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Abstract— A new closed-form solver is proposed minimizing
the algebraic error optimally, in the least squares sense, to
estimate the relative planar motion of two calibrated cameras.
The main objective is to solve the over-determined case, i.e.,
when a larger-than-minimal sample of point correspondences
is given – thus, estimating the motion from at least three
correspondences. The algorithm requires the camera movement
to be constrained to a plane, e.g. mounted to a vehicle, and
the image plane to be orthogonal to the ground.1 The solver
obtains the motion parameters as the roots of a 6th degree
polynomial. It is validated both in synthetic experiments and on
publicly available real-world datasets that using the proposed
solver leads to results superior to the state-of-the-art in terms
of geometric accuracy with no noticeable deterioration in the
processing time.

I. INTRODUCTION
The estimation of the epipolar geometry between a stereo

image pair is a fundamental problem of computer vision for
recovering the relative camera motion, i.e. the rotation and
translation of the cameras. Being a well-studied problem,
several papers discussed its theory, estimators and potential
applications. Faugeras proved [1] that this relationship is
described by a 3×3 projective transformation: this is the so-
called fundamental matrix. When the intrinsic camera param-
eters are known, additional geometric constraints transform
it to an essential matrix. In this paper a special constraint is
considered to hold, i.e. the planar motion, when the optical
axes of the cameras are in the same 3D plane and their
vertical directions are parallel. A new solver is proposed for
estimating the camera rotation and translation formalizing the
problem as a least-squares optimization. In particular, we are
interested in solving optimally the over-determined case, i.e.
to estimate the camera motion from a larger-than-minimal
set of point correspondences.

There is a number of techniques proposed for estimating
the epipolar geometry from different numbers of correspon-
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1Note that the latter constraint can be straightforwardly made valid by
transforming the image when having the gravity vector, e.g., from an IMU.
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Fig. 1: Planar motion scheme. The camera movement is
described by the angle α of the rotation perpendicular to
axis Y and translation vector [cos(β), 0 , sin(β)]T.

dences considering general camera movement. For instance,
such methods are the five- [2], [3], [4], [5], six- [6], [7], [8],
[9], seven- and eight-point [10] algorithms. These methods
consider no special camera movement and, therefore, are
applicable in most of the situations without introducing
restrictions on the cameras. They are used in most of
the state-of-the-art SLAM pipelines [11], and fundamental
methods for the motion estimation. They are powerful tools
for estimating the pose when having a minimal set of point
correspondences. However, the over-determined case has
not yet been solved optimally while keeping the geometric
constraints valid. For example, to estimate the pose from
a larger-than-minimal sample by the five-point algorithm,
usually, the points are fed into the null-space calculation.
Then, the geometric constraints are forced to the four singu-
lar vectors corresponding to the four smallest singular values.
Since those singular vectors are not null-vectors anymore,
the procedure will distort the noise and result in a far-from-
optimal pose estimate. Therefore, these methods require a
final numerical refinement of the pose parameters.

Nowadays, one of the most popular applications of com-
puter vision is the sensing of autonomous vehicles. Algo-
rithms designed for such problems must be robust and fast
to reduce the probability of failure. This setting allows us to
exploit the special properties of the vehicle movement to pro-
vide results superior to the state-of-the-art general algorithms
both in terms of geometric accuracy and processing time.
Fig. 1 shows the movement of a typical vehicle-mounted
monocular camera. A straightforward way to incorporate this
additional information is to put constraints on the rotation
and translation parameters of the cameras, for which, several
approaches exist.
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Circular planar motion. One of the most simplified models is
the circular planar motion, i.e. the so-called non-holonomic
constraint, which assumes that the camera undergoes planar
and, also, circular motion. This assumption is valid if the
camera is mounted to a vehicle which rotates around an
exterior point defined by the intersecting lines drawn by
the orientation of the wheels. For instance, this is the case
which holds for standard cars. Straight driving is interpreted
as rotating around a point in the infinity, i.e. movement on a
circle with infinite radius. Scaramuzza [12] proposed a one-
point technique considering this kind of movement. Choi et
al. [13] improved the accuracy by normalization. Civera et
al. [14] proposed a technique for real-time visual odometry
and structure-from-motion using extended Kalman-filtering.
Interestingly, this motion assumption is a way of resolv-
ing the scale ambiguity [15] if the camera is not located
over the rear axle. Even though this circular planar motion
constraint holds for a number of moving vehicles in ideal
circumstances, it is not able to describe several movement
types, e.g. steering of a car or robot turning in one place.

Planar motion. In general, the cameras follow planar motion
when moving on planar surfaces such as roads or floors.
Ortin and Montiel [16] showed that, in this case, the problem
becomes the estimation of two unknown angles, see Fig. 1,
and can be solved using two point correspondences. In [16],
the authors proposed an iterative approach. Formalizing the
problem as the intersection calculation of two geometric
entities, Chou and Wang [17] and Choi et al. [18] proposed
closed-form solutions. These methods obtain the pose pa-
rameters as the intersections of two ellipses, circles, and line-
circle, respectively. Considering this kind of general planar
motion is fairly often done with additional sensors installed
to the vehicle. For example, Troiani et al. [19] proposed a
two-point RANSAC for a camera-IMU system installed to
micro aerial vehicles. He et al. [20] assumes a UAV to fly on
an approximately constant altitude and estimate the camera
motion by the two-point algorithm. Zhang et al. [21] present
an orientation estimation approach based on a monocular
camera and IMUs. Lee et al. [22] devised a novel two-point
algorithm for generalized cameras mounted to cars. Choi and
Park [23] exploited planar motion estimation using RGB-D
sensors. Also, when the gravity vector is known (e.g., from
an IMU), the points can be straightforwardly transformed to
make the planarity constraint valid. However, these methods
cannot cope with the optimal estimation of motion parame-
ters when a larger-than-minimal correspondence set is given.

In this paper, planar motion is considered and, as the main
contribution, a solver is proposed approaching the problem
as a minimization of a quadratic cost incorporating the two
unknown angles. The solver is closed-form, and the solution
is obtained as the roots of a 6th order polynomial, thus the
optimal estimate has to be selected from at most 6 solutions.
It is shown both in a synthetic environment and on more
than 9.000 publicly available real-world image pairs that
the method is superior to the state-of-the-art in terms of
geometric accuracy.

II. NOTATION AND PRELIMINARIES

The basic symbols and algebraic notations are written in
this section. Scalars are denoted by regular fonts, vectors
and matrices by bold ones. The proposed solver is based
on computations with univariate polynomials. The variable
is always λ. A polynomial is denoted by a bold uppercase
character with lower and upper indices. The lower one
denotes the index of the polynomial, the upper one is its
degree. For instance, Q3

1 (λ) is a cubic polynomial:

Q3
1 (λ) = q3λ

3 + q2λ
2 + q1λ+ q0 =

3∑
i=0

qiλ
i,

where each qi is a coefficient of the polynomial. The multi-
plication of two polynomials is denoted as

QN
1 (λ)PM1 (λ) =

N∑
i=0

M∑
j=0

qipjλ
(i+j),

where N,M ∈ R are degrees. Normally, the resulting
polynomial after the multiplication is of degree N+M . The
squared-norm of a polynomial is defined as the multiplication
of that by itself. If the degree is N , then that of the squared-
norm is 2N as follows:∣∣∣∣QN

1 (λ)
∣∣∣∣2
2
= QN

1 (λ)QN
1 (λ) = Q2N

2 (λ) .

Fundamental and essential matrices. The 3× 3 fundamental
matrix F is a projective transformation ensuring the epipolar
constraint as p2

TFp1 = p2
TC−T

2 EC−1
1 p1 = 0. The

relationship of essential matrix E and F is F = C−T
2 EC−1

1 ,
where matrices C1 and C2 contain the intrinsic parameters
of the two cameras. In the rest of the paper, we assume points
p1 and p2 to be premultiplied by C−1

1 and C−1
2 simplifying

the epipolar constraint to

q2
TEq1 = 0, (2)

where q1 = C−1
1 p1 = [q1x q1y 1]T and q2 = C−1

2 p2 =
[q2x q2y 1]T are the normalized points. Essential matrix
E can be described by the camera motion as follows:
E = [t]×R, where t is a 3D translation vector and R is
an orthonormal rotation matrix. Operator [.]× is the cross-
product matrix. The ith element of the essential E and
fundamental matrices F in row-major order is denoted as
ei and fi, respectively, i ∈ [1, 9] as follows:

E =

 e1 e2 e3
e4 e5 e6
e7 e8 e9

 , F =

 f1 f2 f3
f4 f5 f6
f7 f8 f9

 .
Planar motion. Suppose that a calibrated image pair with
a common XZ plane is given. Directions X and Y are the
horizontal and vertical ones, while axis Z is perpendicular to
the image planes. Having a common XZ plane means that
the vertical image directions are parallel. A trivial example
for that constraint is the camera setting of usual autonomous
cars: a camera is fixed to the moving car, and the XZ plane
of the camera is parallel to the ground plane.

Let us denote the first and the second projection matri-
ces by P1 and P2. Without loss of generality, the world



adj(M) =

 (λ+aT
2a2)(aT

3a3−λ)−(aT
2a3)

2
aT
2a3a

T
3a1−aT

2a1(aT
3a3−λ) aT

2a1a
T
3a2−aT

3a1(λ+aT
2a2)

aT
1a3a

T
3a2−aT

2a1(aT
3a3−λ) (λ+aT

1a1)(aT
3a3−λ)−(aT

1a3)
2

aT
1a2a

T
3a1−aT

3a1(λ+aT
1a1)

aT
2a3a

T
3a1−aT

2a1(aT
3a3−λ) aT

1a2a
T
3a1−aT

3a1(λ+aT
1a1) (λ+aT

1a1)(λ+aT
2a2)−(aT

1a2)
2

 (1)

coordinate system is fixed to the first camera. Therefore,
P1 is represented by P1 = C1 [ I3×3 | 0 ], where C1

is the intrinsic camera parameters of the first camera. The
second one is written as a general pinhole camera as follows:
P2 = C2 [ R2 | t2 ], where C2, R2, and t2 are the intrinsic
camera matrix, orientation and location of the second camera,
respectively. Assuming planar motion and a common XZ
plane, the rotation and translation are represented by three
parameters: a 2D translation and a rotation. Formally,

R2 =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 , t =

 x
0
z

 .
Describing this motion by epipolar geometric entities, the
general 3 × 3 essential matrix E = [t]× R have to be
modified, where R is the relative rotation between the
images. In the discussed case, R = R2 and

[t]× =

 0 −z 0
z 0 −x
0 x 0

 .
Therefore, the essential matrix is simplified for planar motion
as follows:

E = [t]× R2 =

[
0 −z 0

z cosα+ x sinα 0 z sinα− x cosα
0 x 0

]
Thus, e1 = e3 = e5 = e7 = e9 = 0, e2 = −z, e8 = x,
e4 = z cosα − x sinα, and e6 = −z sinα − x cosα. As it
is well known in projective geometry [10], the scale of the
motion cannot be retrieved, only the direction. Therefore the
planar translation parameters x and z are described as the
coordinates of a point on unit-circle as follows: x = cosβ
and z = sinβ, where β is an angle. Due to this, the non-zero
elements of the essential matrix are rewritten as

e2 = − sinβ, e8 = cosβ,

e4 = sinβ cosα+ cosβ sinα = sin (β + α) ,

e6 = sinβ sinα− cosβ cosα = − cos (β + α) .

Consequently, the motion has two degrees-of-freedom: the
angles of the rotation and translation.

III. LEAST-SQUARES OPTIMAL SOLVER
In this section a solver, optimal in the least-squares sense,

is proposed for estimating the essential matrix from a non-
minimal set of point correspondences (at least three) in case
of planar motion.

The problem can be written as a homogeneous linear
system of equations, Ax = 0, where

x = [cosβ sinβ cos (α+ β) sin (α+ β)]T.

The coordinates in vector x are dependent. The first and last
two ones are the sine and cosine functions of the same angles.

Also, the solution is defined only up to a scale. Therefore, if
parameter vector x is divided into two 2D sub-vectors, the
lengths of these vectors have to be equal.

The constraints can be added by applying Lagrangian
multipliers. The scale ambiguity and equality of the two
sub-vectors requires two multipliers. However, the scale
ambiguity can be represented by fixing one of the coordinates
in vector x. We fix the third coordinate as follows: x =
[γ δ ε 1]T. Note that in case of sin(α+ β) being close
to zero, this parameterization can be unstable. Thus x =
[γ δ 1 ε]T also has to be calculated. The former one
is discussed here. The latter one can be straightforwardly
obtained by swapping the third and fourth columns of A.

Let us denote the ith row of matrix A by vector ai,
and formulate the problem with the new parameters as the
minimization of cost function J which is as follows:

J = ‖γa1 + δa2 + εa3 + a4‖22 . (3)

In order to enforce the constraint of the lengths of the 2D
sub-vectors (i.e., γ2+δ2 = ε2+1), only a single Lagrangian
multiplier is introduced, and the cost function is modified as

Ĵ = ‖γa1 + δa2 + εa3 + a4‖22 + λ
(
γ2 + δ2 − ε2 − 1

)
.

The minimum is obtained by the derivatives w.r.t. the un-
known parameters γ, δ, and ε as

∂Ĵ

∂γ
= 2(γaT

1 + δaT
2 + εaT

3 + aT
4)a1 + 2λγ = 0,

∂Ĵ

∂δ
= 2(γaT

1 + δaT
2 + εaT

3 + aT
4)a2 + 2λδ = 0,

∂Ĵ

∂ε
= 2(γaT

1 + δaT
2 + εaT

3 + aT
4)a3 − 2λε = 0.

They can be written in matrix form as

 λ+ aT
1a1 aT

1a2 aT
1a3

aT
2a1 λ+ aT

2a2 aT
2a3

aT
3a1 aT

3a2 aT
3a3 − λ


︸ ︷︷ ︸

M(λ)

 γ
δ
ε


︸ ︷︷ ︸

x

= −

 aT
1

aT
2

aT
3

a4

︸ ︷︷ ︸
b

.

In short, it can be written as a homogeneous linear system
of equations: M (λ)x = b. The elements of vector x can be
obtained by multiplying this system with matrix M−1 (λ).
The inverse is given by the division of the adjoint matrix
with the determinant: γ

δ
ε

 = − adj(M(λ))

det(M(λ))

 aT
1

aT
2

aT
3

a4 (4)

The adjoint matrix is written in Eq. 1. Its elements are
polynomials in λ, their degrees are 1 or 2. The determinant is



a cubic polynomial. Thus, all the elements can be expressed
as the fraction of a quadratic and a cubic polynomial as

γ = P2
1(λ)/P

3
4(λ), δ = P2

2(λ)/P
3
4(λ), ε = P2

3(λ)/P
3
4(λ)

Polynomials P2
1, P2

2, and P2
3 are obtained by multiplying the

first, second, and third row of the adjoint matrix adj(M(λ))

with the vector
[
aT
4a1 aT

4a2 aT
4a3

]T
, and P3

4 is the
determinant of matrix M(λ).

In order to determine the Lagrange multiplier, condition
γ2 + δ2 − ε2 − 1 = 0 has to be considered. This leads to a
sixth-degree polynomial in λ as follows:(

P2
1(λ)

)2
+
(
P2

2(λ)
)2

+
(
P2

3(λ)
)2 − (P3

4(λ)
)2

= 0

This polynomial has at most six roots. Only the real parame-
ters should be kept. Thus we discard the complex roots. The
candidate solutions for parameters γ, δ and ε are obtained
by substituting the estimated real roots for λ into Eq. 4.
Degenerate configurations. The proposed algorithm esti-
mates the two angles using a linear system of equations
that consists of a minimum of three independent equations
originating from point correspondences. The coefficient ma-
trix can be divided into two parts, the left two columns
relate to angle α, the third and fourth ones to (α+ β).
Algebraically, the configuration is degenerate only if one of
the parts consists of only zero elements. It is possible only
if the 2nd coordinates of all point correspondences are zero.

IV. EXPERIMENTAL RESULTS

In this section, we test the proposed method both on
synthesized and publicly available real-world data. The com-
pared methods are the proposed one, the techniques proposed
by Choi et al. [18] and the five-point algorithm of Stewenius
et al. [6].

A. Synthetic tests

To test the proposed method in a fully controlled environ-
ment, two cameras were generated by their 3× 4 projection
matrices P1 = K1[I3×3 | 0] and P2 = K2[R2 | − R2t2].
Camera P1 was located in the origin and its image plane
was parallel to plane XY. The second camera was generated
by applying a 10 unit long purely forward motion to the
first one and adding a small random rotation (≤ 5◦). Thus
t2 = 10 [cos(γ) 0 sin(γ)]T, where γ = 0. Its orientation
was determined by a random rotation affecting around axis
Y. Both cameras had a common intrinsic camera matrix
with focal length fx = fy = 1000 and principal points
[500, 500]T. 3D points were generated at most one unit
far from the origin and were projected into both cameras.
Finally, zero-mean Gaussian-noise with σ standard deviation
was added to the projected point coordinates. For both the
obtained rotation and translation, the error is the angular error
in degrees.

The compared methods are the proposed one, that of
Choi et al. [18] and the five point solver of Stewenius et
al. [6]. The proposed method and Choi et al. [18] exploit
the planar movement when estimating the pose parameters
from the over-determined system. The five-point algorithm

solves the general pose estimation problem. For applying it
to the over-determined problem, the correspondences were
fed into the null-space calculation. Finally, the four singular
vectors, corresponding to the four smallest singular values,
were used as the null-space and the remaining steps of the
algorithm were applied using them.

The left two plots of Fig. 2 reports the average – over
1 000 runs on each point number – rotation (left) and
translation (middle) errors plotted as the function of the point
number used for the estimation. The methods were tested on
different image noise σs (i.e., 0.5, 1.0 and 2.0 pixels; the line
style indicates the noise level) added to the point coordinates.
It can be seen that the proposed solver is significantly more
accurate than the competitor ones no matter what the image
noise level is. This holds for both the estimated rotation and
translation. Also, the algorithm is consistent, i.e., the more
points are used, the more accurate the method is.

For the right plot of Fig. 2, the planar constraint was
corrupted by simulating a small hill with steepness set to
1◦ and 3◦ (the line style indicates the steepness). Therefore,
the second camera was rotated around axis X and, also, its Y
coordinate was set accordingly. The image noise was fixed to
0.5 pixels. It can be seen that the proposed optimal solver is
significantly less sensitive to the corruption of the planarity
constraint than the method of Choi et al. [18]. With this
small planar noise, it leads to more geometrically accurate
results than the five-point algorithm. Note that, in case of
high planar noise, the camera rotation can be corrected by the
gravity vector if known. Otherwise, all methods considering
planar movement fail.

In Fig. 3, the average (over 100 000 runs) processing times
(vertical axis; in milliseconds) of the Matlab implementations
of the competitor algorithms are reported. The proposed
method is slightly slower than the method of Choi et al. [18]
– by approx. 0.2 ms –, but is faster than the five-point
algorithm by approx. 0.5− 0.6 ms.

In Fig. 4, the number of occurrences (in 100 000 runs;
vertical axis) of the log10 errors (horizontal) in the estimated
rotations (noise-free case) are shown. In each test, the
number of points were set randomly from interval [5, 200].
It can be seen that all methods are stable, i.e., there is no
peak on the right side of the plot. The proposed solver and
the method of Choi et al. [18] are slightly more stable than
the five-point algorithm.

In summary, the synthetic experiments show that when the
movement is close to planar, the proposed solver leads to the
most geometrically accurate relative pose estimates in the
over-determined case. Also, it is of similar speed (slightly
slower) as the fastest state-of-the-art alternative, i.e., the
method solving the problem as line and ellipse intersection
proposed by Choi et al. [18].

B. Real-world experiments

In order to test the proposed technique on real-world data,
we chose the Malaga2 dataset [25]. This dataset was gathered

2https://www.mrpt.org/MalagaUrbanDataset

https://www.mrpt.org/MalagaUrbanDataset
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Fig. 2: Relative pose estimation of a purely forward-moving camera in a synthetic environment. In the left two figures, the
angular errors (vertical axis; in degrees) of, respectively, the estimated translations (left) and rotations (middle) are plotted
as the function of the point number (horizontal axis) used for the estimation with different image noise σs (in pixels) added
to the point coordinates. The right plot reports the translation error (vertical axis; in degrees) as the function of the point
number when the camera movement is not entirely planar. In this case, the image noise was set to 0.5 pixels. The compared
methods are the proposed one, that of Choi et al. [18] (line) and the five-point algorithm of Stewenius et al. [6] (five-point).
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Fig. 3: The processing time (in milliseconds; implemented
in Matlab) as the function of the number of points used for
the estimation. The compared methods are the proposed one,
that of Choi et al. [18] (line) and the five-point algorithm of
Stewenius et al. [6] (five-point).

entirely in urban scenarios with a car equipped with several
sensors, including one high-resolution stereo camera and five
laser scanners. We used the sequences of one high-resolution
camera and every 10th frame from each sequence. The
proposed method was applied to every consecutive image
pair. The ground truth paths were composed using the GPS
coordinates provided in the dataset. Each consecutive frame-
pair was processed independently, therefore, we did not run
any optimization minimizing the error on the whole path
or detecting loop-closure. The estimated relative poses of
the consecutive frames were simply concatenated. The only
correction done on the estimated angles (∈ (−180, 180]) was
that we assumed continuous path and, thus, the angles were
used with a modulo 90◦. For instance, if the estimated angle
was 110◦, we used 20◦, or for −110◦, it was −20◦. In total,
9 064 image pairs were used in the evaluation.

As a robust estimator, we chose Graph-Cut RANSAC [24]
(GC-RANSAC) since it is state-of-the-art and its source code
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Fig. 4: The number of occurrences (in 100 000 runs;
vertical axis) of the log10 errors (horizontal) in the estimated
rotations in the noise-free case are shown. The compared
methods are the proposed one, that of Choi et al. [18] (line)
and the five-point algorithm of Stewenius et al. [6].

is publicly available3. In GC-RANSAC (and other RANSAC-
like methods), two different solvers are used: (a) one for
fitting to a minimal sample and (b) one for fitting to a non-
minimal sample when doing model polishing on all inliers or
in the local optimization step. For (a), the main objective is to
solve the problem using as few data points as possible since
the processing time is a function of the point number required
for the estimation. Except for one case (when we used the
five-point algorithm [6]), we chose the method called ”line”
of Choi et al. [18] which solves the problem from a minimum
of two point correspondences and is reported to be extremely
fast. For (b), we compare the proposed method, the technique
solving the planar motion problem as a linear system by the
DLT algorithm (discussed in [18]), solver ”line” of Choi et
al. [18], and the general five-point algorithm [6]. The tested
combinations for (a) and (b) are reported in Table I.

Most of the tested algorithms return multiple pose can-

3https://github.com/danini/graph-cut-ransac

https://github.com/danini/graph-cut-ransac
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Fig. 5: Cumulative density functions of the angular error (top
– translation; middle – rotation; in degrees) and processing
time (bottom; in seconds) on the 15 scenes (9 064 image
pairs in total) of the Malaga dataset. The probabilities
(vertical axis) are shown as the function of the angular error
and processing time (horizontal). GC-RANSAC [24] is used
as a robust estimator. A method being accurate is equivalent
to its curve being on the left side of the plot. The names of
the methods are described in Table I.

didates. To select the best one, we did not use 5% of the
points (or minimum a single point) in the fitting. The pose
was estimated from the 95% and, finally, the candidate was
selected which minimizes the error on the left out points.
The only solver returning a single solution and, thus, not
requiring this procedure is the planar linear method.

The accuracy of the compared methods is shown in the
top two charts of Fig. 5. The cumulative density functions
are reported. A method being accurate is equivalent to its
curve being on the left side of the plot. The top chart shows
the accuracy of the estimated translation vectors and the

Name Minimal solver Non-minimal solver
Line + Optimal Planar planar ”line” solver [18] proposed

Line + Line planar ”line” solver [18] planar ”line” solver [18]
Line + Linear Planar planar ”line” solver [18] planar linear solver [18]

Line + Five-point planar ”line” solver [18] five-point solver [6]
Baseline five-point solver [6] five-point solver [6]

TABLE I: The combinations of solvers used with GC-
RANSAC [24] in the real-world experiments (see Fig. 5).
The 2nd column shows the solvers used for estimating the
pose from a minimal sample. The 3rd column contains the
solvers used for polishing the model parameters on a non-
minimal sample.

middle one shows that of the rotations. For example, for the
proposed method (red curve), the probability of returning a
translation with lower than 20◦ error is approx. 90%. For
all the other solvers, it is around 75%. It can be seen that
the proposed method is significantly more accurate than the
competitor ones.

The processing time of the whole robust estimation proce-
dure using the compared solvers is shown in the bottom chart
of Fig. 5. It can be seen that the linear solver (average time is
0.033 secs) and the method of Choi et al. [18] (avg. is 0.032
secs) lead to the fastest robust estimation. GC-RANSAC
is marginally slower (avg. is 0.039 secs) when combined
with the proposed solver. However, it is still significantly
faster than the estimator using the five-point algorithm –
the average times of ”Line + Five-point” and ”Baseline” are
0.043 and 0.065 seconds, respectively.

In summary, estimating the model parameters from a non-
minimal sample by the proposed method leads to accuracy
superior to the state-of-the-art without significant overhead
in the processing time.

V. CONCLUSION

In this paper, a new solver is proposed for estimat-
ing the relative camera pose when the camera is moving
on a plane, e.g., it is mounted to a car. The technique,
minimizing an algebraic cost, optimally solves the over-
determined case – i.e., when a larger-than-minimal set of
point correspondences is given. Therefore, it is extremely
useful as the final polishing step of RANSAC [26] or in
the local optimization of locally optimized RANSACs [27],
[24]. The pose parameters are recovered in closed-form as the
roots of a 6th degree polynomial making the procedure fast
and stable. It is validated both in our synthetic environment
and on more than 9, 000 publicly available real image pairs
that the method leads results superior to the state-of-the-art
in terms of geometric accuracy. Even though the solver is
marginally slower than the state-of-the-art (by 0.2 millisec-
onds on average), it does not lead to noticeably slower robust
estimation when combined with GC-RANSAC. The source
code of the solver included in GC-RANSAC will be made
available after publication.
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