gθ : Rd → RC downstream classification head
θ ∈ Θ parameters of g
t ∈ T feature of downstream task data extracted by backbone model
y ∈ Y label of downstream task data
C = |Y| number of classes of the downstream task
ℓ(ŷ, y) downstream task loss function, typically cross-entropy
D joint distribution of downstream feature and label

Lce(D, gθ) population-level loss with downstream data distribution D and head gθ

Table 7: Nomenclature.

1265

B Proofs1266

B.1 Explanation of Equation (1)1267

Let M be a measurable space, and let P1 and P2 be probability measures defined on this space. We assume1268

that N1 samples are drawn from P1 and N2 samples from P2. Define µ = N1
N1+N2

, so that 1−µ = N2
N1+N2

.1269

We aim to show that this collection of N1 + N2 samples can be regarded as drawn from a mixed
distribution

P3 = µP1 + (1− µ)P2

First, define a new probability measure P3 as P3(A) = αP1(A)+(1−α)P2(A) for any measurable set1270

A ⊆ M. Here, P3 is a convex combination of P1 and P2, and thus P3 is also a valid probability measure1271

(Le Gall, 2022).1272

For any measurable set A ⊆ M, we examine the probability that a single sample point falls in A by1273

law of total probability:1274

• A sample from P1 is selected with probability µ, and within this case, the probability of landing in A1275

is P1(A).1276

• A sample from P2 is selected with probability 1− µ, and the probability of it falling in A is P2(A).1277
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Thus, the probability of any given sample point falling in A is

µP1(A) + (1− µ)P2(A) = P3(A)

Since N1 samples are drawn from P1 and N2 samples from P2, these samples collectively follow the 1278

distribution P3 as each individual sample’s probability of being in any measurable set A is consistent with 1279

P3(A). Therefore, drawing N1 +N2 samples in this manner is equivalent to drawing N1 +N2 samples 1280

from P3. 1281

B.2 Proof of Proposition 1 1282

Before procedding to the proof, we first establish a useful lemma. 1283

Lemma 1. If Assumption 1 holds, then for any h ∈ H, we have

Lntp(P
m, h) = αLntp(P

n, h) + (1− α)Lntp(P
c, h)

Proof. Let xi, i = 1, 2, . . . , |X | denote all prefixes, and wj , j = 1, 2, . . . , V denote all tokens. For all 1284

x ∈ X , by Equation (1), we have: 1285

Pm
X (x) =

V∑
j=1

Pm(x,wj) =

V∑
j=1

αPn(x,wj) + (1− α)P c(x,wj) 1286

= α
V∑
j=1

Pn(x,wj) + (1− α)
V∑
j=1

P c(x,wj) = αPn
X(x) + (1− α)P c

X(x) (7) 1287

This indicates that the marginal distribution possesses additivity. Consequently, 1288

Lntp(P
m, h) = Ex∼Pm

X
Ew∼Pm

·|x
− log(ph

·|x(w)) =

|X |∑
i=1

Pm
X (xi) · Ew∼Pm

·|xi
− log(ph

·|xi
(w)) 1289

=

|X |∑
i=1

[(1− α)P c
X(xi) + αPn

X(xi)] · Ew∼Pm
·|xi

− log(ph
·|xi

(w)) (Equation (7)) 1290

= (1− α)

|X |∑
i=1

P c
X(xi)Ew∼Pm

·|xi
− log(ph

·|xi
(w)) + α

|X |∑
i=1

Pn
X(xi)Ew∼Pm

·|xi
− log(ph

·|xi
(w))

(8)

1291

The conditional distributions do not generally exhibit a linear relationship:

Pm
·|x(w|x) =

Pm(x,w)

Pm
X (x)

=
(1− α)P c(x,w) + αPn(x,w)

(1− α)P c
X(x) + αPn

X(x)
̸= P c

·|x(w|x) ̸= Pn
·|x(w|x)

However, if supp(P c) ∩ supp(Pn) = ∅, it immediately follows that:

Pm
·|x(w|x) =

(1− α)P c(x,w) + αPn(x,w)

(1− α)P c
X(x) + αPn

X(x)
=

{
P c
·|x(w|x) if (x,w) ∈ supp(P c),

Pn
·|x(w|x) if (x,w) ∈ supp(Pn).

Consequently, 1292

|X |∑
i=1

P c
X(xi)Ew∼Pm

·|xi
− log(ph

·|xi
(w)) =

|X |∑
i=1

P c
X(xi)Ew∼P c

·|xi
− log(ph

·|xi
(w)) = Lntp(P

c, h) (9) 1293

Similarly, 1294

|X |∑
i=1

Pn
X(xi)Ew∼Pm

·|xi
− log(ph

·|xi
(w)) = Lntp(P

n, h) (10) 1295

By substituting Equation (9) and Equation (10) into Equation (8), the proof is completed. 1296
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Now we can prove Proposition 1.1297

Proposition 1. Under Assumption 1, let h∗ be a model trained on P c, with Lntp(P
c, h∗) = − log pc1298

and Lntp(P
n, h∗) = − log pn. When the model h is trained on a mixed distribution Pm which includes1299

noise, it attempts to fit Pn, leading to an increase in the loss on the clean distribution P c, such that1300

Lntp(P
c, h) = − log(pc − ϵ) and Lntp(P

n, h) = − log(pn + ϵ/k) for some ϵ > 0 (k can be shown to be1301

Ω(eLntp(Pn,h))). Let η = αpc − (1− α)kpn. We arrive at the following conclusions:1302

(1) If α ≤ kpn
pc+kpn

, then for any 0 < ϵ < pc, we have Lntp(P
m, h) ≥ Lntp(P

m, h∗). This means that1303

when α is sufficiently small, the global minimum on Pm will not be affected by noise.1304

(2) If α > kpn
pc+kpn

, then for ϵ < η, it holds that Lntp(P
m, h) < Lntp(P

m, h∗). This suggests that if α1305

is large enough, the impact on the optimal hypothesis is at least as much as αpc − (1− α)kpn.1306

(3) When α < 1
3 and k > α(1−3α)pc

(1−α)(2−3α)pn
, for ϵ ≥ 3η we get Lntp(P

m, h∗) < Lntp(P
m, h). Similarly,1307

it can be shown that ϵ does not exceed 2η when α > max( kpn
pc+kpn

, 12) and k > (2α−1)pc
2(1−α)pn

. This indicates1308

that when k is sufficiently large, the effect of noise is at most O(αpc − (1− α)kpn).1309

Proof. We first establish that k is Ω(eLntp(Pn,h)), thereby ensuring that η ≪ αpc. Note that1310

ϵ =
1

eLntp(P c,h)
− 1

eLntp(P c,h)
=

eLntp(P c,h)−Lntp(P c,h) − 1

eLntp(P c,h)
(11)1311

ϵ

k
=

1

eLntp(Pn,h)
− 1

eLntp(Pn,h)
=

eLntp(Pn,h)−Lntp(Pn,h) − 1

eLntp(Pn,h)
(12)1312

Therefore1313

k =
ϵ
ϵ
k

= eLntp(Pn,h)−Lntp(P c,h) · e
Lntp(P c,h)−Lntp(P c,h) − 1

eLntp(Pn,h)−Lntp(Pn,h) − 1
1314

> eLntp(Pn,h)−Lntp(P c,h) · Lntp(P
c, h)− Lntp(P

c, h)

eLntp(Pn,h)−Lntp(Pn,h)
1315

= eLntp(Pn,h) · Lntp(P
c, h)− Lntp(P

c, h)

eLntp(P c,h)
(13)1316

where Lntp(P c,h)−Lntp(P c,h)

eLntp(P
c,h) only depends on P c, h and h. It is worth noting that when Pn is random1317

noise, eLntp(Pn,h)−Lntp(Pn,h) − 1 is close to 0, which leads to k exceeding the lower bound established in1318

Equation (13). Then:1319

(1) If α ≤ kpn
pc+kpn

, we have:1320

Lntp(P
m, h∗)− Lntp(P

m, h) = (1− α)(Lntp(P
c, h∗)− Lntp(P

c, h)) + α(Lntp(P
n, h∗)− Lntp(P

n, h))1321

= (1− α) log
pc − ϵ

pc
+ α log

pn + ϵ
k

pn
(14)1322

≤ (1− α) · −ϵ

pc
+ α ·

ϵ
k

pn
(log(1 + t) ≤ t)1323

= ϵ[
(α− 1)

pc
+

α

kpn
] = ϵ

αpc − (1− α)kpn
kpcpn

(15)1324

As α ≤ kpn
pc+kpn

⇐⇒ αpc − (1− α)kpn ≤ 0, for ϵ > 0 we have Lntp(P
m, h∗) ≤ Lntp(P

m, h).1325
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(2)when α > kpn
pc+kpn

and ϵ < αpc − (1− α)kpn, we have 1326

Lntp(P
m, h∗)− Lntp(P

m, h) = (1− α) log
pc − ϵ

pc
+ α log

pn + ϵ
k

pn
(Equation (14)) 1327

≥ (1− α)
−ϵ

pc − ϵ
+ α

ϵ
k

pn + ϵ
k

(log t ≥ 1− 1
t ) 1328

= ϵ(
α− 1

pc − ϵ
+

α

kpn + ϵ
) 1329

=
ϵ

(pc − ϵ)(kpn + ϵ)
[α(pc − ϵ)− (1− α)(kpn + ϵ)] 1330

=
ϵ

(pc − ϵ)(kpn + ϵ)
[αpc − (1− α)kpn − ϵ] (16) 1331

As ϵ < αpc − (1− α)kpn < αpc < pc, by Equation (16) we have Lntp(P
m, h)− Lntp(P

m, h) > 0. 1332

(3) Let 1333

f(ϵ) = (1− α) log
pc − ϵ

pc
+ α log

pn + ϵ
k

pn

p′n=kpn
= (1− α) log

pc − ϵ

pc
+ α log

p′n + ϵ

p′n
(17) 1334

Take the derivative of f(ϵ): 1335

f ′(ϵ) = (1− α)
− 1

pc

1− ϵ
pc

+ α

1
p′n

1 + ϵ
p′n

= (1− α)
1

ϵ− pc
+ α

1

p′n + ϵ
=

[αpc − (1− α)p′n]− ϵ

(pc − ϵ)(p′n + ϵ)
(18) 1336

Without loss of generality, assume η > 0, then f(ϵ) is monotonically increasing on [0, η) and monoton- 1337

ically decreasing on (η, pc). Therefore, to prove that Lntp(P
m, h∗) < Lntp(P

m, h) for ϵ ≥ 3η, we only 1338

need to show f(3η) < 0 when k > α(1−3α)pc
(1−α)(2−3α)pn

. Notice that 1339

f(3η) = (1− α) log(1− 3αpc − 3(1− α)p′n
pc

) + α log(1 +
3αpc − 3(1− α)p′n

p′n
) 1340

= (1− α) log(1− 3α+
3(1− α)

pc
p′n

) + α log(3α− 2 + 3α
pc
p′n

) (19) 1341

Let 1342

g3(t) = (1− α) log(1− 3α+
3(1− α)

t
) + α log(3α− 2 + 3αt) (20) 1343

Take the derivative: 1344

g′3(t) = (1− α)
1

1− 3α+ 3(1−α)
t

3(α− 1)

t2
+ α

3α

3α− 2 + 3αt
(21) 1345

=
−3(1− α)2

(1− 3α)t2 + (1− α)t
+

3α2

3α− 2 + 3αt
(22) 1346

=
−3(1− α)2(3α− 2 + 3αt) + 3α2[(1− 3α)t2 + (1− α)t]

[(1− 3α)t2 + (1− α)t](3α− 2 + 3αt)
(23) 1347

=
[αt+ (α− 1)][3α(1− 3α)t+ 3(1− α)(3α− 2)]

[(1− 3α)t2 + (1− α)t](3α− 2 + 3αt)
(24) 1348

First, consider the denominator. Since α < 1
3 , it is clear that (1 − 3α)t2 + (1 − α)t > 0. Given that 1349

t = pc
p′n

> 1−α
α (because η > 0), it follows that 3α − 2 + 3αt > 1 > 0. Therefore, the denominator 1350

is always positive. Next, we consider the numerator. Since η > 0, it follows that αt + (α − 1) > 0. 1351

Therefore, when t = pc
p′n

= pc
kpn

< (1−α)(2−3α)
α(1−3α) , we have g′3(t) < 0. This means that g3(t) is monotonically 1352

decreasing on (1−α
α , (1−α)(2−3α)

α(1−3α) ]. Consequently, f(3η) = g3(t) ≤ g3
(
1−α
α

)
= 0. 1353
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Figure 7: Visualization of k and Lntp(P
m, h∗) − Lntp(P

m, h). (a) The trend of k as it changes with training,
plotted using the model trained on P c as h∗. (b) Visualization of Lntp(P

m, h) when the parameter settings are
consistent with the experiment.

Following the same line of reasoning, when α > 1
2 , we have1354

f(2η) = (1− α) log(1− 2αpc − 2(1− α)p′n
pc

) + α log(1 +
2αpc − 2(1− α)p′n

p′n
)1355

= (1− α) log(1− 2α+
2(1− α)

pc
p′n

) + α log(2α− 1 + 2α
pc
p′n

) (25)1356

Let1357

g2(t) = (1− α) log(1− 2α+
2(1− α)

t
) + α log(2α− 1 + 2αt) (26)1358

Take the derivative:1359

g′2(t) = (1− α)
1

1− 2α+ 2(1−α)
t

2(α− 1)

t2
+ α

2α

2α− 1 + 2αt
(27)1360

=
−2(1− α)2

(1− 2α)t2 + 2(1− α)t
+

2α2

2α− 1 + 2αt
(28)1361

=
2(1− 2α)(αt+ 1− α)2

[(1− 2α)t2 + 2(1− α)t](2α− 1 + 2αt)
(29)1362

Therefore, when 1−α
α < t < 2(1−α)

2α−1 , we have g′2(t) < 0, which implies that f(2η) < 0.1363

1364

B.3 Justification of Proposition 11365

We plot the trend of k in Figure 7(a). We compare checkpoints trained for the same iterations on both P c1366

and Pm, where pc is calculated based on the loss of the model trained on P c, and pn is determined by the1367

loss of a model trained for 10,000 iterations on Pm when evaluated on Pn. It can be observed that the1368

value of k corresponding to random noise is significantly greater than one, which supports the rationality1369

of the assumption made in Proposition 1.1370

On the other hand, to extend the proposed theory beyond uniformly distributed random noise (for1371

instance, in multilingual models or Gaussian noise), it is necessary to ensure that k does not become too1372

small in these scenarios. This means that Lntp(P
n, h∗) = − log pn should not be close to log V . One1373

trivial way to increase pn is to decrease V, the size of vocabulary. Apart from this, we provide two lines of1374

reasoning to justify why pn can be made large:1375

(1) Numerous studies on compressing large language models, such as pruning (Wang et al., 2020;1376

Kurtic et al., 2022; Zhang et al., 2024), quantization (Zhao et al., 2024; Jin et al., 2024; Liu et al., 2024),1377
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and distillation (Dasgupta et al., 2023; Hinton, 2015), have demonstrated that there exists a significant 1378

amount of redundancy within the parameters of large models. Therefore, we could first train a model 1379

on P c and then compress it, fine-tuning the surplus parameters on Pn. This approach would allow us to 1380

improve pn without altering pc. 1381

(2) A small proportion of data corresponding to Pn can be introduced into P c, making sure that α 1382

is extremely small. According to domain adaptation theory (Ben-David et al., 2010), this would only 1383

slightly increase Lntp(P
c). However, existing results (Shliazhko et al., 2024; Pires et al., 2019; Chi et al., 1384

2020) indicate that pre-trained models like BERT or GPT on English text can exhibit strong multilingual 1385

capabilities with just a very limited amount of data. Consequently, compared to a model trained solely on 1386

P c, the resulting model has a minor difference in pc but a relatively higher pn. 1387

Both thought experiments above demonstrate that there exist a lot of models within the parameter space 1388

H can perform well on P c while yielding non-trivial outcomes on Pn. Thus, we can ensure that models 1389

trained on mixed data distributions will have a sufficiently large k. 1390

Additionally, in Figure 7(b), we illustrate how Lntp(P
m) varies with changes in ϵ, under settings 1391

identical to those used during pre-training. The results depicted in the figure are consistent with our 1392

theoretical derivations. 1393

B.4 Omitted Details in Section 4.2 1394

Definition 1 (β-smooth (Zheng et al., 2023b)). A loss function ℓ(gθ(t), y) is β-smooth, if for any (t, y) ∈ 1395

T × Y and any θ, θ′ ∈ Θ, 1396

||∇θℓ(gθ(t), y)−∇θ′ℓ(gθ′(t), y)||2 ≤ β||θ − θ′||2 (30) 1397

Definition 2 (ρ-input flatness). The ρ-input flatness Rρ(θ) of loss function ℓ(gθ(t), y) is defined as: 1398

Rρ(θ) = E(t,y)∼D sup
δ′∈B(0,ρ)

ℓ(gθ(t+ δ′), y)− ℓ(gθ(t), y) (31) 1399

where B(0, ρ) = {δ′ : ||δ′||2 < ρ} is a open ball. 1400

Lemma 2. If the loss function ℓ(gθ(t), y) is β-smooth, then 1401

||∇θℓ(gθ(t), y)||22 ≤ 4βℓ(gθ(t), y) (32) 1402

Proof. See Lemma 3.1 in Srebro et al. (2010). 1403

Proposition 2. Suppose ℓ(gθ(t), y) is β-smooth with ρ-input flatness Rρ(θ), for any θ ∈ Θ: 1404

Lgm(θ) ≤ 2β + 2Lce(D, gθ) +Rρ(θ) (33) 1405

Proof.

Lgm(θ) = ||E(t,y)∼D∇θℓ(gθ(t), y)− E(t̂,y)∼D̂∇θℓ(gθ(t̂), y)||2 (34) 1406

≤ ||E(t,y)∼D∇θℓ(gθ(t), y)||2 + ||E(t̂,y)∼D̂∇θℓ(gθ(t̂), y)||2 (Triangle Inequality) 1407

≤ E(t,y)∼D||∇θℓ(gθ(t), y)||2 + E(t̂,y)∼D̂||∇θℓ(gθ(t̂), y)||2 (Jensen’s Inequality) 1408

≤ E(t,y)∼D2
√
βℓ(gθ(t), y) + E(t̂,y)∼D̂2

√
βℓ(gθ(t̂), y) (Lemma 2) 1409

≤ E(t,y)∼D(β + ℓ(gθ(t), y)) + E(t̂,y)∼D̂(β + ℓ(gθ(t̂), y)) (AM-GM Inequality) 1410

= 2β + 2E(t,y)∼Dℓ(gθ(t), y) + (E(t̂,y)∼D̂ℓ(gθ(t̂), y)− E(t,y)∼Dℓ(gθ(t), y)) (35) 1411

≤ 2β + 2Lce(D, gθ) +Rρ(θ) (36) 1412

where the last inequality holds because t̂− t ∈ B(0, ρ). 1413
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C Detailed Related Works1414

Data selection for language model training. Large text corpora form the backbone of language models,1415

with data quality being fundamental to their success. Elazar et al. (2024) conducted a systematic analysis1416

of open-source text datasets such as The Pile (Gao et al., 2020) (used to train Pythia), C4 (Raffel et al.,1417

2020) (used to train T5) and RedPajama (used to train LLaMA), revealing that they contain a significant1418

amount of duplicate, toxic, synthetic, and low-quality content. Therefore, it is of great importance to1419

thoroughly understand the impact of low-quality data within these pre-training datasets on the model’s1420

performance, reliability, and safety. Allen-Zhu and Li (2024a,b) systematically investigated the effect1421

of low-quality data and found that such data can significantly reduce the model’s knowledge capacity,1422

sometimes by up to 20 times. Another research direction primarily focuses on the synthetic data of large1423

language models, specifically examining the impacts of using data generated by LLMs for recursive1424

training. The study by Shumailov et al. (2024) was the first to explore this issue and introduced the concept1425

of "model collapse", indicating that recursive training can lead to the loss of information in tail tokens,1426

ultimately resulting in the model producing nonsensical content. Seddik et al. (2024) mainly provided1427

a theoretical explanation for why model collapse occurs, supporting their arguments with experimental1428

evidence. Consequently, the importance of data selection cannot be overstated. Given that data selection1429

is an NP-hard problem in terms of combinatorial optimization (Xiao et al., 2022), numerous heuristic1430

algorithms have been proposed to expedite the process. Longpre et al. (2024) provided a comprehensive1431

study on pre-training data selection and optimal ratios, offering practical recommendations. Yang et al.1432

(2023) proposed dataset pruning, an approach that assesses the impact of omitting training samples on1433

model generalization and creates a minimal training subset with a controlled generalization gap. Chai et al.1434

(2024) evaluated the impact of individual training samples on the dynamics of GPT model training. Li et al.1435

(2024b) introduced the Instruction-Following Difficulty metric to assess the quality of instruction-tuning1436

data. Xie et al. (2023b) employed importance resampling for data selection. Xie et al. (2023a); Lee1437

et al. (2023) advocated for optimizing data composition and diversity. Despite these notable studies on1438

data selection, they generally acknowledge that dataset noise degenerates model performance but lack1439

a detailed understanding of how and to what extent, particularly in the case of random noise which is1440

inevitable in large-scale datasets. Although Cherepanova and Zou (2024) investigated the influence of1441

gibberish input, the random noise within the pre-training dataset is still underexplored. This paper aims to1442

bridge the gap.1443

Learning from Noisy Distributions. The majority of machine learning algorithms assume that training1444

and test samples are independently and identically distributed (i.i.d.), a condition that is often not met in1445

real-world scenarios. For instance, LLMs are pre-trained on datasets with all kinds of noise while their1446

performance is evaluated by the user whose distribution is usually clean and meets real-world scenarios,1447

which violates the i.i.d. assumption. Domain adaptation (Li et al., 2024a; Meng et al., 2022; Ma et al.,1448

2023) addresses this issue when the distribution of the training data differs from that of the test data.1449

Although domain adaptation methods attempt to reduce the statistical distribution discrepancy (Du and1450

Li, 2023; Wu et al., 2024) or employ adversarial training (Li et al., 2021; Ru et al., 2024) to minimize1451

the gap between source and target domains, they typically require access to unlabeled test data under a1452

semi-supervised learning setup, which is impractical for LLM training. Another reason domain adaptation1453

cannot be directly applied here is that domain adaptation theory (Ben-David et al., 2010) focuses on the1454

performance of a model trained on one distribution when it is applied to another different but related1455

distribution. This kind of bounds can be easily derived by Lemma 1. However, what we aim to investigate1456

here is the extent of performance loss when comparing a model trained on one distribution (noisy dataset)1457

to a model trained on another distribution (clean dataset).1458

Apart from domain adaptation, there has been extensive research directly investigating noisy training1459

sets. Noisy label learning Song et al. (2022); Lukasik et al. (2020) have explored the impact of incorrect1460

labels on model performance. Regarding input feature noise, Smilkov et al. (2017) added perturbations1461

to individual image inputs to enhance model interpretability, and Zada et al. (2022) added white noise1462

image into the training dataset to tackle the class imbalance problem. However, most of these efforts have1463

concentrated on image classification and do not consider the pre-training paradigm.1464
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Figure 8: The prior distribution of tokens in the data from (a) OpenWebText, (b) random noise, and (c) Gaussian
noise.

Fine-tuning Pre-trained Models. The approach of initially pre-training model weights on large-scale 1465

datasets and subsequently fine-tuning them with downstream data has become the de facto standard in the 1466

fields of computer vision (Kornblith et al., 2019; Raghu et al., 2019) and natural language processing (Wei 1467

et al., 2021; Xie et al., 2021a). For instance, Hua et al. (2023, 2021) proposed enhancing the performance 1468

of models by increasing their resistance to minor perturbations in intermediate layers. Meanwhile, 1469

Jiang et al. (2020) improved model robustness by adding regularization terms. Besides full-parameter 1470

fine-tuning, numerous parameter-efficient fine-tuning algorithms have been extensively studied. Zhang 1471

et al. (2021b) introduced adapters into the original model architecture, optimizing only these parameters 1472

during fine-tuning. Zhou et al. (2022b,a) efficiently fine-tuned CLIP models (Radford et al., 2021) using 1473

learnable soft prompts. Hu et al. (2022) optimized models through learning low-rank residual weights. 1474

These methods achieved performance close to that of full-parameter fine-tuning while maintaining the 1475

generalization ability of the original models. However, they all require access to the model’s weights and 1476

loading them into GPU memory, which can be challenging for today’s large models, especially when 1477

state-of-the-art models’ parameters are not publicly available. Therefore, in this paper, we follow the 1478

NML setup and explore efficient ways to fine-tune the downstream task head under a black-box scenario. 1479

Implicit Regularization and Sharpness-aware Minimization. Achieving good generalization in 1480

neural networks optimized using gradient descent algorithms has long been a research focus in deep 1481

learning theory. Barrett and Dherin (2021) explored the properties of stochastic gradient descent (SGD), 1482

finding that SGD implicitly constrains the gradient norm. Based on this observation, Sharpness-aware 1483

minimization (SAM) (Zhang et al., 2023; Foret et al., 2021; Wen et al., 2023; Xie et al., 2023c) improves 1484

generalization by incorporating the gradient norm as a regularization term. Our method can be seen as 1485

drawing inspiration from SAM but differs in that our optimization objective is the model’s resilience to 1486

input noise rather than seeking flat minima in the parameter space. 1487

D Experiments in Section 3 1488

D.1 Pre-training Dataset 1489

OpenWebText Dataset. The OpenWebText dataset (Gokaslan et al., 2019) is a large-scale corpus of 1490

English text data, developed to serve as an open-access alternative to proprietary dataset WebText that is 1491

utilized by OpenAI for training their GPT-2 models. This dataset originates from the analysis of outbound 1492

links clicked on Reddit, undergoing multiple stages of filtering to exclude non-English content, duplicate 1493

entries, copyrighted materials, and texts lacking in quality. These links generally direct to web pages 1494

available to the public, often shared or debated on Reddit, thereby covering a broad spectrum of subjects 1495

that mirror online popular interests and discussions. The dataset includes roughly 18 million documents, 1496

amounting to about 20GB of compressed plain text data in uint16 format. Since measures have been 1497

implemented to ensure the dataset’s reliability by filtering out unsuitable content, we consider it a clean 1498

and noise-free dataset. Figure 8(a) illustrates the distribution of internal tokens. 1499

Random Noise. To simulate the distribution of random gibberish that crawlers might retrieve from 1500

the Internet due to various reasons, we manually searched and collected a few websites containing such 1501

gibberish and also opened normally functioning websites using different decoding methods to observe 1502
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Figure 9: Visualization of (a) Lntp(P
m, h∗) − Lntp(P

m, h) and (b) Lntp(P
c, h) with α = 0.55, k =

1,Lntp(P
c, h∗) = 2.9,Lntp(P

n, h∗) = 2.8.

the distribution of tokens. We found that, while the distribution of tokens appeared disorganized, their1503

prior probabilities were not evenly distributed. Instead, several tokens had notably high probabilities,1504

which is similar to that observed in the clean data as shown in Figure 8(a). Thus, on the basis of uniformly1505

distributed random noise, we increased the frequency of certain tokens and then randomized them again.1506

The resulting distribution is illustrated in Figure 8(b). It can be seen that while maintaining an overall1507

uniform distribution, the frequency of tokens with IDs ranging from 0 to 1000 is higher which closely1508

mirrors real-world scenarios.1509

Gaussian Noise. Given the diversity and unpredictability of real-world data distributions, we also1510

artificially generated random noise with a prior probability that follows a Gaussian distribution, as shown1511

in Figure 8(c). The rationale behind choosing the Gaussian distribution is that the noise in many real-world1512

systems can be approximated by it. Additionally, we set the standard deviation σ = 500 to simulate1513

scenarios where random noise exhibits sharp peaks.1514

D.2 Training Details of GPT-21515

Our work is based on the source code of nanoGPT3. Specifically, we utilized the GPT-2 tokenizer with1516

vocabulary size V = 50256 to process the OpenWebText dataset, and then appended randomly generated1517

noise to the end of the training set before commencing training. The model’s context length is set to1518

L = 1024, with an embedding dimension d = 768. The GPT-2 model consists of 12 self-attention layers,1519

totaling approximately 124 million parameters. For optimization, we employed AdamW (Loshchilov,1520

2017; Xie et al., 2022) with a learning rate of 6e-4, weight decay of 0.1, and β values of 0.9 and 0.951521

for β1 and β2, respectively. A cosine annealing scheduler was used to gradually adjust the learning rate1522

down to 6e-5. We configured the batch size to 16, with a gradient accumulation step of 40, allowing each1523

iteration to process 655,360 tokens (16 * 40 * 1024). Training proceeded for a total of 300,000 iterations.1524

D.3 Synthetic Results about Multilingual Models1525

To illustrate our theory’s explanatory power concerning multilingual models, we have plotted the sce-1526

nario where h∗ is influenced by Pn under the conditions α = 0.55, k = 1, Lntp(P
c, h∗) = 2.9, and1527

Lntp(P
n, h∗) = 2.8, as shown in Figure 9. This setup simulates a model trained on a roughly 1:11528

multilingual corpus, where the capacity of one language is affected by the data from another language.1529

As can be observed from the figure, the impact on pc does not exceed 2η = 2(αpc − (1− α)pn), which1530

translates to an increase of no more than 0.1 in Lntp(P
n, h). This finding strongly supports the success of1531

multilingual models from a theoretical perspective.1532

D.4 Hardware1533

We conducted the pre-training process on a server equipped with 8 NVIDIA GeForce RTX 4090 GPUs.1534

It takes approximately 70 hours to train one model using eight 4090 GPUs, so pre-training five GPT-21535

3https://github.com/karpathy/nanoGPT
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models in total requires 2,800 GPU hours. 1536

E Experiments in Section 4 1537

E.1 Detailed Setup for Downstream Natural Language Understanding Experiments 1538

E.1.1 Datasets 1539

We utilize 8 commonly-used text classification benchmark: SST-2, SST-fine, 20newsgroup, CR, BBC, 1540

Balanced COPA, MRPC, WiC. The detailed information can be found in Table 8. 1541

Dataset Classes Train Size Test Size
SST-2 (Socher et al., 2013) 2 6.92k 1.82k

SST-fine (Chen and Manning, 2014) 5 8.54k 2.21k
20newsgroup (Zhang et al., 2019) 20 11.3k 7.53k

CR (Hu and Liu, 2004) 2 3.39k 376
BBC (Samuels and Mcgonical, 2020) 5 1.23k 1k

Balanced COPA (Kavumba et al., 2020) 2 1k 500
MRPC (Dolan and Brockett, 2005) 2 3.67k 1.73k

WiC (Pilehvar and Camacho-Collados, 2019) 2 5.43k 1.4k

Table 8: Details of the 8 natural language understanding dataset.

E.1.2 Prompts 1542

Since classification tasks can be processed as seq2seq tasks by adding prompts (Sutskever, 2014; Saunshi 1543

et al., 2021), we design a unique prompt for each dataset and task. This approach transforms the inputs 1544

into a format that large language models can process. The specific designs are shown in Table 9. 1545

Dataset Prompts
SST-2 {text} this movie is

SST-fine {text} this movie is
20newsgroup {text} This article is about

CR {text} the sentiment is
BBC Please classify the topic of the following news: {text} Answer:

Balanced COPA Given the premise: {premise} Find the most plausible alternative
for the {question}. Option 1: {choice1} Option 2: {choice2}

Which option is more plausible?
MRPC Sentence 1: {text1} Sentence 2: {text2} Is this a paraphrase?
WiC Task: Determine if the word {phrase1} has the same meaning in

the two sentences below. Sentence 1: {sentence1} Sentence 2:
{sentence2} Your answer:

Table 9: Details of the prompts applied to each dataset.

E.1.3 Hyperparameters 1546

For all experiments in Section 4, we utilize a two-layer MLP with hidden dimension equals to feature 1547

dimension and ReLU activation function. 1548

For all experiments shown in Table 1, we set γ in Equation (3) to be 0.01 and λ in Equation (6) to be 1549

0.15. Following the setup as described by Saunshi et al. (2021), for each dataset, we conduct a grid search 1550

on the validation set to identify the optimal learning rate and batch size. We train for a total of ten epochs 1551

with the learning rate ranging within {3e-4, 6e-4} and batch size options including {8, 12, 16, 32}. For 1552

samples without a designated validation set, we randomly select 10% of the training set samples to form a 1553

validation set for the purpose of selecting the best parameters. 1554
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For the experiments listed in Table 2, we set the batch size to 8 and the learning rate to 6e-4 for all linear1555

probe tasks. For all MLP probe tasks, the learning rate is set to 1e-4. Regarding γ and λ, we conduct a1556

grid search on the validation set to find the optimal values.1557

E.2 Detailed Setup for Downstream Vision Experiments1558

E.2.1 Datasets1559

We select 14 image classification datasets, which serve as a common benchmark for evaluating model1560

performance in the vision community (Zhou et al., 2022b; Chen et al., 2024). Specific information about1561

these 14 datasets is provided in Table 10.

Dataset Classes Train Size Test Size
StanfordCars (Krause et al., 2013) 196 8144 8041
Caltech101 (Fei-Fei et al., 2004a) 102 3060 6084

CIFAR-10 (Krizhevsky et al., 2009) 10 50000 10000
CIFAR-100 (Krizhevsky et al., 2009) 100 50000 10000

DTD (Cimpoi et al., 2014) 47 1880 1880
EuroSAT (Helber et al., 2019) 10 21600 5400

FGVCAircraft (Maji et al., 2013) 102 6667 3333
Flowers102 (Nilsback and Zisserman, 2008) 102 2040 6149

Food101 (Fei-Fei et al., 2004b) 101 75750 25250
OxfordPet (Parkhi et al., 2012) 37 3680 3669

PatchCamelyon (Veeling et al., 2018) 2 262144 32768
RESISC45 (Cheng et al., 2017) 45 25200 6300

Rendered SST2 (Socher et al., 2013) 2 6920 1821
SVHN (Netzer et al., 2011) 10 73257 26032

Table 10: Details of the 14 vision dataset.

1562

E.2.2 Models1563

We use five pre-trained general-purpose visual backbone models that cover a variety of architectures,1564

datasets, and training methods. Detailed information is provided in Table 11.

Model Pre-training Dataset Size

EfficientNet-B3 (Tan and Le, 2019)
ImageNet-1K (Deng et al., 2009)
and JFT-300M (Sun et al., 2017)

12.3M

ResNetv2-152x2 (He et al., 2016) ImageNet-21K (Ridnik et al., 2021) 321.7M
Swin-L (Liu et al., 2021) ImageNet-21K 196.7M

ConvNext-L (Woo et al., 2023)
Laion-2B (Schuhmann et al., 2022)

and ImageNet-1K
200.1M

ViT-L (Dosovitskiy, 2020) Laion-2B 428M

Table 11: Details of the 5 vision models.

1565

E.2.3 Hyperparameters1566

In our study, similar to the approach detailed in Chen et al. (2024), we primarily contrast our proposed1567

method with MLP and LP tuning. For the optimization process, we employ AdamW for fine-tuning the1568

modules over 30 epochs, utilizing a cosine learning rate scheduler. Specifically, for LP, we configure the1569

learning rate at 0.1 without applying any weight decay. In contrast, both the MLP tuning and our method1570

use a more conservative learning rate of 0.001 alongside a weight decay of 1e-4.1571
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E.2.4 Detailed Experimental Results 1572

In Table 3, due to space limitations, we only present the average results, while detailed results are shown 1573

in Table 12. 1574

Models
StanfordCars Caltech101 CIFAR-10

Linear MLP Linear MLP Linear MLP
ViT-L 93.38 ± 0.76 94.41 ± 1.05 92.07 ± 1.19 95.20 ± 1.12 97.99 ± 0.95 98.35 ± 0.95

ViT-L + Lgm 93.71 ± 1.37 94.56 ± 1.50 95.01 ± 0.97 95.29 ± 1.27 98.07 ± 0.74 98.48 ± 0.60
ConvNext-L 86.01 ± 1.48 88.68 ± 0.89 91.02 ± 0.79 94.47 ± 0.53 97.49 ± 1.36 98.09 ± 0.85

ConvNext-L+Lgm 86.78 ± 1.32 89.06 ± 1.19 94.11 ± 1.19 94.93 ± 0.88 97.59 ± 0.52 98.15 ± 0.71
EfficientNet-B3 56.20 ± 0.54 58.57 ± 1.11 89.43 ± 0.78 91.22 ± 1.23 94.04 ± 1.19 95.73 ± 1.07

EfficientNet-B3+Lgm 57.02 ± 1.28 58.15 ± 1.12 90.25 ± 1.43 91.55 ± 0.90 94.11 ± 0.88 95.96 ± 0.86
ResNetv2-152x2 56.95 ± 1.21 59.18 ± 1.34 91.40 ± 1.47 92.48 ± 1.30 96.28 ± 1.16 96.91 ± 0.89

ResNetv2-152x2+Lgm 58.78 ± 1.16 58.67 ± 1.27 93.83 ± 0.91 93.95 ± 0.94 96.31 ± 0.85 97.03 ± 0.53
Swin-L 68.17 ± 0.98 74.11 ± 0.60 92.58 ± 0.95 94.09 ± 1.04 98.26 ± 0.89 98.61 ± 0.78

Swin-L+Lgm 69.31 ± 1.07 73.71 ± 0.94 93.65 ± 1.42 94.62 ± 0.64 98.41 ± 0.91 98.72 ± 1.28

CIFAR-100 EuroSAT FGVCAircraft OxfordPet
Linear MLP Linear MLP Linear MLP Linear MLP

88.07 ± 0.58 89.49 ± 0.52 97.53 ± 1.13 97.75 ± 0.61 65.76 ± 0.73 68.43 ± 0.78 91.65 ± 1.18 93.97 ± 1.50
88.06 ± 0.93 89.58 ± 0.93 97.83 ± 0.73 98.03 ± 0.60 66.63 ± 1.08 68.67 ± 1.07 93.18 ± 0.81 94.17 ± 1.10
86.76 ± 0.91 87.79 ± 1.27 95.57 ± 1.22 96.31 ± 1.11 57.18 ± 1.12 62.25 ± 0.66 94.98 ± 0.54 95.80 ± 0.75
86.46 ± 1.04 87.88 ± 1.24 96.05 ± 1.46 96.74 ± 1.27 58.35 ± 0.68 63.61 ± 0.83 95.39 ± 1.21 95.99 ± 0.92
77.34 ± 0.86 80.28 ± 1.02 94.81 ± 1.35 95.90 ± 0.88 44.73 ± 1.31 46.23 ± 0.92 93.84 ± 1.14 94.79 ± 1.14
77.16 ± 1.11 80.47 ± 1.43 95.20 ± 0.52 96.07 ± 1.18 45.33 ± 0.61 47.07 ± 0.57 94.63 ± 1.03 94.98 ± 1.14
84.30 ± 1.18 84.68 ± 1.33 97.12 ± 1.46 97.46 ± 1.28 42.03 ± 0.72 48.39 ± 0.85 91.93 ± 0.68 92.99 ± 1.40
84.28 ± 1.22 84.29 ± 1.38 97.35 ± 1.12 97.59 ± 0.72 45.69 ± 0.80 48.84 ± 0.61 92.61 ± 0.87 93.45 ± 1.32
89.68 ± 1.33 90.74 ± 0.98 97.11 ± 0.72 97.59 ± 0.63 54.96 ± 1.24 61.17 ± 1.35 92.17 ± 0.64 94.38 ± 1.21
89.79 ± 0.52 91.18 ± 1.21 97.09 ± 1.11 97.71 ± 1.08 56.10 ± 0.67 60.99 ± 0.73 93.86 ± 0.85 94.57 ± 1.11

Food101 Flowers102 DTD SVHN
Linear MLP Linear MLP Linear MLP Linear MLP

90.51 ± 1.31 91.04 ± 1.35 94.04 ± 1.13 97.83 ± 0.74 80.53 ± 1.06 83.29 ± 0.86 78.82 ± 1.25 84.74 ± 1.08
90.62 ± 1.37 91.23 ± 0.52 96.67 ± 1.41 98.06 ± 1.28 82.76 ± 0.71 83.77 ± 0.98 79.80 ± 0.88 84.59 ± 1.38
89.09 ± 1.06 90.21 ± 0.87 94.71 ± 1.31 98.78 ± 1.17 76.01 ± 1.03 78.67 ± 1.15 66.16 ± 0.87 72.76 ± 0.78
88.62 ± 0.72 90.10 ± 1.39 97.12 ± 0.95 98.99 ± 0.99 77.92 ± 0.72 80.05 ± 1.44 68.43 ± 1.37 73.18 ± 0.67
76.95 ± 0.82 81.78 ± 0.89 84.19 ± 0.61 88.97 ± 1.32 69.09 ± 1.27 73.08 ± 1.30 54.26 ± 0.87 61.38 ± 0.82
76.35 ± 0.74 81.33 ± 1.45 86.19 ± 1.08 89.42 ± 0.62 71.27 ± 1.24 73.82 ± 1.40 56.74 ± 0.73 63.56 ± 0.82
84.83 ± 1.36 84.15 ± 1.27 96.76 ± 0.88 98.27 ± 0.53 72.23 ± 0.94 76.11 ± 1.25 60.75 ± 0.89 64.87 ± 1.45
84.41 ± 0.88 84.64 ± 1.04 98.08 ± 1.23 98.84 ± 0.82 74.73 ± 1.38 77.12 ± 1.39 62.04 ± 1.01 65.06 ± 0.62
90.23 ± 0.64 92.23 ± 0.55 97.28 ± 0.92 99.51 ± 1.17 75.85 ± 0.88 80.74 ± 1.45 62.77 ± 1.42 69.53 ± 1.22
90.26 ± 1.14 92.32 ± 1.00 99.12 ± 1.05 99.60 ± 0.51 77.44 ± 1.00 80.91 ± 0.83 64.83 ± 0.98 68.97 ± 1.12

resisc45 rsst2 pcam Avg
Linear MLP Linear MLP Linear MLP Linear MLP

95.44 ± 1.41 95.79 ± 0.57 67.65 ± 1.12 73.58 ± 1.31 82.65 ± 0.57 83.92 ± 0.56 86.86 89.12
95.73 ± 1.19 95.93 ± 1.28 71.82 ± 0.55 74.24 ± 0.76 82.55 ± 1.49 83.78 ± 0.97 88.03 89.31
92.65 ± 1.25 93.09 ± 0.89 60.73 ± 1.30 66.0 ± 0.55 72.21 ± 0.72 77.08 ± 0.53 82.89 85.71
92.93 ± 0.54 93.31 ± 1.31 64.14 ± 0.99 67.49 ± 0.63 73.1 ± 1.35 78.31 ± 1.10 84.07 86.27
87.19 ± 1.05 89.01 ± 0.70 50.46 ± 1.02 50.74 ± 1.05 53.32 ± 0.59 51.10 ± 1.34 73.27 75.62
87.33 ± 0.60 89.17 ± 1.34 50.19 ± 0.74 51.07 ± 0.92 54.52 ± 1.27 50.10 ± 0.92 74.02 75.90
90.96 ± 0.81 91.19 ± 0.57 50.90 ± 0.73 49.91 ± 1.08 77.62 ± 0.85 77.86 ± 1.16 78.14 79.60
91.17 ± 0.64 91.36 ± 0.73 54.25 ± 0.69 49.92 ± 1.03 79.44 ± 0.52 78.48 ± 0.53 79.49 79.45
92.79 ± 1.25 94.09 ± 0.99 50.96 ± 1.41 53.59 ± 1.20 77.32 ± 0.68 78.38 ± 1.04 81.43 84.19
93.41 ± 1.32 94.42 ± 0.96 53.48 ± 0.89 54.96 ± 0.90 81.18 ± 1.34 79.29 ± 1.31 82.70 84.42

Table 12: Detailed accuracy of 5 vision backbone models on 14 commonly-used vision datasets.
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E.3 Runtime Analysis1575

Since all our models are black-box models, we first process all samples into vector-form features and then1576

probe them. All models described in this paper can run on a single NVIDIA RTX 4090 GPU. Extracting1577

all these features requires a total of 10 GPU hours. Subsequently, training these Linear or MLP Probes1578

requires approximately 200 GPU hours in total.1579
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